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Randomized Refinement Checking
of Timed I/O Automata®

Andrej Kiviriga, Kim Guldstrand Larsen, and Ulrik Nyman

Aalborg University, Selma Lagerlgfs Vej 300, 9220 Aalborg, Denmark
{kiviriga, kgl, ulrik}@cs.aau.dk

Abstract. To combat the state-space explosion problem and ease sys-
tem development, we present a new refinement checking (falsification)
method for Timed I/O Automata based on random walks. Our memory-
less heuristics Random Enabled Transition (RET) and Random Channel
First (RCF) provide efficient and highly scalable methods for counterex-
ample detection. Both RET and RCF operate on concrete states and
are relieved from expensive computations of symbolic abstractions. We
compare the most promising variants of RET and RCF heuristics to ex-
isting symbolic refinement verification of the ECDAR tool. The results
show that as the size of the system increases our heuristics are signifi-
cantly less prone to exponential increase of time required by ECDAR to
detect violations: in very large systems both “wide” and ‘“narrow” viola-
tions are found up to 600 times faster and for extremely large systems
when ECDAR timeouts, our heuristics are successful in finding violations.

Keywords: Model-checking - timed I/O automata - randomized - state-
space - refinement.

1 Introduction

Model-checking has been established as a useful technique for verifying proper-
ties of formal system models. The most notable obstacle in this field, state-space
explosion, relates to the exponential growth of the state-space to be explored as
the size of models increases. Over the last three decades a vast amount of research
has attempted to combat this problem resulting in a plethora of techniques that
reduce the number of states to be explored [IJ4I28]. Various symbolic and reduc-
tion techniques (e.g. [3I912325]34]) have become a ground for implementation
of verification tools (CADP, NuSMV, KrRONOS, SPIN, UPPAAL, etc.), allowing
them to handle a much larger domain of finite state and timed systems; how-
ever, for all cases symbolic and exhaustive verification still remains an expensive
approach.

Counterexample detection techniques (e.g. [22]) can be used to even further
avoid state-space explosion and facilitate a more efficient process of model ver-
ification. A prominent example in this area is the Counterexample-Guided Ab-
straction Refinement (CEGAR) [12] technique which has been intensely studied
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and applied to a variety of systems in model-checking including probabilistic
systems [21], hybrid automata [37J3I], Petri net state equations [35] and timed
automata [27I20/29]. The core idea is to automatically generate abstraction mod-
els (e.g. by reducing the amount of clocks), which may have a substantially
smaller state-space, and verify them in a traditional model-checker to generate
counterexamples if a property is not satisfied. The counterexamples are in turn
used to refine the abstraction models.

On the other hand, some counterexample detection techniques give up on
the requirement of completeness and only explore part of the state-space, which
no longer allows to guarantee correctness but provides a powerful mechanism for
fault detection if one exists in the model. This is similar in approach to using
the QuickCheck tool [IT] for testing of Haskell program properties. Therefore,
we believe a productive development method should consist of two steps: running
multiple cheap and approximate counterexample detection algorithms early in
the development for quick violation discovery and performing an expensive and
exhaustive symbolic model-checking at the very end.

A very promising approach in counterexample detection methods is based on
employing randomness. The first steps in that direction were made by [19J30]
where the state-space is explored by means of repeatedly performing random
walks. With a sufficient amount of such walks an existing violation will eventually
be found; nonetheless, designing efficient methods that excel at counterexample
detection is not a trivial task. The difficulty lies in unintentional probabilities
in the exploration methods that may lead to uneven coverage of the models’
state-space. A recent example in the domain of untimed systems was done by
[24] where the authors study verification of LTL properties and compare their
random walk tactics, namely continue walking and only accepting and respective
memory-efficient variants of those, to the tactics of [19].

A first attempt to use randomness in the setting of timed systems was made
by [18], where a Deep Random Search (DRS) algorithm, which explores the state-
space of a simulation graph of a timed automaton (TA) [2] in a symbolic manner,
was presented. DRS performs an exhaustive exploration by means of random
walks in a depth-first manner until a specified cutoff depth. Even though DRS
conducts a complete search of the state-space, its computational advantage relies
on detecting existing counterexamples quickly. In some sense DRS conforms to
both steps of the above-mentioned development method - either counterexamples
are detected potentially early in the search or, if none exist, the entire state-space
is explored. DRS has been experimentally shown to outperform Open-Kronos
and UPPAAL model-checkers; however, the experiments do not compare DRS
with UPPAAL’s Random Depth First Search (RDFS) - a powerful method for
TA with strong fault detection potential.

In this paper we focus on carrying out random walks on networks of timed
I/0 automata (TIOA) for refinement checking as a quick and efficient falsifi-
cation method. To improve performance we intend to work with the concrete
semantics which relieves us from expensive computations of symbolic abstrac-
tions based on such data structures as Difference Bounded Matrices (DBM) [17].
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Fig. 1: Detailed automaton (a) refines overall specification (b).

The refinement verification helps to determine if a system specification can be
successfully replaced by a single or even a number of other systems. Figure
shows a common refinement application example where a detailed system (a)
refines a more general specification of desired behavior (b). The detailed system
models a token being passed around a ring. The clock x ensures that the to-
ken is passed within the time bounds of x>d and x<=D. The overall specification
requires the whole loop to be completed within x<=3xD.

An easy way to perform randomized exploration is to exploit the stochastic
semantics of TIOA allowing the use of existing Statistical Model Checking (SMC)
techniques [33U36]. The idea of SMC is to produce a number of sample traces from
a stochastic model, that are then statistically analyzed to estimate a probability
that a random run of the model will satisfy a given property. Moreover, the
estimate comes with a level of confidence which requires more sample traces for
higher precision. The SMC method has been implemented in a number of tools,
including UppAAL SMC [I3] which uses stochastic timed automata (STA). For
more details of this stochastic semantics see [8[I3]. Due to its simplicity, SMC
is widely accepted in industrial applications where exhaustive model-checking is
not feasible.

x=0,"~

(. @. x=1076-1 =0

x <=10"6 ErrorLoc

Fig. 2: Timed I/O Automaton. Difficult case for SMC.

For the purpose of violation discovery however, SMC simulation techniques
may not be a productive approach. Figure [2| shows a trivial, yet very difficult
case for SMC to detect if an ErrorLoc is ever reached. Due to the stochastic
semantics SMC operates on, a delay is uniformly chosen between 0 and 10°
making it nearly impossible to traverse “narrow guard” edges. The probability of
reaching ErrorLoc in one step is % %1076, thus it requires in average 2 10° steps
to reach that location. While such stochastic semantics allows for a model to
mimic the behavior of a real system, counterexample detection methods require
different heuristics in order to be efficient.
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In this paper we present two lightweight, randomized and memory-less tech-
niques for refinement checking of Timed I/O Automata: Random Enabled Tran-
sition (RET) and Random Channel First (RCF). Similarly to UppaAL SMC
and existing randomized techniques, our methods operate on concrete states
and perform random walks through systems to detect violations. We show ex-
perimentally the potential of these algorithms on Milner’s scheduler and Leader
Election protocol with a varying number of nodes and compare their performance
to those of existing symbolic and discrete state-space exploration methods - EC-
DAR and SMC for Timed I/O Automata. Our heuristics detect violations of the
overall specification up to 600 times faster than ECDAR and scale better.

2 TIOA, Composition and Refinement

We now introduce key definitions of the formalism based on [16]. Let Clk be a
finite set of clocks. A clock valuation over Clk is a mapping u € [Clk — R>q].
A guard is represented as a finite conjunction of expressions of the form = < n,
where x € Clk, < is a relational operator (<, <, >, > =,#) and n € N. A set of
such guards over Clk is denoted as B(Clk), whereas P(Clk) is used to denote a
powerset of the clock set.

Definition 1 (Timed I/O Automaton). A Timed I/O Automaton (TIOA)
is represented as a tuple A = (Loc, qp, Clk, E, Act, Inv) where Loc is a finite
set of locations, qo € Loc is the initial location, Clk is a finite set of clocks
that represent time, E C Loc x Act x B(Clk) x P(Clk) x Loc is a set of edges,
Act = Act; & Act, is a finite set of actions, partitioned into inputs and outputs
respectively, and Inv: Loc — B(Clk) is a set of location invariants.

An edge is a tuple (q, a, ¢, ¢, ¢') € E where the source location is ¢, the
action label is a, the constraint over clocks to be satisfied is ¢, the clocks to be
reset are ¢, and the target location is ¢’. The semantics of TIOA is given by a
Timed I/O Transition System S = (St, sg, X, —), where St is an infinite set of
states, sg € St is the initial state, X = X; @& X, is a finite set of actions and
—: St x (X UR>q) x St is a transition relation (see [I6] for complete definition).

An example of Researcher TIOA, shown
in Figure [3] contains three locations - id0, id2
id1 and id2. Input and output actions are de- Q\
noted by ? and ! respectively. A Researcher h
can do some work w!(e.g. research) with at w!
least 8 and at most 10 time units required to x>=8

r~

finish the job, defined as constraints on clock ;" ">~ _ idotea? >~ _idl
x: the guard x>=8 on edge from id0 to id2 ‘coin! -@—)O

. . . . X==O x=0
and invariant x<=10 at location id@, respec- x<=10 x<—=7
tively. Alternatively, if a researcher receives a
cup of tea (tea?) the work can be done faster ~Fig. 3: Researcher automaton.
- between 6 and 7 time units. However, for

N
A

AR w!

N X>=6
N

AN
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now this TIOA has a flaw in that the initial work progress, if any, is lost (due
to the update x=0) when a researcher gets a cup of tea.

A run within TIOA is a sequence of concrete states defined as (I, u), where [
is a location and w is a function that assigns values to all clocks. The following

gives two sample runs p; and po of the Researcher:

p1 = (1de, x=0) 227 (ide,x=9.27) 5 (id2,x=9.27)
. 1.14 . tea? . 4.91 . w!
p2 = (1d0, x=0) —— (id0, x=1.14) —— (idl, x=0) —— (1id1l, x=4.91) —

(id2,x=4.91)

coin? y=0 coin? y=0
“teal Y<T0 Tteal Y<T4
Fig. 4: Machine specification. Fig. 5: SlowMachine specification.

Parallel composition, a feature allowing to combine specifications, is an
important aspect of refinement verification. An overall specification is often chal-
lenged to be refined by a number of parallelly composed systems. Consider a
simplistic Machine component, shown in Figure [} which is responsible for pro-
viding tea immediately after the payment (coin) is received. It can be run in
parallel (i.e. composed) with previously seen Researcher (Figure [3)) where both
components are able to interact with each other and altogether act as a single
system. To avoid state-space unfolding, composition is usually not constructed,
but its behavior is deduced based on transition synchronization rules (see [16] for
formal definition). For illustration purposes, the automaton which captures the
overall behavior of parallelly composed Machine and Researcher components is
given in Figure[] (a).

] 1 - - ==
| ' x=0 ,’cml)l:i;}r\tga!\,
w! : X>=8 1 \ <~

]

]

-
> I

teal
| -, w! | z>=6
. ! P = I -
coin! y=0 .- coint BN PEag
<i)""'¥"’(i>f ----- ‘ coinPy@E~teal
X== x==0
x<=10 x<=10 && y<=0 z<=10
a) Researcher Machine. b) Overall specification Spec.
(a) [ ( P

Fig. 6: Composition (a) refines overall specification (b).

Note that only automata whose output action sets are disjoint may be com-
posed. Moreover, input and output edges that synchronize on identical signa-
tures become output edges in a resulting composition (e.g. coin and tea). Such
internal synchronization reflects both components advancing to new locations
simultaneously. Since the composition component is now in control of when the
tea is received, the work progress of a researcher can no longer be lost.
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To capture the desired behavior of components a notion of specification is in-
troduced. Its concept of input-enabledness reflects a belief that an input cannot
be prevented from being sent to the system and thus requires an explicitly mod-
elled behavior. To improve the modelling process, model-checking tools such as
ECDAR treat unspecified behavior for inputs as location loops in the automaton.

Definition 2 (Specification). A TIOTS S = (St,s9, X, —) is a specification
if each of its states s € St is input-enabled: Vi? € X;.3s’ € St. s KNP

The specification theory of TIOA supports a notion of refinement which if
satisfied allows to replace a specification with another one in every environment
and obtain an equivalent system. For a specification S to refine specification T,
both outputs and delays done by S must be matched by 7', leading to a new pair
of states in the refinement relation. Moreover, all inputs of T" are required to be
matched by S, which is always the case due to input-enabledness of specifications.

Definition 3 (Refinement). A specification S = (St°,sq, X, —5) refines a
specification T = (StT tg, X, —=T), written S < T, iff there exists a binary rela-
tion R C St x StT containing (so, to) such that for each pair of states (s, t) € R
we have: _ B
Input rule:  whenevert Ty for some t' € StT then s S g

and (s', t') € R for some s’ € St
Output rule: whenever s s g for some s’ € St° then t LTy

and (s', t') € R for some t' € StT
Delay rule:  whenever s 45 ¢ for d € R then t 4Ty

and (s', t') € R for some t' € StT

Figure [] shows a refinement example where a Researcher || Machine com-
position (a) is challenged to refine a more general desired behavior specification
Spec (b). Since the composition requires between 6 to 10 time units to per-
form the work, which is what the overall specification expects, the refinement
relation holds. However, if the Researcher is composed with the SlowMachine
from Figure [J] instead, the tea is no longer provided immediately but requires
up to 4 time units to be prepared. Performing the work after getting the tea
altogether now requires 11 time units at most. This is not allowed by the overall
specification with invariant z<=10 and thus refinement fails.

The refinement in the ECDAR tool is handled by using the UPPAAL-TIGA
engine [5] for verification of timed games. This engine searches for a winning
strategy by playing a turn-based game between two players using the on-the-fly
algorithm proposed in [I0]. The first player, being the attacker, plays outputs
of the left side and inputs of the right side of the refinement, while the second
player, the defender, plays inputs of the left side and outputs of the right side.
The refinement fails if the defender cannot match either a delay or an action per-
formed by the attacker. The underlying data structure for the algorithm of [10]
is based on zones which provides a zone-based symbolic abstraction, allowing
to effectively store and manipulate states. Zones represent sets of clock valua-
tions, defined as lower and upper bound constraints on clocks and on differences
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between each of the clocks. Unlike reachability analysis, refinement verification
requires keeping track of a pair of states - one for each refinement side, which
includes a single zone containing the union of clocks from both sides of the re-
finement relation. All newly discovered state pairs and already verified ones are
stored in the waiting and passed data structures respectively, the latter of which
allows to guarantee termination and avoid repeated exploration of states.

3 Random Walk Heuristics

Conducting concrete-state based random walks means that we are no longer able
to verify refinement but are rather looking for violations of one of the refinement
rules. Verification of the delay rule is similar to the symbolic approach. Following
the definition, it suffices to check if the refinement right side allows delaying at
least as much as the left side. With a concrete state as a starting point it is easy
to compute the mazimal delay available for that state by selecting the smallest
difference between the upper bound specified by the invariant and the current
value for each individual clock. Since such computations are also necessary for
determining transition’s availability, for each encountered state pair we check if
the maximal delay on the right side is at least as big as on the left side, thus
potentially capturing more delay rule violations at a small cost.

To maintain quick state-space exploration, our random walks are completely
memory free, i.e. no state pairs are stored in memory except for the current
one. When a transition is taken, we advance to the target state pair and verify
either input or output rule based on the action type of the transition. Due to
input-enabledness, an input transition may only result in the discovery of a new
state pair, whereas an output transition on the left side, if not followed by the
right side, can provide a counterexample. Moreover, not storing any information
about already visited states introduces two issues: termination guarantee and
repeated exploration of the states.

Termination In the setting of concrete-state random walks, revisiting already
explored state pairs is not necessarily a bad thing; in fact, it can be beneficial as it
may lead to traversal of other, yet unseen, transitions. Termination on the other
hand requires certain conditions. Upon reaching a state with either no outgoing
transitions or no eventually enabled (after performing a delay) transitions we
terminate the random walk and issue a new one. This, however, becomes a
problem for cyclic systems where above-mentioned conditions may never occur,
resulting in an infinite exploration. We approach the termination problem in
a straightforward way by supplying random walks with a parameter of steps
(number of transitions) that can be taken before a walk is terminated. Ideally,
this parameter should be dynamically adapted to the target system; however,
finding the optimal value is far beyond from trivial (e.g. see [7]). Therefore, we
limit ourselves to a predefined (static) number of steps.
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3.1 Selecting transition

During a random walk through the model, the actions of both delaying and
traversing transition are made in sequence. We, however, reverse the process
such that the concrete delay is selected after the target transition is chosen. As a
result, not only do delays not determine transition choice, but a delay is no longer
made if there are no transitions available. Given that the delay rule is checked
by comparison of mazimal delays of refinement sides, this strategy (of choosing
transition first) makes sense as with no available transitions no other refinement
rules can be violated. We propose two heuristics for selecting transitions.

The idea of the Random Enabled Transition (RET) heuristic is to first com-
pute all eventually enabled transitions, i.e. transitions which are either currently
available or will become such after a delay, for a given state of the refinement left
side. Contrary to the refinement input rule, we consider input transitions starting
from the left side as due to input-enabledness they can never violate refinement
relation, but can only lead to new, potentially unexplored, state pairs. Next, we
uniformly choose one of the computed transitions as a target for traversal. The
counterexample is found when the right side cannot match an output transition.

Profiling has shown that computing eventually enabled transitions is the most
resource demanding operation in our random walks. It needs to consider all par-
allelly composed automata and construct transitions on the fly. Given a concrete
state it is necessary to check potential availability, i.e. if guards are satisfied, for
each edge by computing lower and upper bounds that correspond to minimal
and maximal delays after which a transition is enabled. To reduce the total
amount of such computations we propose an alternative heuristic for choosing
transitions - Random Channel First (RCF). It chooses a random channel (same
as action) from the list of all channels and computes enabled transitions only for
that channel. If none exist, the selected channel is removed from the list. The
process is repeated until either transitions are found or the list of channels is
exhausted, where the latter option leads to termination of the random walk. If
transitions are discovered, a random one is uniformly chosen for traversal.

3.2 Selecting delay

Next, we need to select a concrete delay, i.e. value to increase all clocks by, before
traversing a transition as it potentially affects further choices. With target tran-
sition being selected first, the choice of delay is made within availability bounds
of the transition which are computed during transition selection. This keeps the
process lightweight as no additional computations are required. Choosing a tar-
get transition prior to delaying also allows to exclude the width (size) of the
edge’s guard from affecting the probability for that edge to be explored. A delay
for the automaton from Figure 2] would therefore depend on a chosen transition
and be in either of the two ranges - [0;10°] or (10° — 1;10°]. In comparison
to SMC our heuristics have a probability of % to traverse the edge leading to
ErrorLoc thus requiring 2 runs in average to discover the error. This leads to a
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better state-space coverage and increases the chance to detect counterexamples
since “narrow” and “wide” edges become equally easy to traverse.

Initially, we selected the delay uniformly from the transition’s range of avail-
able delays. We believe however that selecting lower bound (LB) or upper bound
(UB) is often more efficient for violation detection. This is because the prevail-
ing amount of practical model-checking applications is concerned with either
meeting deadlines, i.e. something that has an upper limit, or satisfying minimal
requirements, i.e. something that cannot be done faster than specified. For exam-
ple, the overall specification from Figure@ (b) ensures both upper and lower time
limits to be followed by a more concrete system. Similarly in QuickCheck [11]
the random selection of datatype values is biased towards base-elements (empty
list, empty tree, etc.) because they are more likely to be the source of errors.
Thus, we expect a more corner-case oriented delay choice distribution (e.g. 40%
LB, 20% uniform, 40% UB) to show better results at violation detection.

3.3 RET vs RCF

Since the RCF heuristic partitions the computation of eventually enabled tran-
sitions into smaller chunks, which are based on channel, and chooses a target
transition as soon as one of these chunks yields a result, it is less computation-
ally demanding than RET. For models with outdegree of at least two edges with
different channels, RCF in average will perform fewer expensive operations to
compute transitions which implies a faster exploration of the state-space; how-
ever, due to underlying probabilities this is not always the case.

Fig. 7: Difficult case for RCF.

Consider the automaton from Figure[7] where the Error location represents a
counterexample. At the initial location Init both the values of clocks x and y are
set to 0 and the output edge with action f is not available until x==0 and y==8.
Moreover, the invariant (x<=1) on Init restricts us from directly delaying until
the f edge becomes available. This leaves three enabled edges: two of action a,
both of which increase the clock y by 1 unit upon returning to Init, and one of
action u, which is “undesired” in a sense that it prohibits the walk from reaching
Error by resetting clock y and must therefore be avoided during exploration.

While clock y is less than 8, only channels a and u can yield a result for a
target transition. The probabilities for RCF and RET to choose edges for these
channels is shown in Table [I RCF heuristic randomly chooses one of two chan-
nels at a 50% probability, leaving a 50% chance to traverse either one of the a!
edges or the only existing edge for channel u, which “resets” the model back to its
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initial state. On the other hand, choosing randomly Table 1: RET and RCF
amongst all eventually enabled transitions regardless probabilities to traverse
of channel, RET selects any of the three edges at a edges while y<8.
probability of 33%. To reach the Error location either

of the two a! edges must be taken 8 times in a row, Action | RET |RCF
followed by the f! edge. The probability of doing so in a! (x<1) [33.3%

one attempt for RET is 0.67% x 0.25 ~ 1492=, whereas [a! (x==1)[33.3% 50%
for RCF it is 0.5% % 0.33 & g . After traversing the ul  [33.3%]50%

“undesired” edge, a random walk continues making
new attempts until either the violation is found or the number of allowed steps
is made. Given the probabilities, RCF requires 769 attempts in average to reach
Error compared to an average of 98 attempts for RET.

3.4 Delay probability distribution changes

The drawback of the static delay choice proposed in Section is that such (or
any) static distribution (40% LB, 20% uniform, 40% UB) naturally favors some
models more than others in terms of error detection. In fact, some sophisticated
systems might benefit the most from delaying only LB or UB; however, it might
be impossible to derive this knowledge from a static analysis of the system.

Algorithm 1 Check refinement

1: function CHECKREFINEMENT
2: chanceU B < 0.5, chanceLB <+ 0.5

if (chanceUB > 1) then chanceUB = 0;
chanceLB = 1 — chanceU B;

3: while violation not found do

4: perform random walk with chanceLB and chanceUB

5: if violation found then return false

6: else

7 chanceUB += 0.1; > Increase UB by 10%
8:

9:

To fight this, we propose a strategy where each random walk has a different
delay choice distribution, as shown in Algorithm First, a random walk is
executed where all the delays follow 50% LB / 50% UB distribution. If a violation
is not found, a new random walk is issued where the probability to delay LB is
decreased and probability to delay UB is increased by 10%, resulting in 40% LB
/ 60% UB. Upon reaching a probability distribution which guarantees the choice
of an upper bound value (0% LB / 100% UB), the next random walk has its
probabilities “flipped”, s.t. only the lower bound value is chosen for the delay. The
process continues until the violation is found. Naturally, if a random walk with
the most efficient probability distribution for a target model is unsuccessful at
finding a violation, it will take another 11 random walks to reach that probability
distribution again. However, the main drawback of this strategy is its inability
to detect the “in between” violations as only bounds of the potential delay range
are considered; nonetheless, while always missing a particular kind of violation,
we believe this technique will often be substantially more efficient than others.
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4 Test setting

The experiments are performed on the models of Milner’s scheduler [26] and
Leader Election protocol [14], which operate on a ring topology and can be
instantiated for an arbitrary number of nodes that communicate in sequence.

4.1 Milner’s scheduler

We analyze a real-time version of Milner’s scheduler [I5], where each node N;
can perform two actions in parallel: do some work by outputting on w;! and
pass the token to the next node N;1; in the sequence by outputting on rec;1!.
Figure [§| shows a node template (a) and a template for the overall specification
(b) that a ring of nodes has to refine. Templates allow multiple instances of the
same model as also used in UPPAAL [6]. Each node starts at a location where it
waits to receive a token before any actions can be taken. As soon as the token
is received clocks are reset and all further actions are limited by a lower bound
of d and an upper bound D represented by guards and invariants respectively.

y>d

rec[id]?

7 id_t{™ >3
-7 Y>d el=id | .
recl(id+1)%N]! well | 7R 2=ND

,

rec[id]? wlid]!  z=0
(a) Node template. (b) Overall specification
template.

Fig. 8: Real-time version of Milner’s Scheduler. Templates for the ECDAR tool.

Note that the first node of the system has to be instantiated with a different
initial location (bottom one) to represent the initial ownership of the token. The
overall specification on the other hand only ensures that wO!, i.e. work done
by initial node, requires at most (N+1)%D time units. Later in our experiments,
we modify the overall specification such that it is violated in order to create
counterexamples that can be detected by RET, RCF and SMC. To do so, we
modify the invariant of the overall specification to be z<=(N+1)*Dx(1-v), s.t.
{v € R: 0 < v < 1} where v is the desired violation size in percentage. The
higher the value of v the wider, and therefore easier to detect, violation is created.
Apart from different node amounts, we also manipulate the lower bound variable
on guards (d), the smaller values of which drastically increase the state-space.

4.2 Leader Election protocol

The Leader Election protocol has each of its nodes assigned a unique priority
in addition to id. The goal of the protocol is to elect a leader with the highest
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priority by having nodes pass their current priority to the next node in sequence.
If the priority received by a node is higher than its own, the node records that
priority and further only sends it to the next node instead of its own priority.
Otherwise, the received priority is discarded. Upon receiving its own priority
the node knows it can claim the leadership since that priority has travelled one
full round without being discarded and is thus the highest.

se|1d[(jd+1)°A>N][CL|r]!

x=0 ,
14

e>cur
send[id][e]?

cur=e send[id][e]?

send[id][e]? leader{e]!

o % @ =2l ;d

x<=N*MaxD-v

e<=cur &&
I(e==pr)
send[id][e]?

(a) Node template. (b) Overall specification
template.

Fig. 9: Leader Election protocol templates for the ECDAR tool.

The templates for this protocol are shown in Figure [0] The overall specifica-
tion (b) ensures that only the correct node (a) can declare itself a leader, and
only within N¥MaxD-v time units, s.t. {v € Z: 0 < v < N«MaxD}, where v is used
to modify specification to introduce refinement violations. Here, two-dimensional
channel arrays, e.g. send[id][pr], are used as way of value passing, where the
first and the second indices represent node id and priority respectively. The
cur variable, representing the highest received priority, is initialized to pr (own
priority) for each node. Contrary to Milner’s scheduler, this protocol does not
constrain nodes to acting only after having received the token; instead, any node
is free to send its priority at all times.

4.3 Implementation

We have implemented a Java prototype of both the RET and RCF heuristics
for refinement checking of TIOA. For a more fair comparison of our heuristics
with SMC, we reimplemented SMC in Java for the network of TIOA with the
stochastic semantics. Table [2] gives an overview on performance differences be-
tween Java and that of UpPAAL C++ implementation of SMC. Surprisingly,
Java SMC appeared to be faster, however this is most likely due to it being a
prototype which does not retain all the features of UpPAAL SMC. For the rest
of the paper we will be using Java SMC as it is not substantially different.

Table 2: Average time (in seconds) to detect violation for Milner’s scheduler.

Settings Java SMC|UppraaL SMC
N=8, d=20, v=6% 1.720 3.413
N=12, d=20, v=6% 33.869 57.762

To use SMC in a refinement setting, we transform refinement into a reacha-
bility problem by constructing a complement automaton of the refinement right
side and composing it with the left side.
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5 Experiments

To understand how delay choice influences violation detection, we compare the
performance of three variants of each heuristic and the SMC approach. The
results are reported in Table [3] for Milner’s scheduler where each case ran for 60
minutes. RET-U and RCF-U did a uniform delay choice, RET-PD and RCF-
PD delayed based on a predefined distribution of 40% LB, 20% uniform, 40%
UB, and RET and RCF had changing probability distributions, but could miss
violations requiring “intermediate delays”, as described in Section

Table 3: Each cell represents an average time (in sec) to discover a violation
calculated over all discovered violations within 60 minutes in Milner’s scheduler.
Not found (nf) cells represent no discovered violations.

Settings RET-U|RET-PD| RET| RCF-U|RCF-PD| RCF SMC
v=2% nf 0.042| 0.011 nf 0.024| 0.007 nf
v=4%| 21.577 0.008| 0.003] 12.590 0.005| 0.002| 50.832
v=6% 0.558 0.004| 0.003 0.361 0.003| 0.002 1.720
v=2% nf 0.078| 0.010 nf 0.043| 0.005 nf
v=4%| 491.800 0.044| 0.010] 1506.872 0.026| 0.005| 891.425

d=4 v=6%| 58.688 0.033| 0.010] 42.996 0.017| 0.005| 96.811
N—12 v=2% nf 0.655| 0.030 nf 0.336| 0.017 nf
d:20 v=4%|2770.389 0.082| 0.017| 1376.237 0.043| 0.010|2882.110

T v=6%| 26.082 0.021| 0.008] 13.564 0.012| 0.005| 33.869
N—12 v=2% nf 2.056| 0.032 nf 0.886| 0.017 nf
d:4 v=4% nf 0.851| 0.031 nf 0.440| 0.017 nf

T v=6% nf 0.501| 0.031 nf 0.254| 0.017 nf

It is clear that delay choice strategies have a large impact on the efficiency of
random walks. Both the SMC approach and our heuristics with uniform delay
choice (RET-U, RCF-U) have the weakest potential in terms of counterexample
detection and are strongly affected by the size of the violation. While “wide”
violations are found relatively quickly, “narrow” counterexamples (v=2%) were
not discovered at all. Therefore, the low efficiency of SMC, RET-U and RCF-
U approaches makes their practical application not feasible for a number of
nodes higher than 12. On the other hand, RET-PD, RET, RCF-PD and RCF
are significantly quicker at discovering violations and less sensitive to increasing
the number of nodes or decreasing the d variable, both of which explode the
state-space. The delay choice based on the predefined distribution (RET-PD and
RCF-PD) was, as expected, superior to uniform choice and enabled detection
of even “narrow” violations. The most efficient appears to be RET and RCF
heuristic variants with changing probabilities, which have also shown the smallest
difference in time for detection of “wide” and “narrow” violations.

We further compare the most promising RET and RCF heuristics with Ec-
DAR on a large number of nodes and report results in Table [4] Increasing the
number of nodes or especially decreasing d significantly increases time needed
by ECDAR for verification. Contrary to that, RET and RCF are not so sensitive
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Table 4: Each cell represents an average time (in sec) to discover a violation
calculated over all discovered violations within 60 minutes in Milner’s Scheduler.
The v = 0% case can only be verified by the complete exploration of ECDAR.
Settings |ECDAR| RET| RCF Settings ECDAR| RET| RCF
v=0%| 0.619 - - v=0% 3.622 -
N=50|v=2% 0.686| 0.638| 0.314 N=100\v=2% 4.050] 2.791] 1.304
d=20\v=4% 0.688| 0.487| 0.249 d=20 [v=4% 3.942| 2.206| 1.024
v=6% 0.689| 0.360| 0.176 v=6% 3.974| 1.701| 0.776

v=0%| 1.576 - - v=0% 9.510 - -
N=50\v=2% 2.252| 0.692] 0.326 N=100\v=2% 13.367| 2.873| 1.302
d=10\v=4% 2.208| 0.613] 0.291 d=10 (v=4% 13.252| 2.686| 1.194
v=6% 2.182| 0.547| 0.255 v=6% 12.832| 2.383| 1.080

v=0%160.015 - - v=0%|2631.751 - -
N=50|v=2%| 224.724| 0.688| 0.322 N=100jv=2%| 693.688| 2.856| 1.279
d=4 |v=4%| 274.632| 0.621| 0.292 d=4 |v=4%| 695.181| 2.721] 1.231
v=6%| 295.818| 0.576| 0.268 v=6%| 689.754| 2.490| 1.102

to the change of d which shows that due to probability changes our heuristics
perform almost equally well on “narrow” and “wide” edge systems. For N = 100
and d = 4 ECDAR takes more than 10 minutes to detect the violation, whereas
RET and RCF require just under 3 and 1.3 seconds respectively. Surprisingly,
complete symbolic refinement verification in ECDAR in case of v = 0% is still fea-
sible on such high number of nodes as 50 and 100. Thus, the use of our proposed
development method is supported: first RET and RCF can be used to quickly
detect possible violations, and once no further violations are found using our
heuristics an expensive and complete verification by ECDAR is to be conducted.

100 T T T
90 I per 1
80 - RcF b
70 b
60 - .
50 .
40 - B
30 - 8
20 + e
10 8
0 L i 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500

Amount of nodes

Time (in seconds)

Fig. 10: RET and RCF comparison on Milner’s scheduler with d = 4 and v = 2%

In Figure[I0]the performance of RET and RCF for Milner’s scheduler increas-
ing number of nodes is compared in the difficult setting of d = 4 and v = 2%
which significantly reduces chances to detect violations. The results are very en-
couraging: even for 500 nodes RET and RCF manage to discover violations in
an average of under 100 and 50 seconds respectively.

We now compare most promising variants of RET and RCF (with changing
probabilities) against ECDAR on a much heavier, non tokenized Leader Evalua-
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tion protocol. The results (shown in Table |5)) demonstrate a severe state-space
explosion: even for 7 nodes ECDAR is not able to conclude verification within an
hour. On the positive note, RET and RCF are able to handle up to 10 nodes; how-
ever, in comparison to Milner’s scheduler, here the “width” of the violation has
a much stronger impact on the performance. Moreover, the exponential growth
of channels (send[id][e]) makes the RCF heuristic much more favorable.

Table 5: Each cell represents an avg. time (in sec) to discover a violation calcu-
lated over all discovered violations within 60 minutes in Leader Election protocol.
The v = 0 case can only be verified by the complete exploration of ECDAR. Not
found (uf) cells represent no discovered violations.

Settings |[ECDAR RET RCF Settings |[ECDAR RET RCF
v=0| 0.103 - - v=0| 17.190 - -
Nes v=2| 0.127 1.411 0.403 Neg v=2| 18.170| 11.392| 2.916
v=4 0.130 0.080| 0.024 v=4| 15.952 0.576| 0.138
v=06 0.085 0.009| 0.003 v=06 8.695 0.059| 0.015
v=0 nf - - v=0 nf - -
N7 v=2 nf| 102.653| 26.617 Neg v=2 nf| 170.782| 172.880
v=4 nf 4.140( 0.722 v=4 nf| 38.217| 5.166
v=6 nf 0.345| 0.073 v=6 nf 2.113| 0.340

To further examine the efficiency of our heuristics to quickly detect violations
during iterative development, we perform mutation testing on Leader Election
protocol. Table |§I reports the results where either one (M7 _,) or all (M} _,)
nodes have been replaced with a certain type of mutant, s.t. the refinement
relation is violated. We have tried a mutant with the initial location’s invariant
bound doubled (M7), a mutant that always sends its own priority instead of the
recorded one (M), a mutant that forgets to record the received priority (Ms)
and a mutant that records its own id instead of the received priority (My).

Table 6: Mutation testing for Leader Election protocol. Each cell represents an
avg. time (in sec) to discover a violation calculated over all discovered violations
within 60 minutes. Not found (nf) cells represent no discovered violations.

Settings |[ECDAR| RET RCF Settings |[ECDAR RET RCF
M?| 38.204| 51.704| 11.697 M nf| 563.254| 125.991
Neg MZ| 25.183| 0.002| 0.001 N7 M3 nf|  0.005| 0.001
M3 | 19.709| 0.002| 0.001 M3 nf|  0.005| 0.001
MZ7| 18.007| 0.002| 0.001 M7| 687.573]  0.005| 0.001
MY| 12592 0.077| 0.016 MY nf|  0.054] 0.011
Neg MJ| 11.452| 0.006/ 0.001 N7 M3 nf|  0.007| 0.001
MJ3| 10.643| 0.003| 0.001 M3 nf|  0.006] 0.001
My | 11.183| 0.005| 0.001 My | 35.230] 0.001] 0.001

The time to discover violation with mutants Ms-My is surprisingly small,
which persists for even higher amount of nodes with very small increments in
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time. This occurs due to the modifications in these mutants in different ways
leading to an overall inability of the “node ring” to elect a leader, which most of
the time can be detected with only a single random walk. Mutant M; on the other
hand does not prevent leadership from being correctly declared, but creates the
possibility of it happening too late, i.e. violating the time requirement imposed
by the overall specification. In cases where only one such mutant is present in
the “ring” (M7) it is significantly harder to detect violation for both ECDAR,
due to the state-space growth, and our heuristics, due to decreasing underlying
probabilities to find a violation.

Overall, for both of the models RCF appears to be noticeably faster than
RET. This is caused by frequently occurring states with the outdegree of at least
2 transitions for different channels, which helps RCF to avoid a lot of expensive
transition computations. This difference is especially large for Leader Election
protocol, where the amount of channels grows exponentially to the amount of
nodes. The general tendency is such that our heuristics are much less affected
by state-space explosion than symbolic verification using ECDAR.

The complete model, test results and Java prototype code are available at
http://www.cs.aau.dk/~ulrik/submissions/982983/SETTA2020.zip.

6 Conclusions and Future Work

We have presented what we believe to be the first randomized technique for
refinement checking of Timed I/O Automata by means of random walks. Our
two heuristics RET and RCF provide a fast and scalable way of detecting coun-
terexamples, the benefits of which are most noticeable in large systems where the
memory demands of symbolic verification are high. Such techniques are best used
for quick falsification to save time during development of large and industrial
sized systems. If no errors are found, a long and expensive complete symbolic
verification can be conducted.

The experiments have shown that the choice of delays can strongly influence
the efficiency of the technique. The most efficient and scalable variations of RET
and RCF heuristics appeared to be the ones based on the adaptive approach,
s.t. the delay choice distribution changes based on the outcome of the previous
run. We anticipate that some models may even require the delay choice heuristic
to be different for each state while for other systems it might suffice delaying
according to the same distribution. Therefore, we believe that as more techniques
appear, a successful violation detection strategy will be to run multiple heuristics
in parallel (see e.g [32]).

The direction for the future work is to test RET and RCF on more models
to see if these heuristics are efficient or different strategies are required. Our
methods can also be applied for real time model-checking of other analysis prob-
lems than refinement. Furthermore, a better performance of the heuristics can
potentially be achieved by supplying random walks with the dynamic number
of steps based on a static analysis of the model and/or certain heuristics that
manipulate the depth of each walk based on the outcome of the previous one.
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