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SDANN: standard deviation of the average normal-to-normal intervals for 
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TNF - tumour necrosis factor  
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ENGLISH SUMMARY 

Type 1 diabetes is an autoimmune metabolic disease characterized by insu-

linopaenia resulting in hyperglycaemia. It affects up to 50 million people 

worldwide and is accompanied by an array of debilitating complications. The 

most prevalent and burdensome are microvascular neuropathies, catalysed by 

diminished vascular supply and inadequate glycaemic control. These entities 

effect nerves throughout the body including peripheral nerves, sympathetic 

and parasympathetic branches of the autonomic system and nerves of the cen-

tral nervous system.  

This thesis focuses on aspects of diabetic autonomic neuropathy, which 

may develop early in the course of diabetes. However symptoms are pleo-

morphic or absent, and thus it is often unrecognized by patients and physi-

cians. This PhD thesis aims to use existing methodological platform to assess 

diabetic autonomic neuropathies of the cardiovascular and gastrointestinal 

systems. The thesis is compiled of four original research papers, which inves-

tigates different aspects of autonomic neuropathy. The papers are based on 

data from I) a cross-sectional study investigating methods for assessment of 

autonomic neuropathy and II) a placebo-controlled trial investigating the neu-

roprotective effects of 26-weeks liraglutide treatment in adults with type 1 

diabetes and severe polyneuropathy.  

Paper I examined the utility of assessed cardiac vagal tone as an alternative, 

clinically applicable screening method to recognize cardiovascular autonomic 

neuropathy based on cardiovascular reflex testing performed with the 

handheld, portable, commercially available VagusTM, and compared its per-

formance with heart rate variability parameters based on 24- and 120-hour 

electrocardiographically recordings and sudomotor function assessed with the 

commercially available SUDOSCAN®. Based on the results, we suggest a car-

diac vagal tone cut-off value, clinically applicable in recognizing established 

and borderline cardiac autonomic neuropathy.  

Paper II investigated the association between inflammatory markers and 

alterations in the neuro-cardiac regulation, as the pathogenesis of diabetic au-

tonomic neuropathy is pleomorphic and includes an array of metabolic, in-

flammatory and immune-mediated factors. This novelty paper discovered that 

both pro- and anti-inflammatory cytokines as well as a marker of epithelial 
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dysfunction was associated with changes in heart rate variability but not car-

diac vagal tone.  

Paper III investigated the influence of autonomic (dys)function on gastro-

intestinal motility and symptoms, as autonomic neuropathies impact on the 

enteric nervous system leading to gastro-enteropathy, is an under-investigated 

aspect. The study concluded that pan-enteric changes are present and associ-

ated with symptoms of the gastrointestinal tract and presence of cardiac vagal 

tone.  

Paper IV examined the effects of liraglutide treatment on gastrointestinal 

motility and symptoms in adults with peripheral and autonomic neuropathy. 

Liraglutide treatment has previously been associated with prolonged gastric 

emptying and severe gastrointestinal symptoms, such as nausea and vomiting. 

We showed that gastric stasis and nausea symptoms were transient. Instead, 

liraglutide improved large bowel function and symptoms, possibly through 

enhanced function of the enteric nervous system. 

The knowledge obtained in this thesis contributes to an increased insight 

into the underlying mechanisms in diabetic autonomic neuropathy. By use of 

existing methodological platforms, we provide complementary information 

on clinically applicable tests for assessing cardiovascular autonomic neurop-

athy and diabetic gastro-enteropathy. We provide further evidence regarding 

the interaction between systemic low-grade inflammation and presence of car-

diovascular autonomic neuropathy and suggest a beneficial role of the GLP-1 

agonist liraglutide on colonic motility and function. Despite some limitations, 

the proposed methods may provide an alternative to existing methods, and 

may prospectively recognize diabetic autonomic neuropathy earlier, which ul-

timately lead to diminish mortality, improve individual’s quality of life and 

reduce medical cost associated with type 1 diabetes.  
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DANSK RESUME 

Type 1 diabetes er en kronisk autoimmun sygdom karakteriseret ved mang-

lende produktion af insulin, hvilket resulterer i vedvarende forhøjede blodsuk-

ker niveauer. Op mod 50 millioner mennesker over hele verden har type 1 

diabetes, hvilket kan ledsages af en række invaliderende komplikationer. Den 

mest udbredte og belastende komplikation er neuropati (nervebetændelse), 

hvis katalysatorer er nedsat blodforsyning og utilstrækkelig kontrol af blod-

sukkerniveauerne. Neuropati kan påvirke alle kroppens nerver inklusiv peri-

fere nerver, sympatiske og parasympatiske grene af det autonome system og 

nerver i det centrale nervesystem. 

Denne afhandling fokuserer på forskellige aspekter af diabetisk neuropati 

i det autonome nervesystem. Diabetisk autonom neuropati kan udvikle sig tid-

ligt i diabetes forløbet, men da symptomerne ofte er alsidige eller helt fravæ-

rende, opdages det sent af både patienter og læger. Formålet med denne af-

handling er at undersøge hvordan autonom neuropati påvirker hjerte-kar-sy-

stemet og mave-tarm-kanalen, ved brug af eksisterende metoder. Afhandlin-

gen består af fire originale forskningsartikler, der undersøger forskellige 

aspekter af autonom neuropati. Artiklerne er baseret på data fra to studier: I) 

et tværsnits studie, der undersøger metoder til vurdering af autonom neuropati 

i voksne med type 1 diabetes; II) et placebokontrolleret forsøg, der undersøger 

den beskyttende effekt af 26 ugers liraglutid behandling mod forandringer i 

nervefunktionen hos voksne med type 1 diabetes og perifer neuropati. 

I artikel I blev anvendeligheden af kardiel vagus tonus som et alternativt, 

klinisk screenings mål til at undersøge autonom neuropati i hjerte-kar syste-

met undersøgt. Undersøgelsen blev baseret på hjerte-refleksundersøgelser ud-

ført med den håndholdte, kommercielt tilgængelige VagusTM og sammenlig-

net hjertefrekvensvariationer baseret på 24- og 120-timers elektrokardiogra-

fisk optagelse samt svedfunktion vurderet med den kommercielt tilgængelige 

SUDOSCAN®. Baseret på resultaterne, foreslår vi en grænseværdi for kardiel 

vagus tonus, der er klinisk anvendelig til undersøgelse af autonom neuropati. 

I artikel II blev sammenhængen mellem inflammatoriske markører og æn-

dringer i reguleringen mellem nervesystemet og hjertet, da diabetisk autonom 

neuropati’s sygdomsproces inkluderer en række metaboliske, inflammatoriske 

og immunmedierende faktorer undersøgt. Resultatet blev at både pro- og an-

tiinflammatoriske markører såvel som en markør for dysfunktionelt epitel var 
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forbundet med ændringer i hjertefrekvensvariabilitet, men ikke kardiel vagus 

tonus. 

I artikel III blev indflydelsen af autonom dysfunktion på mave-tarm-kana-

lens bevægelighed og symptomer herfra undersøgt. Man ved at autonom neu-

ropati kan involvere mave-tarm-kanalens nervesystem (det enteriske nervesy-

stem), hvilket fører til neuropati symptomer fra maven og tarmene. Dette er 

dog ikke undersøgt tilstrækkeligt tidligere. I undersøgelserne fandt vi at for-

andringerne er til stede i hele mave-tarm-kanalens forløb og er forbundet med 

symptomer fra mave-tarm-systemet og nedsat kardiel vagus tonus. 

I artikel IV blev effekten af liraglutid behandling på mave-tarm-kanalens 

bevægelighed og symptomer hos voksne med perifer og autonom neuropati 

undersøgt. Behandling med liraglutide har tidligere vist sig at give forlænget 

tømning af mavesækken og alvorlige symptomer fra mave-tarm-kanalen, så-

som kvalme og opkast. Vi viste, at stase i maven og kvalme symptomer var 

kortvarige. I stedet forbedrede liraglutid tyktarmens funktion og de derfra 

kommende symptomer, muligvis ved at forbedre funktionen af det enteriske 

nervesystem. 

Denne afhandling bidrager med øget viden om de underliggende meka-

nismer i diabetisk autonom neuropati. Ved hjælp af eksisterende metodologi-

ske platforme, leverer vi komplementære oplysninger om klinisk anvende-

lige tests til vurdering af autonom neuropati i hjerte-kar-systemet og mave-

tarm-kanalen. Vi leverer bevis for interaktionen mellem systemisk betæn-

delse og tilstedeværelse af autonom neuropati i hjertet og vores studier finder 

tegn på at liraglutid har en gavnlig effekt på tyktarmens funktion. På trods af 

begrænsninger kan de foreslåede metoder eventuelt være et alternativ til ek-

sisterende undersøgelsesmetoder og give mulighed for tidligere diagnostice-

ring af diabetisk autonom neuropati. Dette kan i sidste ende føre til nedsat 

dødelighed, forbedring af livskvalitet og reduktion i medicinske omkostnin-

ger forbundet med type 1-diabetes. 

 

 

 

 



CHAPTER 1. BACKGROUND 

11 

ACKNOWLEDGEMENTS 

This thesis is based on two experimental investigations on adults with type 1 

diabetes. The studies were carried out at Mech-Sense, Department of Gastro-

enterology and Hepatology, Aalborg University Hospital, Denmark in collab-

oration with the Departments of Endocrinology and Cardiology, Aalborg Uni-

versity Hospital, Denmark and could not have been completed without assis-

tance from my helpful supervisors, colleagues and friends. 

I had the privileged to have four amazing supervisors to whom I owe my 

most sincere gratitude. To my main supervisor Professor Christina Brock, who 

has taken me under her wing and inspired me to become a better researcher. 

Who, in her own obscure way, has provided guidance, encouragement and 

criticism that has pushed me far beyond my limits, to advance my skills and 

taking the science to the next level. Thank you for your mentorship and for 

giving me this opportunity to follow the PhD path. I would also like to thank 

my three other co-supervisors: Associate professor Birgitte Brock, for looking 

at challenging task from a different angle, for her positive criticism of manu-

scripts and fruitful discussions; Associate professor Adam Farmer, for his pro-

fessional expertise, guidance to improve my writings skills and his construc-

tive criticism on my work; Professor Asbjørn Mohr Drewes, director of Mech-

Sense, for his great ideas, swift replies and full support at every turn.  

I particularly appreciate the tremendous work done by my co-authors: 

Niels Ejskjær, Tina Fløyel, Christian Stevns Hansen, Poul Erik Jakobsen, Jas-

per Karmisholt, Elin Lunde, Tine Okdahl, Flemming Pociot, Rodica Pop-

Busui, Sam Riahi and Joachim Størling, in their academic contributions, and 

critical review of the four manuscripts included in this dissertation. I would 

like to thank Mark Scott and Anthony Hobson, who together with Adam 

Farmer taught me the practical application of SmartPill.    

I am extremely grateful to my three colleagues: Theresa Meldgaard, Isa-

belle Myriam Larsen, and Lene Holm Fruensgaard Pedersen for their invalu-

able assistance in the laboratory and beyond. A warm thanks to all who have 

activated a SmartPill or two. A special thanks to all the people who have par-

ticipated in the studies. My research would not have been possible without 

their contributions.  

To my colleagues, past and present, at Mech-Sense, thank you for creating 

a fantastic positive working environment, for breakfast, cake, journal clubs 

and fun, for fruitful intellectual discussions and support whenever frustrations 

grew high. 

My sincerest thanks go to Rodica Pop-Busui and all her research staff for 

welcoming me to the States, providing an incredible learning experience, and 



12
 

making my stay at Michigan University, Ann Arbor, USA, pleasant and un-

forgettable.  

I would like to acknowledge “AAU's Talentplejeprogram” and “Region 

Nordjyllands Sundhedsvidenskabelige Forskningsfond” for providing my sal-

ary during the PhD. For additional financial support to the project, I thank 

“The A.P Møller Foundation for the Advancement of Medical Science”, 

“Aase og Ejnar Danielsens Fond”, Steno Diabetes Center North Denmark, 

“The Novo Nordisk Scandinavia AS”, and “Empowering Industry and Re-

search (EIR) Northern Jutland”. For travel support, I thank AAU, “Augustinus 

fonden”, and “William Demant Fonden”. All contributions have been of great 

value. 

Last, but most importantly I would like to thank my wonderful family and 

my friends, who will always be there for me when I need them. Without their 

support and encouragement, my carrier would not be possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1. BACKGROUND 

13 

TABLE OF CONTENTS 

Chapter 1. Background .......................................................................................... 17 

1.1. Type 1 Diabetes Mellitus .............................................................................. 17 

1.2. Complications in Type 1 Diabetes ................................................................ 18 

1.3. Diabetic Autonomic Neuropathy .................................................................. 19 

1.3.1. Cardiovascular Autonomic Neuropathy ................................................. 20 

1.3.2. Influence of Inflammation on Neuropathy ............................................. 21 

1.3.3. Gastrointestinal Enteropathy .................................................................. 21 

1.4. Liraglutide ..................................................................................................... 23 

1.5. Assessing Autonomic Neuorpathy ................................................................ 24 

1.5.1. Cardiovascular Autonomic Tests ........................................................... 24 

1.5.2. Gastrointestinal Tests ............................................................................. 28 

Chapter 2. Rationale and Aims .............................................................................. 35 

Chapter 3. Materials and Methods ........................................................................ 39 

3.1. Study I ........................................................................................................... 39 

3.2. Study II .......................................................................................................... 39 

3.3. Assessment of Neuro-Cardiac Function ........................................................ 40 

3.3.1. Cardiovascular Autonomic Reflex Tests ................................................ 40 

3.3.2. Cardiac Vagal Tone ................................................................................ 40 

3.3.3. Heart Rate Varibility .............................................................................. 40 

3.3.4. Sudomotor Function ............................................................................... 41 

3.3.5. Neurophysiological Evaluation .............................................................. 41 

3.4. Assessment of Inflammatory Levels ............................................................. 41 

3.5. Assessment of Gastrointestinal Function ...................................................... 42 

3.5.1. Wireless Motility Capsule ...................................................................... 42 

3.5.2. Self-Assessed Gastrointestinal Symptoms ............................................. 42 

Chapter 4. Key Results ........................................................................................... 45 

4.1. Aim I ............................................................................................................. 45 

4.2. Aim II ............................................................................................................ 45 

4.3. Aim III .......................................................................................................... 46 



14
 

4.4. Aim IV .......................................................................................................... 47 

Chapter 5. Discussion ............................................................................................. 49 

5.1. Investigating the Cardiovascular System ...................................................... 49 

5.1.1. Cardiovascular Autonomic Neuropathy ................................................. 49 

5.1.2. Inflammation .......................................................................................... 53 

5.2. Investigating the Function of the Gastrointestinal Tract ............................... 55 

5.2.1. Gastrointestinal Autonomic Neuropathy ................................................ 55 

5.2.2. Effects of Liraglutide ............................................................................. 58 

5.3. Methodological Considerations ..................................................................... 60 

Chapter 6. Conclusion ............................................................................................ 63 

6.1. Clinical Implications and Future Perspectives .............................................. 63 

Literature list ........................................................................................................... 65 

 

 

  



CHAPTER 1. BACKGROUND 

15 

TABLE OF FIGURES 

Figure 1.1: The series of metabolic events that result in microvascular com-

plications. 

 

Figure 1.2: Schematic diagram of neuropathy types. 

 

Figure 1.3: Regional dysmotility and symptoms of the gastrointestinal tract.  

 

Figure 1.4: Wireless motility capsule trace from an adult male with type 1 

diabetes. 

 

Figure 2.1: Overview of studies and papers. 

 

Figure 5.1: Cardiac vagal tone ROC curves for borderline and established car-

diovascular autonomic neuropathy 

 

Figure 5.2: Percentage change of inflammatory markers in participants with 

or without cardiovascular autonomic neuropathy 

 

Figure 5.3: Association between symptoms and gastrointestinal transit time 

and motility. 

 

Figure 5.4: Changes in colonic transit time and motility index between treat-

ments of liraglutide and placebo. 

  



16
 

 



CHAPTER 1. BACKGROUND 

17 

CHAPTER 1. BACKGROUND 

1.1. TYPE 1 DIABETES MELLITUS 

Diabetes mellitus constitutes a heterogeneous group of metabolic diseases 

characterised by hyperglycaemia, of which type 1 diabetes accounts for 5-10% 
1. Worldwide, up to 50 million people have type 1 diabetes, with increased 

prevalence in Scandinavian countries 2 and current trends being indicative of 

continuous increases which may be attributed to improved earlier diagnosis, 

improved management and survival rates 3. 

Type 1 diabetes is cellular-mediated autoimmune destruction of insulin 

producing pancreatic β-cells, resulting in chronic insulinopaenia. It typically 

presents during childhood and classical onset is accompanied by polyuria, pol-

ydipsia, polyphagia or ketoacidosis, though this is more variable in adult on-

set. Diagnosis is based on either oral glucose tolerance test, increased fasting 

plasma glucose concentration or the glycated haemoglobin A1C criteria 

(≥6.5% or 48 mmol/mol)1,4. Current treatment focuses on maintaining an 

euglycemic state using insulin therapy, while avoiding severe hypoglycaemia, 

hyperglycaemia and ketoacidosis 1. Future treatment prospects focus on pan-

creas transplantation or the “artificial pancreas” system, an integrated dual 

hormone (insulin and glucagon) closed-loop system incorporating pumps and 

continuous glucose monitors 4.  

Despite advances in care, type 1 diabetes is still accompanied by a marked 

physical, psychological and financial burden 4. People with diabetes are 

known to have a diminution in quality of life attributed to frequent self-mon-

itoring and anxiety of acute glycaemic events, long-term complications and 

morbidity 5. Although the economic burden of diabetes may vary across world 

regions, both the direct (i.e. medication, hospitalization, and complication 

treatments) and indirect (i.e. absenteeism, presenteeism) cost of type 1 diabe-

tes are in general increased compared to type 2 diabetes 6. This increased cost 

is largely attributed to longer disease durations, higher medicine cost and ele-

vated medical cost associated with the increased risk of comorbidities 7.  
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Figure 1.1: The series of metabolic events that result in microvascular complica-

tions. Through different pathways (I-V), increased glycose levels associated with di-

abetes wreak havoc in the human neural cells. The cytotoxic effects results in mito-

chondrial dysfunction, osmotic and oxidative stress, DNA damage, pro-inflammatory 

gene expression and apoptosis, resulting in microvascular complication of the eyes, 

kidneys and nerves. AGE – advanced glycation end products; DNA - deoxyribonucleic 

acid; NAD - nicotinamide adenine dinucleotide; NADPH - nicotinamide adenine di-

nucleotide phosphate; ROS – reactive oxygen species. 

 

1.2. COMPLICATIONS OF TYPE 1 DIABETES 

Complications of type 1 diabetes can be subdivided into macrovascular and 

microvascular complications. Macrovascular complications encompass the 

process of atherosclerosis leading to cardiovascular diseases like coronary 

heart disease, cerebrovascular disease and peripheral vascular disease, which 

are non-specific to diabetes. Conversely, microvascular complications encom-
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passes diabetes specific nephropathy, retinopathy and neuropathy 8. A com-

mon denominator of the cells of the renal glomeruli, retina, and nerves, are 

their shared inability to downregulate glucose uptake in the presence of ele-

vated extracellular glucose levels. Though the exact mechanisms are incom-

pletely understood, evidence suggests that long-standing or severe hypergly-

caemia activates a plethora of destructive metabolic and structural alterations 
9,10, outlined in Figure 1.1. Thus microvascular complications can be pre-

vented, to a degree, by intensive glycaemic treatment 11.  

The most common microvascular complication is neuropathy, which af-

fects up to 50% of people with type 1 diabetes 12,13. Neuropathy may manifest 

in various forms and display considerable heterogeneity in their symptoms, 

cause, pathological alterations and underlying mechanisms, seen in Figure 1.2. 

The most commonly encountered and studied forms are distal symmetrical 

polyneuropathy and autonomic neuropathy 14, of which the latter will be the 

focus in this thesis. Distal symmetrical polyneuropathy accounts for the ma-

jority of recognized neuropathies 15. It is a length-dependent sensorimotor neu-

ropathy, that can involve both small-fibre and large-fibre nerve dysfunction 

but initially affects longer nerves 10,15. Classically it presents as stocking and 

glove distribution 13,16. Loss of protective sensation is prominent and thus, this 

form of neuropathy is the primary cause of foot ulceration and in the worst 

case scenario can necessitate amputation 8.  

 

1.3. DIABETIC AUTONOMIC NEUROPATHY 

Diabetic autonomic neuropathy is defined by the Toronto consensus as “a dis-

order of the autonomic nervous system in the setting of diabetes after the ex-

clusion of other causes” 15. It involves both sympathetic and parasympathetic 

branches of every autonomic system in the body, including the cardiovascular 

and gastrointestinal systems, presenting with site-specific dysfunction and 

symptoms 14. The primarily neural substrate of the parasympathetic nervous 

system is the vagus nerve, which innervates the majority of the visceral organs 
17,18. As the longest cranial nerve in the human body, the vagus nerve is par-

ticularly vulnerable long-term or severe hyperglycaemia 18. Thus, early mani-

festation of autonomic neuropathy tends to be expressed as parasympathetic 

denervation in vagal innervated organs 19. The effects of this are highly visible 

after surgical vagotomy (previously used as a treatment of peptic ulceration) 
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underlining the important influence of the vagus nerve. However, these symp-

toms are often silent or diverse in nature, and autonomic neuropathy often 

goes unnoticed by the patient and physician 20. Autonomic dysfunction was 

classically thought to develop over time, especially after long-standing peri-

ods of hypo- or hyperglycaemia, however resent evidence suggest that auto-

nomic alteration can be present as early as the time of diagnosis in some cases 

of type 1 diabetes 15,18. This is troublesome and problematic as autonomic neu-

ropathy is associated with increased morbidity and mortality 8.  

 

 

Figure 1.2: Schematic dia-

gram of neuropathy types. 

From left to right: Distal sym-

metrical polyneuropathy, mo-

noneuropathy, radiculopathy, 

and autonomic neuropathy.  

 

 

 

 

1.3.1. CARDIOVASCULAR AUTONOMIC NEUROPATHY 

Cardiovascular autonomic neuropathy is the most frequently studied and se-

vere autonomic neuropathy 14, defined by the Toronto consensus as “the im-

pairment of autonomic control of the cardiovascular system” 15. The patho-

genesis is a complex interaction of disrupted coordination of heart control in-

fluenced by alterations of sympathetic and parasympathetic input, coupled 

with hyperglycaemia induced metabolic, oxidative and inflammatory pro-

cesses 21,22 (Figure 1.1). Vagal denervation is expressed as tachycardia, 

changes in circadian blood pressure, increased contractility and peripheral 

vasoconstriction, all contribution to increased myocardial stress 19, and present 

with symptoms of light-headedness, weakness, palpitations, faintness, and ul-

timately syncope 14,23. However, early stages can be completely asymptomatic 

(silent), and as routine testing is not recommended until five years after dia-

betes diagnosis 22,24, it is plausible that a large number of unrecognised cases 

are present. Timely diagnosis can be difficult and preventive initiatives are 

interim retained, while mortality increases 14,25. Up to 7% of newly diagnosed 
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people with type 1 diabetes have measureable cardiovascular autonomic neu-

ropathy and the prevalence increases yearly with 2% hereafter 18.  

1.3.2. INFLUENCE OF INFLAMMATION ON NEUROPATHY 

The inflammatory reflex is a highly regulated interaction between the immune 

and nervous system. It responds to inflammatory or infectious stimuli by acti-

vating the brain or vagal afferents through cytokines release, which in turn 

induces a cholinergic anti-inflammatory response, deactivating macrophages, 

and thus, effectively inhibiting the synthesis of pro-inflammatory cytokines 
17,26,27. The autonomic system, especially the vagus nerve, is a central health-

preserving component in this neuro-immuno-regulatory reflex, providing a 

fast and subconscious anti-inflammatory response 17,26. Additionally, inflam-

mation induced neurotoxicity is known to be part of the underlying pathogen-

esis of peripheral neuropathy, a pathomechanism undoubtedly also at play in 

the autonomic system 28–30. Thus, a link between the inflammatory reflex and 

autonomic dysfunction, like cardiovascular autonomic neuropathy, is a plau-

sible concept. It has been supported by studies demonstrating that endotoxin-

induced inflammation reduces heart rate variability, while increased parasym-

pathetic function is known to decrease production of inflammatory cytokines 
27,31. In type 1 diabetes, the relationship between heart rate variability and in-

flammation is not found in newly diagnosed, but more likely arises as a long-

term dysfunction 32,33 34,35.  

 

1.3.3. GASTROINTESTINAL ENTEROPATHY  

Homeostasis of the enteric nervous system, an independent network within 

the autonomic nervous system, is governed by three interconnected pan-en-

teric networks; I) intrinsic neurons, influencing motility, secretion and absorp-

tion, II) interstitial cells of Cajal, facilitating slow-wave peristaltic movement 

of the gut walls, and III) enteric glial cells, mediating interactions between 

neurons and intestinal cells 36. Normal gastrointestinal motility is initiated by 

physiological stimulation of smooth muscle cells by ingested nutrient, which 

activate neuro-hormonal reflexes and neurotransmitter release, which regu-

lates and coordinates the gut-brain-axis in a bidirectional manner. Disruption 

of these networks, either locally by reduced number and structural changes of 

intrinsic neurons or centrally by altered brain-gut communication, can result 

in gastrointestinal neuropathy. Classically, this has be thought of as multiple 

neuropathies, defined by their accompanying disabling symptoms e.g. nausea, 
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bloating, diarrhoea and constipation, rather than the underlying motility dis-

turbances 37,38. However, recent evidence, backed by anatomical function, sug-

gest that pan-enteric dysfunction represents one coherent disease 39.  

 

 
Figure 1.3: Regional dysmotility and symptoms of the gastrointestinal tract. 

 

Both gastrointestinal dysfunction, and the resulting symptoms, can be re-

garded as an outcome of a dyscoordination and dysregulation within the gut-

brain axis. The majority of the gastrointestinal tract is innervated by the vagus 

nerve, and autonomic neuropathy may manifest as impaired coordination 

within the enteric nervous systems 40. Consequences are disruption of this del-

icately balanced regulation, resulting in altered wall tone, sphincter function, 

secretion, dysmotility, all contributing to interrupted digestion and plausibly 

symptom generation. However, classical patient-reported gastrointestinal 

symptoms e.g. nausea, abdominal pain, bloating, postprandial fullness, diar-

rhoea and constipation, are often unspecific and inaccurately categorized in 

terms related to the anatomical origin 41,42. This may be connected with evident 

localised hyposensitivity, as well as pronounced alterations in specific visceral 

processing areas the brain, including insula and cingula cortex have been re-

vealed to be involved in gastrointestinal function and especially symptom gen-

eration and maintenance 43–45. Dysmotility and perceived symptoms may in 

worst case affect nutritional and pharmacological efficacy 46. Effectively this 
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manifest as gastroparesis which retards movement of chyme, diminishes mo-

tility and hinders absorption in the intestines, which may be complicated by 

symptoms such as nausea and vomiting. Such symptoms have the potential to 

impact on calorific intake which can complicate insulin administration. 

 

1.4. LIRAGLUTIDE 

Glucagon-like peptide 1 (GLP-1) is an incretin hormone, homologous to glu-

cagon, which is released from pancreatic α-cells and intestinal enteroendo-

crine L-cells, in response to ingestion of nutrients 47. Among its effects are 

glucose-dependent enhanced insulin, and reduced glucagon, secretion result-

ing in stabilisation of glycaemia, slowing of gastric emptying and increased 

satiety, which consistently have shown to lead to weight loss 47,48. The first 

GLP-1 receptor agonist was approved in 2005 by the FDA for regulation of 

dysglycaemia in type 2 diabetes and many analogues, which mimic the native 

GLP-1 function, have been synthesised and marketed since then. Liraglutide 

is a long-acting synthetic human GLP-1 analogue attached to a carbon fatty 

acid molecule, which effectively increases its half-life compared to the natural 

hormone. Compared to short-acting agonist, which leaves intermittent periods 

without measurable drug concentrations, liraglutide serum concentrations are 

permanently elevated, leading to continuous stimulation of receptor, and 

therefore it triggers tachyphylaxis of the gastric response leading to adverse 

effects 49. The most frequents adverse effects, and a major withdrawal reason 

of participants within clinical trials investigating liraglutide and GLP-1 ago-

nist, are gastrointestinal side effects of which nausea and vomiting are the 

most common 47–49. These are not thought to originate directly from alterations 

in gastrointestinal secretomotor function, but rather from the central nervous 

system as both pancreatic and extra-pancreatic effects of GLP-1 and agonist 

are believed to be mediated via the vagus nerve. In type 1 diabetes, where 

insulin is depleted and provide exogenously, it is especially these extra-pan-

creatic effects that are of interest in liraglutide’s regulation of glycaemic con-

trol 47. 
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1.5. ASSESSING AUTONOMIC NEUORPATHY 

Direct assessment of the autonomic system is challenging due to the invasive-

ness of testing, and thus only indirect, or proxy, methods are currently used. 

Since no universal assessment of autonomic neuropathy exist, current assess-

ment is end organ effect based, most commonly though the cardiovascular and 

gastrointestinal systems. 

  

1.5.1. CARDIOVASCULAR AUTONOMIC TESTS 

Cardiovascular autonomic reflex tests has been defined as the gold standard 

for diagnosis of cardiovascular autonomic neuropathy by the Toronto consen-

sus15 and supported by learned neurological societies 50. The tests were first 

suggested by Ewing in the 1970’s 51 and the recommended test paradigm con-

sists of heart rate response to deep breathing, Valsalva manoeuvre, and pos-

tural change, as well as blood pressure response to orthostatic changes and 

previously sustained handgrip 14,15,52. Based on the Toronto consensus15 cardi-

ovascular autonomic neuropathy are categorically divided into early (one ab-

normal test), confirmed (two or more abnormal test) or severe (orthostatic hy-

potension), based on the numbers and types of abnormal cardiovascular auto-

nomic reflex tests 15. Different version of these tests have been developed, 

with a recent addition being the handheld VagusTM, able to perform the three 

recommended heart rate test procedure 53,54.  

Apart from cardiovascular autonomic reflex test, the only other clinically 

suggested method is heart rate variability, which, using power spectral analy-

sis time- and frequency-domains parameters can be derived. These are, when 

applied properly, the earliest way to detect asymptomatic cardiovascular au-

tonomic neuropathy 14,17,21,55. Depending on the computed domains, heart rate 

variability provides insight to both sympathetic and parasympathetic neural 

activity, and long-term recording allow investigation of the influence of nor-

mal daily activities and routines. For easy clinical applicability short-term de-

rived heart rate variability measures have been proposed, however, they are 

less sensitive and reproducible than long-term recording for autonomic neu-

ropathy purposes 55.  
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Table 1.1: Overview of diagnostic test of cardiovascular autonomic neuropathy. 

Author Cohort CAN 

(%) 

Reference 

method 

Test method Sn 

(%) 

Sp 

(%) 

Cardiovascular autonomic reflex tests  Clinical use – 30 minutes 

Bellavere 201956 334 T2 NR OH 

>15mmHg 

DB 

PC 

VM 

VM+PC 

DB+PC 

VM+DB 

66.7 

70.4 

84.6 

42.0 

33.1 

28.4 

65.4 

72.6 

48.2 

82.8 

88.1 

89.5 

Lai 201957 238 T2 37% CASS DB 

VM 

OH 

80.2 

72.3 

63.4 

72.6 

64.5 

62.9 

Körei 201758 64 T1 

195 T2 

37% Toronto  SHG 24.6 79.4 

Razanskaite-

Virbickiene 

201759 

349 T1 

 

60% Ewing DB 

Suspire 

Standing 

97.3 

94.3 

96.2 

96.2 

91.5 

93.0 

Pafili 201560 152 T2 48% Toronto DB 

PC 

VM 

DB+PC 

DB+VM 

PC+VM 

19 

96 

62 

81 

69 

62 

98 

65 

92 

62 

79 

70 

Vinik 200318 3516DM 

205 HV 

NR >5th PCTL 

 of age 

 cut-offs 

DB 

VM 

PC 

93 

98 

93 

93 

91 

93 

Heart rate variability (HRV) (long-term) Clinical use – 1-5 days 

Lin 201761 7 T1 

83 T2 

20 HC 

44% Ewing HRV 

HRT 

HRT+SDNN 

72 

75 

98 

55 

65 

63 

Heart rate variability (HRV) (short-term) Research use – 10-20 minutes 

Bhati 201962 42 T2 64% Ewing Rest mean NN 

Rest SDNN 

Rest RMSSD 

Rest pNN50 

Rest TP 

Rest LF 

P-E mean NN 

P-E SDNN 

P-E RMSSD 

P-E pNN50 

P-E TP 

P-E LF 

81.4 

77.7 

70.3 

92.5 

92.5 

85.1 

96.3 

92.5 

88.8 

100 

100 

100 

60 

60 

66.6 

73.2 

60 

73.3 

66.6 

40 

66.6 

86.6 

66.6 

73.3 

Jelinek 201763 140 HC 49% Ewing HRV 100 29.5 

Chen 201564 56 DM 61% Ewing HRV 83.7 83.7 

Tang 201465 446 DM 49%- 

53% 

Ewing HRV (uniform) 

HRV (age) 

85.0 

85.4 

85.2 

84.7 

Howorka 199866 107 T1 

11 T2 

58% Ewing Frequency HRV 82 89 



26
 

Continued 

Cardiac vagal tone (CVT) Research use – 5 minutes 

Wegeberg 2020 

(Paper I) 

56 T1 32% Toronto 

(- OH) 

CVT (bCAN) 

CVT (eCAN) 

67 

88 

87 

63 

Ambulatory blood pressure measurement (ABPM) Research use – 24 hours 

Spallone 200967 84 T1 

80 T2 

32% Toronto 

(- OH) 

20 mmHg  

30 mmHg 

50.0 

30.8 

94.6 

98.2 

Spallone 200768 87 T1 57% Toronto  ∆BP(sys) 0% 

∆BP(sys) 5% 

∆BP(sys) 10% 

∆BP(dia) 0% 

∆BP(dia) 5% 

∆BP(dia) 10% 

26.0 

42.0 

70.0 

14.0 

26.0 

40.0 

95.0 

86.0 

51.0 

95.0 

92.0 

78.0 

QT-interval Research use – 1 minute 

Pappachan 200869 42 T1 60% Ewing  QTi > 440ms  77.0 76.5 

Whitsel 200070 4115 T1 

469 T2 

26% Toronto QTc >441 28.0 86.0 

Sudoscan® Research use – 5 minutes 

D’Amato 201971 44 T1 

81 T2 

41% Toronto ESC (CAN) 

ESC (eCAN) 

78 

83 

64 

57 

Yuan 201872 9 T1 

94 T2 

NR Toronto  CANRS  

(ESC, age, BMI) 

90 30 

He 201773 75 T2 

45 HC 

40% Toronto ESC (feet) 

ESC (hands) 

80.0 

76.7 

60.0 

75.6 

Selvarajah 742015 45 T1 

25 HV 

44% Toronto ESC (feet) 

ESC (hands) 

CAN-RS 

60.0 

45.0 

65.0 

76.0 

96.0 

80.0 

Yajnik 201375 232 T2 NR Toronto  

(- VM) 

ESC risk score 92 49 

Neuropad® Research use 10-20 minutes 

Mendivil 201576 154 T2 68% Toronto  CAN 

 DB 

 PC 

 VM 

70.1 

77.9 

67.1 

75.7 

37.0 

40.5 

29.1 

34.5 

Spallone 200977 51 DM 22% Toronto   10 min 

 15 min 

 18 min 

82.0 

82.0 

73.0 

27.0 

52.5 

75.0 

Bilen 200778 105 T2 38% QTi >0.440  Neuropad 88 43 

Liatis 200779 117 DM 38% Toronto 

 

 CAN 

 sCAN 

59.1 

80.9 

46.5 

50.0 

Corneal Confocal Microscopy Research use – 2 minutes 

Tavakoli 201580 34 DM 59% CASS >2 

 

Fibre density 

Branch density 

Fibre length 

86.0 

100 

86.0 

78.0 

56.0 

78.0 
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Continued 

COMPASS 31 Research use – 15 minutes 

D’Amato 201971 44 T1 

81 T2 

41% Toronto CAN 

eCAN 

58 

75 

56 

56 

Greco 201681 73 DM 36% Toronto  bCAN 

sCAN 

75.0 

70.0 

64.9 

66.7 

Singh 201182 

 

60 T2  Ewing COMPASS-31 

Orthostatic  

Gastrointestinal  

77.8 

77.8 

77.8 

71.1 

57.4 

60.0 

Survey of Autonomic Symptoms (SAS) Research use – 15 minutes 

Zilliox 83 30 HC 

62 DM 

 Symptom 

Profile  

Symptoms score 

Total impact 

95.0 

80.0 

50.0 

50.0 

Clinical characteristics Research use  

Riguetto 201984 222 T1 35% Toronto  CAN formula  90 82 

Xue 201785 455 DM 29% Toronto CAN formula 80.6 63.7 

Ge 201486 2092 HC 19% Toronto CAN formula  72.9 67.5 

Neumann 199587 38 T1 

94 T2 

51% Ewing ≥2 symptoms 93 83 

Peripheral measurements Research use 

Pafili 202088 152 T2 NR Toronto  NC-stat 

Monofilament 

VPT 

Ipswich touch test 

NDS small 

NDS large 

NDS 

50 

46 

62 

39 

89 

65 

54 

76 

69 

75 

85 

73 

41 

70 

Lai 201957 238 T2 37% CASS  Sural nerve SNAP 71.3 69.4 

bCAN: borderline cardiovascular autonomic neuropathy, BP: blood pressure, CAN: cardio-

vascular autonomic neuropathy, CASS: composite autonomic severity score, DB: deep 

breathing (E:I), dia: diastolic, DM: diabetes mellitus (unknown T1/T2 ratio), eCAN: estab-

lished cardiovascular autonomic neuropathy, ESC: electrochemical skin conductance, HRT: 

heart rate turbulence, NDS: neuropathy disability score, OH: orthostatic hypotension (blood 

pressure response to standing, P-E: post exercise, PC: postural change (lying to standing or 

30:15), QTi: QT interval, sCAN: severe cardiovascular autonomic neuropathy, SHG: sus-

tained handgrip, sys: systolic, T1: type 1 diabetes, T2: type 2 diabetes, VM: Valsalva ma-

noeuvre (Valsalva ratio), VPT: vibration perception threshold. Ewing – DB, PC, VM, SHG, 

OH. Toronto – DB, PC, VM, OH. 

 

A novel alternative to heart rate variability is cardiac vagal tone. Based on 

a 5-minute resting electrocardiogram, this measure is a validated cardio-met-

rically derived index of parasympathetic efferent tone. Alterations in heart rate 

is rapidly adjusted though collaboration of baroreceptor stretching, parasym-

pathetic vagal activation and sinoatrial depolarisation, in reflex of brainstem 

efferent modulation of the heart. At rest this relationship resembles linearity 

and thus is quantified as cardiac vagal tone on a linear vagal scale (LVS), 

where zero represents atropinisation 89,90. An important advantage of cardiac 
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vagal tone is that is has been validated for time epochs of less than 5 minutes 

and does not require the subject to follow complicated instructions or active 

participation to perform. Normal data for this measure exist and it is known to 

be decreased in people with type 1 diabetes and has been shown to be repro-

ducible over time 89,91. 

Due to the prevalent and increased risk of mortality associated with cardi-

ovascular autonomic neuropathy, implementation of technically uncompli-

cated methods for early clinical detection is pivotal 21,92. A comprehensive 

overview of different diagnostic tests sensitivity and specificity validated for 

recognizing cardiovascular autonomic reflex test (primarily) can be found in 

Table 1.1. Although many different approaches have been proposed, the ma-

jority lacks the prerequisite receiver operator characteristics required for rou-

tine clinical use. 

 

1.5.2. GASTROINTESTINAL TESTS 

The gastrointestinal tract is a complex organ that is relatively difficult to 

assess readily. Different approaches have been applied to indirectly measure 

the vagal influence on the gastrointestinal tract including proxies such as se-

rum pancreatic polypeptide response to sham feeding or cardiac measures like 

heart rate variability 93–95. However, in most cases, direct evaluation of the 

gastrointestinal tract is preferred, primarily by evaluation of regional transit 

times, with gastric emptying the most applied. Several different methods have 

been applied to asses either transit or motility in people with diabetes and au-

tonomic neuropathy. To get an overview over the different methods used to 

investigate autonomic neuropathy in people with type 1 diabetes, a PubMed 

search of Mesh terms “Diabetes Mellitus, Type 1”, “Gastrointestinal Transit”, 

“Gastrointestinal Motility” and “Diabetic Neuropathies” was performed and 

yielded a result of 90 articles. Of these, 17 were non-original articles (the ma-

jority of reviews concerned the stomach and gastroparesis), three were animal 

studies, four were not in type 1 diabetes, and ten concerned the oesophagus or 

gallbladder, eight did not concern intestinal transit or motility (e.g. gastric vol-

ume), while six only depicted peripheral neuropathy. The rest are presented 

categorized by type of method in Table 1.2. From these it is clear that gastric 

emptying has received the most attention. Gastric emptying can be measured 

using nuclear medicine scintigraphy, which is currently considered the gold 

standard 96. Delayed gastric emptying is a defined feature of gastroparesis. 
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However, many of the current and historical techniques to objectively quanti-

fying gastrointestinal transit and motility have marked disadvantages, includ-

ing invasiveness, exposure to radiation or just plainly being expensive and 

difficult to interpret, seen Table 1.3. Thus, in recent years new methods have 

been developed to overcome these obstacles. 

Though several different methods have been applied to assess either transit 

or motility, only one method has so far been able to combine region gastroin-

testinal evaluation of combined transit time and motility measures into one 

investigation – the wireless motility capsule. The wireless motility capsule is 

a single use, ingestible capsule, which, when ingested, concomitantly 

measures temperature, pH and pressure as it transverses the gastrointestinal 

tract.- Based on stereotypical patterns of the aforementioned measures, transit 

and motility measures for segmental (i.e. gastric, small bowl and large bowel) 

and the whole gut can be derived 42, see Figure 1.4. Ingested together with a 

standardized meal and following the natural intestinal movement, the wireless 

motility is a safe, minimally invasive, standardized, ambulatory measure.  

 

 

 
Figure 1.4: Wireless motility capsule trace from an adult male with type 1 diabetes.  

On the x-axis is time in hour: minutes. On the red y-axis is pressure (mmHg), with 

pressure patterns noted in red. On the green y-axis is pH (pH units), with pH data 

point noted in green. On the blue x-axis is temperature (oC), with temperature points 

noted in blue. The blue vertical line is ingestion of the capsule, the grey vertical line 

passage across the gastric pyloric sphincter, the light green vertical line passage 

across the ileocecal sphincter and the pink vertical line expulsion of the capsule.  
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Table 1.2: Transit, motility and autonomic neuropathy studies in type 1 diabetes 

Author (year) Aim Neuro 

pathy 

Results 

Scintigraphy 

Parkman  

(2019)97 

Determine prevalence of 

complications in pt with Gp 

symptoms and altered GE 

DAN 52%  

PN 45%  

 

Delayed GE associated with 

number of complications. Gp 

occur without complications. 

Punkkinen 

(2008)98 

Examine relationship be-

tween upper abdominal 

symptoms to DAN and GE 

CAN 62%  GE and symptoms were not 

correlated. 1 increased CAN 

score, lowered GE was 20%.  

Vazeous 99 

(2004) (Add: 

carmine red)  

Define etiological role of 

DAN and motility impair-

ment with GI symptoms. 

CAN UK CAN is not a factor of GI 

symptoms. Hyperglycaemia 

does not affect GI motility. 

Stacher 

(2003)100 

Evaluate underlying factors 

of GE and intergastric meal 

distribution.  

CAN 62% 

PN 56%  

Delayed GE and increased re-

tention of meal are mainly at-

tributed to CAN 

Kockar 

(2002)101 

Determine simple screening 

parameters to diagnose Gp 

CAN UK  CAN testing (QTi) may be 

useful in screening for Gp 

De Luis 

(2001)102 

Elucidate effect Hp eradica-

tion on gastric motor func-

tion and glycaemic control  

DAN 15%  

PN 46%  

 

DAN and PN did not alter 

GE. Hp eradicate delayed 

GE.  

Huszno 

(2001)*103 

Assess concordance of 

CAN to GE 

CAN 74%  CAN has no influence on GE 

Stacher 

(1999)104 

Determine effects cisapride 

on GE and glycaemic con-

trol. 

CAN 57%  Cisapride had no effect on 

GE or glycaemic control.  

GE was slower with DAN. 

Loba  

(1997)105 

Evaluate association of GE 

and PP secretion and effect 

of CAN 

CAN 50%  Impaired PP secretion was 

found with delayed GE and 

CAN.  

Merio  

(1997)106 

Elucidate relationship be-

tween GE and CAN or gly-

caemic control.  

CAN 47%  CAN, but not glucose levels 

affected GE 

Okano 

(1996)107 

Evaluate effects of EM523L 

(motilin agonist) GE and 

plasma concentration of PP 

DAN 63% EM523L delayed GE and 

augmented postprandial PP 

secretion. 

Rosa-e-Silva 

(1996)108 

Evaluate relations between 

GI transit, DAN and occur-

rence of diarrhoea.  

DAN 35% DAN accelerated small bowel 

transit, possibly affecting di-

arrhoea.  

Fraser  

(1990) 109 

Evaluate GE relation to gly-

caemic control 

DAN100

% 

Glycaemic alterations affect 

GE 

Janssens 

(1990)110 

Examine effect of erythro-

mycin on GE. 

CAN 90% 

PN 80%  

Erythromycin improved GE 

Keshaver-

zian  

(1987)*111 

Evaluate relationship be-

tween Gp, symptoms, gly-

caemic control and DAN.  

DAN 33% Delayed GE is common with 

DAN though often asympto-

matic.  

Keshavazian 

(1987) 112 

Evaluate frequency and ex-

tent of GI involvement in 

symptoms 

DAN 33% 

PN 100%  

Symptoms were more severe 

and extensive with GI in-

volvement and DAN 

Horowitz 

(1985)113 

Evaluate effects of domper-

idone on GE, symptoms and 

glycaemic control 

DAN100

% 

Domperidone increased 

GE, decreased symptoms 

and lowered glycose levels 
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Continued  

Ultrasound 

Darwiche 

(2001)114 

Evaluate relationship be-

tween GE and CAN 

CAN 50% 

PN 80% 

GE is lower in pt with CAN, 

unrelated to symptoms Gp 

Undeland 

(1998)115 

Study meal accommodation 

and relationship to vagal 

tone 

DAN UK Low vagal tone was associ-

ated with a small proximal 

stomach and a wide antrum. 

Vaisman 

(1998)116 

Study prevalence of asymp-

tomatic delayed GE. 

DAN UK Pt suffer from prolonged GE 

despite lack of symptoms 

Melga 

(1997)117 

Elucidate the effects of 

levosulpiride on GE and 

glycaemic control 

DAN100% Levosulpiride shortened GE 

and improved glycaemic con-

trol. 

Weck 

(1997)*118 

Investigate relation between 

GE and mesenteric blood 

flow in pt with or without 

CAN 

CAN 53% Pt with CAN showed delayed 

gastric emptying and dimin-

ished mesenteric blood flow  

Vogelberg 

(1986)*119 

Study antral contraction in 

pt with or without DAN 

DAN 50% Antral contractions were re-

duced even without DAN.  

Manometry 

Rosztóczy 

(2004)120 

Establish prevalence of GI 

symptoms, and relation to 

GI motor abnormalities 

CAN 63% 

 

GI symptoms and motility 

disorders are frequent and the 

latter underestimated.  

Samsom 

(1996)121 

Examine relationship be-

tween gastric motility, 

CAN, glycaemic control 

and symptom 

CAN100%  Motor abnormalities are com-

mon. Abnormal motility pat-

terns is related to the compo-

sition meal. 

Jebbink 

(1993)122  

Examine prevalence of gas-

tric and small intestinal mo-

tility abnormalities and rela-

tion to symptoms and CAN 

CAN100%  CAN is associated with mo-

tor abnormalities, which cor-

relate with symptoms.  

Wehrmann 

(1991)123 

Examine influence of cis-

apride on antroduodenal 

motility.  

DAN100% 

PN 27% 

 

Cisapride increases antroduo-

denal motility. 

Camilleri 

(1984) 124 

Investigate pan-enteric mo-

tor abnormalities in Gp  

36% DAN 

64% PN 

Gastric and small intestine is 

frequently affected with Gp  

Breath test 

Chang 

(2013)125 

Prognosis and mortality of 

Gp after 25 years 

DAN UK  Delayed GE is not associated 

with mortality 

Zahn 

(2003)126 

(Add: scin-

tigraphy) 

Compare breath test to gold 

standard scintigraphy for 

GE 

CAN 29% 

PN 46% 

Breath test is a valid, sensi-

tive and easy alternative to 

scintigraphy. 

Braden 

(2002)127 

Investigate influence 

of cisapride treatment on 

GE in Gp, symptoms and 

glycaemic control 

DAN100% 

PN 100%  

Cisapride accelerate GE,  

reduces dyspeptic symptoms, 

but has no effect on glycae-

mic control 

Keshavar-

zian  

(1986)*128 

Assess relations between GI 

transit and complications 

DAN 28% 

PN 64%  

Abnormal GI transit is com-

mon, but not prerequisite of 

diarrhoea.  
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Continued 

Electrogastrography (EGG) 

Toporowska-

Kowalska 

(2006)129 

Evaluate gastric myoelectri-

cal activity in relation gly-

caemic control. 

CAN 2% Glucose levels influence gas-

tric myoelectrical activity, 

without influence of CAN 

Kawagishi 

(1997) 130 

Investigate glycaemic con-

trol and DAN on gastric 

motility. 

DAN 72%  Gastric myoelectric activity is 

associated with DAN.  

Jebbink 

(1994)131 

Examine prevalence gastric 

myoelectrical abnormalities 

and relation to CAN and 

symptoms. 

CAN100%  Gastric myoelectrical activity 

is nor disturbed under 

euglycaemia except when 

symptomatic. 

Jebbink 

(1994)132 

Prevalence of gastric myoe-

lectric abnormalities, and 

effect of glycaemic control 

CAN100% Hyperglycaemia is a factor in 

the generation of gastric my-

oelectrical disturbances. 

Radio-opaque markers 

Lehman 

(2003)133 

(Add: scin-

tigraphy) 

Effect of accelerated GE 

(Cisapride) on glucose-con-

trol in Gp 

CAN UK 

PN 100% 

Accelerated GE had no effect 

on glycaemic control or hy-

poglycaemic episodes in Gp 

Kawagishi 

(1993)*134 

Investigate motilins role in 

Gp. 

DAN100% GE is delayed despite ele-

vated motilin levels.  

Werth (1992) 
135 (Add: 

Breath test) 

Evaluate GE, orocecal and 

colonic transit time with or 

without CAN 

CAN 42% Colonic transit time was de-

creased with CAN. Other pa-

rameter not affected.  

MRI 

Lehmann 

(1996)133 

(Add: ROM) 

Validate MRI technique in 

pt with and without CAN 

against ROM 

CAN 53% 

PN 60% 

MRI for GE has high speci-

ficity but lower sensitivity 

compared to ROM.  

Paracetamol absorption 

Lydon 

(2000)136 

Association between GE 

rate and DAN  

DAN 69% DAN is not predictive of de-

layed GE in Gp 

UK – autonomic testing performed but prevalence not noted. * - based on abstract alone 

Add: additional method used. CAN – cardiac autonomic neuropathy, DAN – diabetic auto-

nomic neuropathy, GI – gastrointestinal, PN – peripheral (sensory) neuropathy, Pt – patients 

(T1DM), Gp – gastroparesis, GE – gastric emptying, Hp – Helicobacter pylori, PP – pancre-

atic polypeptide 
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Table 1.3: Advantages and disadvantages of gastrointestinal investigation methods 

Methods Measures  Advantages/Disadvantages 
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Scintigraphy             
Ultrasound             
Manometry             
Breath test             
Electrogastrography             
Radio-opaque markers             
3D- transit             
Wireless motility capsule             
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CHAPTER 2. RATIONALE AND AIMS 

The overall aim of this PhD thesis was to use existing methodological plat-

forms to assess diabetic autonomic neuropathies of the cardiovascular and gas-

trointestinal systems. We investigated: I) a novel method for recognizing car-

diovascular autonomic neuropathy; II) the association between the presence 

of cardiovascular autonomic neuropathy and systemic levels of inflammatory 

markers; III) enteropathy in the gastrointestinal systems in terms of symptoms 

and regional motility; IV) the clinical effect of liraglutide treatment on gastro-

intestinal motility and symptoms.  

 

 
Figure 2.1: Overview of studies and papers. 

 

The thesis is based on two peer-reviewed original papers, a paper submit-

ted to a peer-review journal and a paper under preparation. The four papers 

report data from two studies. Study I is a cross-sectional study, which pro-

spectively assessed the autonomic function in adults with type 1 diabetes, by 
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investigating cardiac response, cytokine profile and the gastrointestinal motil-

ity. Study II is a randomized, double-blinded, parallel-group, placebo-con-

trolled trial, investigated the neuroprotective effect of liraglutide for treatment 

of diabetic distal symmetrical polyneuropathy in adults with type 1 diabetes. 

An overview of studies and papers are illustrated in Figure 2.1.  

 

In detail, the rationale and hypothesis for each paper is as follows: 

 

Paper I: Cardiovascular autonomic neuropathy is associated with increased 

mortality but is often underappreciated as it is frequently asymptomatic. Cur-

rently available testing is time-consuming and is not suitable for widespread 

screening in a standard clinical setting.  

Thus, we hypothesized that a short cardiac vagal tone measure could serve 

as a clinical applicable screening method for cardiovascular autonomic neu-

ropathy in adults with type 1 diabetes.  

 

Paper II: Adequate vagal function is essential in the anti-inflammatory reflex, 

providing a fast and subconscious anti-inflammatory response by inhibiting 

pro-inflammatory pathways. Additionally, neurotoxicity, neuro-inflammation 

and inflammation per se have been suggested as contributing factors in the 

pathogenesis of neuropathy. 

Thus, we hypothesised that increased low-grade systemic inflammatory 

would be associated with altered neuro-cardiac function in adults with type 1 

diabetes.  

 

Paper III: Gastro-enteropathy is pleomorphic in its symptoms and due to the 

relative inaccessibility of portions of the gastrointestinal tract, transit times 

and patient reported outcome measures have hitherto been part of the standard 

evaluation. However, these may represent an oversimplification of a complex 

system, calling for in depth investigations of contractility and connection to 

autonomic neuropathy. 

Thus, we hypothesised that patient-reported gastrointestinal symptoms in di-

abetes are correlated with changes in gastrointestinal motility, and that neu-

ronal impairment is involved in the severity of gastrointestinal dysfunction 

and symptoms.  
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Paper IV: Though liraglutide’s effect on upper gastrointestinal motility and 

symptoms are known to induce tachyphylaxis of gastric emptying, and transi-

ent nausea, the pan-enteric effects are less studied.  

Thus, we hypothesised that liraglutide would exert an effect on all gut seg-

ments and promote gastrointestinal symptoms in people with type 1 diabetes 

and distal symmetrical polyneuropathy (and concomitant autonomic neurop-

athy).  

 

Based on the hypothesis above, the aims of this thesis are as follows: 

I. To test the clinical applicability of cardiac vagal tone in terms of sen-

sitivity and specificity for recognize cardiovascular autonomic neu-

ropathy based on cardiovascular reflex test. Furthermore, to test the 

performance of cardiac vagal tone compare with heart rate variability 

and sudomotor function.  

II. To investigate a broad profile of inflammatory cytokines, adhesion 

molecules and chemokines and their association to cardiovascular au-

tonomic function assessed with heart rate variability and cardiac vagal 

tone. 

III. To investigate if gastrointestinal symptoms are correlated with transit 

times and motility index and if altered cardiac vagal tone and the pres-

ence of established distal symmetrical polyneuropathy influences seg-

mental transit times, motility index and patient-reported symptoms in 

a cohort of people with type 1 diabetes. 

IV. To investigate whether liraglutide administration induced changes in 

regional gastrointestinal transit time and motility, self-reported gas-

trointestinal symptoms, and how changes in these measures correlate. 
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CHAPTER 3. MATERIALS AND METHODS 

Data for this thesis was based on two studies conducted at Mech-Sense, De-

partment of Gastroenterology and Hepatology at Aalborg University Hospital 

in cooperation with Department of Endocrinology and Department of Cardi-

ology. Both studies were approved by The North Jutland Denmark Region 

Committee on Health Research Ethics (Study I: N-20170045; Study II: N-

20130077). Study II was furthermore approved by the Danish Medicines 

Agency with information about the study available on trial registration web-

sites (EUDRACT: 2013-004375-12; clinicaltrials.gov: NCT02138045). The 

studies conform to the Declaration of Helsinki and International Conference 

on Harmonization Good Clinical Practice guidelines. All participants gave 

their written informed consent prior to entry into the studies.  

 

3.1. STUDY I 

Study I was a prospective cross-sectional study were a total of 56 adults with 

type 1 diabetes were included. All participants underwent evaluation of: 

I. Cardiovascular system in terms of cardiovascular autonomic reflex 

test performed with VagusTM, cardiac vagal tone, heart rate variability 

and sudomotor function.  

II. Inflammatory profile evaluated by pro- and anti-inflammatory cyto-

kines, chemokines, and adhesion molecules from serum samples. 

III. Gastrointestinal system in terms of regional transit times and motility 

assessed with the wireless motility capsule and evaluation of patient 

reported gastrointestinal symptoms. 

IV. Regional gastrointestinal transit times and motility indices and evalu-

ation of gastrointestinal symptom before and after treatment 

 

3.2. STUDY II 

Study II was a randomised placebo-controlled trial including a total of 48 

adults with type 1 diabetes with concomitant distal symmetrical polyneurop-

athy evaluated by classical neurophysiological testing. Hereof 9 participants 

discontinued treatment before 26 weeks due to gastrointestinal symptoms. 

Participants were evaluated at baseline and after 26 weeks of treatment with 

either liraglutide or placebo. Secondary analysis on data from both baseline 
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and after 26 weeks are included in this thesis. All participants underwent eval-

uation of: 

I. Regional gastrointestinal transit times and motility indices and evalu-

ation of gastrointestinal symptom before and after treatment 

 

3.3. ASSESSMENT OF NEURO-CARDIAC FUNCTION 

3.3.1. CARDIOVASCULAR AUTONOMIC REFLEX TESTS 

Cardiovascular autonomic reflex heart rate test of deep breathing, Valsalva 

manoeuvre and postural changes were performed using the VagusTM (Medicus 

Engineering ApS, Aarhus, Denmark), preceded by a resting period. The Va-

gusTM device has a good reproducibility, strong correlation and high diagnos-

tic agreement against stationary equipment 54,137. A cardiovascular autonomic 

neuropathy score for each individual was calculated if two or more tests were 

satisfactory performed. Based on normal range of specific age-dependent cut-

off values 52, three cardiovascular autonomic neuropathy categories were de-

fined as follows: I) established CAN was defined as two or more abnormal 

tests, II) borderline CAN by one abnormal test and III) no CAN by none ab-

normal test. 

 

3.3.2. CARDIAC VAGAL TONE 

Cardiac vagal tone was based on a 5-minute, 3-lead electrocardiography using 

eMotion Faros 180 (Bittium, Oulu, Finland), following a resting period. Car-

diac vagal tone was computed using the automated online app ProBioMetrics 

(version 1.0, ProBioMetrics, Kent, UK). From these data, recording artefacts, 

defined as changes exceeding 15 beats per minute in two succeeding QRS 

complexes indicative of coughing or movements, were removed by standard-

ized processes. Files where the editing procedure exceeded 20% of the record-

ing were discarded.  

 

3.3.3. HEART RATE VARIBILITY 

Heart rate variability index the fluctuations between subsequent heartbeats, 

indicative neuro-cardiac function, and can be quantified by validated time and 

frequency domains 138. Using recommendations from the Task Force of the 

European Society of Cardiology and the North American Society of Pacing 
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and Electrophysiology 55, the following parameters were computed: heart rate, 

SDNN, SDANN, SDNNI, RMSSD, VLF, LF, HF, and LF:HF. 

Study I: Heart rate variability was based on a 24- or 120-hour electrocar-

diographic recording using ePatch® (BioTelemetry Technology, Hørsholm, 

Denmark). Heart rate variability time and frequency domains were computed 

using the automatic editing software the CardiScopeTM (HASIBA Medical 

GmbH, Graz, Austria).  

Study II: Heart rate variability was based on a 24-hour electrocardio-

graphic recording Lifecard CF Holter monitor (Del Mar Reynolds, Spacelabs 

Healthcare, Snoqualmie, WA, USA). Heart rate variability time and frequency 

domains were computed using the Pathfinder software (revision B code; 

Spacelabs Healthcare).  

 

3.3.4. SUDOMOTOR FUNCTION 

Sudomotor function was based on the 3-minute measurement of electrochem-

ical skin conductance using SUDOSCAN® (Impeto Medical, Paris, France). 

The machine measures the electrochemical reaction between the chloride ions 

in the sweat glands and the steel electrodes 139, and provides a electrochemical 

skin conductance readout for all four extremities. 

 

3.3.5. NEUROPHYSIOLOGICAL EVALUATION 

Distal symmetrical polyneuropathy was evaluated as part of Study II using 

standardized nerve testing, including conduction velocity, amplitudes, and F-

waves of the median, ulnar, sural, radial, tibia and peroneal nerves. All record-

ings were evaluated by a neurophysiological specialist, and a composite score 

of these was used to assess severity of distal symmetrical polyneuropathy 140. 

 

3.4. ASSESSMENT OF INFLAMMATORY LEVELS 

Concentrations of systemic inflammatory marker were evaluated from a cubi-

tal vein blood sample. Inflammation 20-Plex Human ProcartaPlex™ Panel 

(Thermo Fischer Scientific, MA, USA) was used to analyse duplicate concen-

trations of cytokines (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-

12p70, IL-13, IL-17A, interferon (IFN)-α, IFN-γ, tumour necrosis factor 

(TNF)-α and granulocyte-macrophage colony-stimulating factor (GM-CSF)), 

adhesion molecules (E-selectin, P-selectin and intracellular CAM (ICAM)-1) 
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and chemokines (C-C motif chemokine (CCL)2, CCL3, CCL4 and CXC motif 

chemokine(CXCL)10).  

 

3.5. ASSESSMENT OF GASTROINTESTINAL FUNCTION 

3.5.1. WIRELESS MOTILITY CAPSULE 

Regional gastrointestinal motility was investigated in both studies by use of 

the non-invasive, ambulatory wireless motility capsule system (SmartPill®, 

Medtronic, Minneapolis, USA), consisting of a single-use capsule, a portable 

data receiver, a docking station, and a computer containing the software pro-

gram MotiliGI. The capsule measures temperature (range: 25-49oC, accuracy: 

1oC), pH (range: 0.5- 9.0 pH units, accuracy: +/- 0.5 pH units) and pressure 

(range: 0-350mmHg, accuracy: 5mmHg below or 10mHg above 100 mmHg). 

The capsule was ingested following an overnight fast together with a stand-

ardized meal consisting of a known nutritional content (SmartBar®, Med-

tronic, Minneapolis, USA, 260-kcal, composed of 18% protein, 16% carbo-

hydrates, 3% fat, and 8% fibre) and 200mL of water. Subsequently, food and 

water were restricted for 6 hours, as well as strenuous physical activity. A 

patient diary was used to record bowel movement, meal-times, sleeping and 

gastrointestinal symptoms for the duration of the test e.g. until the capsule was 

expelled.  

Analysis was based on temperature rise and fall, plus rapidly occurring pH 

changes at anatomical landmarks, a methods described in details by Sarosiek 

et al. 141. Data from the wireless motility capsule provides parameters describ-

ing regional transit times and motility indices. While transit times are self-

explanatory, motility index is a composite measure incorporating both con-

traction frequency and amplitude, which was calculated as suggested by Ca-

milleri et al. 124. Data was supported by a vast normative material aiding anal-

ysis 142,143. Though critics pinpoint that the solid capsule is unable to empty 

from the stomach until migrating motor complexes commence in response to 

fasting state, a number of studies have validated the system against standard 

measures of from scintigraphy and radio-labelled markers in healthy 144–147. 

 

3.5.2. SELF-ASSESSED GASTROINTESTINAL SYMPTOMS 

In both studies, two questionnaires were consistently used to characterize up-

per and lower gastrointestinal symptoms: the Gastroparesis Cardinal Symp-

tom Index (GCSI) and Gastrointestinal Symptom Rating Scale (GSRS).  
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The 9-item GCSI is a gastroparesis focused sub-questionnaire of the Pa-

tient Assessment of Upper Gastrointestinal Symptom Severity Index. It was 

rated on a 6-point-Likert response scale ranging from 0 (none) to 5 (very se-

vere). Three subscales can be calculated evaluating the severity of nau-

sea/vomiting, post-prandial fullness/early satiety, and bloating 148. In Study I 

the GCSI daily diary version of the questionnaire was used while the original 

version of GCSI was used in Study II. In the original version symptoms are 

recalled for the last 14 days. In contrast, the Daily Diary version, established 

by the American Neurogastroenterology and Motility Society, was developed 

to reduce the risk of recall bias, by encouraging participants to complete the 

GCSI every day over a period of 14 days 149.  

The 15-item GSRS questionnaires was rated on a 7-point-Likert scale rang-

ing from 1 (no discomfort) to 7 (very severe discomfort). Five sub-scales can 

be calculated thereof, evaluating the severity of abdominal pain, reflux syn-

drome, diarrhoea syndrome, indigestion syndrome, and constipation syn-

drome. GSRS was evaluated in all participants, however, in Study II GSRS 

was only answered after intervention 150.  
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CHAPTER 4. KEY RESULTS 

4.1. AIM I 

To test the clinical applicability of cardiac vagal tone in terms of sensitivity 

and specificity for recognize cardiovascular autonomic neuropathy based on 

cardiovascular reflex test. Furthermore, to test the performance of cardiac 

vagal tone compare with heart rate variability and sudomotor function. 

 

Key results:  

 The prevalence of cardiac autonomic neuropathy was 32% (16 of 48 

participants) 

 The cardiac vagal tone cut-off value of 3.2 LVS for recognition of es-

tablished CAN, showed 67% sensitivity and 87% specificity, at an AUC 

of 0.80 (p=0.01), and performed worse than heart rate variability, but 

better than electrochemical skin conductance.  

 A suggested cardiac vagal tone cut-off value of 5.2 LVS for recognition 

of borderline CAN, indicated 88% sensitivity and 63% specificity, at an 

AUC of 0.72 (p=0.07) and performed better than heart rate variability 

and electrochemical skin conductance. 

 

Interpretation: Implementation of cardiac vagal tone using a clinically appli-

cable cut-off value may meet the unmet need for cardiovascular autonomic 

neuropathy screening tests. Using this quick screening toll, screening may 

more regularly and easily be performed in clinical settings, decreasing num-

bers of asymptomatic, undiagnosed cardiovascular autonomic reflex testing 

cases and initiate early prevention initiatives prospect increasing quality of 

life and survival time. 

 

4.2. AIM II 

To investigate a broad profile of inflammatory cytokines, adhesion molecules 

and chemokines and their association to cardiovascular autonomic function 

assessed with heart rate variability and cardiac vagal tone. 
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Key results: 

 Both pro-inflammatory (TNF-α, IL-1α) and anti-inflammatory (IL-4 

and IL-12p70) cytokines inversely associated with sympathetic and par-

asympathetic heart rate variability measures. 

 E-selectin suggestive of epithelial dysfunction inversely associated 

with heart rate variability measures.  

 None of the cytokines, chemokines and adhesion molecules were asso-

ciated with cardio-vagal dysfunction assessed with cardiac vagal tone 

 

Interpretation: A greater emphasis should be placed on the complex immuno-

regulatory system in type 1 diabetes, as inflammatory mediators involved in 

nerve- and epithelial damage may contribute to the pathogenesis of cardiovas-

cular autonomic neuropathy.  

 

4.3. AIM III 

To investigate if gastrointestinal symptoms were correlated with transit times 

and motility index and if altered cardiac vagal tone and the presence of es-

tablished distal symmetrical polyneuropathy influences segmental transit 

times, motility index and patient-reported symptoms in a cohort of people with 

type 1 diabetes. 

 

Key results: 

 Colonic transit time and motility index positively correlated with both 

classically upper and lower gastrointestinal symptoms 

 Presence of cardio-vagal dysfunction increased colonic transit time and 

gastric motility index 

 Both presence of cardio-vagal dysfunction and polyneuropathy was as-

sociated to decreased perception of abdominal pain (hyposensivity). 

 

Interpretation: An increased focus should be placed on whole gut motility in-

vestigations as gastrointestinal dysmotility is not confined to the stomach in 

adults with type 1 diabetes. Neural impairment is involved in gastrointestinal 

symptoms and dysmotility. An apparent hyposensitivity appears to play a role.  
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4.4. AIM IV 

To investigate whether liraglutide administration induced changes in regional 

gastrointestinal transit time and motility, self-reported gastrointestinal symp-

toms, and how changes in these measures correlate. 

 

Key results: 

 26 weeks of liraglutide treatment shortened the colonic transit time with 

32% and decreased motility index with 6% in adults with type 1 diabe-

tes. 

 26 weeks of liraglutide treatment increased the sensation of postpran-

dial fullness with 29%, while nausea subsided. 

 

Interpretation: liraglutide increases gastrointestinal motility, inducing persis-

tent satiety, but transient nausea and gastric stasis  
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CHAPTER 5. DISCUSSION 

The overall aim of this thesis was to use existing methodological platforms to 

assess diabetic autonomic neuropathies of the cardiovascular system with the 

influence of inflammatory markers, as well as the enteropathy of the gastroin-

testinal tract and the effect of liraglutide therein. This discussion is divided 

into three parts focusing on investigation of cardiovascular system, investiga-

tion of the gastrointestinal tract and methodological considerations.  

 

5.1. INVESTIGATING THE CARDIOVASCULAR SYSTEM 

5.1.1. CARDIOVASCULAR AUTONOMIC NEUROPATHY 

A large body of evidence exist applying different methods for investigating 

cardiovascular autonomic neuropathy (see Table 1.1). Most generally ac-

cepted, but also time-consuming, are the performance of cardiovascular auto-

nomic reflex tests. Though this paradigm has been accepted by the Toronto 

consensus15 as the gold standard, other consortiums still apply different stand-

ards, and consequently no universal consensus has been reached within the 

field 21. One of the obvious challenges with different methods suggested over 

the years, is the lack of diagnostic agreement between the test results 56. 

Hence, an abnormal result from one test may appear normal using another. 

This discrepancy may lie in the investigation of different nerves and functions 

of autonomic system. Thus, when it comes to clarification of which test is the 

most reliable in diagnosing cardiovascular autonomic neuropathy, large pro-

spective longitudinal trials are needed, where the diagnosis and prognosis of 

cardiovascular autonomic neuropathy is investigated with complementary 

methods.  

Another hindrance is, that the recommendations for testing for autonomic 

neuropathy five years after diagnosis and every year thereafter in people with 

type 1 diabetes, are rarely carried out, as it is both time and resource demand-

ing. Physicians are generally hesitant to test for autonomic neuropathy, possi-

bly because they find it time-consuming, but also in an attempt not to inflict 

unnecessary worry in the patients, as the general idea is that nothing can be 

done from a treatment perspective. Consequently, little attention has hitherto 

been paid to silent occurrence of autonomic neuropathy, or neuropathy in gen-

eral, until clinical symptoms are evident and intervention initiatives are less 
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efficacious. However, while no cure is currently available, results from large 

clinical outcome studies (i.a. Diabetes Control and Complication Trial & Ep-

idemiology of Diabetes Interventions and Complications) have showed, that 

intensified glycaemic control, early in the disease, can significantly reduce 

prevalence and severity of neuropathy later in life 11. Consequently, treatment 

guidelines were changed in the 1990’s to ensure stable hyperglycaemic med-

ication, e.g. that patients as a minimum had received the given treatment: long 

acting and fast acting insulin or recently, insulin pump with dosing adjust-

ments according to regimens. However, clinical experience show that some 

patients have unforeseen challenges in keeping with the recommended tight 

glycaemic target, resulting in glycaemic fluctuations and hypoglycaemic 

events not measurable with haemoglobin A1c (HbA1c). HbA1c have long 

been the standard indicator of long-term (8-12 weeks) blood glucose control, 

however, it does not account for glycaemic variability and hypoglycaemia. 

Contrary, continuous glucose monitoring provides comprehensive infor-

mation about glycaemic variability including time in hypo- and hyperglycae-

mia, linked to daily events e.g. eating, sleeping and exercising 151. While in-

adequate glycaemic control may be sequel to already established neuropathy 

and enteropathy, emerging evidence suggest that glycaemic variability may 

play a bigger role in cardiac autonomic neuropathy, and possibly other neu-

ropathies due to hypoglycaemia, than previously thought 37. Arguably, until 

we decide to focus even more on these difficult patients, we cannot provide 

evidence of a delay in progression, however implementation of regular screen-

ing for the entity will enable monitoring of the progression. 

We proposed a relatively inexpensive, easily applicable 5-minute measure, 

the cardiac vagal tone, as a screening tool for cardiovascular autonomic neu-

ropathy. We established a cut-off value that balance sensitivity (ability to cor-

rectly identify people with cardiovascular autonomic neuropathy) and speci-

ficity (ability to correctly identify people without cardiovascular autonomic 

neuropathy)152 to recognize established or borderline cardiovascular auto-

nomic neuropathy (see Figure 5.1). We found that cardiac vagal tone performs 

good based on the more time-consuming gold standard of cardiovascular au-

tonomic reflex test performed with VagusTM. Specifically, we found that car-

diac vagal tone had a good discriminatory power. While cardiac vagal tone 

could correctly detect 87% of those without established cardiovascular auto-

nomic neuropathy, it detected 88% of those with borderline cardiovascular 

autonomic neuropathy, at low cut-points, making it just as (or more) accurate 
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than most of the test presented in Table 1.1. Thus we confirmed our hypothesis 

that, a short cardiac vagal tone measure could serve as a clinical applicable 

screening method for recognition of degrees of cardiovascular autonomic neu-

ropathy in adults with type 1 diabetes. However, it should still be noted that 

the majority of those patients who tested positive for cardiovascular auto-

nomic neuropathy, had cardiac vagal tone values within the normative 95% 

confidence interval 153. Consequently, cardiac vagal tone does not provide a 

“sharp” cut-off between normal and abnormal. The overall accuracy of the test 

was depicted using a receiver operating characteristics curve, and furthermore, 

compared with heart rate variability and sudomotor function. In this compar-

ison, the performance of cardiac vagal tone was superior and thus showed in-

creased accuracy against heart rate variability and sudomotor function in most 

instances, though heart rate variability exerted in recognizing established car-

diovascular autonomic neuropathy.  

 

 
Figure 5.1: Cardiac vagal tone ROC curves for borderline and established cardio-

vascular autonomic neuropathy. Graphs show parametric (line) and non-parametric 

(dots) receiver operator curves for cardiac vagal tone recognizing borderline (left) 

and established (right) cardiovascular autonomic neuropathy. The red dot marks the 

estimated non-parametric optimal cut-pint (Youden’s index), which was 5.2 (AUC 

0.7) and 3.2 LVS (AUC 0.8), respectively. 

 

Heart rate variability has been used for years for assessing cardiovascular 

autonomic regulation, and low variability is an acknowledged predictor of 

mortality 154. In clinical practice, heart rate variability provides additional 
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prognostic information to the cardiovascular autonomic reflex testing, though 

the two methods are notorious for disagreeing when applied as diagnostic 

tools. Additionally, heart rate variability recordings are subject to noise and 

artefacts, a trade-off for the increased recording time and influence of normal 

daily activities and routines. Thus, noise and artefacts could be a course of 

bias if not correctly filtered out. We used an automated software to avoid sub-

jectivity bias from manual editing. However, multiple software programs ex-

ist, dealing with ectopic beats and artefacts by different methods and with little 

to no standardization these could produce difference result 154. Our own expe-

riences with different analysis programs (unpublished data), applying more or 

less autonomous editing, highlighted the fact that, especially noise traces, 

showed the biggest differences in the results. Thus, this should be carried for-

ward when interpreting heart rate variability data, especially between research 

centres.  

Sudomotor function have been suggested by experienced researches as a 

possible screening tool for autonomic neuropathy as it is a quick (3-minute 

test time) and easy test of the sympathetic regulated sudomotor function 74. 

However, a recent review suggested that many studies investigating sudomo-

tor function tested with SUDOSCAN® were at high risk of bias due to the 

involvement of the device manufacture (Impeto Medical), as they supplied 

parts of the data sets 155. Though moderate sensitivity (45-92%) and specificity 

(30-69%) have been found for detecting cardiovascular autonomic neuropathy 

in previous studies (see Table 1.1), we found that it underperformed compared 

to cardiac vagal tone and heart rate variability. This discrepancy may be due 

to the difference in measured nerves between the methods. The electrochemi-

cal skin conductance of SUDOSCAN® allegedly evaluates sympathetic un-

myelinated thin-type C nerve fibres, as it has a higher association with test 

reflective of sympathetic function like orthostatic hypotension and low fre-

quency power components of heart rate variability than those reflective of par-

asympathetic function 75,156. Thus, we would not suggest this measure to diag-

nose cardiac autonomic neuropathy in future studies, despite the easy uncom-

plicated applicability.  

Thirty-two percent (16 participants) of our cohort had cardiovascular au-

tonomic neuropathy to some degree and though this is comparable with the 

proportion in other studies, the cohort is relatively small and therefore, data 

should be interpreted cautiously. Additionally, the exclusion of participants 

with severe cardiovascular problem may have curbed the true proportion of 
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participants with cardiovascular autonomic neuropathy as these are closely 

related. If included, these would possibly have provided more participants in 

the established cardiovascular autonomic neuropathy group, increasing the 

prognostic value of cardiac vagal tone for recognizing cardiovascular auto-

nomic neuropathy. 

However, implementing new bedside methods for investigation of cardio-

vascular autonomic neuropathy does not automatically improve the clinical 

health of people with diabetes. Consequently, a number of expert believe that 

assessment of sensitivity and specificity should only be applied in the search 

for screening methods, as they fear introduction of these methods may lead to 

over-investigation, over-diagnosis and over-treatment 157,158. Nevertheless, the 

complexity and cost associated with performance of cardiovascular autonomic 

reflex test and heart rate variability in the clinical setting, as well as the under-

recognition of cardiovascular autonomic neuropathy, provides an incentive to 

develop and explore inexpensive, simple screening tools. These could ideally 

aid healthcare professionals with screening of a larger proportions of adults 

(or adolescents) with diabetes, ensuring that the right people are referred for 

more extensive and time-consuming testing. Additionally, introduction of new 

validated methods could provide a better understanding of the pathophysiol-

ogy and acts as a much-needed endpoint in prospective, longitudinal clinical 

trials testing the efficacy of novel treatment approaches.  

 

5.1.2. INFLAMMATION 

Though inflammatory contributions to traditional neuropathies widely has 

been neglected, accumulating evidence suggest that hyperglycaemia induced 

neurotoxicity is associated to systemic levels of pro-inflammatory pathways 
28–30. Indeed, neuropoietic cytokines are involved in phagocytosis and demye-

lination of neurons, fostering nerve damage. Similarly, they may also activate 

the vagal branch of the inflammatory reflex as pro-inflammatory cytokines 

have been linked to cardiovascular autonomic neuropathy in long-term type 1 

diabetes 34,35. However, the exploration of this field have been limited by the 

definite markers investigated, including acute C-reactive protein, interleukin 

(IL)-6 and tumour necrosis factor (TNF)-α 32,33.  

Using a multiplex immunoassay, we were able to quantify multiple inflam-

mation markers simultaneously, providing a larger picture of the ongoing pro-

cesses at hand. However, the multiplex assays are not without  limitations, 
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which was seen as seven of the twenty investigated inflammatory biomarkers 

had detection rates below limit and therefore to mitigate increased rate of type 

1 error, we lowered the inferred p-value for statistical significance. In the fu-

ture, a wider evaluation may be beneficial in the search for identifying viable 

biomarkers, which ultimately could aid the identification of underlying 

pathomechanism, disease progression and targeted treatment strategies 159. 

 

 
Figure 5.2: Percentage change of inflammatory markers in participants with or 

without cardiovascular autonomic neuropathy. For each inflammatory marker, the 

percentage change from participants without cardiovascular autonomic neuropathy 

(Grey standardized 100% lines) to participants with cardiovascular autonomic neu-

ropathy (Black lines) are shown. Overall participants with cardiovascular autonomic 

neuropathy had increased serum concentrations of inflammatory markers.  

 

The systemic inflammatory mechanism, which affects both peripheral neu-

ropathy and autonomic neuropathy are likely similar, however, the autonomic 

compartment is less investigated. We found that both pro- and anti-inflamma-

tory cytokines as well as E-selectin (a marker of epithelial dysfunction) were 

associated with heart rate variability measures. The finding of both pro- and 

anti-inflammatory cytokines suggest compensating neuro-immune mecha-

nism are at play indicating normal active immunoregulation. Thus, we con-

firmed our hypothesis that increased low-grade systemic inflammatory would 

be associated with altered neuro-cardiac function in adults with type 1 diabe-

tes. Interestingly, in a complementary study of the same cohort 160, we inves-
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tigated the association between inflammatory markers and the presence of dis-

tal symmetrical polyneuropathy and found that IL-13, IL-17A and the chem-

okine CCL2 were additionally associated. Upregulation of CCL2 has further-

more been observed in directly injured peripheral nerves 161. Additionally, us-

ing another multiplex assay (multiplex cytokine assay, Meso‐Scale Discov-

ery), IL-6 have previously been quantify in the Study II cohort, where pro-

inflammatory and neuroregenerative cytokine were found to be reduced after 

26 weeks of liraglutide. This suggest liraglutide have an anti-inflammatory 

effect by modulating the inflammatory reflex, possibly deactivating macro-

phages and inhibition of pro-inflammatory pathways. However, as none of 

other investigated markers (IL-8, Il-10, IFN-γ and TNF-α) were affected, the 

effect may purely have been an effect of weight loss as IL-6 sources are prev-

alent in adipose tissue 162.  

Contrary to our hypothesis, it is worth noting that cardiac vagal tone was 

not associated with the levels of systemic inflammatory markers. Though the 

concrete reason is unknown, one could speculate that cardiac stressor such as 

changing workloads and circadian processes found in long-term heart rate var-

iability parameters, could be lacking 55,138. Additionally, heart rate variability 

directly measures differences in consecutive heart rates, while cardiac vagal 

tone applies a linear vagal scale for quantification of neuro-cardiac modula-

tion and these may associate different with inflammatory markers. Though 

cardiac vagal tone had a good performance as a suggested screening tool for 

cardiovascular autonomic neuropathy, the lack of association with inflamma-

tory markers either devaluates its strength in type 1 diabetes or provides us 

with additionally information on the interactions between inflammations, 

changes in heart rate and neuro-cardiac modulation.  

 

5.2. INVESTIGATING THE GASTROINTESTINAL TRACT 

5.2.1. GASTROINTESTINAL AUTONOMIC NEUROPATHY 

The burdensome occurrence of gastrointestinal autonomic neuropathy is one 

of the least investigated neuropathies by the scientific community. This may 

be because of the relatively difficult accessibility of the gastrointestinal tract, 

or an underappreciation of the influence it has on quality of life. Even though, 

these symptoms are not associated with increased mortality, such as the pres-

ence of cardiovascular autonomic neuropathy, or exhibit of amputation fol-
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lowing peripheral neuropathy, the daily experience of burdensome gastroin-

testinal troubles and symptoms in diabetes deserve more clinical attention. 

Enteropathy can induces troublesome symptoms like nausea, bloating, diar-

rhoea and constipations 163. Though it seems contradictory, these symptoms 

are associated with an evident lack of sensation from the gut, so-called hypo-

sensitivity, reflective of altered sensation and pain processing. These central 

neuropathic-like changes mimic the loss of protective sensation found in pe-

ripheral neuropathies 45,164.While gastroparesis causes delayed absorption of 

nutrients, that when dyscoordinated with insulin-treatment leads to hypogly-

caemia 38, abnormal motility throughout the intestines can affect absorption 

and thus bioavailability of pharmaceutical. Recognition of these sequelae are 

especially needed when considering the role of digestion and absorption of 

nutrients have on achieved glycaemic response.  

A relatively new method, the wireless motility capsule, has become popu-

lar due to its minimally invasive nature, safety and applicability in ambulatory 

settings. The analysis is relative effortless, applying an analysis “wizard” and 

comprehensive information making it applicable for physicians compared to 

other capsule system like the 3D-transit 165. Additionally, large normative data 

materials exist on both transit, motility and pH, aiding analysis 142,143, though 

they also highlight the large variability of the measures, reflective of “normal” 

gastrointestinal physiology. As it provides more facets than other methods, 

measuring both transit, contractility, temperature and pH in a single investi-

gation, the wireless motility capsules aides countless investigative possibili-

ties, though sadly they are relatively unused. Primary focus has so far been on 

transit times, as this is an easily comprehended measure, however, transit time 

in itself may be a crude measure, as it is not explicitly linked to motility.  

We found that gastrointestinal symptoms were correlated with prolonged 

gastric emptying and colonic transit time, while colonic motility was de-

creased in presence of symptoms. Additionally, motility and symptoms were 

altered in participants with low cardiac vagal tone. These finding support our 

hypothesis that patient-reported gastrointestinal symptoms in diabetes are cor-

related with changes in gastrointestinal motility, and that neuronal impairment 

is involved in the severity of gastrointestinal dysfunction and symptoms. We 

have previously shown that motility index is a particularly useful summery 

measures as it encompasses both contraction frequency and amplitudes 143 . In 

both paper III & IV, this was shown to associate to symptoms and increase 

with administration of liraglutide, suggesting an alteration in the contractile 
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element of digestion. One large limitation of the wireless motility capsule and 

it contractility measures is that it cannot detect propulsive or retrograde peri-

staltic movement, compared to methods like manometry or 3D-transit (see Ta-

ble 1.3).  

 
Figure 5.3: Association between symptoms and gastrointestinal transit time and 

motility. Forest plots depicting the correlation coefficient and 95% confidence inter-

vals for associations between gastric (upper), small intestinal (middle) and colonic 

(lower) transit time (left) or motility indices (right) and symptoms representative of 

nociceptive, upper and lower gastrointestinal troubles. NV: nausea/vomiting, PF: 

postprandial fullness, BL: bloating, AP: abdominal pain, DS: diarrhoea, CS: consti-

pation.  

 

However, diabetes related gastrointestinal dysfunctions are not entirely lo-

calized to the enteric nervous system. Many gastrointestinal functions and 

symptoms have a central component, and thus, alterations in the brain, partic-

ularly in descending inhibitory/facilitating control mechanisms from the cen-

tral nervous system to the gut, knowns as the brain-gut axis, may be affected 
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by autonomic neuropathy 166,167. An altered central sensory processing is pre-

sent in people with diabetes and concomitant gastrointestinal symptoms. This 

is evident as alterations of viscerally elicited evoked brain potentials e.g. in 

the oesophagus or rectal electrical stimulation, have shown enhanced neural 

activity of the insula, a brain region known to integrate visceral sensation, 

which is associated with severity of symptoms 168. Moreover, malfunction of 

the cross-communication between brain region, and microstructural neuronal 

changes in areas involved in sensory processing, suggests that autonomous 

neuropathy is an accomplice in the symptom pathogenesis 43,166,167. Addition-

ally, the altered central processing could inhibit or facilitate sensory input ex-

perienced from the gastrointestinal tract e.g. hyposensitivity or hypersensitiv-

ity, of which the latter in a chronic state may develop to central sensitization, 

and thereby aggregate the perception of stimuli. We have investigated this 

phenomenon and have shown that the participants in Study I had a 2.3 times 

increased risk of being central sensitized compared to a normative cohort (un-

published data), with 11% having widespread central sensitization.  

 

5.2.2. EFFECTS OF LIRAGLUTIDE 

Apart from regulating glycaemic levels and affecting gastrointestinal motility, 

liraglutide and other GLP-1 receptor agonist have been suggested to possess 

a neuroprotective effect, based on data from animal models 169. This protective 

effect has primarily been measured on brain neurons, but could as well be the 

case for the autonomic, peripheral and enteric branches of the nervous system 
162. In a previous study, the authors show a reduction in IL-6 and concomitant 

improvement of renal function, however, the study fails to show neuronal re-

pair, plausible as a consequence of relatively short (26 weeks) intervention in 

the cohort with severe polyneuropathy 162.  

Liraglutide induces temporary prolonged gastric emptying and decreasing 

degrees of nausea possibly linked to tachyphylaxis occurring with liraglutide 

administration. Nevertheless, we showed an average reduction of 10-hour in 

colonic transit times in response to liraglutide treatment and furthermore, we 

showed decreased contraction patterns (see Figure 5.4). Hence, we did not 

confirmed our hypothesised that liraglutide would exert an effect on all gut 

segments and promote gastrointestinal symptoms, as only the colonic segment 

was affected, and only postprandial fullness persisted. This suggest a compart-
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mentalisation of gastrointestinal tract, possibly due to different neural inner-

vations, as the upper gastrointestinal tract is thought to be primarily innervated 

by the vagus nerve, and evidence suggest a splanchnic effect on the lower 

gastrointestinal tract as well. Thus, vagally mediated inhibitory signals of li-

raglutide on motility could be diminished by neuropathy leaving only a possi-

ble splanchnic effect, resulting in the changes found in colon transit and mo-

tility. As 90% of the cohort in Study II had severe cardiovascular autonomic 

neuropathy, shown as orthostatic hypotension, concomitant to peripheral neu-

ropathy, this support the speculation of diminished vagal mediation on the 

isolated colonic alterations.  

 

 

Figure 5.4: Changes in colonic transit time and motility index between treatments 

of liraglutide and placebo. Box plots show colonic transit time (left) and motility in-

dices (right) before (dark) and after (light) 26 weeks of liraglutide or placebo treat-

ment. Both colonic transit time and motility indices were decreased in the liraglutide 

group. 

 

As rigorous glycaemic control is the therapeutic goal in type 1 diabetes, 

addition of liraglutide to the treatment regime may offer an opportunity even 

though the indication at first sight seems contradictory. The results of Paper 

IV confirm the notions by other studies that gastrointestinal symptoms like 

nausea are transient, satiety persists and gastric delay of nutrients subside, 

while other sections of the gastrointestinal tract increases in function. Thus, 

the negative aspects of this add-on treatment are limited.  
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5.3. METHODOLOGICAL CONSIDERATIONS 

The results of this thesis were based on data from two studies, a prospective 

cross-sectional study and secondary analysis on data derived from a random-

ized controlled trial. Participants entered into the studies based on recorded 

diagnose of type 1 diabetes, however, no additional testing for autoimmune 

antibodies were performed. Data from both studies were pooled in Paper II- 

III, which increases the cohort and thereby the power of the analysis. How-

ever, there are some drawbacks in combining cohorts from different studies, 

as not all aspects are comparable. The largest difference here was in the notion 

that participants in Study II were included based on a confirmed diagnosis of 

distal symmetrical polyneuropathy, assessed by nerve conduction velocity 

testing. This is not the case in Study I, and thus the diagnostic criteria of par-

ticipants with peripheral neuropathy may have been underestimated and 

thereby possibly skewing the results. However, the presence of participants 

with neuropathy in Study I would only strengthen our results. Thus, in Paper 

III, though no significance was found in gastrointestinal motility between 

those with and without polyneuropathy, a difference cannot be dismissed com-

plete.  

Papers I-III were based on cross-sectional data (as only baseline data from 

Study II was included in Paper II-III) in an analytical and hypothesis generat-

ing fashion 170. Though strong associations were found, such design does not 

allow for interpretation of causal inferences. To pose an example, we cannot 

infer from Paper II, if autonomic neuropathy (as measured with heart rate var-

iability) is caused by increased levels of cytokines and epithelial dysfunction, 

or if this is an effect a disrupted inflammatory reflex caused by autonomic 

neuropathy.  

Paper IV was based on the randomized controlled trial investigation the 

effects 26 weeks of liraglutide vs. placebo treatment. This study experiences 

nine drop-outs primarily due to gastrointestinal complications 162. Thus, the 

estimated changes in symptoms found in this study may be biased by the drop-

out of participants with high severity symptoms. Thus, it could be expected 

that the incidence of nausea and postprandial fullness were in fact higher in 

the liraglutide group than reported.  

Based on the inclusion exclusion criteria of both studies, these may have 

been subject to selection bias. Both studies had an exclusion criteria of psy-



CHAPTER 5. DISCUSSION 
 

61 

chiatric disease, though it is well known that major depressive disorder, gen-

eralized anxiety disorder, schizophrenia, and eating disorders are more preva-

lent in the diabetic population 171. It is therefore expected that, this reduces the 

external validity and thereby decreases the generalizability of the results. Ad-

ditionally, due to the methods used, exclusion criteria like coeliac disease and 

symptomatic ischaemic heart disease or cardiac heart failure, may inadvert-

ently affect the overall results of other test methods. However, the exclusion 

criteria also contained a ban against present or previous chemotherapy or use 

of drugs that affect the nervous system, thus supporting the investigation of 

nerve damage due to diabetic neuropathy and no other causes.  

Both studies were conducted in the same laboratory taking place in the 

morning as to avoid diurnal influences on the results. Accordingly, wireless 

motility capsule procedures were conducted as the initial investigation (after 

fasting blood samples), as to avoid the occurrence of hypoglycaemia and ac-

companying distraction though out the subsequent testing. 
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CHAPTER 6. CONCLUSION 

This PhD thesis had an overall aim to use existing methodological platforms 

to assess diabetic autonomic neuropathy of the cardiovascular and gastroin-

testinal system. Based on the four aims, we concluded the following in adults 

with type 1 diabetes: 

I: Using clinically applicable cut-off values, implementation of the simple 

5-minute cardiac vagal tone measure is sensitive and specific for recognising 

degrees of cardiovascular autonomic neuropathy and, in most cases, more so 

than more established measures of heart rate variability and sudomotor func-

tion, confirming our first hypothesis.  

II: Pro- and anti-inflammatory mediators involved in neurodegenerative 

processes, like cytokines and e-selectin, are inversely associated with heart 

rate variability measures and may therefore contribute to the pathogenesis of 

cardiovascular autonomic neuropathy, confirming our second hypothesis.  

III: Both upper and lower gastrointestinal symptoms positive correlated 

with colonic transit and motility measures influenced by cardio-vagal dys-

function, but not peripheral neuropathy, confirming our third hypothesis.  

IV: 26 weeks of liraglutide treatment accelerated colonic transit and de-

creased motility measures, whilst gastrointestinal symptoms, except sensation 

of postprandial fullness, were transient, disproving our fourth hypothesis that 

liraglutide would exert an effect on all gut segments and promote gastrointes-

tinal symptoms in people with type 1 diabetes and distal symmetrical poly-

neuropathy (and concomitant autonomic neuropathy). 

 

6.1. CLINICAL IMPLICATIONS  

AND FUTURE PERSPECTIVES 

The contributing framework of this thesis has not only improved our under-

standing of underlying mechanisms of diabetic autonomic neuropathy, but the 

methods proposed may provide easily applicable and highly informative al-

ternatives to existing standards. Thus, our proposals may prospectively:  

I: provide an inexpensive, practical and reliable method, to easily screen 

asymptomatic patient who potentially have underlying autonomic neuropathy. 



64
 

This has the potential to increase the rates of early diagnosis which will facil-

itate the earlier introduction of preventative measures. This may ultimately, in 

the long term, beneficially impact morbidity and mortality.  

II: attract attention to the complex immunoregulation present in diabetes 

and the possible neurodegenerative actions of inflammatory mediators on the 

development of autonomic neuropathy.  

III: increase the awareness of the availability of technologies that allow 

evaluation of whole gut motility, not limiting the symptoms and disorders to 

the upper gastrointestinal tract and possible acknowledge the role of neural 

impairment and a hyposensitive state as part of the pathogenesis.  

IV: provide increased evidence of the beneficial role of GLP-1 agonists, 

such as liraglutide, in improving colonic motility, normalising autonomic neu-

ropathy induced prolongation of colonic transit times, and improving glycae-

mic control. 

Future prospective clinical studies should consider incorporating some of 

the methods utilised in this body of work as they would ease testing practices, 

improve the granularity of the data and provide salient and reliable clinical 

endpoint in the investigation of novel treatment approaches.  
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