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ABSTRACT 
Mesh reconstruction is widely used in industrial reverse 

engineering and other 3D scanning applications. Many of the 

methods used can accurately and swiftly reconstruct a model from 

a given input scan dataset – however, in some applications, 

simplification of the output mesh may be needed to render further 

computation tractable. This paper presents a method based on a 

recursive RANSAC point removal approach, where an input point 

cloud is deconstructed into a set of convex point clusters, each 

corresponding to a mesh face of the final output model. The 

combined use of cluster analysis and RANSAC model extraction 

allows the method to operate on a relatively small number of 

possible vertex candidates for the final mesh, leading to an output 

mesh with relatively few faces compared to other approaches. 

CCS Concepts 

• Computing methodologies ➝ Artificial intelligence ➝ Comp

uter vision ➝ Computer vision problems ➝ Reconstruction 
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• Applied computing ➝ Physical sciences and engineering ➝ 

Engineering ➝ Computer-aided design 
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1. INTRODUCTION 
For two decades, real-time or near-real-time 3D model acquisition 

technology has been available for research purposes [31]. In the last 

decade with the release of relatively inexpensive 3D acquisition 

tools such as the Kinect and similar commercial devices, this 

technology has become available for wide use in industrial and 

commercial applications. A common use case of 3D scanning 

technology is construction of a 3D model or mesh based on point 

cloud data from a scanned object or scene. This task is commonly 

referred to as the mesh reconstruction problem. For example, mesh 

reconstruction is applied in scanning machines in the healthcare  

 
Figure 1. Example of a point cloud scan of an I-beam. 

 

sector [32], scene reconstruction from LiDAR systems in robotics 

applications [33], and industrial reverse engineering [34]. Many 

different techniques exist to perform mesh reconstruction on 3D 

scans. The motivation for the development of this method was a use 

case of robot path planning on surfaces of steel beams (as an 

example see  Figure 1), specifically for the task of robotic painting 

of steel constructions. For painting (as well as other similar 

scenarios) the following three criteria are desired: 

- Minimize number of polygons in the output mesh 

- No smoothing of object geometry allowed 

- Preserve planar surfaces whenever possible 

The above characteristics help in ensuring an even layer of paint 

can be applied. 

These criteria naturally led to the development of a method 

considering the case of objects constructed from planes, which is 

presented in this paper. While this constraint does prohibit the 

method from work on some objects, in particular those with curved 

surfaces, there are certainly also many real-world objects which do 

fulfill this criterion, steel beams being an obvious example. 

This paper is structured as follows. In section 2, the two main 

concepts of the method will be explained and some of their previous 

uses will be listed. Section 3 provides the reader with a short review 

of related topics, focusing especially on other mesh reconstruction 

algorithms. In section 4, the proposed new method is explained 

using a simple test model, and in section 5 the performance of the 

algorithm on various other objects is shown. 

2. BACKGROUND 
The proposed algorithm consists of two main parts: The surfaces of 

the object are found using a RANSAC-based approach, and the 

connectivity of the mesh is derived from clustering of the point 

cloud. 

 



2.1 RANSAC 
RANSAC, or RANdom SAmple Consensus, first proposed by 

Fischler and Bolles [3], is a family of methods for stochastic 

regression fitting of geometric primitives to point data sets, which 

rejects outliers from the data set by only considering the immediate 

neighborhood of the shape being fitted [4] (Figure 2). 

 

Figure 2. RANSAC fitting of a line. 

RANSAC is commonly used in computer vision applications 

involving cameras or other imaging sensors for its ability to reject 

large numbers of outliers, finding uses such as visual odometry [3] 

and shape detection [4]. Because of this robustness, many different 

alterations and additions to the original method exists, including 

parallel and distributed versions [5-6], Machine-Learning enhanced 

fitting [7-8], and adaptive RANSAC methods [9]. Choi et al [10] 

provide a useful review of various RANSAC methods and their 

characteristics. 

2.2 kNN Radius Filter & ECE 
kNN (k-Nearest-Neighbor) is a category of classification methods 

where data is classified by only looking at the 𝑘 nearest neighbors 

in the dataset [11]. This method uses a kNN based neighborhood 

density filter to remove outliers from the data set (Figure 3). 

 

Figure 3. Sample points in a kNN density filter minimum k=4 

Generally, classifying outliers based on neighborhood density is 

known as density clustering [13], and this specific method is 

sometimes known as the Radial Outlier Removal [12]. Many 

different schemes exist for density-based clustering [13]. The 

radius-based kNN filter has the useful property of being able to 

remove the least dense parts of a surface when used on a set of near-

planar points. 

ECE (Euclidean Cluster Extraction) uses a similar radius-based 

approach to classify point data into clusters, but instead of density 

uses connectivity – a point is in a cluster if it shares at least one 

neighbor within the search radius 𝑟. [14] 

When combined, these methods segment point cloud data by 

density and connectivity: A point is considered a meaningful part 

of a cluster when it is connected to other points (ECE), but only if 

it is in a locally dense area of the point cloud (ROR). 

3. RELATED WORK 
These two steps of regression and segmentation will be exploited 

to reconstruct the scanned model – however, many other methods 

for reconstructing meshes from scan data exist. 

Two of the broad categories of this point cloud to 3D mesh 

conversion are "iso-surface extraction" methods, which attempt to 

recreate the surface of the scanned object based on various local 

and global characteristics of the input scan data [15]; and "model 

fitting" methods, which attempt to fit multiple geometric primitives 

on the input data set until a reasonable approximation of the original 

object or scene geometry has been constructed [4]. 

3.1 Surface Extraction 
One of the earliest surface extraction methods Marchine Cubes 

(MC), proposed by Lorensen and Cline [16], splits the input point 

cloud into cells that are classified as one of several cubes. Shu et al 

[17] proposed an adaptive version (AMC) that allows resizing of 

mesh faces depending on local shape, reducing output size. Nilson 

[18] solved a common problem in MC of mesh smoothness and 

degeneration of the mesh using a dual  surface approach, while 

Pöthkow et al [19] used a Monte-Carlo method for resolving this 

same problem, avoiding the complicated logic often needed to 

classify the surface into one of the cube types by using a 

probabilistic approach. 

Another type of method for surface extraction uses 3D alpha 

shapes, which rely on a generalization of the convex hull to non-

convex surfaces (Edelsbrunner and Mücke, [20]). Several methods 

have been developed that use alpha shapes to reconstruct surfaces 

[21-23]. 

Common to both types is that they make no attempt at simplifying 

the output meshes and prefer a smooth mesh representation of the 

output – while a desired result may be reached with post-processing 

of the mesh, they are not ideal for the motivating task of this paper.  

Jenke et al [24] proposed a novel Bayesian probabilistic method for 

surface reconstruction that redefines the reconstruction problem in 

terms of finding a maximum likelihood surface. Recently, a similar 

redefinition of the problem has also been attacked with a dictionary 

learning algorithm by Xiong et al [25], and another machine 

learning approach using a deep learning method was developed by 

Williams et al [26]. These statistical optimization methods are well-

suited for reconstructing sharp-edged objects without smoothing 

the geometry, but still require processing to reduce mesh size. 

3.2 Similar Methods 
Specifically, for tasks where minimizing mesh faces is required 

such as CAD reconstruction, primitive-fitting methods are more 

commonly used as they render the final mesh minimal in size. 

Arven et al. proposed a method for fitting CAD models to a scene 

using a convolutional neural network, and presented a large data set 

for future research into the topic of learned CAD model fitting [29]. 

Shabayek et al. developed a cross-section based method for CAD 

reconstruction, slicing a point cloud along its principal axis and 

reconstructing a model using these cross-sections to preserve 

connectedness [27].  

A similar hybrid approach to the one presented here, using point 

segmenting and primitive fitting was developed by Friedrich et al 

[28], using cylinders, boxes and planes as primitives, however no 



attempt was made to assert the connectivity of the output mesh, 

only to correctly deconstruct a model into primitives. 

4. METHOD 
Like all mesh reconstruction algorithms, the aim of the method is 

to take as input a point cloud acquired from a data acquisition tool 

such as a 3D scanner, and output an accurate mesh representing the 

scanned object. In addition to that, our method reproduces the mesh 

with as few surfaces as possible. 

A diagram of the proposed method can be seen in Figure 4, with 

the colors of the diagram representing the main steps of the method: 

Deconstructing the input into planes (orange), finding convex point 

clusters corresponding to mesh faces in the output model (green), 

calculating the locations of possible vertices in the output model 

(purple), and assembling the mesh using the found faces and 

vertices (blue).  

 

Figure 4. Method overview. 

The rest of this section will explain each of these four steps in the 

above order, concluding with the assumptions that the method 

makes about the input data, and the implications this has for the 

usage of the algorithm on generic point cloud data.  

4.1 RANSAC Plane Deconstruction 
As configuration, this algorithm takes two radii: A RANSAC 

selection radius 𝑟, and feature size 𝑅 where 𝑟 ≪ 𝑅. In the first step, 

the input point cloud is segmented into sets of co-planar points. 

RANSAC is used to determine the best-fit plane on the point cloud. 

The coefficients of the normal equation 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +  𝑑 = 0 

for the best-fit plane is saved to a list, and the RANSAC inlier 

points are removed from the input point cloud. This is then repeated 

recursively, ending when the RANSAC plane fitting fails, meaning 

the input point cloud contains less than 3 points (Figure 5).  

 

Figure 5. Plane deconstruction flowchart. 

In the following steps, the plane equations are used to determine 

the locations of vertices of the final output mesh, while the plane 

inliers are used to determine the connectivity of the vertices into 

mesh faces of the output.  

The effect of this deconstruction process on a simple test point 

cloud can be seen in Figure 6: In each iteration, the best-fit 

RANSAC plane (green) is found for the input data (red). Its inliers 

are then added to a list of planar points, and the inliers are removed 

from the input point cloud. This process continues until a plane can 

no longer be fitted to the input, and the point cloud has been 

emptied. 

 

Figure 6. Example of four iterations of plane deconstruction. 

 

4.2 kNN-filtering & Clustering 
The list of planar points forms a one-to-one relationship with the 

faces of the scanned model, if the model is strictly convex. Since 

this is rarely the case, processing is needed such that the planar 

points can be converted into a set of “point polygons” 

corresponding to mesh faces of the output mesh. This is achieved 

by processing each plane of points in the following way: 

- A kNN density filter is used to remove less dense parts of the 

point cloud. This removes edges of the point clusters and 

outliers from each plane.  

- Points that lie on the interior of a plane but close to an 

intersection of two planes are removed. This ensures that 

every cluster is convex in the plane. 

- The remaining points are then clustered 

 



- The next section will show that such a clustering of the points leads 

to a simple way to triangulate and reconstruct the faces of the 

scanned model. 

4.2.1 kNN Filtering 
A kNN density histogram for the points of each plane is built, using 

the feature radius 𝑅. This iterates through each point, counting the 

𝑘 nearest neighbors of that point, until the next nearest neighbor is 

outside the radius 𝑅. A typical result of this can be seen in Figure 

7. Points on the interior of a surface have many neighbors (𝑘 ≈
190), points near the edge of a surface have progressively fewer as 

the edge is approached (𝑘 ≈ [90; 180]), while points not on a 

surface have few neighbors (𝑘 ≈  20). 

 

Figure 7. Neighborhood density histogram (blue) and 

cumulative distribution (orange) 

Valid values of k for the kNN filter are values that filter outliers 

and part of the edges, without removing many points on the interior 

of the planes. On the histogram, this is the “tail” area of the curve, 

below the main lobe (shaded green on Figure 7). Selection of the 

kNN filter criterion is done using cumulative thresholding. When 

the accumulated neighborhood density exceeds a threshold, the 

reached value is selected for 𝑘 , and points with fewer than 𝑘 

neighbors are discarded. An example of the filter being applied to 

a plane can be seen in Figure 8, removed points marked in orange. 

The two faces shown are the top of the lower plate of the I in the I-

beam. They are mistakenly connected via the ends of the I-beam 

which necessarily must contain a few points in the same plane as 

this plate. 

 

Figure 8. The points removed by the kNN filter. 

 

Note that some points are removed from the interior of the surface. 

While this is an unintended consequence of the filtering, is does not 

impact the performance of the algorithm, as there are still many 

points available on each face. The advantage of this filtering is 

clear, though: The two narrow lines which connect disjoint faces 

on the figure due to the 3D nature of the object are removed, leaving 

us with two separate faces. 

 

4.2.2 Line Intersection Removal 
Next, the list of plane equation is traversed, and a line equation for 

each of the intersections of two planes in the object is obtained. The 

distance from each point in each plane to this intersection is 

calculated and points closer than the RANSAC selection radius 𝑟 

are removed. 

 

Figure 9. Line intersections shown in blue 

For each plane, this creates a number of convex-shaped point sets 

(Figure 9). Each of these point sets will become a polygon in the 

final mesh. 

4.2.3 Point Clustering 
Because of the previous steps, all point sets separated by planes are 

now separated by a distance of at least 2𝑟. The final step of the 

clustering process classifies the point sets into clusters by 

Euclidean nearest-neighbor distance, using a threshold value 

slightly below 2𝑟, which separates them (Figure 10). 

 

Figure 10. A plane before and after clustering. 

After processing every plane, the point cloud is now split apart into 

several clusters that each correspond to a convex part of the final 

mesh (Figure 11). 

 

Figure 11. The point cloud after clustering. 



4.3 Model Vertex Selection 
Next, the mesh vertices are found by intersecting triplets of plane 

equations  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +  𝑑 = 0 

using the formula for the intersection point 𝑃[30] 

𝑃𝑖,𝑗,𝑘 =
−𝑑𝑖(𝑛𝑗 × 𝑛𝑘) − 𝑑𝑗(𝑛𝑘 × ni) − 𝑑𝑘(𝑛𝑖 × nj)

det(𝐴)
 

where 

𝐴 = [𝑛𝑖 , 𝑛𝑗 , 𝑛𝑘] = [

𝑎𝑖 𝑎𝑗 𝑎𝑘

𝑏𝑖 𝑏𝑗 𝑏𝑘

𝑐𝑖 𝑐𝑗 𝑐𝑘

] 

Since every triplet of planes is considered, this produces many 

unneeded intersection points. Selecting the subset corresponding to 

the vertices of the original scanned model is first done by bounding 

box check (near-parallel planes intersect far away from the object) 

or distance search to the previously found point clusters: 

- A list of mesh face vertices is created for that cluster. 

- The distance 𝑑 from each intersection point to the cluster is 

checked. If 𝑑 < 𝑅, a copy of the point is added to the list of 

face vertices. 

- Intersection points that are not part of a list of face vertices 

are discarded 

This leaves only the intersection points that are close enough to a 

cluster that it could be part of a mesh face (Figure 12). 

 

Figure 12. The intersections before (left) and after (right) 

selection. 

4.4 Mesh Construction 
Each of the clusters now contains a small number of points, 

corresponding to a vertex in that cluster’s part of the mesh. These 

mesh vertices are near the corners of the cluster (Figure 13) 

 

Figure 13. A cluster and its vertices. 

Since the cluster is guaranteed convex, the mesh vertices can be 

joined into a mesh with a radial sweep algorithm; Now the final 

mesh can be constructed by iterating through each of the 

unconnected mesh polygons, joining two meshes if they contain 

coinciding points. In this way, the final model reconstruction is 

assembled (Figure 14). 

 

 

Figure 14. All the meshes of a plane are connected (top) and 

assembled (bottom). 

 

4.5 Input Assumptions & Method Limitations 
The method makes two main assumptions about the data. First, that 

the input point cloud has constant point density on the sampled 

model (example in Figure 15). Second, that the model to be 

reconstructed is well-approximated by a set of planar surfaces 

(example cross-section in Figure 16). 

 

Figure 15. Constant (left) versus non-constant density (right). 

The constant-density assumption is used during the clustering 

process, where a non-constant density will make the kNN method 

used to filter the point cloud invalid. A point cloud that does not 

have constant density will need to be resampled before it can be 

processed. 

 

Figure 16. Planar (left) versus non-planar (right) cross-section 



The assumption of being well-approximated by planes is 

introduced by the choice of planes as the RANSAC model that are 

fit to the point cloud. This could be expanded to include other 

models, if determining intersections of the various models chosen 

remain feasible. 

 

5. RESULTS 
This section shows the results of applying the method to four 

different models – three representative of the motivating task, the 

Wedge Beam, Diamond Profile, and Z-beam, and one input model 

showing when the method tends to stop working, the Icosahedron 

(Figure 17). 

 

Figure 17. Left to right: Wedge Beam, Diamond Profile, Z-

beam, Icosahedron 

Points have been sampled evenly on the models with a point density 

of approximately 4 points per square unit. The algorithm was run 

with 𝑟 = 0.5 and 𝑅 ≈ [2.5; 8] depending on the model in question. 

The results can be seen in table 1 and Figure 18. 

Table 1: Test results 

Model Wedge Diamond Z-beam Icosa 

Points 107,311 119,466 430,869 51,080 

R 2.4 4.0 7.9 4.0 

Success? Yes Yes Yes No 

Orig. Size 44 faces 32 faces 28 faces 20 faces 

New Size 56 faces 40 faces 30 faces - 

Increase 27.3% 25.0% 7.14% - 

 

 

Figure 18. The three successfully reconstructed models. 

The method successfully reconstructed three out of the four models, 

yielding an average increase of only 19.81% in size of the 

reconstructed model, compared to the original CAD files that the 

point clouds have been sampled from.This is an acceptable increase 

compared to the several orders of magnitude difference between the 

point clouds and the model size. 

The final model, the icosahedron, was successfully segmented and 

clustered by the algorithm, but could not be assembled, instead 

resulting in the model seen in Figure 19. 

 

Figure 19. The icosahedron reconstruction.  

Note the missing face. 

This model presents a challenge for the method, for the following 

reasons: Firstly, the angles that the faces make with each other are 

shallow, while the internal angles of the triangles are sharp. This 

makes it difficult to pick a feature size R such that all intersection 

points get correctly assigned to their cluster, without missing any 

faces. Secondly, many more than three faces meet in a single point, 

which means that multiple similar intersection points are found 

near each vertex of the icosahedron. This makes correctly 

connecting the faces challenging without a way to reject duplicates. 

6. CONCLUSION & FUTURE WORK 
A novel RANSAC-based method for reconstructing CAD meshes 

based on 3D scan data has been presented. The method successfully 

recreated sharp-edged models from 3D scans of CAD models, with 

an average increase in the size of the model of only 19.81%. Some 

challenges for using the method still appear. Choosing functioning 

parameters for the RANSAC rejection distance, feature size 𝑅, and 

threshold such that the method works can be difficult, and the 

method has issues recreating objects with wide angles and where 

many faces share a vertex. 

Future work will first focus on testing the method in various other 

scenarios to confirm its robustness against noise; then on 

developing good metrics for picking the feature size of an object so 

the algorithm works. Finally, modifications so that the method can 

handle pathologic data such as the Icosahedron model presented 

could be done. 
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