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PREFACE 

The work presented in this thesis was performed from September 2016 to August 2020 

at the Department of Hematology, Aalborg University Hospital, and Department of 

Clinical Medicine, Aalborg University. The thesis includes two scientific papers, two 

systematic reviews, an introduction to the molecular aspects of diffuse large B-cell 

lymphoma, methodological considerations, and discussion of findings in relation to 

international standards. It is primarily intended for molecular biologists, bioinfor-

maticians, and clinicians since it addresses underlying molecular response 

mechanisms and potential biomarkers.  

 

The process of my PhD study has been an inspiring journey that made me grow 

scientifically, professionally as well as personally. I have met numerous intelligent 

and enthusiastic persons who have expanded my knowledge and inspired me to pursue 

new ideas and to adjust and optimize those already there. First and foremost, I want 

to express my deepest gratitude to my supervisor Professor Karen Dybkær for the 

opportunity to be a part of the scientific environment and for introducing me to the 

field of hematology research. Your extensive knowledge, scientific experience, 

passionate attitude, and encouragement have motivated and guided me throughout the 

last three years of work. Thank you for supporting and believing in me.   

 

A special thanks to Jacob Giehm Mikkelsen and his students from the Department of 

Biomedicine at Aarhus University for assistance on lentiviral experiments and for 

making my visits comfortable and fruitful. Furthermore, I wish to thank members of 

the statistical group, Martin Bøgsted, Rasmus Froberg Brøndum, and Anna Amanda 

Schönherz, for guidance and help concerning statistical matters. I have been blessed 

with the best colleagues at the research unit of the Department of Hematology. Thanks 

to all of you. My dear previous and current fellow students Pernille, Ditte, Marijana, 

Issa, and Linnéa, thank you for cozy coffee breaks and for always taking your time to 

troubleshoot, give feedback, and support me. Moreover, I will extend my sincere 

gratitude to Helle Høholt and Louise Hvilshøj Madsen for your helping nature, 

technical assistance, and caring personality.  

 

I acknowledge my almost long-life hobby, handball. The sport has taught me to be 

structured and dedicated. Combined with my parents’ hardworking spirit and never-

ending support, this has provided me with the drive and mindset required to obtain a 

PhD degree. My family is my foundation and my gratitude to you goes beyond words. 

Finally, I would like to express my whole-hearted gratitude to the love of my life, 

Martin, for his support, tolerance, and love. My beloved Ea - thank you for making 

me happy, grateful, and proud every day.  

 

 
Hanne Due, Aalborg, August 2020 
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ENGLISH SUMMARY 

Lymphomas are a group of malignant neoplasms arising from lymphocytes. The most 

frequent type among adults is diffuse large B-cell lymphoma (DLBCL) with 

approximately 450 new patients diagnosed each year in Denmark. DLBCL is a 

biologic heterogeneous disease that is treated with the multidrug immuno-

chemotherapy regimen R-CHOP, consisting of rituximab, cyclophosphamide, 

doxorubicin, vincristine, and prednisone, yet 20-50% of patients eventually die from 

refractory disease or relapse due to treatment resistance. Improved understanding of 

cellular response and resistance mechanisms of R-CHOP is pivotal for optimizing 

treatment efficacy in DLBCL and equally important is identification of risk markers 

enabling stratification of patients with efficient and poor response at time of diagnosis. 

The molecular heterogeneity of DLBCL is reflected in the expression profile of 

microRNAs (miRNAs), which are small non-coding RNA molecules with a 

fundamental regulatory role in various cellular processes. Deregulated miRNA 

expression is associated with several cancer types, including DLBCL, and the purpose 

of this PhD study was to investigate the role of miRNAs in chemotherapy response 

and resistance in DLBCL and evaluate the prognostic impact.  

 

In paper II we focus on the anti-mitotic drug vincristine, which exerts its anti-

neoplastic effect by binding to microtubules of the mitotic spindle leading to cell cycle 

arrest. We observed higher expression of miR-155 in vincristine sensitive DLBCL 

cells and showed that loss of miR-155 induces vincristine resistance. This documents 

that this particular miRNA is functionally involved in vincristine response in DLBCL 

cells. Furthermore, miR-155 displayed prognostic impact with inferior survival 

outcome of DLBCL patients with low levels of miR-155. The biomarker potential of 

miR-155 in B-cell malignancies was examined by reviewing the literature (Paper I). 

As DLBCL is a heterogeneous disease, paper IV attempts to improve the risk 

stratification of DLBCL patients by building a prognostic panel of several miRNAs 

whose expression is associated with response to drug components of R-CHOP.  The 

panel consists of seven miRNAs, which in addition to miR-155 includes miR-21, 

miR-34a, miR-23a, miR-24-2, miR-27a, and miR-146a. Combining this panel with 

the clinical prognostic index (IPI) improved the prognostic performance substantially.  

 

In clinical treatment, the aim is to obtain optimal toxic effect of a drug and at the same 

time minimize side effects. The dose-limiting side effect of vincristine is neuro-

toxicity, caused by interference of microtubules in the neurons. In Paper III we 

overviewed the aspects of vincristine-induced neuropathy through literature study. In 

a local pilot cohort, neuropathy was reported in 37% of the patients, resulting in 

vincristine dose reduction or substitution to vinblastine. Clinical parameters and 

predicted vincristine response were examined for potential to stratify patients 

according to risk of vincristine-induced neurotoxicity, however, all the investigated 

factors were without significant association to patients with manifested neurotoxicity.  
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DANSK RESUMÉ 

Lymfekræft opstår i den celletype af hvide blodlegemer, som hedder lymfocytter. 

Diffust storcellet B-celle lymfom (DLBCL) er den hyppigste form for lymfekræft hos 

voksne og diagnosticeres hvert år hos ca. 450 patienter i Danmark. Biologisk set er 

DLBCL en heterogen sygdom, som behandles med immun- og kemoterapiregimet R-

CHOP bestående af rituximab, cyclofosfamid, doxorubicin, vincristin og prednisolon. 

Imidlertid dør 20-50% af patienterne af refraktær sygdom eller sygdomstilbagefald, 

fordi deres tumor er behandlingsresistent. For fremtidigt at kunne forbedre behand-

lingen af DLBCL-patienter er det nødvendigt at opnå en større viden om respons- og 

resistensmekanismer for de enkelte stoffer i R-CHOP-behandlingen. Samtidig er det 

også ønskværdigt, allerede på diagnosetidspunktet at kunne adskille responderende 

patienter fra de som ikke responderer. Den molekylære forskellighed der ses blandt 

DLBCL patienter afspejles i deres microRNA (miRNA) profil, som er små ikke-

kodende RNA-molekyler med en fundamental rolle i regulering af mange forskellige 

cellulære processor. Deregulering af miRNA ekspression er associeret til mange typer 

af kræft, inklusiv DLBCL, og formålet med dette PhD studie var at undersøge hvilken 

rolle miRNA spiller i responsmekanismerne mod kemoterapeutika i DLBCL, samt 

om deres ekspression kan anvendes til risikovurdering af DLBCL-patienter.  

 

I artikel II fokuserer vi på stoffet vincristin, som hæmmer tumorvækst ved at 

interferere med mikrotubuli i de mitotiske spindle, hvorved celledeling stoppes. Vi 

identificerede højt udtryk af miR-155 i vincristin sensitive DLBCL-celler og viste at 

tab af miR-155 gør DLBCL cellerne mere resistente imod vincristin behandling. Dette 

dokumenterer at denne miRNA har direkte betydning for vincrtistin respons i 

DLBCL. Desuden udviste miR-155 potentiale som prognostisk markør, hvor lavt 

niveau af miR-155 er forbundet med dårligere overlevelsessandsynlighed. 

Biomarkørpotentialet af miR-155 i lymfekræft blev undersøgt i et litteraturstudie 

(artikel I). Da DLBCL er karakteriseret ved en høj grad af biologisk variation, søger 

vi i artikel IV at forbedre risiko-stratificeringen af DLBCL-patienter ved at bygge et 

panel af miRNA, hvis ekspression er associeret til respons mod et eller flere af 

stofferne fra R-CHOP-behandlingen. Panelet består af syv miRNA som udover miR-

155 inkluderer miR-21, miR-34a, miR-23a, miR-24-2, miR-27a, og miR-146a. 

Kombination af dette panel og det kliniske internationale prognostiske indeks (IPI), 

forbedrede den prognostiske evne væsentligt.  

 

I kræftbehandling er målet at opnå optimal toksisk effekt og samtidig minimere 

bivirkninger. Den dosis-begrænsende bivirkning af vincristin er neurologisk toksi-

citet, hvilket skyldes interaktion med mikrotubuli i nervecellerne. I artikel III belyste 

vi med udgangspunkt i litteraturen flere aspekter af vincristin-induceret nerveskade. I 

vores lokale DLBCL-patient kohorte, var denne bivirkning rapporteret i 37%, hvilket 

medførte dosis reduktion eller skift til vinblastin. Kliniske parametre samt prædikteret 

vincristin sensitivitet blev testet for potentiale til at identificere øget risiko for 

udvikling af vincristin-induceret neurotoksicitet, men ingen af de undersøgte faktorer 

var forskellige mellem patienter med og uden neurotoksicitet.   
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1. INTRODUCTION 

B-cell development, activation, and differentiation 

B-cells are white blood cells that constitute an essential part of the adaptive immune 

system, which heavily relies on the humoral immune response where foreign 

pathogens and toxins are eliminated by antibodies produced by B-cells. Antibody 

diversity is important for efficient immune response and is achieved through highly 

organized series of developmental stages of the B-cell, where the B-cell antigen 

receptor (BCR) is generated and altered to achieve high-affinity antibodies (Figure 1) 

[1]. The BCR is composed of two heavy chain and two light chain immunoglobulin 

(Ig) polypeptides linked by disulfide bridges [2].   

The development of B-cells initiates in the bone marrow, where pluripotent 

hematopoietic stem cells self-renew or differentiate into B-cell precursors [3]. During 

maturation in the bone marrow, B-cell precursors rearrange the Variable, Diversity, 

and Joining (VDJ) gene segments of the heavy and light chain Ig genes whereby 

specificity and diversity of the BCR are generated [3,4]. The functionality of the BCR 

is tested for autoreactivity, and if positive, BCRs are subjected to receptor editing to 

generate non-autoreactive BCRs, however, if unsuccessful the B-cell will undergo 

apoptosis or anergy [4]. B-cells passing this checkpoint leave the bone marrow as 

naïve B-cells co-expressing surface IgM and IgD and circulate between the peripheral 

blood and the secondary lymphoid organs, which include lymph nodes, spleen, tonsils, 

and mucosa-associated lymphoid tissue [2,3].  

In the secondary lymphoid tissues, naïve B-cells can encounter an antigen and be 

activated by interaction with T-helper cells, which prime the germinal center (GC) 

formation [1,3]. The GCs consist of a light and a dark zone, each homing different B-

cell populations (Figure 1). Naïve B-cells differentiate into centroblasts, which are 

large and highly proliferative cells making up the dark zone of the GC and undergo 

somatic hypermutation (SHM) of the V gene segment by which mutations are 

introduced, resulting in diversification of the antibody response. Centroblasts migrate 

into the light zone of the GC and differentiate into the smaller and less proliferative 

centrocytes. In the light zone, they reencounter the antigen in a T-cell dependent 

manner to ensure increased BCR affinity [1,5,6]. For most B-cells, mutations 

introduced by SHM will decrease affinity for the antigen and these cells will undergo 

apoptosis; however, centrocytes with increased affinity will be positively selected. 

Each B-cell cycles between the dark and the light zone of the GC to undergo multiple 

rounds of SHM and cell divisions to ensure high antibody affinity [7]. This migration 

is mediated by chemotaxis through a gradient of chemokines produced by stromal 

cells in the light zone, which secrete the CXC-chemokine ligand 12 (CXCL12) 

attracting centroblasts as they express the CXC-chemokine receptor 4 (CXCR4). 

Centrocytes express CXCR5 and are attracted to the ligand CXCL13, which is 

abundant in the dark zone [7]. Following optimal affinity selection, centrocytes 

undergo class-switch DNA recombination (CSR) of the constant region of BCR to 
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produce antibodies of different isotype classes (IgE, IgA, or IgG) [5,6]. Mature B-

cells leave the GC and differentiate into memory B-cells or plasmablasts, with the 

latter differentiating into antibody-producing plasma cells in the bone marrow [3]. 

 

 
Figure 1. B-cell differentiation. Maturation of B-cells involves series of highly organized 
developmental stages starting in the bone marrow where hematopoietic stem cells differentiate 
into precursor B-cells. Precursor B-cells rearrange their Variable, Diversity, and Joining (VDJ) 
gene segments to generate the B-cell receptor (BCR), which subsequently are tested for 
autoreactivity. B-cells with non-autoreactive BCR differentiate into naïve B-cells that circulate 
between the peripheral blood and secondary lymphoid tissue until antigen encounter leading to 
B-cell activation and formation of germinal centers (GCs). GCs consist of a dark and a light 
zone with centroblast and centrocyte B-cells, respectively. Centroblasts undergo somatic hyper-
mutation (SHM) and differentiate into centrocytes, which re-encounter antigens to select B-
cells expressing a BCR with increased affinity. B-cells cycle several rounds between the dark 
and light zone to ensure optimal BCR affinity. Following optimal affinity, a shift in effector 
function by class-switch DNA recombinase takes place, and B-cells leave the GCs as memory 
B-cells or plasmablasts, which further can differentiate into the antibody-producing plasma 
cells. 
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Lymphoma 

Cancer arises when cells acquire growth and survival benefits through epigenetic or 

genetic alterations. These advantages occur in different biological traits, described as 

the hallmarks of cancer [8]. The hallmarks of cancer include genome instability, the 

ability to sustain proliferative signaling, evade growth suppressors, reprogram energy 

metabolism, induce tumor-promoting inflammation, resist cell death, enable 

replicative immortality, induce angiogenesis, activate invasion and metastasis, and 

lastly evade immune destruction [8].  

Lymphomas are a heterogeneous group of malignant neoplasms arising from 

lymphocytes of natural killer cell, T-cell, or B-cell origin [9]. Lymphomas are 

classified according to guidelines by World Health Organization (WHO), which 

include both clinical, morphological, histological, and genetic features of the disease 

entities [9]. There are two main classes of lymphoma, Hodgkin lymphoma (HL) and 

non-Hodgkin lymphoma (NHL), of which the latter is the most prominent (Figure 2). 

The majority of NHLs derive from B-cells with the most frequent being diffuse large 

B-cell lymphoma (DLBCL), accounting for 30-40% of all newly diagnosed adult 

NHL [10]. Other common types of B-cell derived NHLs include follicular lymphoma, 

mantle cell lymphoma, splenic marginal zone B-cell lymphoma, and chronic 

lymphocytic leukemia [9]. 

 

Figure 2. Lymphoma classification. Frequencies obtained from [9].  
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B-cell derived lymphomas can arise at multiple stages of the normal B-cell 

differentiation, and the stage at which the malignant clone develops is used in 

classification of B-cell lymphomas (Figure 3). Assessed by Ig rearrangement status, 

most lymphomas derive from GC B-cells or B-cells that have passed the GC [11], 

indicating the antigen mediated stimulation and remodeling processes of the Ig gene 

as important in the malignant transformation. SHM and CSR include breakage and 

rejoining of DNA, which increases the risk of introducing mutations and 

translocations, contributing to malignant transformation [2,5]. Moreover, the double-

stranded DNA breaks in SHM and CSR occur in the GC wherein B-cells replicate 

remarkably fast, and DNA damage checkpoints are silenced by repressive activity of 

BCL6 [12]. Consequently, genetic alterations implicated in lymphomagenesis often 

derive from errors in one of the processes. Furthermore, SHM aberrantly targets some 

proto-oncogenes, including PAX5, MYC, PIM1, among others, and this mistargeting 

and introduction of mutations also contribute to development of  DLBCL [13,14]. B-

cell neoplasms often undergo clonal evolution with a gain of additional genetic 

alterations leading to a clinical and/or histological progression of the lymphoma [11].  

 

Figure 3. Cellular origin of B-cell lymphomas. B-cell malignancies can arise at various stages 
of the normal B-cell differentiation, and the figure depicts the cell-of-origin for selected B-cell 
derived malignancies.   

 

Diffuse large B-cell lymphoma 

The crude incidence of DLBCL is 3-4/100,000 in the European Union [15], which has 

increased during the last decades [16]. Incidence rates are increasing with age and 

more often men are affected than women [17]. The etiology of DLBCL remains 

unknown; however, autoimmune disease, underlying immunodeficiency, and a family 

history of lymphoma have been identified as risk factors [9,18]. DLBCL can be 

located in the lymph nodes or other tissues, referred to as either nodal or extranodal, 

respectively [9]. It can develop de novo, referred to as primary disease, or from 

progression or transformation of an indolent NHL such as follicular lymphoma [9,19]. 

DLBCL encompasses a clinical, morphological, and molecularly heterogeneous 

group of lymphomas, which by WHO is subdivided into four categories: DLBCL not 

otherwise specified (DLBCL NOS), other lymphomas of large B-cells, high-grade B-
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cell lymphoma, and B-cell lymphoma unclassifiable. DLBCL-NOS is the most 

common type and has still a great morphological and molecular heterogeneity [9].   

 

Prognostic assessment of DLBCL patients is performed using the International 

Prognostic Index (IPI), which has been the gold standard in clinical practice for 

decades [20]. IPI is a scoring system ranging from 0 to 5 based on five dichotomized 

clinical parameters with equal weight, and one point assigned each of the following 

risk factors: age at diagnosis (>60), elevated serum lactate dehydrogenase (LDH), 

extranodal involvement >1, Eastern Cooperative Oncology Group (ECOG) 

performance status ≥2, and Ann Arbor stage III or IV which is determined by tumor 

localization. Based on the IPI scoring system, DLBCL patients are stratified into four 

risk groups with different outcomes: low (score 0-1), intermediate-low (2), 

intermediate-high (3), and high-risk (4-5) disease [20]. Revised versions of IPI 

assigning patients into fewer prognostic subgroups or with inclusion of more variables 

have been introduced [21,22]; however, the original IPI is still the standard tool since 

population-based studies including clinical trials confirmed robustness of IPI despite 

treatment alterations [21,23].     

 

 

Molecular subclasses of DLBCL 

The molecular heterogeneity of DLBCL-NOS can be explained by the cell-of-origin. 

Gene expression profiling (GEP) enables cell-of-origin classification of DLBCL into 

two histologically indistinguishable subclasses: the activated B-cell-like (ABC) and 

the germinal center B-cell-like (GCB) of which the GCB subclass is slightly more 

frequent with an overall incidence of 45-50% as opposed to 40-42% for the ABC 

subclass (Figure 2+4) [24–27]. Cases not classifiable as ABC or GCB are defined 

unclassified (UC). The molecular ABC/GCB subclasses reflect a subset of the normal 

B-cell differentiation stages (Figure 3), where GCB resembles GC B-cells having 

ongoing SHM and CSR and expression of IgM or IgD, and ABC-DLBCL is similar 

to post-GC B-cells with aberrant CSR and expression of IgE, IgA, or IgG [2,24]. The 

ABC and GCB subclasses differ in pathogenesis and clinical outcome [24,25] with 

GCB patients having a 5-year survival rate of 69-79% compared to 52-53% for those 

patients classified with ABC-DLBCL when treated with standard immune-

chemotherapy R-CHOP (described in a subsequent section) [28]. In addition, the 

molecular subclasses display distinct genetic alterations and deregulated signaling 

pathways [24].  

Genetic abnormalities of ABC-DLBCL involve activating mutations of the BCR 

signaling pathway and genetic lesions, causing constitutive activation of anti-

apoptotic nuclear factor kappa B (NF-κB) signaling. More than 20% of ABC-DLBCL 

patients harbor somatic mutations in the Ig-associated gene CD79B, which in complex 

with CD79A mediates BCR signaling. Mutations in the cytoplasmic tyrosine-based 

motif of this immunoreceptor circumvent negative feedback and thereby causing 

chronic active BCR [12,29]. Oncogenic mutations in CARD11 occur in 7-18% of 
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ABC-DLBCL cases and 4-17% of GCB cases. The CARD11 mutations impair auto-

inhibition resulting in a hyperactive state that leads to constitutive NF-κB signaling 

[30,31], a hallmark of ABC-DLBCL tumors. Functional in vitro experiments 

documented requirement of NF-κB for proliferation and survival of ABC-DLBCL cell 

lines but not for GCB-DLBCL cells, and in addition, gene expression analysis 

identified higher expression of NF-κB transcription factors in ABC classified patients 

as compared to GCB-DLBCL patients [32]. Since the CARD11 protein is essential 

for active NF-κB pathway and most ABC tumors have wildtype CARD11, genetic in 

vitro screens focused on the role of BCR signaling and found that the BCR signaling 

component Bruton’s tyrosine kinase (BTK) is required for survival of ABC-DLBCL 

with wildtype CARD11 [29]. Furthermore, somatic gain-of-function mutations in 

MYD88 also promote NF-κB signaling. The single amino acid substitution (L265P) 

of MYD88 is specific for ABC-DLBCL and is observed in 30% of the patients [33].  

    

Alterations characteristic of the GCB subclass of DLBCL are gain-of-function 

mutations of the EZH2 oncogene, at which the Y641 residue of the catalytic domain 

is the mutational hotspot. These mutations are detected in 22% of GCB classified 

patients and are thereby one of the most frequent genetic events of GCB-DLBCL [34]. 

Other genetic events reported in GCB-DLBCL are protein-truncating mutations in 

S1PR2 and GNA13 (7% and 10%, respectively), which encode components of a G-

coupled receptor involved in inhibitory regulation of growth and local confinement of 

GC B-cells [35]. In addition, activating mutations of the transcriptional activator 

MEF2B are observed in 11% of GCB-DLBCL cases and lead to enhanced expression 

of the oncogene BCL6 [36], a characteristic of GCB-DLBCL. The transcriptional 

repressor BCL6 controls the B-cell differentiation of the GC and is essential for 

maintenance of B-cell proliferation while allowing tolerance of DNA remodeling 

events without inducing DNA damage responses [12]. In detail, BCL6 permits DNA 

remodeling events without response to DNA damage by suppression of TP53, allows 

cell cycle progression through repression of the inhibitors p21 and p27, reduces 

apoptosis by targeting BCL2, and controls differentiation into plasmablasts by 

repressing PRDM1 [12]. 

Furthermore, chromosomal alterations are common in DLBCL and are differentially 

observed across molecular subclasses. Translocations affecting the BCL6 locus in 

band 3q27 are the most common rearrangement in DLBCL occurring in 30% of the 

cases and with higher frequency in ABC-DLBCL [37,38]. The t(14;18)(q32;q21.3) 

rearrangement of BCL2 is present in 20-30% of DLBCL patients and more commonly 

in GCB cases and juxtapose BCL2 adjacent to IGH, leading to constitutive expression 

of BCL2 [39–41]. Rearrangement of MYC occurs evenly in ABC and GCB-DLBCL 

and is detected in 5-15% of the patients [9,42,43]. Simultaneous translocations and 

aberrant expression of BCL2, BCL6, and MYC are associated with aggressive disease 

and have led to the introduction of the category high-grade lymphoma encompassing 

double-expressors with dual high expression of BCL2 and MYC and double-hit 

lymphoma with rearrangement of MYC and BCL2 or less commonly BCL6 (Figure 4) 

[9,41,44–47]. When all three rearrangements are present, it is denoted triple-hit 
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lymphoma. Co-expression of BCL2 and MYC is preferentially detected in ABC-

DLBCL and dual-expressor patients have significantly inferior outcomes [41,48]. In 

line, double-hit lymphoma with BCL2 and MYC is associated with shorter overall 

survival and is more frequent among GCB cases [41,49]. BCL6-MYC double-hit does 

not display subclass-specific occurrence and the prognostic significance is ambiguous 

[9,48]. The frequency of double-hit lymphoma in diagnostic DLBCL is 5-10%, 

whereas it increases to 25-30% of relapsed DLBCL, supporting the role of MYC, 

BCL2, and BCL6 translocations as driver event in both treatment resistance and 

progression [50,51].  

 

The molecular ABC/GCB classification has entered clinical diagnostic and prognostic 

evaluation, complementing IPI [9]. The gene expression-based cell-of-origin 

classification utilizes techniques like microarray, RNA-sequencing, and Nanostring, 

a digital barcode system. However, simplified and translated classification algorithms 

by immunohistochemistry (IHC) are commonly used (Figure 4) [52–54], and by 

applying the Hans algorithm with antibodies against CD10, BCL6, and IRF4/MUM1, 

DLBCL is classified into GCB and non-GCB subgroups leaving no cases to be 

unclassified [52]. IHC has the advantage of being cheap and fast, but display issues 

of reproducibility, accuracy, and reliability when compared between diagnostic sites 

[9,41].  

 

 

Other transcriptional based classification systems  

The ABC/GCB classification is established from a fraction of the naturally occurring 

B-cell subsets, specifically the GC B-cells centroblasts and centrocytes and in vitro 

activated B-cells from peripheral blood [24]. An extended cell-of-origin classification 

has been developed by applying subset-specific B-cell associated gene signatures 

(BAGS) from the normal B-cell differentiation hierarchy (Figure 4) [55]. The BAGS 

signature is based on fluorescence-activated cell sorting and transcriptional profiling 

of naïve, germinal centroblasts and centrocytes, post-germinal memory B-cells, and 

plasmablasts of normal human tonsils, and DLBCL patients are classified based on 

their GEP and assigned the subtype with highest predicted probability. The BAGS 

subtypes have distinct genetic profiles, differentially activated signaling pathways, 

and response to chemotherapeutics used in a routine clinical setting for treatment of 

DLBCL. In addition, BAGS subtypes display prognostic impact independent of IPI 

and the ABC/GCB classification, though prognostic evaluation within ABC and GCB 

classified patients, respectively, revealed significance exclusively in GCB-DLBCL 

[55].  

Other prognostic transcriptional based signatures exist, reflecting multiple biological 

attributes of DLBCL (Figure 4). The character of the tumor microenvironment is 

represented by the Stromal 1/Stromal 2 signatures [26] and the Host Response 

signature [56]. Other biologically relevant subsets of DLBCL are based on the B-cell 

receptor and oxidative phosphorylation gene signatures [56], however, none of these 

are widely used.  
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None of the gene expression-based classification systems is stringent in the sense that 

patients assigned inferior prognostic subclasses are potentially curable, while other 

patients defined with favorable prognosis succumb to the disease even after aggressive 

treatment. Thus, studies of other molecular features of the tumors have been 

conducted in attempt to improve risk stratification of DLBCL patients.  

 

 

Genetic classification systems 

The expansion of sequencing technologies has provided comprehensive investigations 

of the mutational landscape of DLBCL, which revolutionized the understanding of 

the genetic basis of DLBCL and led to the identification of several genetic subtypes 

(Figure 4) [57–62]. Chapuy et al. [59] identified 158 genetic driver alterations that 

cluster into five distinct genetic subsets, referred to as coordinate gene signature C1-

C5, and in addition a subset, C0, without detectable genetic alterations. Favorable 

prognostic outcome is observed for DLBCL patients with C0, C1, and C4 tumors, 

whereas those with C3 and C5 DLBCL exhibit adverse outcome. These coordinate 

gene signatures identify genetically distinct cell-of-origin subtypes, of which the C3 

and C4 represent subsets of GCB-DLBCL utilizing different mechanisms to perturb 

common pathways and in addition, display differences in outcome. The C1 and C5 

coordinate signatures define subsets of ABC-DLBCL with distinct pathogenetic 

mechanisms and superior outcome for patients assigned C1-ABC [59].  

The genetic classifier by Schmitz et al. [58] identifies four genetic subtypes termed 

BN2 (BCL6 fusions or NOTCH2 mutations), EZB (EZH2 mutations or BCL2 

translocations), MCD (co-occurrence of MYD88L265P and CD79 mutations), and N1 

(NOTCH1 mutation), of which the MCD and N1 subtypes have significantly inferior 

outcome than BN2 and EZB, with 5-year survival outcome of 26%, 35%, 65%, and 

68%, respectively, when treated with standard immuno-chemotherapy [58]. These 

subtypes are included in the recently developed LymphGen algorithm, which provides 

a probabilistic classification of a tumor from an individual DLBCL patient into seven 

genetic subtypes (BN2, MCD, N1, EZB MYC+, EZB MYC-, A53, ST2)  [60]. 

LymphGen was implemented by assigning patients to the four previously identified 

genetic subtypes and subsequent analysis of the remaining unassigned patients. Of 

these, TP35 was the most frequently mutated gene without enrichment in one of the 

other subtypes, and furthermore, recurrent mutations were observed in TET2, P2RY8, 

SGK1, leading to the genetic subtypes termed A53 and ST2. LymphGen assigns 

63.1% of DLBCL patients to one or more of the six genetic subtypes with BN2, MCD, 

and EZB being most frequent. The MCD signature is enriched for ABC-DLBCL 

patients, whereas GCB patients predominate the EZB subtype. As opposed, BN2, 

A53, and ST2 are comprised of different cell-of-origin subclasses. Patients assigned 

the MCD subtype have inferior overall survival probability, especially in comparison 

to BN2 and ST2. For GCB-DLBCL patients, the EZB subtype displays adverse 

prognosis; however, based on information on double hits with BCL2 and MYC 

rearrangement, the EZB is divided into genetic MYC+ and MYC- subtypes, the latter 
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with superior prognosis [60]. Moreover, another five genetic subtypes termed 

MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2 have recently been 

published by Lacy et al. [61] in addition to a group of not elsewhere classified (NEC) 

encompassing 27% of the patients. Predominant mutations of the MYD88 subtype 

include MYD88L265P, PIM1, CD79B, and EVT6 and are enriched for patients of ABC 

origin. As opposed, GCB-DLBCL cases mainly constitute the BCL2 subtype, 

characterized by mutations of EZH2, BCL2, TNFRSF14, KMT2D, and MEF2B, and 

the TET2/SGK1 subtype, which beside TET2 and SGK1 mutations is dominated by 

variants in KLHK6, MAP2K1, ZFP36L1, BRAF, and KRAS. Patients of the MYD88 

and NOTCH2 subtypes have inferior outcome in comparison to patients assigned 

TET2/SGK1, SOCS1/SGK1, and BCL2, with 5-year overall survival of 42%, 48%, 

60%, 62%, and 65%, respectively, when treated with standard immuno-chemotherapy 

[61]. 

 

 

 

 

 

 

 

 
 
 
Figure 4. Timeline of the molecular subclassifications of DLBCL. A broad overview of 
prognostic molecular subclassifications of DLBCL. Horizontal bars (top/bottom) indicate 
whether the classification relies on gene expression, genetics, or immunohistochemical analysis 
of the tumor. Prognosis of the respective subclasses is indicated by arrows, ↑ corresponding to 
superior and ↓ to inferior. The more arrows, the better or worse prognosis. 

 

Thus, targeted and global next-generation sequencing has not only revealed a 

compendium of common genetic alterations in DLBCL, of which several exhibit 

segregations by cell-of-origin, but also lead to complete new frameworks for DLBCL 

risk stratification based on tumor genetics [63]. These genetic classifications improve 

the understanding of the molecular heterogeneity of DLBCL; however, several 

discrepancies of these studies have to be reconciled prior to exploration of stratified 

treatments. Although partial overlap in genetic classes, no unambiguous link between 

the majority of genetic aberrations and genetic clusters has been provided, which, 

together with the limitation of a large number of unclassified tumors, leave the nature 

of the DLBCL genetic subclassification unresolved [63]. 
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DLBCL treatment and outcome 

First-line treatment of DLBCL patients is a multidrug regimen consisting of: 

Rituximab (R), a humanized monoclonal antibody against CD20, which is a surface 

protein expressed on all B-cells; Cyclophosphamide (C), a DNA alkylating agent that 

in addition facilitates antibody-mediated killing through cytokine release; 

Doxorubicin (H), a topoisomerase II inhibitor which also intercalates DNA base pairs; 

Vincristine (O), an ant-microtubule agent; and the steroid Prednisone (P) (R-CHOP). 

The mostly non-overlapping side effects permit their combined administration. 

Addition of rituximab to the CHOP regimen has improved DLBCL survival 

substantially with a 10-15% increase in 5-year overall survival to 60-70% [64]. The 

pharmacological principle of R-CHOP efficacy is poorly understood; however, 

functional genetic in vitro studies recently observed low cross-resistance but no 

synergistic interaction among the components of R-CHOP [65]. This suggests that 

treatment efficacy of the regimen is mediated by independently effective drugs 

without overlapping resistance mechanisms.  

Despite treatment improvement with inclusion of rituximab, approximately 40% of 

DLBCL patients suffer from primary refractory disease and relapse due to drug 

resistance, demonstrating that standard provided treatment regimens are not sufficient 

to cure all patients [28,64,66]. Relapsed and refractory patients are treated with high-

dose immuno-chemotherapy and autologous stem cell transplantation; however, most 

patients are not eligible due to their age and comorbidities, whereby only a fraction of 

patients with relapse are cured [67].  

In the last decade, several clinical trials have been conducted in an attempt to improve 

the R-CHOP regimen; however, with limited benefit. Different strategies have been 

applied, including dose intensification, rituximab maintenance after initial treatment, 

consolidation with autologous transplantation [77–80], and in recent randomized 

phase III trials R-CHOP is combined or substituted with non-chemotherapeutic agents 

[68–76] (Table 1).  

 
Table 1. Phase III clinical trials in DLBCL. ABC, activated B-cell; BTK, Bruton’s tyrosine 
kinase; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; GCB, germinal center 
B-cell; NF-κB, nuclear factor kappa B; R-CHOP, rituximab, cyclophosphamide, doxorubicin, 
vincristine, prednisone; VEGF-A, vascular endothelial growth factor A. 

Study Subclasses No. Regimen Target Result 

GOYA [68] None 1418 
Obinutuzumab-

CHOP 
CD20 Negative 

MAIN [69] CD20+  787 
R-CHOP + 

bevacizumab 
VEGF-A Negative 

REMoDL-B [70–72] ABC/GCB 918 
R-CHOP + 
bortezomib 

Proteasome 
NF-κB 

Negative 

PHOENIX [73,74] 
non-
GCB/GCB 

800 
R-CHOP + 
ibrutinib 

BTK Negative 

ROBUST [75,76] 
non-

GCB/GCB 
560 

R-CHOP + 

lenalidomide 

Immuno-

modulatory 
Negative 
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Moreover, molecular guided therapy using biomarkers, including ABC/GCB, double-

expressor, and double-hit have been evaluated; however with inconsistent 

implementation in clinical trials [28,46,72,74,80]. Since the ABC subclass is the 

largest risk group of DLBCL, most clinical studies are focused on improving overall 

survival for these patients. Several genetic alterations of ABC-DLBCL dysregulate 

BCR signaling and NF-κB pathway at different levels, which has led to tailored 

treatment strategies. Single-agent treatment with the BTK inhibitor ibrutinib 

demonstrated selective efficacy in ABC-DLBCL, due to constitutive BTK-dependent 

B-cell receptor signaling [81]. Similarly, the proteasome inhibitor bortezomib has 

shown preferential activity in ABC-DLBCL through diminished degradation of IκBα 

and thereby inhibition of the chronic and required NF-κB signaling of ABC-DLBCL 

[82,83]. However, all randomized phase III trials testing the inclusion of targeted 

agents failed in improving first-line treatment, also when specific efforts have been 

applied to target the ABC subclass (Table 1). This can most likely be explained by the 

renowned biological heterogeneity of DLBCL including the recent findings of several 

and distinct genetical subtypes of  DLBCL [58–61]. Therefore R-CHOP remains the 

standard treatment.  

 

 

Vincristine  

Vincristine (Oncovin®, O) is an antimitotic drug belonging to the group of vinca 

alkaloids, originally derived from the plant Catharanthus roseus [84]. Since the 

clinical approval in 1963, vincristine has been widely used in the treatment of several 

solid and hematological malignancies [84,85]. It is administered by intravenous 

infusion and has as a single agent brief and incomplete effects, however, improves 

clinical outcome when given in combination with other chemotherapeutics [84–86]. 

Cellular uptake of vincristine is mediated by multiple mechanisms, including passive 

diffusion and active energy- and temperature-dependent transport [87] and efflux by 

the ATP binding cassette (ABC)-transporter family [88].  

Vincristine exerts its anti-neoplastic action by targeting β-tubulin leading to inhibition 

of polymerization of tubulin into microtubules (Figure 5) [89–91]. Microtubules are 

cytoskeletal proteins essential for several physiological cellular processes, including 

formation of the mitotic spindle and chromosome segregation during mitosis, cell 

migration, and intracellular transport. They are continuously assembled and 

dissembled by polymerization and depolymerization of tubulin, a dimer composed of 

α- and β-tubulin subunits [92].  

Vincristine interferes with the mitotic spindles in a dose-dependent manner. At the 

lowest concentration, where cell proliferation is inhibited, vincristine stabilizes the 

mitotic spindle structure, whereas higher concentrations impair spindle assembly, 

both causing failure of chromosome segregation in the metaphase [89–91]. This 

activates the spindle assembly checkpoint, which prevents anaphase onset until 

accurate chromosome segregation, thereby causing mitotic arrest followed by 

apoptosis [93].  
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Vincristine has been considered a cornerstone of R-CHOP efficacy for several years; 

however, a recent comprehensive in vitro study shows that the effect of vincristine is 

antagonized in the presence of cyclophosphamide or doxorubicin [65]. Since 

vincristine is cell cycle phase-specific only targeting mitotic cells, the effect of 

vincristine could be expected to decrease in presence of doxorubicin and 

cyclophosphamide as these exert their action by inducing DNA damage [94,95], 

which prevents entry into mitosis.  

 

 
 
 
Figure 5. Vincristine mechanism of action. Vincristine exerts its anti-tumoral effect by 
binding to β-subunits of microtubules leading to impaired formation of mitotic spindle and 
metaphase arrest. Microtubules are in addition essential for axonal transports in neurons, and 
binding of vincristine to the microtubules blocks this transport resulting in neurotoxicity.  
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Neurotoxicity 

The primary and dose-limiting side effect of vincristine treatment is neurotoxicity 

involving peripheral, autonomic, and central neuropathy [96]. The most common 

clinical symptoms are peripheral sensorimotor neuropathy, including paresthesia, 

numbness, and loss of deep tendon reflexes; however, autonomic dysfunctions 

characterized by constipation and urinary retention are in addition relatively often 

reported [97,98]. Vincristine-induced neuropathy occurs in time- and dose-dependent 

manner with some patients reporting clinical manifestations after the first dose, while 

others exhibit symptoms after treatment completion. The severity of neuropathy 

increases with accumulated vincristine dose and is mostly reversible [84], but can 

persist for months after discontinuation of treatment, and is in rare cases irreversible 

[99]. Symptoms of neuropathy often lead to vincristine dose reduction, 

discontinuation, or substitution, potentially affecting treatment efficacy of R-CHOP 

[100].  

The mechanism underlying the toxic effect of vincristine is interference with 

microtubules, which causes blockage of crucial axonal transport (Figure 5) [101]. 

Axonal transport is a physiologic process involving transfer of molecular components, 

including vesicles, organelles, and proteins synthesized in the cell body, which are 

essential for axonal metabolism and neuronal membrane function [102]. This 

intracellular trafficking is mediated by microtubules, which dictates the direction of 

movement by polarization generated by the tubulin arrangement [103]. Impaired 

axonal transport caused by vincristine interference leads to neuronal degeneration that 

manifests distally and develops progressively [101,104].  

Despite vincristine-induced neuropathy is the primary side effect and has been widely 

studied, no consensus about incidence, manifestations, and severity is found due to 

lack of consistency in neuropathy definition, assessment, and reporting. Literature 

review of vincristine-induced neuropathy in hematologic malignancies (Paper III) 

revealed a tremendously varying incidence of neuropathy with frequencies from 10% 

to 100% depending on patient inclusion criteria, vincristine doses and treatment 

cycles, and neuropathy assessment tools [96], emphasizing the inconsistency between 

studies. Furthermore, the absence of consensus has resulted in several conflicting 

studies of neuropathy, which has complicated identification of risk factors and 

predictive markers [96]. However, accumulated vincristine dose and preexisting 

neuropathy are consistently reported to predict increased risk of vincristine-induced 

neuropathy [98,105,106]. In addition, at the molecular level, several genes involved 

in the pharmacokinetics and pharmacodynamics of vincristine display potential as 

predictive markers [96]. Vincristine is metabolized by the cytochrome P450 3A 

(CYP3A) enzyme subfamily in the liver, with CYP3A4 and CYP3A5 as primary 

metabolizers [107]. Germline polymorphisms CYP3A5*3 and CYP3A5*6 introduce 

splice variants and protein truncation, leading to decreased CYP3A5 expression and 

less effective metabolism, thus, causing higher vincristine exposure and risk of 

neuropathy [96,108]. In addition, an inherent variant in the promotor of CEP72 is 

associated with increased incidence and severity of vincristine-induced neuropathy. 
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This alteration leads to decreased expression of CEP72, a centrosomal protein 

important for microtubule formation, resulting in microtubule destabilization, and 

increased vincristine sensitivity [96,109].  

Several strategies attempting to overcome vincristine-induced neuropathy have been 

examined, but currently, there is no convincing evidence of the use of pharmacologic 

interventions, and therefore, vincristine dose reduction, discontinuation or 

substitution, is the only option for diminishing neuropathy [96]. 

 

 

Treatment failure and drug resistance 

Treatment failure of DLBCL patients is a complex problem involving many causative 

factors contributing to considerable inter-individual variability treatment response. 

Several host-related parameters influence the pharmacokinetics of a drug, including 

absorption, ability to reach the intended site, metabolism, and excretion in addition to 

dose-limiting side effects, patient co-morbidity, and performance dose-adjustments 

[96,110]. Furthermore, single- and multiple-drug resistance influences the overall 

response towards the treatment regimen. Epigenetic changes, genetic alterations, and 

transcriptional as well as translational aberrations all affect intracellular signaling 

pathways and are the underlying reason for molecular drug resistance [110].  

Intrinsic resistance reflects the ability of the tumor at the time of diagnosis to 

circumvent the effect of a drug resulting in primary refractory disease and is caused 

by somatically acquired molecular aberrations of the cancer cells. As opposed, a 

selection process causes acquired resistance when initially responsive patients have 

chemo-resistant clones overgrowing the sensitive ones [110]. The third type of 

resistance is inherent where some patients, due to specific germline genotypes have a 

poor response to certain treatment regimens [111]. Thus, the treatment efficacy is 

affected by molecular aberrations of the cancer cells, treatment-selected resistant 

subpopulations, and individual germline genotypes. Furthermore, DLBCL is 

“addicted to the host” in terms of the tumor microenvironment modulating the disease 

course and sensitivity to antineoplastic drugs. 

 

Resistance to anti-cancer drugs can be acquired by multiple intracellular mechanisms 

of the cancer cells and include dysregulation of pumps, modification of drug target, 

altered expression of detoxification mechanism, increased repair of drug-induced 

DNA damage, reduced susceptibility to apoptosis, and altered proliferation [110,112]. 

Upregulation of efflux pumps is a common mechanism of chemotherapeutic 

resistance, causing resistance towards multiple drugs at once, including doxorubicin 

and vincristine [65,113]. The function of these pumps is to transport xenobiotic drugs 

out of the cells leading to decreased drug retention, changed intracellular distribution, 

thereby affecting the availability and intracellular impact of the drug.  
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Chromosomal instability and aneuploidy are common characteristics of cancer, 

making tumor cells especially susceptible to anti-microtubule drugs like vincristine, 

which induces mitotic delay by activating the spindle assembly checkpoint. While 

most cells undergo apoptosis upon prolonged cell cycle, others appear to acquire the 

ability to slip through the spindle assembly checkpoint existing mitosis prematurely 

without proper chromosomal segregation [93,114,115]. Such mitotic slippage will 

contribute with even more chromosomal abnormality, and cells either die at later 

stages or survive and stop dividing, giving rise to a resistant clone [115].     

Another adapted mechanism conferring vincristine resistance is altered tubulin 

isotype composition of microtubules. In humans, eight β-tubulin isotypes have been 

identified, which exhibit different vincristine-binding potential and dynamic 

properties, affecting the sensitivity [116]. Studies of solid tumors have shown 

perturbed isotype composition in cancer cells compared to adjacent normal tissue, 

involving adapted expression of one or several isotypes as well as presence of 

isoforms that are not typically expressed in the given tissue. Moreover, specific 

isotypes correlated with resistance to anti-mitotic taxanes and inferior clinical 

outcome [116].  

 

microRNAs 

microRNAs (miRNAs) are an abundant group of endogenous short (21-23nt) non-

coding RNAs regulating gene expression at the post-transcriptional level [117]. Since 

the first miRNA was discovered in Caenorhabditis elegans in 1993 [118], the number 

has continuously increased, and to date, more than 2300 human miRNAs have been 

described and verified [119]. They are estimated to regulate up to 60% of protein-

coding genes in the human genome [120] and play fundamental regulatory roles in 

almost every physiologic process, including development, proliferation, and apoptosis 

[117].  

 

 

Biogenesis of miRNAs 

miRNAs are encoded by inter or intragenic regions of the genome and are transcribed 

by RNA polymerase (pol) II or RNA pol III [121,122]. Intragenic miRNAs are 

processed mostly from introns and relatively few exons of protein-coding genes, 

whereas intergenic miRNAs have their own promoters and are transcribed 

independently of a host gene [123,124]. The biogenesis of miRNAs is divided into the 

canonical and non-canonical pathways of which the former is dominant (Figure 6).  

The canonical pathway starts with transcription into the primary miRNA, designated 

pri-miRNA, a long transcript that either can express a single miRNA or a cluster of 

multiple miRNAs, which is considered a family when having similar seed sequences 

[125,126]. The pri-miRNA transcript comprises a 5’-cap, a hairpin region encoding 

the mature miRNA, and a 3’-polyadenylated tail, and is processed into precursor 
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miRNA (pre-miRNA) by the nuclear microprocessor complex consisting of the RNA 

binding protein DiGeorge syndrome chromosomal region (DGCR8) and the RNAse 

III enzyme Drosha [125]. When DGCR8 recognizes the precise cleavage site, the two 

RNAse domains of Drosha cleaves the 5’- and 3’-end of the pri-miRNA resulting in 

a 70 nucleotides (nts) long pre-miRNA with 2-nts overhang in the 3’-end [125,127].  

The non-canonical pathway involves generation of ‘mirtrons’, which are intron-

derived pre-miRNAs produced during splicing. When a spliced intron has the 

potential to form a hairpin structure resembling pre-miRNAs, it bypasses Drosha 

processing and follows the biogenesis of a canonical-generated pre-miRNA [128].  

Once the pre-miRNA is formed, it is transported to the cytoplasm by Exportin-5 [129], 

where the RNAse III enzyme Dicer in complex with TAR RNA-binding protein 

(TRBP) cleaves the loop structure generating the mature miRNA duplex of 

approximately 21 nts [130,131]. The duplex is unwounded into a 5p- and 3p-strand 

arising from the 5’- and 3’-end of the pre-miRNA hairpin, respectively. Both strands 

can be incorporated into Argonaute (AGO) proteins and form the RNA-induced 

silencing complex (RISC) [132]. Selection of miR#-5p or miR#-3p is based on 

thermodynamic stability, and in general, the strand with lowest stability is loaded into 

AGO and is denoted the guide strand. As opposed, the unloaded strand is referred to 

as the passenger strand or miRNA-star (*) and is usually degraded [133,134]. Of 

notice, for a specific miRNA, the proportion of AGO-incorporation of miR#-5p or 

miR#-3p varies depending on the cell type, ranging from equilibrium to predominance 

of one or the other [135].  

 

 

 

 

 

 

 

Figure 6. miRNA biogenesis. By the canonical pathway, miRNA-encoding genes are 

transcribed by RNA polymerase II or III into primary miRNAs (pri-miRNA), which are 

processed by Drosha in complex with DiGeorge syndrome chromosomal region (DGCR8), 

generating precursor miRNAs (pre-miRNA). By the non-canonical pathway are intron-derived 

pre-miRNAs generated during splicing. Exportin-5 transports pre-miRNAs to the cytoplasm 

where they are cleaved by Dicer in complex with TAR RNA-binding protein (TRBP), resulting 

in a miRNA duplex. The guide strand of the duplex is loaded into the RNA-induced silencing 

complex (RISC) with Argonaute (AGO) proteins, enabling binding and regulation of target 

mRNAs.    
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Function of miRNAs 

The RISC complex consisting of the miRNA guide strand and AGO proteins are 

responsible for post-transcriptional regulation of target mRNAs [132]. RISC binds the 

target by complementary base pairing between the guide strand and the miRNA 

response element on the target mRNA. Canonical miRNA-mRNA interactions occur 

by full complementarity to the seed region in the 5’-end of the miRNA, which 

predominantly is a 6-mer sequence within position 2-8 or 7-mer from nucleotide 1-8, 

though extended seed regions from position 4-10 are observed [136–138]. While seed-

mediated interactions constitute the majority of miRNA-mRNA interactions, only 

one-third of the interactions involve entirely complementary [139]. Generally, the 

seed interaction is accompanied by additional base pairing, which increases stability 

and specificity of the miRNA-mRNA interaction [139,140]. The majority of miRNA 

binding sites are located in the 3’ untranslated region (3’ UTR) of the target mRNAs; 

however, binding sites have also been observed in promoter regions, coding regions, 

and 5’ UTR [139–144]. Additionally, non-canonical seedless miRNA-mRNA 

interactions have been identified, which alone only leads to moderate or none target 

regulation, but act cooperatively with seed interaction in target binding and regulation 

[138,139,145].  

The degree of complementarity between the miRNA and target mRNA determines the 

mechanism of gene silencing. A fully complementary miRNA-mRNA interaction 

causes mRNA cleavage by the endonuclease AGO2, whereas imperfect 

complementarity leads to translational repression by AGO-mediated RNA 

interference and/or mRNA destabilization and degradation by deadenylation and 

decapping [136,146]. The full miRNA is rarely fully complementary to its target 

resulting in RNA hybrids with mismatches and characteristic bulges, preventing 

AGO2 endonuclease activity [136,147]. In addition to the primarily repressive 

function, miRNAs have been reported to mediate translational activation under 

specific conditions [144,148].  

A miRNA can regulate several target mRNAs, and conversely, several miRNAs can 

cooperatively regulate a specific mRNA, and thereby miRNA-mediated gene 

regulation affect multiple signaling pathways [117,149]. The action of miRNAs is a 

dynamic process, equilibrating gene expression to a steady-state and is influenced by 

shuttling of RISC between intracellular compartments in addition to abundancy and 

availability of miRNAs and their specific target mRNAs [150]. miRNAs exhibit tissue 

and cell type-dependent expression patterns, specifically, the Functional Annotation 

of the Mammalian Genome (FANTOM) research consortium showed that one-fourth 

of miRNAs are broadly expressed across human cell-types, half of them are cell type 

enriched, and the remaining are with low expression levels [124,151]. In addition, 

affected mRNA targets are distinct across cell types [149], making the miRNA’s 

targetome even more comprehensive and complex. 
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miRNAs in B-cell differentiation and function 

The regulatory mechanism by miRNAs is important in the complex and highly 

regulated B-cell differentiation and activation. Each B-cell differentiation stage 

possesses a characteristic miRNA expression profile [152,153] and the direct impact 

of miRNAs in regulating differentiation is emphasized by impaired formation of 

normal B-cell differentiation subsets and affected antibody diversity when Dicer, the 

enzyme generating mature miRNAs, is removed in transgenic mice [154,155]. 

Specifically, Dicer ablation blocks transition into precursor B-cells in the bone 

marrow, formation of GC B-cells, and terminal differentiation as modeled in mice 

[154,155].   

miRNA regulation at the specific stages of the B-cell differentiation has been 

extensively explored in vitro and in vivo utilizing ectopic expression and selectively 

targeting. The first identified hematopoietic regulator was miR-181a, of which 

induced expression in hematopoietic stem cells increased the fraction of cells 

committed to the B-cell lineage [156]. In addition, hematopoietic stem cells display 

higher endogenous expression of miR-181a than precursor B-cells, supporting the 

regulatory function in early B-cell development [152,157]. Likewise, the miR-17~92 

cluster consisting of miR-17, miR-18, miR-19a, miR-19b, miR-20a, and miR-92-1  is 

highly expressed in hematopoietic progenitor cells and deletion of the entire miR-

17~92 locus in mice impaired transition from progenitor to precursor B-cells through 

increased expression of the pro-apoptotic protein Bim [158]. Moreover, by restoring 

expression of specific miRNAs of the miR-17~92 cluster in hematopoietic stem cells 

isolated from miR-17~92 deficient mice, miR-17 alone was identified to rescue the 

progenitor to precursor B-cell transition, highlighting miR-17 as a central regulator of 

early hematopoiesis [159]. In addition, the miR-17~92 cluster is involved in 

regulation of central tolerance occurring in the bone marrow, where the BCR is tested 

for autoimmunity to eliminate self-reactive B-cells [159]. The model utilized for 

investigation of central tolerance was the IgMb –macroself mice, engineered to 

ubiquitously express antigens reactive to the heavy constant region of IgM, the BCR 

present on immature B-cells. Therefore, as a consequence of central tolerance, these 

mice lack mature B-cells. Reconstituting these mice with bone marrow from transgene 

mice overexpressing the miR-17~92 cluster rescued B-cell development leading to 

occurrence of mature B-cells. Furthermore, reconstitution of  individual miRNAs of 

the cluster lead to identification of miR-19 as the key regulator of central tolerance by 

targeting PTEN [159].  

The most essential miRNA in regulation of the GC reaction and terminal stages of the 

differentiation is miR-155, which is highly expressed in GC B-cells [153]. The 

importance is emphasized by impaired GC formation and immune response when 

miR-155 is deleted in mice [160,161]. Immunization of miR-155-deficient mice 

resulted in fewer GC B-cells and revealed defect in immunoglobulin class switch into 

IgG1, evidenced by less production of antigen-specific IgG1 in contrast to normal 

abundance of IgM. Moreover, secondary immunization showed impaired memory 

response in absence of miR-155 due to reduced differentiation into plasmablasts and 
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memory B-cells [161,162]. In support, ectopic expression led following antigen 

introduction to enriched and enlarged GCs shown by immunohistochemistry and 

increased number of class-switched antibodies determined by fluorescent activated 

sorting followed by western blotting [160]. The critical role of miR-155 is mediated 

by regulating the gene encoding the transcription factor PU.1, which is crucial for B-

cell commitment and differentiation [161]. In addition, AID is another important 

target of miR-155. Disruption of the miR-155 binding site in the 3’ UTR of Aicda 

(AID) reduced AID expression in vitro as well as temporally in vivo and functionally 

affected BCR affinity maturation and immunoglobulin class switch, assessed by IgG 

binding efficiency and the percentage of IgG isotypes upon immunization [163]. 

Collectively, these studies document that miR-155 is pivotal for B-cell differentiation 

and effective immune response.  

 

 

 

miRNAs in DLBCL and treatment response 

As miRNAs are involved in essential cellular processes, including cancer-relevant 

pathways, deregulation enables cancer cells to rewire several mechanisms to provide 

survival advantages. Consistently, aberrant miRNA expression has been 

experimentally verified to be implicated in the pathogenesis of several malignancies 

including DLBCL [164,165]. Moreover, the regulatory network of miRNAs is 

affected by the 3’ UTR shortening generally observed in cancer. By alternative 

cleavage and polyadenylation, cancer cells acquire shorter mRNA isoforms, enabling 

genes to avoid post-transcriptional regulation by miRNAs due to loss of miRNA-

response elements [166,167]. 

miRNAs are recognized to act as oncogenes when their overexpression favor 

malignant transformation and progression by promoting proliferation and evading 

growth suppression and apoptosis. Likewise, miRNAs function as tumor suppressors 

preventing tumorigenesis through inhibition of proto-oncogenes [164,168]. However, 

the role of a miRNA is ambiguous, and studies of miRNAs in cancer are complicated 

by the genetic diversity of tumors, the fact that several miRNAs often are dysregulated 

in a tumor, and that miRNAs targets multiple mRNAs that furthermore is influenced 

by the cell-of-origin and the microenvironment surrounding the malignant cells 

[149,169,170]. For example, miR-148a appears to act as a tumor suppressor in skin 

and colorectal cancer by targeting genes involved in apoptosis, tumor invasion, and 

metastasis [171,172]. In contrast, high expression of miR-148a is associated with 

inferior outcome in DLBCL, which is suggested to be caused by attenuated immune 

response [173].     

The underlying mechanism of dysregulated miRNA expression is not always known. 

However, miRNAs are often located in cancer-associated genomic regions and fragile 

sites, frequently leading to miRNA deletion and decreased expression in consistence 

with the general miRNA downregulation observed in cancer [164,174,175]. 
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Furthermore, epigenetic silencing of miRNAs, including DNA methylation and 

chromatin modifications, has been documented in multiple malignancies [176–178].  

The pathogenic impact of miRNAs as well as their diagnostic, prognostic, and 

predictive potential have been extensively studied in DLBCL. Despite highly 

heterogeneous miRNA expression profiles [179], several individual miRNAs and 

miRNA signatures have been identified to characterize different aspects of DLBCL 

[180,181]. Diagnostic challenges, including morphological similarity between GCB-

DLBCL and high-grade FL, have been suggested to be overcome by including 

expression of miRNAs in the miR-17~92 cluster, and likewise, distinction between 

DLBCL and HL can be supported by determining the miR-155 expression [182,183]. 

Furthermore, distinct miRNA expression signatures divide DLBCL into the 

prognostic ABC and GCB subclasses, similar to GEP-based classification [180]. 

However, miRNA expression-based diagnostics and prognostics has not entered 

clinical practice, and with the field focusing on genetics, miRNAs mostly contribute 

with biological information rather than as a clinical tool.  

Commonly deregulated miRNAs in DLBCL include the miR-17~92 cluster, miR-21, 

miR-34a, and miR-155, and are hence among the most thoroughly studied utilizing 

global miRNA profiling and functional in vitro and in vivo models.  

 

 

miR-17~92 cluster 

The miR-17~92 cluster is encoded by C13orf25, which is upregulated in DLBCL 

[184]. Functional evidence of oncogenic impact emerged from transgenic mice, in 

which overexpression of the cluster in lymphocytes led to development of 

lymphoproliferative disease. Furthermore, lymphocytes with ectopic expression of the 

miR-17~92 cluster exhibited increased proliferation and diminished activation-

induced apoptosis by suppressing the tumor suppressor PTEN and pro-apoptotic 

factor Bim [185].  

Transcription of miR-17~92 is directly activated by MYC, an oncogene frequently 

dysregulated and involved in the pathogenesis of DLBCL [186]. MYC and miR-

17~92 cooperatively contribute to B-cell lymphomagenesis and progression, 

supported by suppressed tumorigenesis in MYC-driven lymphoma mice upon miR-

17~92  knockout. Furthermore, genetic ablation of individual miRNAs of the cluster 

revealed miR-19a and miR-19b as key components for the oncogenic properties of 

the cluster [187].  

miRNA profiling of DLBCL cell lines identified miR-17, miR-19b, and miR-20a to 

differentiate ABC and GCB classified cell lines, with higher expression in ABC-

DLBCL [188]. Conversely, assessment of expression levels of the individual miRNAs 

in clinical samples did not reveal significant association to the molecular ABC/GCB 

subclasses but documented inferior outcome of DLBCL patients expressing low levels 

of miR-19a [180,189].   
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miR-21 

The oncomiR, miR-21, has been experimentally validated to play an important role in 

the pathogenesis of DLBCL [190]. The oncogenic properties are supported by 

elevated expression levels in most cancer types [191–193] and further by functional 

studies of ectopic expression of miR-21 in vivo leading to development of lymphoma. 

In addition, blockage of ectopic miR-21 expression by doxycycline-dependent 

repression of the Cre/loxP activating system caused tumor regression, indicating miR-

21 not only to be involved in malignant transformation and development but also in 

maintenance and progression, whereby miR-21 addiction in lymphomagenesis was 

suggested [190].  

miR-21 has been reported to affect response to CHOP, as knockdown of miR-21 

sensitized DLBCL cells to treatment by affecting PI3K/AKT signaling through 

regulation of PTEN [194]. In contrast, prognostic evaluation of miR-21 expression in 

independent clinical studies representing 157 patients revealed high levels of miR-21 

in serum and DLBCL tissue to be associated with superior outcome [191,195,196], 

which challenges the common perception of miR-21 as an oncomiR and emphasizes 

the ambiguity of studying miRNAs. Moreover, several studies report miR-21 to be 

higher expressed in ABC-DLBCL as compared to GCB [191,196].      

 

 

miR-34a 

As opposed to the other commonly deregulated miRNAs described, miR-34a function 

as a tumor suppressor that is downregulated in DLBCL [197,198]. The gene encoding 

miR-34a is located in the chromosomal region 1p36.22, which frequently is deleted 

in cancer [174]. In addition, hypermethylation of promotor-associated CpG islands 

results in repression of miR-34a expression in several malignancies including DLBCL 

[197–199]. 

Tumor suppressive activity of miR-34a was evidenced in a xenograft mouse model of 

DLBCL, where systemic administration of miR-34a reduced tumor growth by 

inducing apoptosis [198]. Further examination of the underlying tumor suppressive 

mechanisms showed that miR-34a inhibits growth by targeting the transcription factor 

FoxP1 [198,200], a hematopoietic oncogene with prognostic impact in DLBCL [201].  

Moreover, miR-34a expression has been documented to increase sensitivity to 

doxorubicin in functional studies of DLBCL cell lines and in addition being higher 

expressed in DLBCL patients with predicted sensitivity to doxorubicin [181]. In 

support, prognostic evaluation of miR-34a revealed superior clinical outcome for 

DLBCL patients with high miR-34a expression [181,189].  
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miR-155 

miR-155 encoded by BIC (B-cell Integration Cluster, MIR155HG) possesses 

oncogenic activity in numerous solid and hematological malignancies [202]. The 

diagnostic, prognostic, and predictive biomarker potential of miR-155 in B-cell 

malignancies is reviewed in paper I [183].   

Elevated expression of miR-155 is documented in DLBCL patients, with higher 

expression in ABC classified patients compared to GCB assessed using several 

technical platforms including quantitative PCR, droplet digital PCR, and microarray 

in a total of 370 patients [180,191,203–205]. Transcription of miR-155 is directly 

activated by MYB and NF-κB [206,207], both overexpressed in DLBCL [32,208]. 

Additionally, BCR activation induces miR-155 expression; thus, the constitutive BCR 

and NF-κB signaling observed in ABC-DLBCL explain why ABC classified patients 

exhibit high levels of miR-155 [29,30,33].  

miR-155 has shown specific importance in the pathogenesis of B-cell malignancies. 

Ectopic expression of miR-155 in transgenic mice resulted in development of B-cell 

lymphoma [209–211], and subsequent withdrawal of miR-155 caused rapid tumor 

regression partly by apoptosis [210]. Furthermore, the potential of miR-155 as a 

therapeutic target has been investigated by injecting anti-miR-155 into tumor site of 

a miR-155 addicted lymphoma xenograft, which substantially diminished the tumor 

size and thereby presented promising anti-tumor effect of anti-miR-155 treatment in 

vivo [210,211]. Currently, safety, tolerability, pharmacokinetics, and potential 

efficacy of a miR-155 inhibitor (Cobomarsen, MRG-106) is tested in phase I clinical 

trial (NCT02580552) with inclusion of patients suffering from ABC-DLBCL, CLL, 

cutaneous T-cell lymphoma among others. For ABC-DLBCL, patients intolerant to 

immuno-chemotherapy or with relapsed/refractory disease are eligible for inclusion 

and are treated with subcutaneous or intravenous administration of Cobomarsen as 

monotherapy [212], but no study report has yet been posted. However, as miR-155 

plays a fundamental physiological role in the hematopoiesis and immune response, 

systemic expression of this targeted inhibition is a challenge, potentially causing 

severe side effects. 
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2. HYPOTHESIS AND AIMS 

Patients diagnosed with DLBCL very often suffer from primary refractory disease and 

relapse by treatment-induced immuno-chemotherapy resistance, demonstrating that 

standard provided R-CHOP regimens are not sufficient to cure all patients, present, 

50-80% of DLBCL patients are alive after 5 years, depending on their risk profile. 

Early detection of drug-specific resistance is of great importance to guide individual 

therapy including selection of alternative treatments and sparing patients for 

inefficient, but still toxic therapy. Identification of underlying drug resistance 

mechanisms and biomarkers are therefore pivotal when attempting to overcome 

treatment resistance and improve clinical outcome. 

The hypothesis of this PhD project was that miRNAs are important determinants in 

the response to immuno-chemotherapy in DLBCL and that we by functional in vitro 

studies and analysis of primary clinical samples can improve the understanding of 

miRNAs biological function in drug resistance and the potential of stratifying patients 

according to risk. Following aims were conducted to address the hypothesis:  

Aim I: To obtain an overview of the potential of miR-155 as a diagnostic, prognostic, 

and predictive biomarker as well as target of novel treatments in B-cell malignancies.   

Aim II: To pinpoint miRNAs involved in response to vincristine, a cornerstone of the 

R-CHOP treatment regimen, by following steps: 

• Determination of differential miRNA expression between vincristine sensitive 

and resistant DLBCL cell lines. 

• Functional manipulation of miRNA expression to validate the impact of the 

candidate miRNA on vincristine response in DLBCL cell lines. 

• Clinical data analysis to evaluate the prognostic impact of the candidate miRNA 

in DLBCL and its association to cell-of-origin.  

Aim III: To overview the clinical and biological risk markers of vincristine-induced 

neuropathy in hematological malignancies.   

Aim IV: To develop a classifier predicting drug response and outcome based on 

expression of miRNAs associated with response to R-CHOP constituents by: 

• Determination of differential miRNA expression between DLBCL cell lines 

categorized as sensitive, intermediate responsive, and resistant to the individual 

component of R-CHOP. 

• Bioinformatic modeling to identify the strongest combination of single candidate 

miRNAs associated with chemotherapy response and outcome.  
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3. METHODOLOGICAL 

CONSIDERATIONS 

Material, methods, and statistics applied in this PhD dissertation are described in 

material and methods sections of the respective papers, which contain all relevant 

information regarding setup, reagents, and experimental procedure. The following 

section describes the main technologies used and critically evaluates their potential, 

applicability, and limitations.  

 

 

Cell lines as a pre-clinical model 

A panel of 15 DLBCL cell lines has been used for dose-response analysis of R-CHOP 

constituents, and for selected cell lines functional studies has been performed 

including ectopic expression, targeted repression, and CRISPR-Cas9-mediated 

knockout. 

Cell lines were passaged regularly with frequencies depending on the specific growth 

rate of the cell line. As the proliferative ability of cells is affected by the number of 

passages, the time of passaging, and the cell confluency, cell line experiments were 

coordinated according to passaging and to be performed when cells were growing 

exponentially. Cell lines were maintained in culture for no more than 20 passages to 

minimize the risk of microbial infection, cross-contamination, and clonal subselection 

of culture adjusted subpopulations. Cell line identity was confirmed when cells were 

thawed and at the end of the culturing period by short tandem repeat (STR) profiling 

of eight tetranucleotide repeat loci and the amelogenin gender-determining marker. 

Furthermore, cell lines were screened for mycoplasma infection, since infection could 

affect cellular growth, metabolism, and genetic profile [213].  

In vitro human cell lines are a valuable pre-clinical model, which has been widely 

used in cancer research, including pharmacologic investigation of therapeutics, 

identification of response and resistance mechanisms as well as examination of 

pathogenesis. However, it is important to take into account that the genetics of a cell 

line resembles those in the tumor of origin and therefore, interpersonal variation 

between patients and the substantial heterogeneity of cancer have to be addressed by 

using a panel of cell lines. Panels of cell lines are useful for initial screening of drug 

response; however, interpretation of the degree of response combined with multi-

omics data needs to be validated in functional and mechanistic studies as well as being 

clinically investigated.  

The application of in vitro models has the advantage of being fast, cost-efficient, easy 

to handle and to genetic manipulate, and ethically beneficial in comparison to in vivo 

models. Furthermore, cell lines are an unlimited material source as they can be 

passaged repeatedly once they are established and recovered from cryopreservation 
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due to the relatively high degree of homogeneity. Thus, cell line culturing enables 

potentially infinite quantities for repetition of several experimental assays. However, 

it is important to be aware of the disadvantages. During continuous culturing, cell 

lines are prone to genotypic and phenotypic drift where subpopulations may arise and 

cause phenotypic alterations over time by selection of clones with growth advantages 

[214,215], which complicates the biological interpretation of results as well as the 

data reproducibility across facilities. However, most human cell lines grown in vitro 

retain their molecular features of their tumor of origin. Another limitation of human 

cell line models is the lack of complexity, as influence of the tumor microenvironment 

cannot be addressed in these simplified systems, requiring findings to be functionally 

validated in more complex systems such as in vitro co-cultures and animals. Several 

of the limitations of in vitro models are in this dissertation compensated for by 

performing technical and biological replicates, using several authenticated cell lines, 

and importantly by combining cellular and clinical findings.   

 

 

Dose-response experiments  

For each drug component of R-CHOP, dose-response experiments were conducted in 

biological triplicates using three independent cultures of the same cell line.  Fifteen 

DLBCL cell lines were seeded at individual concentrations and incubated for 24 hours 

prior to exposure to at least 16 doses dependent on the drug for 48 hours, ensuring at 

least one cell cycle for all cell lines. The optimal seeding concentration was 

determined for each cell line prior to drug challenge to ensure exponential growth 

throughout the experiment in the untreated control.  

An MTS assay was applied to estimate the effect of the drug by assessing the amount 

of metabolic active cells. This assay exploits the mitochondrial reduction of 

tetrazolium to formazan, a colored product directly proportional to metabolic active 

cells. The method is simple, rapid, and reproducible, making it ideal for 

comprehensive screening assays; however, cells with low metabolism as well as cells 

in cell cycle arrest are indistinguishable from dead cells. In addition, as cell viability 

is estimated indirectly by cell metabolism, no information is obtained on whether the 

effect of a drug is caused by cell cycle arrest, apoptosis, or both. Thus, additional 

methods are required to determine the mechanism of drug response. Assessment of 

the number of living cells can be obtained using vital dyes such as trypan blue, which 

is applied in the functional studies of this dissertation. As living cells possess intact 

cell membranes, the dye is excluded, whereas dead cells are permeable and absorb the 

dye resulting in a blue cytoplasm in the dead cells as opposed to a clear cytoplasm in 

viable cells. However, subsequent cell counting is performed using a hemocytometer, 

introducing the risk of counting errors and interobserver variability, thus, to ensure 

representable assessment two chambers and at least 100 cells were counted, and all 

chambers when cell number was less than 100. Further exploration of the functional 

effect of the drug can be conducted by investigating proliferation, cell cycle 
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distribution, and apoptosis by flow cytometry analysis, which however, is expensive, 

time-consuming and therefore not suitable for large-scale experiments.  

Dose-response experiments are often analyzed by comparing cell viability between 

treated and untreated cells, by which the growth inhibition is estimated. Drug 

efficiency is subsequently reported by GI-50, the drug concentration at which the 

relative cell viability is 50% after a fixed time. However, response to a given drug is 

dependent on exposure time and cellular growth rate, thus when the drug exposure 

time is fixed for several cell lines, slow proliferating cells will appear less sensitive 

than fast proliferating ones and vice-versa.  

In the high-throughput dose-response screening experiments reported in this thesis, a 

Growth-based dose-response model (G-model) was used, considering both drug 

exposure time and cell growth kinetics, to enable comparisons between drug 

sensitivity in the DLBCL cell lines [216]. The experimental setup consists of cell line-

specific seeding in two 96-well plates in which they incubate for 24 hours before 

increasing drug concentrations and drug-solvent are added to each plate (Figure 7). 

Background absorbance is measured immediately after drug exposure for plate 1, 

while plate 2 is incubated for 48 hours prior to measurement. In addition, prior to 

dose-response analyses, the viability of each cell line in presence of the respective 

drug-solvents is tested, and moreover, a background control for each drug 

concentration is performed to correct for potential influence of the drug on 

absorbance.  

 
Figure 7. Dose-response screens. DLBCL cells are seeded in two plates with cell line-specific 
seeding concentrations on day 0. After 24 hours of incubation, increasing drug concentrations 
are added to both plates, and plate 1 is immediately hereafter exposed to MTS reagent for 2 
hours and absorbance is subsequently measured.  Plate 2 are incubated for 48 hours prior to 
MTS reagent exposure and measurement of absorbance. Wells labeled M contain media and 
are not included in the analysis, C0 wells contain drug solvent, and B denotes blank wells 
containing culture medium and drug solvent. Boarder wells are omitted from data analysis.   
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The statistical workflow of the G-model involves pre-processing of measured 

absorbance to account for multiplicative errors and to correct for background 

absorbance caused by the drug, estimation of cell line doubling times, isotonic 

regression modeling of dose-response curves, and a bootstrap test for estimation of 

confidence interval for summary statistics [216]. Summary statistics of the G-model 

includes GI-50, the concentration at which total growth of the cells is inhibited (TGI), 

the lethal concentration at which the cells decay with a halving time of 48 hours 

(LC48), and the area under the positive part of the dose-response curve (AUC). 

Comparison of DLBCL cell lines was conducted by ranking them according to the 

AUC, which has been documented as the best summary statistics of dose-response 

experiments [217], followed by trichotomization into groups of sensitive, 

intermediate-responsive, and resistant cell lines.  

Despite the entire R-CHOP regimen being used in the clinical setting, single drug 

screens were conducted rather than combinational studies since assessment of 

combination effects between drugs is far from simple when drugs have nonlinear 

dose–response curves like the components of the R-CHOP [181,216,218,219]. The 

assessed combination effect will depend on the single-dose concentration at which 

they are tested [220–222] and the order in which the drugs are given [219]. Despite 

utilizing the same ratio between drugs like the one used in the clinical setting, the 

actual concentration of each drug within the tumor is unknown and varies between 

patients influenced by drug metabolism, drug distribution, and tumor site location. 

Moreover, varying combinational effects occur in the clinical settings upon dose 

reduction or drug substitution. In experimental multi-drug screens, it is impossible to 

distinguish underlying response and resistance mechanisms, as both single- and multi-

drug resistance could impair treatment efficacy. However, recent results from study 

of the mechanistic basis of R-CHOP showed no synergistic interaction between 

components but very low cross-resistance. Thus, the drug components of R-CHOP 

appear to be independently effective without overlapping resistance mechanisms [65], 

though with different potency complicating biological interpretation of combinational 

drug studies.  

 

 

Functional in vitro studies  

By combining global miRNA expression profiles of untreated DLBCL cell lines and 

specific drug-responses, we identified miRNAs associated with R-CHOP 

constituents. As the biological role and impact of miRNAs on actual drug response 

cannot be interpreted alone from association to drug response, functional studies 

including ectopic expression, targeted repression, and CRISPR-Cas9-mediated 

knockout of miR-155 was conducted for direct assessment of the role and impact on 

vincristine response.  

Experimental manipulation of miRNA expression can be accomplished by direct 

cellular delivery of synthetic RNA molecules or by vector-based approaches. As 
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direct delivery approach of synthetic miRNA mimics and inhibitors potentially 

require recurrent delivery as well as reduced efficiency in hard-to-transfect cells such 

as B-cells [223], the vector-encoded approach was applied to ensure stable and 

persistent transgene expression. Specifically, H1 RNA polymerase III promoter-

driven expression of a miRNA mimic encoding pri-miR-155 and simultaneous 

expression of a green fluorescent protein (GFP) driven by a phosphoglycerate kinase 

(PGK) promoter was utilized for upregulation of miR-155.  

Suppression of miRNAs is based on full complementary antisense molecules that bind 

the miRNA of interest and sequester the miRNA from its target mRNA. All miRNA 

inhibiting strategies employ sequence complementarity and include antagomiRs, 

RISC-loaded shRNAs, miRNA sponges, Tough Decoys (TuDs) among others. 

Comparison of inhibitors documented robust and high suppressive capacity of TuD 

inhibitors, which consist of an RNA hairpin with two miRNA binding sites [224]. 

Therefore, an RNA polymerase II driven fusion transcript containing the reporter gene 

GFP and the TuD inhibitor directed towards miR-155 was utilized for miR-155 

suppression. As functional studies were conducted in four DLBCL cell lines 

exhibiting various sensitivity to vincristine and endogenous levels of miR-155, both 

up- and down-regulation were applied. The endogenous level influences the effect of 

the experimental expression manipulation, as it is challenging to increase expression 

in cells with high intracellular levels and to reduce expression in lower-expressing 

cells. Furthermore, it is difficult to increase sensitivity in intrinsically sensitive cell 

lines and likewise, to induce resistance in intrinsically resistant cells. Thus, to ensure 

phenotypic effect, both up- and down-regulation were performed in all four cell lines. 

Evolutionally, cells have been selected to possess defense mechanisms against 

acquisition of foreign genetic molecules, including naked DNA and RNA, which 

induce an interferon reaction by nucleic acid sensing pathways [225,226]. Thus, these 

mechanisms have to be overcome for delivery of vectors encoding the sequence of 

interest, which can be achieved by applying chemical and physical agents whereby 

DNA or RNA cargo can be transfected into cultured cells. However, this can be 

difficult and even impossible in certain cell types, including B-cells, in which 

introduction of sequences very often only can be obtained by viral-based transduction 

[227]. Most commonly used are adeno-associated virus and lentivirus, of which the 

latter was used for functional studies in this dissertation due to its ability to infect and 

integrate a transgene randomly in the genome of nearly all mammalian cell types. 

Lentiviral vectors are derived from Human Immunodeficiency Virus-1 (HIV-1), a 

genus of the retrovirus family characterized by their RNA genome and the ability to 

integrate into the genome of target cells by utilizing their reverse transcriptase and 

integrase enzymes. This, combined with the capability of lentivirus to infect both 

dividing and non-dividing cells, makes these vectors optimal vehicles for gene 

delivery. To ensure safety of use, three generations of hybrid lentiviral systems with 

depleted replication of wild-type virus have been developed and encompass multiple 

plasmids encoding the viral proteins [228,229]. Nowadays, the third-generation 

system is most commonly used and consists of four plasmids encoding core 
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components of HIV-1 (Figure 8). The packaging GagPol plasmid encodes the Gag 

gene encoding structural viral components including matrix, capsid, and nucleocapsid 

and the Pol gene encoding enzymes essential for virus maturation and integration 

(protease, reverse transcriptase, and integrase). The Rev plasmid encodes the Rev 

proteins, which bind to viral transcripts containing the Rev responsive element (RRE), 

facilitating export of the viral mRNA from the nucleus to cytoplasm. The transfer 

plasmid contains the gene of interest flanked by two long terminal repeats (LTRs), 

which are not translated into protein but are essential for incorporation into the host 

genome. Lastly, the env plasmid encodes envelope proteins that form the outer 

structure of the virus. The gene encoding the envelope proteins in HIV-1 has been 

exchanged to the gene encoding the envelope of vesicular stomatitis virus 

glycoprotein (VSV-G), which targets the LDL receptor present on almost every all 

cell type and thereby expands the viral tropism [230,231]. In addition, VSV-G 

enhanced the stability of the virus particle, making high titer concentrations possible 

by ultracentrifugation [231]. To generate lentivirus, the four plasmids were co-

transfected into HEK293T cells (Human Embryonal Kidney), which have been 

engineered to have high transfection efficiency and to stably express the SV40 large 

T-antigen.   

 

 

 

Figure 8. 3rd generation lentiviral vector system. A) An overview of the four plasmids used 
to generate lentivirus. B) A schematic illustration of virus production. By co-transfection of 
HEK293T cells with the respective plasmids, lentivirus was produced and  harvested from the 
cell culture supernatant. B-cells were transduced with lentivirus to stably express the gene of 
interest. Adapted from [289].  

A) 

B) 
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When applying functional genetic perturbation studies, it is important to consider 

potential cellular compensatory mechanisms attempting to maintain fitness and 

viability. For instance, by redundant genes, loss of one gene is compensated by 

expression of another gene with a similar function, leading to none or diminished 

phenotypic effect. Likewise, if the manipulated gene is involved in a stringently 

regulated pathway, the altered expression could affect the expression of other genes 

within the pathway to preserve its function. Moreover, induced up- and 

downregulation can be compensated by transcriptional adaption resulting in 

equilibrium. Other drawbacks of downregulation using TuD inhibitors are that it 

mostly leads to partial gene silencing and potentially has off-target effects, thus 

CRISPR-Cas9 mediated knockout of miR-155 was conducted to confirm the 

functional impact on vincristine response. 

CRISPR-Cas9  

The discovery of the CRISPR-Cas9 system revolutionized targeted genome 

engineering and is nowadays the most common technology in genome editing 

[232,233]. Originally, the Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) and CRISPR associated proteins (Cas) were identified in bacteria and 

archaea functioning as adaptive immune system towards bacteriophages and plasmids 

[234]. As the CRISPR type II system is harnessed for eukaryotic genome editing, the 

following section focuses on that specific type.  

When bacteriophages or plasmids infect bacteria, fragments of the foreign DNA are 

integrated into the CRISPR loci of the bacterial genome as protospacers separated by 

short palindromic repeats [234]. These are subsequently transcribed and processed 

into trans-activating RNA (tracrRNA) and CRISPR RNAs (crRNAs), with the latter 

being complementary to the spacer sequences [235]. Upon reinfection, the tracrRNA 

assembled to the crRNA guides the Cas9 endonucleases to complementary target sites 

upstream a protospacer adjacent motif (PAM), whereby Cas9 activity is initiated 

[235]. Cas9 separates the DNA strands and induces a double-stranded break three 

nucleotides upstream the PAM sequence, leading to degradation of the foreign DNA 

[235]. 

By modifications of this bacterial defense system, CRISPR-Cas9 today functions as a 

genome-editing tool, capable of introducing double-stranded DNA break at a specific 

genomic location of interest [232]. The tracrRNA and crRNA have been fused to a 

single guide RNA (sgRNA), which can be designed to target almost all genomic loci 

in proximity to a PAM sequence [232,236]. Target complementarity is mediated by 

20 nucleotides in the 5’end of the sgRNA, corresponding to the crRNA, and the 

tracrRNA functions as a scaffold for Cas9 [232]. Once the sgRNA-Cas9 complex 

binds to its target sequence, the Cas9 generates a double-stranded cut, which the 

cellular DNA repair machinery will attempt to repair by either homology-directed 

repair (HDR) or non-homologous end-joining (NHEJ) (Figure 9), the latter most 

frequently [237]. Repair by NHEJ is a highly error-prone process, resulting in 
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insertions or deletions (indels) of various lengths at the cut site. These indels may 

induce frameshift mutations altering the open reading frame or premature stop codons 

eliminating the production of functional protein, thereby resulting in knockout of the 

targeted gene [233,238]. Thus, NHEJ of Cas9-mediated double-strand break results 

in a heterogeneous population of cells, and therefore, clonal expansion of individual 

clones has to be conducted to establish a cell line with the specific knockout. The 

HDR pathway mediates precise repair using a homologous donor template, which can 

be utilized to introduce or replace specific sequences [239]. However, repair by HDR 

occurs in the late S and G2 phases of the cell cycle [239], making the precise insertion 

of a desired modification a less efficient.  

 

 

 

 

 
Figure 9. The CRISPR-Cas9 system. The genome-editing tool CRISPR-Cas9 is composed of 
two components – the Cas9 endonuclease and a sgRNA complementary to the desired target 
sequence. Once the sgRNA-Cas9 complex binds to the target sequence, Cas9 introduces a 
double-stranded break (DSB), which is repaired by non-homologous end-joining (NHEJ) or 
homology-directed repair (HDR). The most common repair pathway is NHEJ, which is error-
prone, resulting in frequent deletions and insertions (indels) of different lengths. The HDR 
pathway can be employed to introduce or alter a specific sequence by delivering a donor 
template. Figure adapted from [240].   
 

The major advantage of the CRISPR-Cas9 technology is the relative simplicity of 

design, where the sgRNA can target almost any DNA sequence, making the system 

easily programmable. Moreover, by applying multiplex CRISPR using multiple 

sgRNAs, several genes can be targeted simultaneously. In contrast, previous genome-

editing tools such as zinc-finger nucleases (ZFNs) and transcriptional activator-like 

effector nucleases (TALENs) are based on complex DNA-protein interactions, which 

are difficult to design and require substantial optimization and validation [241].  

A disadvantage of the CRISPR-Cas9 technology, as well as ZFN and TALEN, is that 

they by generating double-stranded DNA breaks are dependent on the cellular DNA 

repair mechanisms to function, and as indels generated by NHEJ occurs randomly, 
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gene knockout as a result of frameshift and nonsense mutations does not necessarily 

occur. Moreover, although CRISPR-Cas9 induces double-stranded break in both 

alleles, subsequent repair potentially results in two different indel mutations within 

the same cell. Off-target effects constitute another limitation of CRISPR, which, 

however, is challenging to predict and varies in frequency depending on the sgRNA 

and target sequence [238]. As breaks in non-target sites are caused by the ability of 

Cas9 to cleave DNA in presence of imperfect sgRNA-target complementarity, new 

high-fidelity Cas9 variants have been engineered to reduce off-target cleavage but 

retain high on-target efficiency [242–244]. Another approach limiting off-target 

effects is to decrease the concentration of sgRNAs and Cas9 endonucleases in the cells 

[242]. Since viral delivery leads to stable and persistent expression [233], alternative 

transient delivery methods can be utilized when attempting to reduce off-target 

cleavage. Besides direct delivery of sgRNA and transcribed Cas9 mRNA [245], 

sgRNA:Cas9 complexes can be delivered to the cells as ribonucleoproteins with the 

advantages of being independent of translation into Cas9 protein and the relatively 

short period of Cas9 activity [246,247].  

Several genetic manipulation tools have been developed by utilizing the CRISPR 

system, and an engineered catalytically inactive Cas9 (dCas9), which can be fused to 

different effector domains, leading to CRISPR-based gene activation [248], gene 

interference [248], specific base editing [249], epigenetic modifications including 

DNA methylations and histone acetylation [250] among others, allowing researchers 

to decipher the functional implications of all genes and biological mechanisms. In 

addition, the simplicity of sgRNA design and the capacity to target nearly all genomic 

regions have led to development of genome-wide CRISPR screens utilizing thousands 

of unique sgRNAs targeting various genes [248,251]. By global CRISPR screens, 

researchers are able to identify genes regulating a desired phenotype, and the approach 

is especially useful for studying a phenotype where the underlying genetic alterations 

are poorly understood.  

Even though the CRISPR-Cas9 technology is commonly described as simple, cost-

efficient, and effective, a successful CRISPR gene editing experiment requires 

optimal designing of sgRNA directed towards a target site with high specificity and 

activity, efficient delivery of CRISPR-Cas9 components into target cells, 

determination of the CRISPR-Cas9 activity by indel quantification, and isolation and 

enrichment of clones. Thus, the CRISPR-Cas9 technology involves several choices of 

applications and experimental optimizations. 
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Gene expression  

Gene expression profiling constitutes the second methodological part of this 

dissertation, including determination of both global and single gene/miRNA 

expression in clinical DLBCL samples.  

The microarray platform has for decades been a valuable tool for identification of 

biological characteristics and mechanisms by capturing the transcriptional activity in 

a given sample. Gene expression profiling (GEP) has profoundly impacted biomarker 

discovery and disease characterization, emphasized by several prognostic GEP-based 

classification signatures in DLBCL [24–26,180]. Microarray utilizes hybridization 

between complementary oligonucleotides, where the hybridization intensity 

correlates to the concentration of target bound [252]. However, cross-hybridization, 

limited dynamic range due to background and saturated signals, and dependence on 

existing knowledge of the sequences are significant limitations of the technique. The 

applied GeneChip Human Genome U133 Plus 2.0 platform from Affymetrix analyzes 

the expression of more than 47,000 transcripts, representing 38,500 of the best 

characterized human genes. It consists of more than 54,000 probe sets, which each 

encompasses 11 oligonucleotide probes designed to detect the 3’ end of a gene.  

 

Determination of individual miRNA expressions has been conducted with two distinct 

methodologies, quantitative PCR (qPCR) in paper II and droplet digital PCR (ddPCR) 

in paper IV, which, however, rely on the same principles of PCR and enable detection 

and quantification of specific cDNA targets within a sample. Detection of PCR signal 

is achieved by TaqMan hydrolysis probes, designed with a 5’ fluorescent reporter dye 

and a quencher in the 3’ end. Upon primer extension, the DNA polymerase cleaves 

the probe leading to a fluorescent signal, which increases proportionally with PCR 

product accumulation (Figure 10A) [253].  

qPCR relies on a continuous collection of PCR signals over a range of cycles, which 

are converted into a numerical value. Specifically, the fluorescence intensity for each 

sample is represented by the quantification number (Cq) corresponding to the cycle 

number at which the fluorescent signal crosses the threshold of quantification, with a 

low Cq reflecting high target quantity and vice versa. As the PCR efficiency varies 

between assays, thereby confounding data interpretation, standard curves were 

conducted at least three times on human brain reference cDNA to determine and 

subsequently correct for assay-specific amplification efficiency (Figure 10B). To 

ensure reliable and reproducible qPCR experiments, guidelines for Minimum 

Information for Publication of Quantitate Real-Time PCR experiments (MIQE) have 

been published [254]. Although the MIQE checklist is comprehensive and can be 

difficult to follow entirely in practice, it is important to report sufficient experimental 

information for other researchers to critically evaluate the quality and to reproduce 

results. 

        

The ddPCR application has been developed to provide high precision and absolute 

quantification of nucleic acid targets in a sample. The method relies on the partitioning 
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of a sample into multiple discrete reaction compartments (Figure 10C), where the 

system by Bio-Rad partitions the sample in up to 20,000 uniform nanoliter-sized 

droplets [255]. A PCR run will take place in each individual droplet resulting in 

multiple replicates of a reaction. Upon droplet generation, target molecules in a 

sample will be randomly and independently distributed into the droplet; thus, some 

droplets will contain one or more target molecules, while others will contain none 

(Figure 10C). This nature of random and independent distribution follows the rules of 

Poisson distribution and allows the application of Poisson statistics for calculation of 

the number of target molecules within a sample. All droplets will contain an intrinsic 

fluorescence signal due to imperfect quenching of the fluorophore, however, positive 

droplets containing target nucleic acid will emit a strong fluorescent signal resulting 

from cleavage of the probe. Based on the fluorescence amplitude, a threshold is 

placed, and each droplet is evaluated as either positive or negative, and by applying 

Poisson statistics the absolute concentration can be calculated (Figure 10C) [255].      

 

 

 

Figure 10. Quantification of gene expression. A) The principle of hydrolysis probe-based 
quantification. The primers and probe anneal to the complementary DNA sequences, and 
subsequent primer extension will cleave the probe by the 5’-3’ exonuclease activity of the Taq 
DNA polymerase. Seperation of the fluorescent reporter (R) from the repressive quencher (Q) 
will result in emission of a detectable fluorescent signal. B) Illustration of a standard curve, 
used for qPCR, which is generated by plotting Cq-values as a function of the logarithm of 
reference sample concentration. miRNA expression levels were calculated by normalization to 
endogenous reference genes. C). Presentation of the three steps in ddPCR. The sample is 
partitioned into separate droplets, subjected to PCR cycling with reactions taking place in each 
droplet. The fluorescent signal of each droplet is analyzed. Figure adapted from [290]. 
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The major advantage of ddPCR is the absolute quantification of target sequences, as 

ddPCR counts the number of molecules. For determination of gene expression, the 

absolute quantification is used to calculate the relative expression level of the 

unknown target to a reference. Proper reference genes that exhibit stable and equal 

cellular expression independent of samples are important for both qPCR and ddPCR. 

Endogenous reference genes are used for correction of potential RNA and reverse 

transcription efficiency biases.  

Another advantage of ddPCR is the use of end-point measurements of each reaction, 

making the method independent of reaction efficiency, and enables nucleic acid 

quantification without use of standard curves. Thus, not every PCR reaction has to 

run perfectly, as opposed to qPCR. The massive partitioning of a sample enables 

detection of small fold differences in target sequence between samples to be reliable, 

by reducing the competition for primers and probes from background sequences. 

Furthermore, it facilitates detection of rare targets, which otherwise can be difficult 

due to dilution in a high amount of background sequences. Moreover, the multiple 

reactions ensure that the concentration output is not significantly affected by the 

position of the threshold, and results are not biased by the small fraction of droplets 

that do not reach endpoint. Besides gene expression, ddPCR can be applied for 

assessment of copy number variations, utilizing two probes designed to detect of a 

specific variant and wild type, respectively. For these reasons, the use of the ddPCR 

technology is expanding for both pre-clinical research and clinical approaches.  

 

 



 
SUMMARY OF MAIN RESULTS 

51 

4. SUMMARY OF MAIN RESULTS 

This section presents results generated from the experimental work of paper II [256] 

and paper IV [257]. As paper I is a literature review of the biomarker potential of miR-

155 in B-cell malignancies [183], not including original findings, it is not considered 

in this section. Paper III [96] is also a review on clinical and molecular risk markers 

of vincristine-induced neuropathy. As follow up to this topic, a pilot study was 

performed from which unpublished data are presented.  

 

Paper II 

The aim of this study was to identify miRNAs involved in vincristine response in 

DLBCL. By vincristine dose-response analyses, twelve DLBCL cell lines were 

ranked according to growth inhibition and categorized as sensitive, intermediate, and 

resistant [256]. In order to develop prognostic tools based on pre-treatment features 

of tumors, baseline miRNA expression profiles of each cell line in untreated 

conditions were utilized for differential miRNA expression analysis between 

vincristine sensitive and resistant cell lines. Fifteen differentially expressed miRNAs 

were identified, and miR-155 displayed the largest fold-change, with significantly 

lower expression in vincristine resistant DLBCL cell lines. Consistent with this 

association, suppression of miR-155 in intrinsically vincristine-sensitive SU-DHL-5 

cells induced resistance, and ectopic upregulation increased the sensitivity (Figure 11) 

[256].  

 

A)                                                          B) 

Gene set enrichment analysis (GSEA) of SU-DHL-5 cells with induced expression of 

miR-155 revealed enrichment for genes involved in the G2/M checkpoint and mitotic 

Figure 11. Selected functional assays. A) Suppression of miR-155 by Tough Decoy in SU-
DHL-5 cells induced vincristine resistance. B) Ectopic upregulation of miR-155 in SU-
DHL-5 cells increased vincristine sensitivity. Vincristine response is indicated as the 
number of living cells relative to drug-solvent treated control (0.0µg/mL). MCS, SU-DHL-
5 cells transduced with a vector containing an empty multiple cloning site. Figure from [256]    
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spindle assembly in comparison to control cells. In agreement, these gene sets were 

depleted in SU-DHL-5 cells with reduced miR-155 expression [256], indicating that 

miR-155 and the antimitotic drug vincristine affect the same biological mechanisms. 

Based on these findings, we hypothesized that vincristine resistance mechanisms were 

related to cell cycle regulation. Therefore, genes negatively correlated with miR-155 

expression, which are involved in cell cycle processes, were selected and investigated 

for potential as miR-155 targets. The WEE1 gene possessing a miR-155 binding site 

in the 3’UTR was identified [256] and has also been experimentally verified as a target 

by others [258,259]. Consistently, increased protein levels of Wee1 were observed in 

miR-155 knockout clones [256]. Notably, Wee1 is a kinase regulating cell cycle 

progression at the G2/M transition, which affects sensitivity to antimitotic drugs 

[115]. In accordance, chemical inhibition of Wee1 sensitized wild-type OCI-Ly7 cells 

to vincristine [256]. Together, these results document that miR-155 regulates 

vincristine sensitivity in cultures of GCB-DLBCL cells and further suggest a 

mechanism through regulation of Wee1.  

 

Prognostic impact of miR-155 was assessed in our local cohort and verified in a large 

independent cohort, both of primary DLBCL patients treated with standard R-CHOP. 

Applying dichotomized miR-155 expression, inferior overall and progression-free 

survival was observed for GCB-classified patients with high miR-155 expression, 

whereas no prognostic stratification was obtained when analyzing all DLBCL patients 

or ABC cases (Figure 12) [256]. Multivariate Cox regression analysis confirmed 

independent prognostic effect of dichotomized and continuous miR-155 expression in 

GCB-DLBCL. This suggests that the functional link between miR-155 and vincristine 

response is strong enough to affect the clinical outcome of GCB-DLBCL patients, 

even though they are treated with R-CHOP combinational therapy.  

  

 
Figure 12. Prognostic impact of miR-155. Kaplan Meier analyses were conducted for A) 
ABC- and B) GCB-DLBCL patients. Dichotomized miR-155 expression by median split. 
Figure from [256].  

B) A) 
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Paper III 

Systematic literature review of vincristine-induced neuropathy [96] prompted us to 

conduct a pilot study interrogating the dose-limiting side effect in DLBCL patients 

treated at Aalborg University Hospital. The study aimed at determining the incidence 

of vincristine-induced neuropathy and identification of potential biomarkers 

predicting risk of neuropathy development.  

 

Information on clinical manifestation of neuropathy and any subsequent alteration of 

vincristine treatment was obtained for 92 DLBCL patients treated with CHOP or R-

CHOP by examining medical records. The incidence of vincristine-induced 

neuropathy was 37% and led to alteration of vincristine treatment in 29 out of 34 

patients (Table 2), and the remaining 5 developed neuropathy after treatment was 

completed. The predominant alteration was substitution to vinblastine (Table 2), 

another vinca alkaloid with less neurotoxicity potential [260]. Adjustments of 

vincristine treatment occurred at different times in the course of treatment (Table 2.B).  

 

A) 

 

B)  

 
 

 

 

Several clinical parameters, including age, performance status, creatinine levels, 

among others (Table 3) were examined for neuropathy risk stratification potential, 

however, all without significant difference between patients with and without 

  

Neuropathy 

Treatment alteration 

Dose reduction Substitution Discontinuation All 

All  

        n=92 

+ 34 (37%) 4 (17%) 20 (59%) 5 (17%) 29 

- 58 (63%)     

CHOPI 

 n=23 

+ 11 (48%) 2 (30%) 6 (40%) 1 (10%) 9 

- 12 (52%)     

R-CHOPII  

n=69 

+ 26 (38%) 2 (10%) 14 (65%) 4 (20%) 20 

- 43 (62%)     

Cycle  1 2 3 4 5 6 7 8 

Dose reduction    1  1 1 1 

Substitution 1 1 1 6 5 6   

Discontinuation     2 2 1  

Table 2. Vincristine-induced neuropathy. A) Incidence of neuropathy manifestation and the 

following adjustment of vincristine treatment. I CHOP, CHOEP, CNOP, COP; IIR-CHOP, R-

CEOP, R-CHOEP. + indicates neuropathy, and – no reported symptoms of neuropathy. B) Time 

outline of vincristine alteration in relation to the eight R-CHOP cycles.  
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neuropathy manifestation. Thus, in agreement with findings of the literature review 

[96], none of the clinical parameters display potential as biomarkers of vincristine-

induced neuropathy.  

 Neuropathy  No neuropathy  p 

n, (%) 34 (37%) 58 (63%)  

Gender    

           Female 14 (41.2%) 24 (41.4%)  

           Male 20 (58.8%) 34 (58.6%)  

Age    

          Median 64 64  

          Range 31-83 25-85  

IPI   0.36 

          0-1 10 (29.4%) 23 (39.7%)  

          2-5 22 (64.7%) 33 (56.9%)  

          NA 2 (5.9%) 2 (3.4%)  

Performance status   0.78 

          0-1 28 (82.3%) 49 (84.5%)  

          2-5 4 (11.8%) 6 (10.3%)  

          NA 2 (5.9%) 1 (1.7%)  

Diabetes mellitus   0.92 

          Yes 5 (14.7%) 9 (15.5%)  

          No 29 (85.3%) 49 (84.5%)  

LDH    0.14 

          Normal  13 (38.2%) 31 (53.4%)  

          Elevated 21 (61.8%) 26 (44.8%)  

          NA 0 1 (1.7%)  

Alkaline phosphatase    0.14 

          Normal  18 (53%) 18 (31%)  

          Elevated 16 (47%) 39 (67.2%)  

          NA 0 1 (1.7%)  

Creatinine    0.28 

          Normal  26 (76.5%) 49 (84.5%)  

          Elevated 7 (20.6%) 7 (12.1%)  

          NA 1 (2.9%) 2 (3.4%)  
 
Table 3. Clinical parameters in DLBCL patients with and without neuropathy. P-values 
from univariate logistic regression.  

 

As opposed to the lack of association between clinical parameters and neuropathy 

manifestation, multiple molecular markers were in the literature review identified to 

possess the ability to stratify patients according to neuropathy risk [96].  

In an attempt to stratify chemotherapy resistant and sensitive patients, our research 

group has established predictors of response to standard multidrug regimens. We 

developed resistance gene signature (REGS) classifiers based on systematic in vitro 

dose response drug screens of 26 B-cell cancer cell lines, where the gene expression 

profiles for each cell line in untreated condition were combined with degree of dose-

dependent growth inhibition after exposure to cyclophosphamide, doxorubicin, or 

vincristine [218]. Using REGS, each of the 92 DLBCL patients was assigned a 
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resistance probability for vincristine in the tumor, and subsequent analysis showed no 

significant difference in neuropathy frequency between patients predicted to be 

sensitive and resistant to vincristine (Table 4).  

Vin REGS class Neuropathy 

 + - In total 

Sensitive 18 (56%) 14 (44%) 32 

Intermediate 4 (8%) 9 (92%) 13 

Resistant 11 (34%) 20 (66%) 31 
 
Table 4. Neuropathy incidence in predicted vincristine response classes. No association 
between predicted vincristine response, obtained by REGS classification, and neuropathy 
incidence was observed (χ2 , p=0.09). + indicates neuropathy, and – no reported symptoms of 
neuropathy. REGS, resistance gene signature.  
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Paper IV 

In this study, we elucidated the predictive potential of a miRNA-panel, developed 

from miRNAs identified to be associated with the response of individual compounds 

of R-CHOP. DLBCL cell lines were analyzed with systematic single drug screens of 

each R-CHOP component followed by division into groups of sensitive, intermediate, 

and resistant cells for rituximab, cyclophosphamide, doxorubicin, and vincristine, 

respectively. Differential analysis of baseline miRNA expression was conducted 

between sensitive and resistant cell lines for each drug, resulting in identification of 

43 miRNAs associated with one or more R-CHOP compounds [257].  

For clinical applicability and assessment of predictive potential, miRNAs detected by 

probe sets of the HG-U133 GeneChip were selected for subsequent statistical 

modeling. Specifically, 11 probe sets covering 9 drug associated miRNAs were 

included. Using HG-U133 gene expression profiles and clinical outcome information 

of R-CHOP treated DLBCL patients, training and validation of prognostic miRNA-

panel classifiers were performed for all DLBCL patients and restricted to ABC and 

GCB classified patients. To test both non-parametric and parametric survival analysis 

models, random survival forest and multivariate Cox regression were utilized for 

generation of classifiers. The prognostic performances were evaluated by Brier 

Scores, estimating the predictive accuracy, and time varying area under the ROC 

curves (tAUC). Multiple Cox regression-based classifiers displayed better predictive 

accuracy in comparison to the random survival models, which had higher prediction 

errors (Figure 13A). In GCB-DLBCL, the Cox miRNA-panel constituting probe sets 

detecting miR-21, the miR-23a~miR-27a~miR-24-2 cluster, miR-34a, miR-146a, and 

miR-155 (Table 5), exhibits prognostic performance comparable to IPI (Figure 13B). 

Furthermore, addition of the drug-response associated miRNA-panel to IPI improved 

the prognostic utility of IPI in GCB-DLBCL (Figure 13B).  

 

 

 

 

 
Table 5. Probes and detected miRNAs constituting the multivariate Cox model. The 
miRNA panel model was trained within the GCB subclass of DLBCL patients. Only miRNA 
probes significant in univariate Cox regression analysis were included in this model. Table from 
[257].  
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Figure 13. Evaluation of the predictive potential of generated models in GCB-DLBCL. 
The accuracy of predicted survival by the developed models vs. observed progression-free 
survival assessed by A) Brier Scores and B) time varying area under the ROC curves (tAUC). 
Figures depict means ± 2 standard deviations estimated across the 10 repeats of cross-
validation. The predictive models include multivariate Cox regression models using either age 
(CoxAge), IPI (CoxIPI), expression of miRNAs (CoxMIR), or miRNA expression in 
combination with IPI (CoxMIRIPI), and random survival forest models using expression of 
miRNAs (RSFMIR) or miRNA expression combined with IPI (RSFMIRIPI). The model 
combining the miR-panel and IPI (CoxMIRIPI, dark blue) performed the best with the lowest 
prediction error in A) and the highest area under the ROC curve in B). Time in years. Figure 
from [257]. 

 

Utilizing the developed miRNA-panel classifier alone and in combination with IPI, a 

risk prediction score was calculated for each GCB classified patient. Division into 

groups of high-, intermediate-, and low-risk documented adverse prognosis of high-

risk patients (Figure 14A+B). Thus, miRNAs associated with R-CHOP components 

display the potential to stratify GCB-DLBCL patients into prognostic risk groups, and 

combination of the miRNA panel and IPI improves the prognostic performance. All 

included miRNAs were initially identified to be associated with response to 

doxorubicin and/or vincristine, with high expression levels in sensitive cell lines. In 

agreement, the survival analysis revealed correlation between higher expression levels 

and superior prognosis.  
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Figure 14. Kaplan Meier analysis of risk-groups of GCB-DLBCL patients. Applying the 
A) miRNA panel and B) miRNA panel in combination with IPI, GCB-DLBCL patients were 
classified as low-, intermediate-, and high-risk. P-values from log-rank test. Time in years. 
Figure from [257]. 
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5. DISCUSSION 

This section discusses the overall and additional considerations of presented data. 

Discussion of the main results of each study is included in the papers and will not be 

repeated except for contextual purposes.  

 

 

Treatment challenges in DLBCL 

Cancer therapy is shifting towards precision medicine tailoring therapeutic 

interventions to the individual patient characteristics by integrating clinical 

information and molecular features of the tumor. By moving beyond the conventional 

“one-fits-all” approach, precision medicine aims to identify the medical treatment that 

is likely to confer the greatest benefit to the individual, sparring side effects and the 

expense of interventions likely without efficacy [261]. In DLBCL, the significant 

molecular difference between ABC and GCB subclasses has been employed in 

clinical trials evaluating the opportunity to optimize treatment efficacy by subclass-

specific targeted treatment, yet all eventually failed (Table 1) [68–76]. However, the 

recent genetic classifications have highlighted the extent of molecular heterogeneity 

of DLBCL [58–62], and only if consensus on genetic subgroups are reached a 

trustworthy guidance of therapeutic targeting appear realistic.    

The lack of treatment improvements is multifactorial involving potentially 

overlapping resistance mechanisms between R-CHOP components, overlapping 

toxicities leading to dose reduction or omission, and biological heterogeneity of the 

patient population [110]. The failure of various trials emphasizes that R-CHOP 

constitutes a potent treatment combination that needs further investigation for an 

improved understanding of the underlying response and resistance mechanisms. In 

general, the pharmacological principles and underlying molecular mechanisms of 

multidrug combinations are poorly understood since they often were developed by 

empirical experimentation in patients without further mechanistic analysis. However, 

such information is pivotal for development of new treatment strategies including add 

on drugs. A recent investigation of the pharmacological interaction and cross-

resistance among the R-CHOP compounds revealed clinical superiority by 

independently cytotoxic drugs having non-overlapping resistance mechanisms [65]. 

Therefore, identification of underlying mechanisms and factors involved in response 

to the individual drugs of R-CHOP is crucial for improved understanding of the entire 

regimen.  
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Vincristine-induced neuropathy 

Treatment efficiency is, in addition to resistance, influenced by numerous patient-

related factors, such as pharmacokinetics and treatment adjustments according to 

performance status, co-morbidities, and side effects. The dose-limiting side effect of 

vincristine is neuropathy, where severity increases by cumulative dose [96]. In our 

local pilot cohort, the incidence of vincristine-induced neuropathy was 37%, resulting 

in an alteration of vincristine treatment in all patients with manifestations during the 

course of R-CHOP therapy. We did not assess the impact of vincristine alteration on 

treatment efficacy and outcome due to limited cohort size, unequal treatment 

regiments (CHOP vs. R-CHOP), dose reduction concentration, substitution, and cycle 

number in which treatment was adjusted. Dose reduction of vincristine has been 

shown to confer inferior prognosis in R-CHOP treated DLBCL patients [100], in 

contrast, another study reported that omission of vincristine did not affect outcome 

[262], an inconsistency potentially caused by patient-specific vincristine alterations.   

A significant limitation of the study is that information on neuropathy was obtained 

by clinical interview, introducing the risk inter-observatory variability. Our literature 

study revealed no consensus between studies in neuropathy assessment tools and 

scoring systems, leading to inconsistency in reported incidence, severity, and the risk 

stratifying potential of various clinical and molecular parameters [96]. In agreement 

with findings of the literature review [96], none of the clinical parameters investigated 

in this study exhibited association to neuropathy (Table 3).  

When assessing a potential molecular marker in our pilot study, predicted vincristine 

sensitivity [218] did not display association to neuropathy manifestation (Table 4), an 

observation that could be expected as the sensitivity predictions are based on 

transcriptional profiles of the tumor, whereas neuropathy manifests in neurons. 

Molecular markers of neuropathy risk are therefore presumably germline mutations 

rather than somatic, and in agreement, a study analyzing normal cells isolated from 

acute lymphoblastic leukemia patients identified an association between 

polymorphisms in the drug transporters, ABCC1, ABCC2, and ABCB1, and 

incidence and severity of neuropathy [263,264]. Moreover, inherent mutations in the 

gene encoding the CYP3A5 enzyme, which metabolizes vincristine, have been shown 

to increase the risk of neuropathy, though with some inconsistencies between studies 

[96,108,265]. Unfortunately, we lack normal samples of the patients in this pilot 

cohort, limiting the ability to identify promising markers.  

 

 

miRNA involvement in drug response  

To identify miRNAs implicated in vincristine response, differential miRNA 

expression analysis was performed between sensitive and resistant DLBCL cell lines. 

Since the selected response division of cell lines may influence the output, multiple 

split strategies were applied to ensure a robust result. miR-155 had the highest fold-

change difference irrespective of split strategy and was subsequently functionally 
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verified to increase vincristine sensitivity in GCB-DLBCL cells [256]. Functional 

analyses were conducted in two ABC and GCB cell lines, respectively, to eliminate 

the risk of cell line-specific effect. Although both up- and down-regulation of miR-

155 was performed relative to the intrinsic vincristine response and endogenous miR-

155 level, no effect on vincristine response was observed in ABC-DLBCL [256].  

The rank of cell lines according to vincristine sensitivity, led to the observation that 

the extremes were defined by GCB cell lines, whereas ABC cells were intermediate 

responsive to vincristine despite having high miR-155 expression. Consequently, the 

involvement of miRNAs in vincristine response addressed in this study was restricted 

to GCB DLBCL and could explain why the manipulation of miR-155 in ABC cells 

did not affect vincristine sensitivity. We eliminated the possibility of technical 

limitations since successful transduction was documented by cellular expression of 

the reporter GFP. In addition, applied lentiviral vectors and the subsequent up-

regulation or suppression of miR-155 had no toxic effect on either ABC or GCB cells 

[256]. The functional data indicate that the mechanism of miR-155-mediated 

vincristine response regulation is cell-of-origin selective potentially due to different 

targets affected depending on the cell type in which miR-155 is expressed. As the 

subsequent target gene analysis was restricted to GCB cells, it is arguable that further 

studies should have been performed in ABC cells to examine the possibility of ABC 

and GCB-specific targets.  

 

Pathways affected by miR-155 was examined by GSEA and moreover, gene ontology 

analysis was utilized for identification of miR-155 target genes implicated in 

vincristine response. Although both approaches are prominent standard tools for 

identifying deregulated pathways of various biological states of clinical samples and 

cell lines [266,267], data interpretation of enriched and depleted gene sets should be 

conducted with caution. In GSEA, an enrichment score is calculated for an a priori 

defined set of genes having the same biological function based on their differential 

expression between two biological states or phenotypes [266]. Notably, overlapping 

genes of the respective gene sets lead to outputs with hundreds of significantly 

enriched gene sets, complicating the interpretation and the aim of obtaining a list with 

limited numbers of affected pathways. To alleviate this limitation, we restricted the 

analysis to the ‘Hallmark’ gene sets from the Molecular Signature Database, which 

consists of 50 refined gene sets derived from several founder sets to reduce the 

redundancy across gene sets and provide concise outputs [266,268]. With utility of 

GSEA, the G1/S and G2/M checkpoints and mitotic spindle assembly mechanisms 

were identified as putative downstream effectors of miR-155 [256]. Consistently, the 

E2F transcription factor and Wee1 kinase controlling G1/S and G2/M transition, 

respectively, are experimentally verified targets of miR-155 [258,259,269]. Likewise, 

we observed decreased Wee1 mRNA expression in ectopic miR-155 expressing SU-

DHL-5 cells and, conversely, increased protein abundance in miR-155 knock-out 

clones [256]. Wee1 controls the spindle assembly checkpoint, activated upon 

vincristine exposure due to impaired mitotic spindle formation leading to mitotic 

extension and eventually apoptosis [115]. Chemical inhibition of Wee1 sensitized 
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DLBCL cells to vincristine [256], suggesting that the increased vincristine sensitivity 

observed upon high miR-155 expression is mediated by repression of Wee1, leading 

to continued activation of the spindle assembly checkpoint. However, further studies 

investigating the effect of miR-155 on cell cycle distribution, mitotic spindle 

assembly, and apoptosis are warranted to determine the mechanisms, which can be 

caused by additional targets and cellular pathways. As a specific miRNA has several 

target mRNAs, the phenotypic effect of deregulating the miRNA is most likely 

mediated via multiple targets, of which some potentially reside in the same pathway. 

Therefore, we investigated the pathways affected by miR-155 by GSEA prior to target 

gene analysis, which in addition to Wee1, identified multiple other predicted targets 

involved in cell cycle regulation (CAB39, RPS6KB1, GSK3B, PARD3B, TFDP2, 

C7orf25, PAK2, RBBP4).  

 

Since cell lines are simplified model systems that do not reflect the complexity in 

patients, in vitro findings often need verification in vivo or in 2- or 3-dimensional 

culture assays simulating the natural setting. Alternatively, clinical investigations can 

be conducted to examine the clinical relevance. As the second aim in this thesis was 

to determine the involvement of miRNAs on vincristine response and the impact on 

prognosis, we performed clinical outcome analysis in primary DLBCL patients. The 

in vitro results on subclass-specific effect of miR-155 in addition to the differential 

expression of miR-155 between the subclasses [183,256] prompted us to investigate 

ABC and GCB classified patients separately. This revealed a favorable prognosis of 

GCB patients with high miR-155 expression, whereas no association to outcome was 

observed in ABC-DLBCL cases [256]. Although this finding supports the GCB-

selective role of miR-155 on vincristine sensitivity, it could appear controversial when 

considering the known oncogenic properties of miR-155 [202,209–211]. In general, 

the investigation of miRNAs is complex, and studies inconsistently account as to 

whether a particular miRNA has oncogenic or tumor-suppressive effects [169]. 

However, miRNAs can display duplicity having both properties by targeting tumor 

suppressors and oncogenes, respectively, which furthermore can vary depending on 

the cell type in which it is expressed [124,149,169]. Moreover, miRNAs can modulate 

the tumor microenvironment [170,270–272] and, as in this study, sensitivity to 

treatment [256,273], why the phenotypic effect of a miRNA is a result of all these 

aspects. 

 

In the past years, long non-coding RNAs and circular RNAs (circRNA) have obtained 

increased attention [274,275]. Like miRNAs, these exhibit tissue- and cell type-

specific expression and play a role in normal cellular processes and cancer 

development [274–276], which, however, is largely undefined. The biological 

function of circRNAs is not yet fully elucidated, but miRNA sponging properties have 

been documented for particular circRNAs [277]. Notably, circRNAs display 

promising potential as biomarkers due to their stable circular structure, arising from 

back-splicing where the 3’ end of an exon is covalently joined to the 5’end of the same 

or another exon [275,278].  
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The DLBCL patients included for prognostic assessment have been treated with 

standard R-CHOP; thus, the clinical outcome is a summed effect of all drug 

components of the regimen. Nevertheless, prognostic evaluation of miR-155 

documented increased overall and progression-free survival in GCB patients 

exhibiting high miR-155 expression, indicating that the regulatory role of miR-155 on 

vincristine is strong enough to affect the overall clinical outcome in GCB DLBCL. 

However, considering the complexity of miRNAs, the clinical superiority of high 

miR-155 expression could be caused by additional factors than through vincristine 

response. While the puzzling issue of why miR-155 is not associated with outcome of 

ABC patient remains not fully elucidated, the prognostic significance in GCB-

DLBCL is compelling. Nevertheless, clinical applicability for prognostic assessment 

is doubtable due to the broad range of miR-155 expression.  

 

Based on the identified prognostic impact of miR-155, we aimed at developing a panel 

of miRNAs associated with the individual R-CHOP compounds that could improve 

the predictive potential. By using several markers, the likelihood of capturing the 

spectra of the biology in a heterogeneous tumor is increased, strengthening the 

robustness [279,280]. The initial analysis in paper IV was to identify drug-response 

specific miRNAs. Subsequent filtering of the 43 identified miRNAs to those mapped 

by HG-U133 array probes led to a list of 9 candidate miRNAs, which were used as 

input for modeling of prognostic classifiers [257]. Although the reduction of the 

number of miRNAs is a significant limitation of the study, it was a strategy that 

allowed clinical assessment of miRNA expression in independent clinical cohorts. 

The multivariate Cox regression miRNA-panel model encompassing miR-21, miR-

23a~miR-27a~miR-24-2 cluster, miR-34a, miR146a, and miR-155 displayed the best 

predictive accuracy in DLBCL patients of the GCB subclass, whereas high prediction 

errors were observed for all generated models in ABC classified patients [257]. As 

mentioned above, the study of miRNAs in vincristine response was restricted to the 

GCB subclass, and likewise, GCB cell lines predominate the groups of doxorubicin 

sensitive and resistant cells, emphasizing the different biological pathogenesis of ABC 

and GCB subclasses [24,25]. The majority of candidate miRNAs utilized for 

prognostic modeling are associated with vincristine and doxorubicin [257], which are 

key components of the R-CHOP regimen [84,281], explaining the better performance 

of developed miRNA-panel models in GCB-DLBCL in comparison to ABC-DLBCL.  

 

In addition to the regulatory role of miR-155 on vincristine response documented in 

paper II [256], miR-155 was found to be associated with doxorubicin sensitivity and 

rituximab resistance [257]. The associations are based on statistics; thus, functional 

examination must be performed to determine the direct impact of miR-155 on 

response to these drugs. In contrast, to the identified association between doxorubicin 

sensitivity and high miR-155 expression, suppression of miR-155 in a lung cancer cell 

line increased the sensitivity to doxorubicin [282] whereas we in functional studies of 

DLBCL cells did not observe any effect on doxorubicin response (data not shown), in 

consistence with others [180]. This inconsistency is most likely a result of the tissue 
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and cell-type dependent effect of a miRNA and emphasizes the challenge of 

comparing studies of miRNAs. Of the other miRNAs in the prognostic panel, miR-

34a has by lentiviral intervention been functionally verified to increase sensitivity to 

doxorubicin in DLBCL cells, consistent with the association we observe [181]. 

Contradictory,  miR-21, which we found to be highly expressed in vincristine 

sensitive cells, has been shown to confer resistance towards combinational CHOP 

treatment in a DLBCL cell line [194].  

 

The clinical applicability of the miRNA-panel classifier is limited despite prognostic 

impact similar to what observed for IPI and the ability to improve the prognostic 

performance by combining the miRNA-panel and IPI. However, as a proof of concept, 

it shows that molecular markers can be combined to improve clinical IPI. The primary 

limitation of the classifier is the restriction to the GCB subclass, whereby it is only 

applicable for approximately 50% of patients diagnosed with DLBCL [24,25]. In 

addition, recent observations of genetic heterogeneity within the ABC and GCB 

subclasses have led to molecular classifications based on tumor genetics [58–62] and 

potentially a shift in the paradigm of DLBCL subclassification from transcriptional 

based to rely on genetics [63]. Whether the miRNA panel is associated with the new 

genetic subgroups is yet to be examined.  

Translation of biomarkers and classifiers into clinical practice is challenging and 

requires a strong correlation between biomarker and phenotype, validation in large 

independent cohorts, standardized material handling and detection methods, and 

prospective testing [283]. Moreover, classifiers often involve cohort-based 

normalization and clustering, whereby the assigned subtype can vary depending on 

the tumors included. This is an obstacle for applicability in a clinical setting where 

one patient is classified at a time [55,60].  

Quantification of the miRNAs included in the prognostic panel can be performed by 

the HG-U133 probe sets or by ddPCR, which in contrast measures the mature miRNA 

expression. ddPCR has the advantage of being sensitive, enabling detection and 

quantification of rare and low abundant targets and is therefore a useful approach for 

liquid biopsies [284,285], where molecular markers derived from apoptotic and 

necrotic cancer cells are detected in blood or other body fluids. On the other hand, the 

HG-U133 platform has been widely used for ABC/GCB subclassification [24,25]; 

thus, determination of the expression of the miRNA encoding genes does not require 

additional experimental work. However, IHC is often used for subclassification into 

GCB/non-GCB [52,53], and moreover, the latest recommendation from the WHO is 

to perform ABC/GCB classification using the Nanostring technique [9]. Thus, this 

will require quantification of the seven miRNAs by ddPCR, which will be impractical 

despite the use of multiplex assays.   

 

A limitation of the current work is that the drug compounds of R-CHOP potentially 

have additional mechanisms of actions in humans, which are not possible to assay in 

cultured cells. The antineoplastic effect of rituximab is mediated by direct signaling-

induced apoptosis, complement-dependent cytotoxicity, and antibody-mediated 
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cellular toxicity [286], where we in this study only address the direct apoptotic and 

complement-mediated effect by performing rituximab screens in presence of human 

serum as a source of complement. Likewise, the antibody-mediated killing induced 

by cyclophosphamide through cytokine release and attraction of macrophages was not 

assayed [287], which, however, is a less prominent mechanisms in comparison to the 

alkylating cytotoxic effect. As the primary mechanism of the R-CHOP chemothera-

peutics is blockage of mitosis with utility of various approaches, in vitro analysis was 

appropriate for this study.  
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6. CONCLUSIVE REMARKS & 

FUTURE PERSPECTIVES 

Treatment improvements of DLBCL have been limited in the past decade despite 

several clinical trials based on molecular-guided targeted therapy. Notably, all trials 

utilizing add-on drugs to the standard immuno-chemotherapy regimen, R-CHOP, 

have unfortunately failed to contribute to significant improvements in survival 

outcome. This highlights that the standard R-CHOP regimen is still the most important 

and robust choice of first-line treatment, even if the underlying response and 

resistance mechanisms are not fully understood. This PhD study interrogated the 

involvement of miRNAs on response to R-CHOP components and their potential to 

stratify DLBCL patients according to risk. miR-155 was confirmed to regulate 

vincristine response in GCB-DLBCL cells, potentially by suppressing the identified 

target Wee1. However, further mechanistic studies unraveling the mechanism of 

response is warranted for complete understanding. Prognostic evaluation documented 

superior clinical outcomes of GCB-DLBCL patients with high expression levels of 

miR-155, implying that the regulatory role of miR-155 on vincristine response is 

powerful enough to influence the clinical output despite treatment with combinational 

R-CHOP therapy. Deregulation of miR-155 in ABC cells did not affect vincristine 

sensitivity, and the expression was without prognostic impact in ABC patients, 

implying subtype-specific regulation of vincristine response. 

By statistical modeling, we combined miRNAs, identified to be associated with 

individual compounds of R-CHOP, and developed prognostic classifiers by applying 

multivariate Cox regression and random survival forest analysis. The Cox panel 

model encompassing miR-21, miR-23a~miR-27a~miR-24-2 cluster, miR-34a, 

miR146a, and miR-155 was documented to display the highest predictive accuracy in 

GCB-DLBCL, exhibiting prognostic utility comparable to IPI. Moreover, the 

prognostic performance was substantially improved by combining IPI and the 

miRNA-panel, emphasizing the importance of including both clinical and molecular 

features for prognostic assessment of DLBCL patients. Notably, both miR-155 

expression and the miRNA-panel identified a high-risk subgroup of GCB-DLBCL 

patients, commonly considered as the prognostic favorable subclass of DLBCL.  

 

The presented studies document functional impact of miRNA on drug response in 

DLBCL, yet the effect of miRNAs is comprehensive and complex due to the large 

number of target genes, which in addition is tissue- and cell-type specific. This 

complexity limits the clinical applicability of miRNAs as risk markers, however, as a 

proof of concept, we show improvement of risk stratification by combining molecular 

and clinical parameters. With the recent years of comprehensive investigation of the 

mutational landscape of DLBCL, revealing a compendium of genetic aberrations, 

future studies of treatment resistance should strive for functional understanding of 

recurrent genetic alterations and their implications in drug resistance. The CRISPR-
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Cas9 technology enables scientists to edit genes with unprecedented speed and 

efficacy and is an indispensable tool for functional understanding of genetic 

alterations. The combination of next-generation sequencing data of patient tumors and 

functional molecular understanding by CRISPR possesses enormous potential for 

future individual tailored treatment and novel treatment strategies.  

When the underlying mechanisms of drug resistance are poorly understood, global 

CRISPR library screens can be employed to identify genes that induce resistance. As 

DLBCL is characterized by several hallmark mutations causing constitutive activation 

[30–34,39,40], global CRISPR activation screens are preferable to aim at clinical 

relevant data. Moreover, transcriptional profiling of drug-resistant clones, expressing 

increased levels of respective candidate genes, can be performed to identify cellular 

signatures of perturbations. With support from resources such as the Connectivity 

Map [288], small molecule compounds antagonizing the effect of perturbation can be 

selected in order to test whether resistance can be overcome. This has the potential to 

identify actionable drug targets in treatment resistance, providing useful information 

for future clinical trials.  
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PicroUQDs have the potential to be useful biomarkers in the development of individualized treatment since they are easy to
detect= are relatively stable during sample handling= and are important determinants of cellular processes controlling pathogenesis=
progression= and response to treatment of several types of cancers including E>cell malignancies? miU>#$$ is an oncomiU with a
crucial role in tumor initiation and development of several E>cell malignancies?&e present review elucidates the potential of miU>
#$$ as a diagnostic= prognostic= or predictive biomarker in E>cell malignancies using a systematic search strategy to identify relevant
literature? miU>#$$ was upregulated in several malignancies compared to nonmalignant controls and overexpression of miU>#$$ was
further associated with poor prognosis? Hlevated expression of miU>#$$ shows potential as a diagnostic and prognostic biomarker
in di'use large E>cell lymphoma and chronic lymphocytic leukemia? Ddditionally= QV ]Q[YW and QV ]Q]W studies suggest miU>#$$ as
an e(cient therapeutic target= supporting its oncogenic function? &e use of inhibiting anti>miU structures indicates promising
potential as novel anticancer therapeutics? Ueports from $! studies prove that miU>#$$ has the potential to be a molecular tool in
personalized medicine?

1. Introduction

Sersonalizedmedicine is a newprinciple that aims at tailoring
medical treatment of the individual patients and thereby
ending the current }one>)ts>all~ strategy? Woday�s cancerdiag>
nostics are typically based on clinical )ndings= morphology=
histology= cytogenetic= immune>phenotyping= and molecular
genetic data= but still identi)cation of themolecular pathways
driving tumorigenesis o*en fails ^#_? Gi'erent E>cell malig>
nancies share common molecular pathways= which is why
they may bene)t from the same pathway>speci)c targeted
treatment? Ddditionally= tumor subtypes within one disease
entity can be characterized by distinct molecular pathogene>
sismarkers as genetic aberrations or transcription phenotypic
markers but still be treated alike causing ine(cient expen>
diture treatment regardless of potential subgroup>speci)c

treatment e(ciency? &e aim of personalized medicine is
to drive the development of a more accurate classi)cation
of disease= de)ned by molecular pathogenesis ultimately
enhancing diagnosis and treatment by the use of easy
detectable biomarkers ^ _?

Eiomarkers are de)ned as objective indicators of bio>
logical processes= pathogenic processes= or pharmacologi>
cal response to a therapeutic intervention ^!_? Giagnostic
biomarkers identify the presence of disease and di'erentiate
normal from malignant or distinguish di'erent diagnoses or
progression stages? Srognostic biomarkers provide informa>
tion about clinical outcome for a class of patients when given
a speci)c treatment= whereas predictive biomarkers provide
information on how patients are expected to respond to a
drug or treatment regimen? Post importantly= all biomarkers
should add further information to present clinical tools? Ln
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W+,-. #A Fancer relevant target genes for miU>#$$ supported by
experimental observations?

Warget genes
Pain e'ect of aberrant miU>#$$
expression

Ueference

VKLS#
SL!N@DNW activity ^  =  !_
E>cell proliferation

DLG
immunoglobulin diversi)cation@class

switch
^ /_

SX?#
immunoglobulin diversi)cation@class

switch
^ $_

KJDO cell motility ^ %_

F@HES!  E>cell proliferation ^ !_

VPDG$
evasion of WJI>!�s growth inhibitory

e'ects
^ 0_

IDGG " apoptosis ^ 1_

Uipk " apoptosis ^ 1_

VRFV# VWDW$ activation ^ 2_

DLG= activation>induced cytidine deaminaseB F@HES = FFDDW@enhancer>
binding protein B IDGG= Ias>Dssociated protein with Geath GomainB
KJDO= human germinal center>associated lymphomaB VKLS#= VK domain
containing inositol $!>phosphatase #B VRFV#= suppressor of cytokine signal>
ing protein #?

order to ensure accurate strati)cation= ideal biomarkers need
to be easy to detect and provide both high sensitivity and
speci)city ^/_?

PicroUQDs :miUQDs; have been demonstrated to pos>
sess biomarker potential in multiple diseases ^$_= both indi>
vidually and when combined in signature pro)les ^%|2_?
miUQDs are short noncoding UQDs of  "|  nucleotides
that function to regulate gene expression at the posttranscrip>
tional level? &ey play fundamental roles in the regulation
of cellular proliferation= di'erentiation= and apoptosis ^#"_?
miUQDs are deregulated in many types of cancer= including
E>cell malignancies= where they can function as oncogenes=
favoring initiation and progression of cancers= or as tumor
suppressors= preventing tumorigenesis ^##= # _? Rne of the
most widely studied miUQDs in E>cell malignancies is the
oncogenic miU>#$$= transcribed from a noncoding UQD
ELF :E>cell Lntegration Fluster;? miU>#$$ biogenesis is only
brie3y summarized since it has recently been extensive and
thoroughly reviewed by others ^#!= #/_? Dt normal physiologic
conditions= miU>#$$ is a crucial player in hematopoiesis= the
immune response= and in3ammation ^#$|#1_? Lt has been
found to be upregulated in several types of cancers ^#2_ and
has shown speci)c importance in the pathogenesis of E>
cell malignancies? &e oncogenic function of miU>#$$ can
be explained by its target genes and the involved underlying
molecular pathways presented in Wable #? Rverexpression of
miU>#$$ in mice results in development of lymphoprolifera>
tive diseases= while subsequent withdrawal leads to remission
^ "_? &us= miU>#$$ is suggested to be a future treatment
target? D high number of studies have investigated its poten>
tial as a biomarker in several E>cell malignancies= though
con3icting results have been presented? Wo elaborate and
assess the potential of miU>#$$ as a diagnostic= prognostic=
and predictive biomarker or target of novel treatments in

E>cell malignancies as a part of personalized medicine= we
systematically reviewed the existing literature?

2. Materials and Methods

&is review was prepared according to the Sreferred Ueport>
ing for Vystematic Ueviews and Peta>Dnalyses :SULVPD;
Juidelines ^ #_?

"0 0 >Q[MYI[\YM DMIYKP0 SubPed and HPEDVH were system>
atically searched for eligible articles? &e search terms used
in both databases are provided in Wable V# in Vupplementary
Paterial available online at httpA@@dx?doi?org@#"?##$$@ "#%@
2$#!"!0? &e search was )nalized on Qovember #1=  "#$?
Ddditional studies were identi)ed by scanning reference lists
of articles? &e screening process was performed by two
reviewers by reading titles and abstracts= while the eligibility
of full>texts was assessed in the same manner?

"0"0 ;VKT\ZQWV IVL 7_KT\ZQWV 5YQ[MYQI0 Vtudies were included
in the analysis if ful)lling the following inclusion criteriaA :#;
concerning miU>#$$ expression as a biomarker or target of
chemotherapeutic treatment= : ; focusing on E>cell malig>
nancies= :!; analyzing patient samples= :/; original research
articles or letters= and :$; results published in Hnglish? Drticles
were excluded if the present disease was reported in #
independent studies?

"0%0 3VIT`ZQZ0 Gata concerning the speci)c disease= cohort
size= sample type= study design of miUQD selection= ana>
lytical method= and outcome was extracted manually= and
studieswere grouped according to the investigated biomarker
properties of miU>#$$ :i?e?= diagnostic= prognostic= and@or
predictive;? Vtudies exploiting miU>#$$ as a therapeutic target
were described according to their methods :e?g?= QV ]Q[YW@QV
]Q]W;= outcomes= and impact of their )ndings?

3. Results

&e systematic search revealed %"% articles= which were
screened by reading title and abstract? D total of # % full>
texts were assessed= and $! of these studies were included
in the review= presented in Iigure V#? Dll included articles
were published in peer>reviewed scienti)c journals? Iorty>
eight of the included articles investigated the expression
of miU>#$$ as either a diagnostic= prognostic= or predictive
tool in the management of several diseases= though we
excluded studies of speci)c diseases represented by two or
less papers? Iive papers exploited miU>#$$ as a potential
target in the treatment of E>cell malignancies? Ds presented
in Wable  = the diagnostic potential of deregulated miU>#$$
expression has been widely investigated in di'use large E>cell
lymphoma :GOEFO;= Eurkitt�s lymphoma :EO;= Kodgkin�s
lymphoma :KO;= mucosa>associated lymphoid tissue lym>
phoma :PDOW;= follicular lymphoma :IO;= splenic marginal
zone lymphoma :VP]O;= and chronic lymphatic leukemia
:FOO;? Ddditionally= the prognostic potential of miU>#$$ has
been investigated in several studies of GOEFO and FOO=
whereas the predictive potential has not been thoroughly
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Gisease Vample type Fohort Lnitial miUQD selection Pethod Hxpression Uef

FOO Elood

0" FOO cases
1 controls

W

Srevious research

UW>qSFU

^0/_
 ! FOO cases
# controls

Y UW>qSFU

6QZMIZMA GOEFO= di'use large E>cell lymphomaB EO= Eurkitt�s lymphomaB KO= Kodgkin lymphomaB PDOW= mucosa>associated lymphoid tissueB IO= follicular
lymphomaB VP]O= splenic marginal zone lymphomaB FOO= chronic lymphocytic leukemia? DIUXTM [`XMA IISH= formalin>)xed para(n>embedded tissue
samplesB FV= clinical samplesB IQDEs= )ne needle aspirations? 5WPWY[A controls= nonmalignant tissuesB SFQVO= primary FQV lymphomaB nGOEFO= nodal
GOEFOB exQGOEFO= extranodalGOEFOB HEY= Hpstein>Earr virusB O= lymphomaB control" = adjacent normal tissue= WB training setB Y= validation set??M[PWLA UW>
qSFU= reverse transcription quantitative SFUB UQD>LVK= UQD QV ZQ[\ hybridization? 7_XYMZZQWVA #= increasedB $= decreasedB QV= not signi)cant? CMN A reference?

studied? Kence= the following report will primarily focus on
GOEFO and FOO= as the biomarker potential of miU>#$$
has been reported more extensively in these malignancies?
Palignancies represented by few con3icting studies are not
discussed further in the review?

%0 0 6Q(\ZM >IYOM 4/5MTT >`UXPWUI0 GOEFO is a highly
aggressive disease representing a clinically= morphologically=
and genetically heterogeneous group of non>Kodgkin lym>
phomas? Gespite the treatment improvements by inclusion
of rituximab= up to /"9 of the patients eventually die from
relapsing or refractory disease ^!"= !#_? Ln general= detection
of precancerous lesions and early stage cancers is crucial to
reducing the disease mortality? Harly detection of GOEFO
may likewise permit treatment of early stages= which can
prevent disease>related deaths?&us= it is necessary to identify
new diagnostic biomarkers for clinical use? &rough the
systematic search= we found #1 studies focusing on the
expression of miU>#$$ as a diagnostic marker in GOEFO= pre>
sented in Wable  ? Dll studies comparing the expression level
in GOEFO patients to healthy controls found a signi)cant
upregulation of miU>#$$ in GOEFO? &e mean fold>change
values span from ! to #2 ^! |!%_ and Iang et al? reported
a cuto' value of "?""  and a sensitivity and speci)city at
1!9 and %$9= respectively ^!0_? Gistinction between non>
Kodgkin lymphomas= such as GOEFO= IO= and EO= can be
di(cult due to great molecular and clinical heterogeneity?
Ln addition to the need for early detection= new biomarkers
should also improve the accuracy of lymphoma diagnosis
and decisions of therapeutics? &ree studies found miU>
#$$ higher expressed in GOEFO compared to EO patients
illustrating miU>#$$ as a potential diagnostic biomarker ^!1|
/"_? Kowever= studies comparing GOEFO and IO showed no
signi)cant di'erential expression ^!!= !/= !%_? Elood samples
were analyzed in two studies ^!$= !0_ and frozen tumor tissue
and IISH tissue in the remaining?

Xsing gene>expression pro)ling= GOEFO can be divided
into the two molecular subtypesA germinal center E>cell>like
:JFE; and activated E>cell>like :DEF; ^/#= / _? &e sub>
types present di'erent clinical outcome with JFE patients
having a $>year survival rate of %"9 compared to !$9
for those patients with DEF GOEFO ^/!_? Ln order to
simplify and make accessible in a routine clinical setting= the
molecular subtype identi)cation has been implemented in
several centers by the use of immunohistochemical :LKF;
analysis resulting in GOEFO subtyping into JFE@non>JFE

or JFE@DEF ^/ = //= /$_? Ln this systematic review= we
identi)ed #$ articles evaluating the prognostic impact ofmiU>
#$$= of which #! studied the correlation between miU>#$$ and
themolecular subtypes :Wable !;? miU>#$$ was upregulated in
the DEF subtype in nine studies while the remaining three
did not )nd signi)cant di'erential expression between the
subgroups? Vince patients classi)ed as DEF exhibit an adverse
prognosis= miU>#$$ holds the potential as prognostic marker?

Fon3icting results were found in studies investigating
the association of miU>#$$ expression and clinical outcome?
]hong et al? strati)ed patients according to high or low
expression of miU>#$$ with a cuto' value at !?21 and sen>
sitivity and speci)city value at 1"9 and $1?$9= respectively
^! _? Kigh miU>#$$ expression was signi)cantly associated
with adverse prognosis= which was also reported by Lqbal et
al? using similar expression level strati)cation ^!2_? ]hong
et al? further demonstrated that miU>#$$ and the interna>
tional prognostic index :LSL; were statistically signi)cant
independent prognostic factors ^! _? Fontradictorily= other
studies found that miU>#$$ expression did not correlate with
GOEFO outcome ^!%= /2= 0$_? Vurprisingly= Mung and Dguiar
observed that high expression ofmiU>#$$ was associated with
improved prognosis exclusively within the DEF subgroup
^0$_? ]hong et al? showed predictive potential of miU>
#$$= where patients treated with FKRS :cyclophosphamide=
doxorubicin= vincristine= and prednisone; were compared to
a cohort of U>FKRS :addition of rituximab; treated patients
^! _? Lnterestingly= high expression of miU>#$$ improved
clinical outcome in patients treated with U>FKRS compared
to FKRS? &is di'erence was not seen in patients with low
miU>#$$ expression= suggesting thatmiU>#$$ has the potential
to guide treatment with rituximab ^! _? Ddditionally= Lqbal et
al? reported that high miU>#$$ expression signi)cantly corre>
lated with U>FKRS treatment failure= suggesting a potential
role as predictive biomarker ^!2_?&is )nding was supported
by QV ]Q[YW studies showing that high miU>#$$ expression
sensitizes cells to synthetic Dkt inhibitors= suggesting a novel
treatment option for resistant GOEFO patients ^!2_?

%0"0 5PYWVQK >`UXPWK`[QK >M\SMUQI0 FOO is characterized by
clonal proliferation of mature E>cells accumulating in the
peripheral blood= bone marrow= lymph nodes= and spleen
^0%_? Gespite its prevalence= no cure exists and patients are
treated with various chemotherapeutic drugs at the presence
of progressive or symptomatic disease ^0%_? Veveral studies
investigated the expression level of miU>#$$ in samples from
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W+,-. !A miU>#$$ as prognostic biomarker in di'use large E>cell lymphoma :GOEFO;= its expression in relation to JFE or nJFE@DEF
subtyping= and direct relation to prognosis?

Fohort
Polecular
subtype

Vample type
Lnitial miU
selection

Pethod
Rutcome

Uef
Srognosis Peasure

Polecular
subtype

2" GOEFO
:$#@!2;

 # JFE
%2 nJFE

IISH Srevious research UW>qSFU poor UD= RU nJFE ^! _

 " JFE
!/ nJFE

IISH Jlobal screening UW>qSFU nJFE ^/%_

! JFE
 1 nJFE

IISH Jlobal screening Picroarray nJFE ^!!_

2 JFE
# nJFE

IISH Srevious research UW>qSFU QV ^/0_

1$ JFE
!/ DEF

FV Srevious research Picroarray DEF ^12_

#0 JFE
#1 DEF

FV= IISH Jlobal screening UW>qSFU DEF ^!/_

## JFE
0 DEF

FV= IISH Srevious research
LVK
UW>qSFU

DEF ^/1_

2 JFE
2 nJFE

IISH Srevious research
LVK
Picroarray

QV ^2"_

1 JFE
#$ nJFE

FV Srevious research UW>qSFU QV ^$"_

$/ GOEFO
: 0@ 0;

! JFE
 0 DEF

FV Jlobal screening Picroarray poor HIV DEF ^!2_

/ JFE
#2 DEF

FV Srevious research UW>qSFU DEF ^$#_

# 2 GOEFO
FV Srevious research

QV SIV= RV
^0$_

 / DEF improved SIV= RV

$! GOEFO
 $ JFE
 $ nJFE

IISH Srevious research UW>qSFU QV HIV= RV nJFE ^!%_

#/ JFE
!% nJFE

IISH Srevious research UW>qSFU QV ^/2_

 "" GOEFO
:# #@02;

IISH Srevious research QV SIV= RV ^$ _

: @ ; in column #A number of patients with high and low miU>#$$ expressionB V\UJMYZ in column  indicate how many GOEFO patients included for miU>#$$
expression evaluation in each molecular subtypeB Z\J[`XMA JFE= germinal center E>cell>likeB nJFE= non>JFEB DEF= activated E>cell>like? DIUXTM [`XMA IISH=
formalin>)xed para(n>embedded tissue samplesB FV= clinical samples? ?M[PWLA UW>qSFU= reverse transcription quantitative SFUB LVK= QV ZQ[\ hybridization?
BYWOVWZQZA #= increased expressionB $= decreased expressionB QV= not signi)cant? A\[KWUM UMIZ\YMA UD= response assessmentB RU= overall responseB HIV= event>
free survivalB SIV= progression>free survivalB RV= overall survival? CMN A reference?

FOO patients as compared to healthy controls= Wable  ?
Lnterestingly= none of these studies aimed at establishing new
diagnostic tools but focused on elaborating the molecular
pathogenesis of the disease or use preliminary diagnostic
signatures of deregulated miUQDs to single out potential
prognostic biomarkers? Ln all studies and irrespective of
the analytical technique= miU>#$$ was upregulated in FOO
compared to healthy controls? D few studies reported a mean
fold>change of miU>#$$ expression in the range of  |$= while
individual samples showed great varying fold>changes ^%0=
%2|0#_?

&e prognostic potential of miU>#$$ expression in FOO
was studied more extensively and showed varying results= as
presented in Wable !? Sarticularly= favorable factors showed
con3icting associations with miU>#$$ expression? FOO is

usually described by many di'erent prognostic factors=
such as clinical staging systems :Uai and Einet;= somatic
hypermutation of the immunoglobulin heavy chain variable
region :LgKY;= surface FG!1 expression= expression of zeta>
associated protein 0" :]DS>0";= or chromosomal abnormal>
ities :#0p= #!q= ##q= and trisomy # ; ^0%_? Uelating miU>#$$
expression to the individual prognostic factors revealed no
correlation?Kowever= studies o*en focused on di'erent prog>
nostic factors= making concise comparisons and conclusions
impossible? Ln patients with #0p deletion= the expression of
miU>#$$ was either upregulated or nonsigni)cantly di'eren>
tiated between groups ^00= 01_? miU>#$$ was overexpressed in
both studies investigating ##q deletions= though patients with
trisomy # had either downregulated or una'ected expression
^%%= 00_? ]DS>0" expressionwas related to the upregulation of
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miU>#$$ in two studies= while there was no association in four
other studies ^0 |0/= 02|1#_? miU>#$$ was either downregu>
lated or una'ected in patients with LgKY mutations ^%1= 0#|
0/= 02|1#_= while #!q deletions were associated with high=
low= and una'ected expression levels ^%%= 0#= 00= 1 _? &us=
the studies generally showed no speci)c correlation between
miU>#$$ expression and favorable :#!q deletion and LgKY
mutation; or unfavorable :#0p= ##q deletion= trisomy # and
]DS>0" expression; prognostic factors?

Zhen the elevated expression of miU>#$$ was directly
correlated with survival data= high expression was not consis>
tently associated with poor prognosis? Kowever= studies used
di'erent outcome measures= complicating the assessment of
the prognostic potential of miU>#$$? Iurthermore= studies
failed to report speci)c treatment regimens and treatment
homogeneity of their cohorts? Ierrajoli et al? investigated
the survival of FOO patients strati)ed according to high
or low plasma miU>#$$ expression in two di'erent cohorts
^0/_? Rne cohort received treatment with the IFU regimen
:3udarabine= cyclophosphamide= and rituximab;= while the
other cohort received single agent treatment with lenalido>
mide? Kigh miU>#$$ expression was in both cohorts asso>
ciated with poor treatment outcome estimated by clinical
response assessment :UD; ^0/_? Dccording to Oawrie et
al? patients relapsing a*er treatment with 3udarabine and
rituximab either with or without alemtuzumab showed poor
progression>free survival :SIV; when strati)ed according to
high miU>#$$ expression ^%%_? Lt was further shown that
monitoringmiU>#$$ expression a*er treatmentwith ibrutinib
could be an indicator of treatment failure? &e expression
of miU>#$$ decreased upon treatment= and patients whose
expression rose above baseline during follow>up were prone
to experience disease relapse ^%%_?

Sredictive biomarker potential of miU>#$$ has not been
directly investigated= yet detection of #0pdeletions bymiU>#$$
as a surrogatemarker could guide treatment decisions? Woday=
patients with #0p deletions are treated more aggressively
due to poor prognostic results of front>line treatment with
IFU ^1!_? Ds mentioned above= high miU>#$$ expression was
associated with treatment failure in IFU and lenalidomide
treated patients= suggesting potential use of miU>#$$ as a
predictive biomarker ^0/_?

%0%0 ?\KWZI/3ZZWKQI[ML >`UXPWQL EQZZ\M ,?3>E-0 Hxtran>
odalmarginal zone lymphomas :PDOW lymphomas; are rare=
low>grade E>cell lymphomas ofmucosa>associated lymphoid
tissue? Hxpression of miU>#$$ in PDOW was found elevated
in three out of three eligible studies ^$2|%#_? &orns et al?
reported a stepwise increase in miU>#$$ expression from
benign to malignant lymphoepithelial lesions ^$2_? Jastric
PDOWcan be associatedwith chronic in3ammation triggered
by infection with :MTQKWJIK[MY X`TWYQ ::0 X`TWYQ;? Dntibiotic
treatment leads to complete remission in %"|1"9 of the
patientsB however improved identi)cation of nonresponsive
patients is needed to guide treatment ^1/_?&e study by Vaito
et al? observed that resistant patients had a higher miU>#$$
level than cases showing complete remission= suggesting the
potential of miU>#$$ as a predictive indicator ^%#_?

%0'0 DXTMVQK ?IYOQVIT HWVM >`UXPWUI ,D?H>-0 VP]O is a
rare form of small E>cell malignancy in)ltrating the spleen=
bone marrow= and peripheral blood? &ree studies reported
increased expression of miU>#$$ in diseased samples com>
pared to controls ^%!|%$_? Seveling>Rberhag et al? found
a fold>change of miU>#$$ of  ?1 ^%!_? Ddditionally= Drribas
et al? showed signi)cantly increased miU>#$$ expression in
VP]O spleen samples compared to nonmalignant samples
from reactive spleens ^%/_? Ln contrast= the expression ofmiU>
#$$wasdownregulated in VP]O samples compared to spleens
in)ltrated by IO= FOO= andmantle cell lymphoma= though this
change was not signi)cant ^%/_?

%0&0 UQC/ && IZ I )MYIXM\[QK EIYOM[0 Gue to the oncogenic
function of miU>#$$ in especially E>cell malignancies= miU>
#$$ holds potential as a target for future therapeutic interven>
tions= exploited by )ve studies= Iigure #? Fhemically modi)ed
synthetic oligonucleotides are e(cient inhibitors of miUQDs
QV ]Q[YW and QV ]Q]W= improving systemic stability and binding
a(nity of the anti>miUQD ^1$= 1%_? &ey bind the miUQD
structure by complementary hybridization= preventing the
miUQD from binding to its target mUQD? Xsually= syn>
thetic oligonucleotides such as SQD :peptide nucleic acid;
and OQD :locked nucleic acid; are used? &ese UQD@GQD
analogues are constructed by changing the nucleic acid
backbone structures= and studies have proven their e(cient
inhibition of miU>#$$ QV ]Q[YW in murine E>cells and patient>
derived FOO and Zaldenstrom cell lines ^1$= 1%_? Dnti>miU>
#$$ exposure resulted in decreased cell proliferation and
survival of the FOO and Zaldenstrom cells ^1$_? Hvaluation
of the systemic stability and e(cacy was investigated in
wild type mice and Zaldenstrom xenogra*s ^1$= 1%_? miU>
#$$ expression was completely inhibited in the spleen upon
injection of SQD anti>miU>#$$ in wild type mice ^1%_? ]hang
et al? examined the distribution and intracellular uptake
of 3uorescence marked OQD anti>miU>#$$ in hematopoi>
etic organs in wild type mice and Zaldenstrom xenogra*s
^1$_? &e anti>miU>#$$ was successfully delivered to cells in
these speci)c organs? Ddditionally= anti>miU>#$$ intravenous
administration resulted in decreased tumor burden in the
Zaldenstrom xenogra*s ^1$_?

Grawbacks of systemic delivery are related to biological
stability in the organism and intracellular uptake of the
anti>miU? Eabar et al? exploited the use of a nanoparticle>
based delivery system of anti>miU>#$$ in a transgenic mouse
model overexpressing miU>#$$ ^ "_?&e nanoparticle encap>
sulated the anti>miU>#$$ structure to aid its stability and
delivery? Ddditionally= coating of the nanoparticle with cell>
penetrating peptides improved the intracellular uptake of
anti>miU>#$$ QV ]Q]W ^ "_?

Ln order to use anti>miU>#$$ as therapeutics= challenges
regarding nonspeci)c organ distribution have to be over>
come? miU>#$$ is constitutively expressed in several tissues
and has a crucial role in the function of the immune system
^#%= #0_? &us= tumor speci)c distribution is warranted to
avoid disruption of normal immunologic function= causing
critical side e'ects? Fheng et al? showed a novel model
for tumor speci)c distribution= utilizing tumor environment



1 EioPed Uesearch Lnternational

In vitro

In vivo

,JOF$IF7$&((

.33!"!;4!@BHHN

7BAP@BA!@BHH!LMKHFCBM>OFKJ!>JA!NPMQFQ>H

35,!>JOF$IF7

65,!>JOF$IF7
4PMFJB!-$@BHHN
8P@@BNNCPH!IF7$&((!FJEF?FOFKJ

65,!>JOF$IF7
;FHA!OTLB!IF@B
8P@@BNNCPH!IF7$&((!FJEF?FOFKJ

5>JKL>MOF@HB!BJ@>LNPH>OBA!65,!>JOF$IF7$&((

9M>JNDBJF@!IF@B!KQBMBSLMBNNFJD!IF7$&((#!/3-.3!LEBJKOTLB

7BAP@BA!OPIKM!DMKROE

7BAP@BA!OPIKM!?PMABJ

35,!>JOF$IF7$&((

;FHA!OTLB!IF@B!>JA!;4!SBJKDM> N

8P@@BNNCPH!AFNOMF?POFKJ!OK!EBI>OKLKFBOF@!KMD>JN

7BAP@BA!OPIKM!?PMABJ#!FILMKQFJD!NPMQFQ>H

.KJGPD>OB!KC!65,!>JOF$IF7$&((!>JA!L1!ABLBJABJO!LBLOFAB

9M>JNDBJF@!IF@B!KQBMBSLMBNNFJD!IF7$&((#!/3-.3!LEBJKOTLB

9>MDBOFJD!>@FAF@!OPIKM!BJQFMKJIBJO

<+)=

<'%= <+*=

<+(=

<++=

<+(=

<+)=

,JOF$IF7$&((

2J@MB>NBA!MFOPSFI>?!NBJNFOFQFOT!FJ!0-:+

0-: ± /3-.3!@BHHN

I4567. #A Vtudies :$ ( '; exploiting miU>#$$ as a therapeutic target using anti>miU>#$$ structures? SQD= peptide nucleic acidB OQD= locked
nucleic acidB FOO= chronic lymphocytic leukemiaB ZP= Zaldenstrom macroglobulinemiaB GOEFO= di'use large E>cell lymphomaB HEY<=
Hpstein>Earr virus positiveB HEY)= Hpstein>Earr virus negative?

acidity= a hallmark of cancer ^10_?&ey developed a conjugate
of the anti>miU>#$$ structure and a pK>induced transmem>
brane structure peptide?&e peptide has the ability to localize
the acidic tumor microenvironment and at low pK= the
peptide forms an inducible transmembrane helix promoting
translocation of impermeablemolecules across the cell mem>
brane? Kereby the anti>miU>#$$ is e(ciently delivered into
the tumor cells causing reduced cell viability? Xsing the same
miU>#$$ overexpressing transgene mice as Eabar et al?= the
mice spontaneously developed lymphoma progressing from
follicular hyperplasia to GOEFO? Ddministration of the anti>
miU>#$$ conjugate at the time of tumormanifestation resulted
in reduced tumor volume= suppressed metastatic spread of
neoplastic cells= and improved survival compared to controls?
Kigh>dose administration to healthy mice showed absence
of systemic toxicity= including maintenance of normal liver
and kidney function ^10_?&us= this study introduces a novel
model for using anti>miU as anticancer drug= having great
impact on both targeted drug delivery and personalized
medicine= since individual miU>#$$ expression levels are
easily measured?

Ds mentioned= resistance to therapy is observed in /"9
of patients with GOEFO and consequently= novel treatment
options for resistant patients are needed ^!#_? Lqbal et al?
reported treatment failure of U>FKRS in patients with
high miU>#$$ expression and suggested Dkt inhibitors as
alternative therapeutics= since miU>#$$ activates this speci)c
pathway ^!2_? &e e'ect of Dkt inhibitors was investigated
in Hpstein>Earr virus positive :HEY<; cell lines by Nim et

al? ^11_? Lnitially they found HEY< cell lines to be resistant
toward rituximab= having a phosphorylated Dkt pathway=
and simultaneous overexpression of miU>#$$? Dkt inhibitors
restored the sensitivity toward rituximab= and anti>miU>
#$$ signi)cantly reduced the cell survival upon rituximab
exposure ^11_? &us= both Dkt inhibitors and anti>miU>#$$
hold potential as add>on drugs to increase the response of
GOEFO patients treated with U>FKRS?

%0*0 EIYOM[Z WN UQC/ &&0 Wo understand how miU>#$$ act
and identify the underlying molecular mechanisms driving
tumorigenesis= many studies have investigated the target
genes= of which some are listed in Wable #? Ldenti)cation of
targets and the involved pathways is important since it puts
the biomarker into molecular perspective and additionally is
crucial to understanding of the underlying molecular e'ects
of using anti>miU>#$$ as an antineoplastic drug?

miU>#$$ was reported to target D:;B and5174B!= which
are two important inhibitors of the LO>% signaling pathway?
Gownregulation of these genes blocks E>cell di'erentiation
and causes an improved cell survival due to activation
of SL!N@Dkt and PDSN pathway ^  =  !_? Ddditionally=
by targeting :93>= a lymphocyte motility inhibitor= miU>
#$$ promotes cell migration= which could contribute to a
more aggressive disease ^ %_? Rverexpression of miU>#$$ also
leads to downregulation of D?36&= a modulator of WJI>
! signaling? miU>#$$ overexpression renders GOEFO cells
resistant to growth inhibitory e'ects of WJI>! and EPS via
defective p # induction and impaired cell cycle arrest ^ 0_?
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W+,-. /A miU>#$$ as prognostic biomarker in FOO= its expression in relation to established prognostic factors= and direct relation to prognosis?
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5WPWY[A W= training setB Y= validation set? DIUXTM [`XMA FV= clinical sampleB IISH= formalin>)xed para(n>embedded tissue samples? ?M[PWLA UW>qSFU= reverse
transcription quantitative SFU?A\[KWUMA "unfavorable factorsA #0p deletion= ##q deletion= trisomy # = FG!1% cells= ]DS>0" expression &  "%= and@or advanced
disease stage determined by either Uai or Einet? Iavorable factorsA normal karyotype= LgKY mutations= and@or #!q deletion ^0%_B #= increased expressionB $=
decreased expressionB QV= not signi)cant?A\[KWUM UMIZ\YMA RV= overall survivalB SIV= progression>free survivalB UD= response assessmentB WIV= treatment>free
survivalB WL= time to initial treatment? CMN A reference?

&e two death domain containing genes 8366 and CQXS are
also identi)ed as target genes of miU>#$$? Lt is thus reasonable
to assume that miU>#$$ targeting of these transcripts could
lead to antiapoptotic e'ects ^ 1_?

4. Discussion

&is review identi)ed a total of $! studies addressing the
potential of miU>#$$ as putative biomarker or as a therapeutic
target in E>cell malignancies?&e results= presented in Wables
 = != and /= display that miU>#$$ expression may function as
a valuable tool in both diagnosis and prognostic evaluation
of GOEFO patients and having prognostic impact in FOO as
the results showed consistency across multiple studies? Iew

studies reported diagnostic potential of miU>#$$ expression
in PDOW= VP]O= IO= and KO? Kowever= based on the
limited number of studies and samples included in those=
the signi)cance needs recon)rmation in independent studies
using larger cohorts?

&e results of miU>#$$ as diagnostic marker of GOEFO
were very consistent and independent of sample type= cohort
size= and methodology? Kigh expression of miU>#$$ enables
strati)cation of GOEFO patients from healthy controls and
EO patients= supporting its potential as a diagnostic tool? Ln
contrast= lack of accuracy in di'erentiating GOEFO from IO
patients was observed? &is systematic review also presents
evidence that miU>#$$ expression is associated with GOEFO
molecular subtypes= even though some studies did not )nd
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a signi)cant di'erential expression ^/0= /2= $"= 2"_? Fohort
sizes varied considerably across studies and generally the
larger the cohort= the more valid the result? Vtudies reporting
nonsigni)cant results stand out with small cohorts exempli>
)ed by Iischer et al? having  # patients included compared to
the cohort of 2" in the study by ]hong et al? ^! = /0_? Dnother
important matter that makes the studies less comparable
is the fact that the subtype classi)cation of the GOEFO
patients into JFE and non>JFE@DEF is performed by LKF
analysis using di'erent staining strategies and interpretation
algorithms? Ddditionally= LKF is di(cult to standardize due
to variation between laboratories= such as sample handling=
antibodies utilized= and observers?

&e most surprising observation was made by Mung
and Dguiar= )nding miU>#$$ overexpression association with
improved outcome in DEF GOEFO ^0$_? &e reason for
this association is not immediately clearB however= they
suggest that action of target genes contributes to the )ndings?
Qoteworthily= only  / DEF patients are strati)ed into low or
high miU>#$$ expression illustrating the need to expand and
validate the data in order to trust the information ^0$_?

miU>#$$ was signi)cantly upregulated in all studies com>
paring FOO cases to healthy controls= indicating diagnos>
tic potential? Kowever= FOO is easily diagnosed in clinical
cases from blood analysis= arguing against the need of a
novel diagnostic biomarker for this disease ^1!_? miU>#$$ as
prognostic marker in FOO is not unambitious? Kowever= an
association of miU>#$$ expression and favorable prognostic
factors di'ered greatly between studies? &is could be due to
the individual di'erent factors investigated such as speci)c
deletions and mutations? Qoteworthily= studies failed to
report the speci)c treatment regimens giving potential bias
because the prognosis is dependent on the e'ectiveness of the
treatment? Ln addition= if patients did not receive the same
treatment= the studies are less comparable? Ln general= high
miU>#$$ expressionwas o*en associatedwithmore aggressive
disease and poor prognosis= though not signi)cant across all
studies? Xltimately= miU>#$$ expression was not consistently
su(cient in stratifying FOO patients according to individual
prognostic factors? Ln contrast= elevated miU>#$$ expression
as an independent factor was associated with poor clinical
outcome across studies= suggesting its potential as a direct
prognostic biomarker in FOO?

Fonsidering the fact that miU>#$$ is an oncomiU ^##_=
the )ndings of high expression in the poor prognostic
DEF subtype and the adverse prognostic impact of miU>
#$$ expression on survival in GOEFO are consistent and in
accordance with the observed association of high expression
and more aggressive disease in FOO?

Zhen analyzing the )ndings= it is also important to
consider di'erences in methodology? Lnitial global microar>
ray screenings were performed in several studiesB however=
they were not based on the same microarray models giv>
ing variations in the miUQD covering probes? &e other
widely used method is UW>qSFU which is based on another
technique and relies on probes other than those used in
microarray detection? &e fold>change and accuracy of the
studies therefore cannot be directly compared across studies
but concordance of upregulated miU>#$$ and pure outcome

independent of platform supports the robustness of the
association? Ln several studies= a training cohort is utilized
to identify miU>#$$ as potential diagnostic or prognostic tool
and subsequently a validation cohort is analyzed to test and
validate the result= increasing the signi)cance of the )ndings?
Rthers exploit the same cohort but validate the result using
a di'erent detection technique? Eoth approaches strengthen
the observations and make the )ndings more valid?

Gi'erent sample types have potential to cause con3icting
results? Vtudies regarding diagnostic evaluation of miU>#$$
in GOEFO analyze blood samples= formalin>)xed@para(n>
embedded tissues= and frozen tissuesB however= no inconsis>
tency is observed= indicating stable expression and robust
detection of miU>#$$ despite sample types= preparation= and
storage? Hach sample type has di'erent advantages? IISH
tissue samples are the most abundant available archival
material and miUQD can successfully be isolated from
processed formalin>)xed material= due to miUQDs relative
resistance toward UQase degradation? Xsing UW>qSFU and
microarray analysis= similar results of miUQD expression are
found in IISH and frozen material ^2!_? Oawrie et al? and
Iang et al? studied miU>#$$ expression in blood samples to
investigate the potential as noninvasive biomarker ^!$= !0_?
Vearch for noninvasive biomarkers for diagnosis= prognosis=
and monitoring of cancers has long been the goal of clinical
research?

D guideline for Vtrengthening the Ueporting of Rbser>
vational studies in Hpidemiology>Polecular Hpidemiology
:VWUREH>PH; has been proposed= though several studies
included in this review failed to report their investiga>
tions thoroughly :e?g?= sample types= storage= and handling;?
Ddditionally= the studies included in this review di'ered in
their aims= outcomes measures= and methods= complicat>
ing the general comparison of the studies and rendering
a statistical meta>analysis impossible? &e validity of this
systematic review is improved by the fact that SULVPD
guidelines are met and that the search strategy encompassed
PHVK@HQWU\ terms and free text words?

Lntroducing new potential biomarkers into the clinic
holds great di(culties and challenges? &erefore= the Harly
Getection Uesearch Qetwork :HGUQ; has suggested a sys>
tematic approach guiding the process of biomarker devel>
opment similar to the clinical stages of drug development
^2/_? Shase # includes preclinical investigations= where tumor
tissue is compared to healthy controls in order to iden>
tify di'erential characteristics? D clinical biomarker assay
is developed and tested in phase  = including evaluation
of the biomarkers ability to distinguish subjects with can>
cer from those without cancer? Shase ! is a retrospective
investigation of the biomarkers ability to detect presence of
disease before it is clinically diagnosed= whereas phase /
evaluates biomarker properties in a prospective follow>up
study? Iinally= phase $ evaluates whether the biomarker and
early diagnosis improved the overall bene)t for the screened
population? Dlthough the guideline focuses on developing
diagnostic biomarkers= the structure is potentially valuable
for prognostic and predictive biomarkers as well? Dll included
diagnostic studies of FOO were consistent with phase #
investigations= though as mentioned before a new diagnostic
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biomarker of FOO would hold limited clinical use? Ln addi>
tion= prognostic investigations of miU>#$$ in FOO could be
described as phase # investigations= where a biomarker assay
and assessment are still missing? Vtudies reporting miU>#$$
as potential diagnostic biomarker of GOEFO are all on the
early phases of diagnostic biomarker development as well=
which is why clinical implementation will require further
studies at higher developmental phases? Rnly Iang et al?
reported evaluation ofmiU>#$$�s ability to distinguishGOEFO
patients from healthy controls ^!0_? &us= miU>#$$ cannot be
considered as a diagnostic biomarker in clinical use at short
term?

Ln order to implement the concept of personalized
medicine= new molecular biomarkers need to be established
to improve early diagnosis= patient strati)cation according
to high>risk patients= and predictions of treatment response?
Dccording to the present assessment= miU>#$$ could hold
potential as a novel diagnostic biomarker in several E>cell
malignancies= including GOEFO and FOO? Kowever= miU>#$$
still needs to move through the remaining biomarker devel>
opmental steps and evaluations before its potential use can be
fully exploited?Kowever= one important disadvantage ofmiU>
#$$ as a diagnostic biomarker is that it is overexpressed not
only in one speci)cmalignancy but also in several= complicat>
ing diagnostic discriminations of the di'erent malignancies?
Qoteworthily= an important advantage is the validated target
genes of miU>#$$= which puts the biomarker into perspectives
of molecular pathways?

Hlevated miU>#$$ expression was generally associated
with poor survival in both FOO and GOEFO= showing
independent prognostic impact= though as a marker for the
present prognostic tools :e?g?= chromosomal subtyping and
DEF@JFE; it did not add further information? Ln general=
prognostic biomarkers only hold bene)cial information=
if nonresponsive patients can be treated di'erently? &e
biomarker then moves from prognostic to predictive= where
it can be used to guide treatment choices? Qo thorough
investigations have been reported of miU>#$$ as a predictive
biomarker= though its prognostic observations could imply
the need for new treatment options for patients with a
high expression level? Dkt inhibitors :currently in clinical
trials ^2$_; have been suggested as e(cient therapeutics
for the treatment of patients with high miU>#$$ expression=
since miU>#$$ activates this pathway? Oogically= other novel
treatments could evidently be anti>miUQDs suppressing the
miU>#$$ expression and its oncogenic function? &eir e'ect
has been proved both QV ]Q[YW and QV ]Q]W= and a targeted
distribution model strengthens the potential as a novel
therapeutic? Dt the present time= new clinical phase L trial of
cutaneous W cell lymphoma :FWFO; investigates the safety
and tolerability of anti>miU>#$$ :PUJ>#"%; ^2%_? Sresumably=
this treatment might show interesting potential in GOEFO
and FOO patients as well? Qoteworthily= miravirsen= anti>
miU>#  = was the )rst microUQD targeted drug ever to reach
clinical trials in  ""2= for themanagement of hepatitis F viral
infection ^20_? Lnterestingly= miU>#  was later shown to be
overexpressed inFWFO= suggesting that inhibition ofmiU>#  
might also be a promising strategy in improving treatment
outcome in these patients ^21_?

5. Conclusion

Ln summary= the expression of miU>#$$ shows potential
as a diagnostic and prognostic biomarker= though further
studies are warranted to assess its use in treatment prediction?
Lnterestingly elevated expression was generally associated
with poor treatment response= which is why it has been
investigated and evidenced as an e(cient therapeutic target?
&ese properties prove that miU>#$$ has the potential to be
a molecular tool in personalized medicine= bringing us one
step closer to improvements of diagnosis and treatment?
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Supplementary Tables 

Supplementary Table 1. Cell line specifications.

Cell line AUC Vincristine class ABC/GCB Endogenous miR-155

OCI-Ly19 53.99 Sensitive UC 11.79 

FARAGE 56.11 Sensitive GCB 13.01 

SU-DHL-5 57.86 Sensitive GCB 11.20 

MC-116 61.97 Intermediate GCB 12.48 

NU-DHL-1 70.72 Intermediate ABC 10.40 

OCI-Ly3 74.83 Intermediate ABC 14.18 

HBL-1 84.53 Intermediate ABC 13.65 

U2932 85.34 Intermediate GCB 12.70 

NU-DUL-1 90.25 Intermediate UC 11.02 

RIVA 108.99 Intermediate ABC 12.32 

OCI-Ly7 114.49 Resistant GCB 6.66 

SU-DHL-8 126.06 Resistant GCB 8.14 

DB 130.75 Resistant GCB 8.10 

DLBCL cell lines DB, NU-DHL-1, NU-DUL-1, MC-116, and SU-DHL-5 were purchased from DSMZ (German 

Collection of Microorganisms and Cell Cultures), while FARAGE, HBL-1, OCI-Ly3, OCI-Ly7, OCI-Ly19, RIVA, SU-

DHL-8, and U2932 were kindly provided by Dr. Jose A. Martinez-Climent (Molecular Oncology Laboratory, 

University of Navarra, Pamplona, Spain). The cell lines are ranked according to vincristine sensitivity based 

on area under dose-response curve (AUC).1 Division into tertiles defines 3 sensitive, 7 intermediate, and 3 

resistant cell lines. Based on GEP, DLBCL cell lines were classified into ABC/GCB subclasses by Wright 

classification using published algorithms at hemaClass.org.2 Endogenous miR-155 expression levels are 

measured by GeneChip miRNA 1.0.2 arrays. Data is RMA normalized, thus the specified values are in log2 
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scale.  For technical validation of miRNA array data, the expression levels of miR-155 were determined by RT-

qPCR (data not shown).  

Supplementary Table 2. Patient characteristics.  

Characteristic In-house cohort Meta-cohort 

No. of patients 73 701 

Sex 

   Female 30 (41%) 297 (42%) 

   Male 43 (59%) 404 (58%) 

Age at diagnosis 

   Median 64 62 

   Range 20-87 17-82 

IPI score 

   0-1 21 (29%) 71 (10%) 

   2-3 36 (49%) 314 (45%) 

   4-5 12 (16%) 201 (29%) 

   NA 4 (6%) 115 (16%) 

ABC/GCB 

   ABC 32 (44%) 302 (43%) 

   GCB 32 (44%) 281 (40%) 

   UC 9 (12%) 118 (17%) 

IPI, International prognostic index; NA, not available; UC, unclassified.
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Supplementary Table 3. Vincristine response specific miRNAs.

miRNA P-value Log2(Fold change) Fold change Fold change description 

hsa-miR-155 0.0008 4.37 20.67 Resistant down vs. sensitive 

hsa-miR-148a 0.03 3.14 8.82 Resistant down vs. sensitive 

hsa-miR-21 0.01 2.79 6.90 Resistant down vs. sensitive 

hsa-let7b 0.02 2.75 6.75 Resistant down vs. sensitive 

hsa-miR-21-star 0.006 2.29 4.90 Resistant down vs. sensitive 

hsa-miR-23a 0.03 2.07 4.21 Resistant down vs. sensitive 

hsa-miR-501-3p 0.04 1.99 3.98 Resistant down vs. sensitive 

hsa-miR-24 0.02 1.89 3.71 Resistant down vs. sensitive 

hsa-let7c 0.01 1.45 2.73 Resistant down vs. sensitive 

hsa-miR-550 0.02 1.32 2.50 Resistant down vs. sensitive 

hsa-miR-378-star 0.006 1.20 2.29 Resistant down vs. sensitive 

hsa-miR-658 0.04 1.19 2.28 Resistant down vs. sensitive 

hsa-miR-675 0.01 1.09 2.13 Resistant down vs. sensitive 

hsa-miR-484 0.05 1.14 2.20 Resistant up vs. sensitive 

hsa-miR-223 0.009 1.27 2.41 Resistant up vs. sensitive 

Differentially expressed miRNAs detected comparing global miRNA expression profiles of vincristine 

sensitive and resistant DLBCL cell lines (p-6&.5)3 @ <9<> &/( $" ?:=:;9
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Supplementary Table 4. Enriched gene sets identified through GSEA analysis conducted for miR-155 vs. 

control 

E2F_TARGETS 188 0.8 2.83 0 0 2223 

MYC_TARGETS_V1 171 0.78 2.74 0 0 2596 

G2M_CHECKPOINT 189 0.74 2.63 0 0 2223 

MYC_TARGETS_V2 55 0.84 2.5 0 0 1574 

MTORC1_SIGNALING 185 0.53 1.91 0 0 2326 

HYPOXIA 189 0.52 1.83 0 0 1880 

GLYCOLYSIS 191 0.51 1.82 0 0 2538 

SPERMATOGENESIS 128 0.53 1.81 0 0 2125 

DNA_REPAIR 133 0.52 1.79 0 0 2328 

MITOTIC_SPINDLE 195 0.47 1.7 0 0.001 1714 

OXIDATIVE_PHOSPHORYLATION 175 0.46 1.62 0 0.003 3042 

ESTROGEN_RESPONSE_LATE 194 0.38 1.38 0.004 0.039 3332 

UV_RESPONSE_UP 153 0.39 1.36 0.012 0.044 2845 

MYOGENESIS 193 -0.35 -1.23 0.052 0.117 3423 

IL2_STAT5_SIGNALING 189 -0.35 -1.26 0.032 0.154 1693 

APICAL_JUNCTION 194 -0.36 -1.26 0.041 0.166 2391 

KRAS_SIGNALING_DN 186 -0.36 -1.29 0.029 0.171 3077 

APOPTOSIS 146 -0.39 -1.35 0.017 0.108 1833 

P53_PATHWAY 192 -0.38 -1.36 0.013 0.108 2756 

PI3K_AKT_MTOR_SIGNALING 99 -0.43 -1.41 0.023 0.082 1345 

IL6_JAK_STAT3_SIGNALING 83 -0.52 -1.68 0.002 0.004 2056 

ALLOGRAFT_REJECTION 183 -0.52 -1.85 0 0 2002 

INTERFERON_GAMMA_RESPONSE 180 -0.55 -1.93 0 0 1983 

INTERREFON_ALPHA_RESPONSE 86 -0.67 -2.16 0 0 1982 

Gene set enrichment analysis (GSEA) was conducted for transcriptional profiles of SU-DHL-5 cells transduced 

with LV/miR-155 and LV/MCS, respectively. GSEA was restricted to genes sets included in the Hallmark

collection (50 gene sets) from the Molecular Signature Database. Gene sets with normalized p-6&.5)@<9<>

and FDR q-6&.5)@<9=> 7)2) '0/3-()2)( 3-+/-*-'&/4.8 )/2-',)(9 Only significant gene sets were shown in the 

table. Abbreviations: Total size, number of genes included in the gene set; ES, enrichment score; NES, 

normalized enrichment score; NOM p-val, multiple test corrected p-value for gene set size normalized ES; 

FDR q-val, false discovery rate of normalized ES. 
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Supplementary Table 5. Enriched gene sets identified through GSEA analysis conducted for TuD-155 vs. 

control

n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

XENOBIOTIC_METABOLISM 191 -0.33 -1.28 0.043 0.139 2335 

MITOTIC_SPINDLE 195 -0.33 -1.29 0.033 0.134 3184 

UV_RESPONSE_UP 153 -0.36 -1.37 0.015 0.068 3270 

P53_PATHWAY 192 -0.37 -1.42 0.007 0.045 3051 

ADIPOGENESIS 187 -0.39 -1.53 0.001 0.014 4682 

MYC_TARGETS_V2 55 -0.53 -1.73 0 0.001 3681 

FATTY_ACID_METABOLISM 144 -0.46 -1.74 0 0.001 3457 

DNA_REPAIR 133 -0.47 -1.74 0 0.001 4388 

MTORC1_SIGNALING 185 -0.45 -1.76 0 0.001 3914 

OXIDATIVE_PHOSPHORYLATION 175 -0.48 -1.84 0 0 5592 

HYPOXIA 189 -0.49 -1.9 0 0 2180 

GLYCOLYSIS 191 -0.49 -1.92 0 0 2787 

G2M_CHECKPOINT 189 -0.54 -2.1 0 0 2787 

MYC_TARGETS_V1 171 -0.59 -2.29 0 0 3600 

E2F_TARGETS 188 -0.65 -2.51 0 0 3463 

Gene set enrichment analysis (GSEA) was conducted for transcriptional profiles of SU-DHL-5 cells transduced 

with LV/TuD-155 and LV/MCS, respectively. GSEA was restricted to genes sets included in the Hallmark

collection (50 gene sets) from the Molecular Signature Database. Gene sets with normalized p-6&.5)@<9<>

and FDR q-6&.5)@<9=> 7)2) '0/3-()2)( 3-+/-*-'&/4.8 )/2-',)(9 Only significant gene sets were shown in the 

table. Abbreviations: Total size, number of genes included in the gene set; ES, enrichment score; NES, 

normalized enrichment score; NOM p-val, multiple test corrected p-value for gene set size normalized ES; 

FDR q-val, false discovery rate of normalized ES; n.d., not detected. 
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Supplementary Table 6. Negatively correlated genes associated with cell cycle processes.

Prediction algorithms

Gene Symbol 
Gene Ontology 

Biological Process 
TagetScan miRDB 

mircroRNA

.org 
MicroT-DCD TarBase 

WEE1 G2/M transition + + + + IP, RA 

CAB39 

RPS6KB1 

Cell cycle arrest  

G1/S transition 
+ + + + - 

GSK3B Re-entry into mitosis + - + + PR 

PARD3B 

TFDP2 
Mitotic cell cycle + - - + - 

C7orf25 

PAK2 

RBBP4 

G1/S transition 

Mitotic cell cycle 

G2/M transition 

- - - + - 

38961, APPL1 

CABLEES1, CCPG1, 

HAPECAM2, 

MAPRE2, PVRIG, 

RABGAP1, RASSF2, 

SGSM3,  

Cell cycle - - - - - 

CSNK2A1, FAM89B, 

GARASP1, HISTH14, 

MAU2, MCPH1, 

NEK6, NUP188, 

NUP214, POLD4 

Mitotic cell cycle - - - - - 

CLIP1, KIF2B 
Mitotic cell cycle 

Microtubule 
- - - - - 

CAMK2D, CRLF3, 

CUL3, EIF4E, ITGB1, 

MARK4, PIM2, 

PPP3CA, PPP6C, 

PSMB9, PSMD9, 

SPDYA, UBA52, VIL1 

G1/S transition - - - - - 

ANAPC10, 

CDK5RAP, CSNK1D, 

DCTN2, DYNC1|2, 

ENSA, EP300, 

FBXL15, PCM1, 

PPM1D, PPP1R12A, 

PPP2R2A, 

SDCCAG8, STK16, 

TUBG2, TUBGCP6 

G2/M transition - - - - - 

CCNG2 Cell cycle checkpoint - - - - - 

CAB39L, SESN2 Cell cycle arrest - - - - - 

GEP of SU-DHL-5 cells transduced with LV/miR-155, LV/TuD-155, and the comparable negative control 

LV/MCS were investigated for identifying negatively correlated gene expressions. The 64 genes related to cell 

cycle processes were investigated as potential miR-155 targets using four well-documented miRNA-mRNA 

prediction algorithms: TargetScan v7.1, miRDB, microRNA.org, and MicroT-CDC.3–6 Published experimental 
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validated miRNA-mRNA interactions were identified from TarBase v7.0.7 IP, immunoprecipitation; PR, 

proteomics; RA, reporter assay; - not identified; + identified. If more than one gene is noted in the Gene 

Symbol Column, +/- symbol is related to all the genes.   
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Supplementary Table 7. Simple and multiple Cox regression analyses conducted for: (A) all DLBCL patients, 

(B) ABC classified patients, and (C) GCB classified patients included in the R-CHOP restricted meta-cohort. 

Array-based miR-155 expression (continuous) and outcome were analyzed by simple and multiple Cox 

proportional hazards regression analyses for overall survival. IPI score information was not available for all 

patients, thus cohort sizes are reduced in this setting (115 samples were removed). The multiple Cox 

proportional regression analysis was performed using an additive model with IPI (trichotomized; IPI 0-1, IPI 

2-3, IPI 4-5), ABC/GCB (ABC, GCB, UC), and miR-155 expression (continuous) as independent confounders. 

Abbreviations: CI, 95% lower and upper confidence intervals; HR, hazard ratio; n, number of samples; no., 

number of events; - value not available since variables were only included in multiple Cox proportional 

hazards regression analysis if significant results were obtained in simple Cox proportional hazards regression 

analysis. 

n no. 

Simple Multiple 

HR 95% CI P HR 95% CI P

A. 

All DLBCL IPI 

0-1 71 6 1 1 

2-3 314 84 3.76 1.64-8.61 0.0017 3.29 1.43-7.56 0.0050 

4-5 201 106 9.61 4.22-21.88 7.19e-08 8.09 3.53-18.54 7.78e-07 

Subclass 

ABC 242 105 1 1 

GCB 248 58 0.45 0.33-0.62 1.09e-06 0.41 0.28-0.59 1.37e-06 

UC 96 34 0.73 0.50-1.08 0.11 0.52 0.34-0.81 0.0032 

miR-155 

Continuous 586 197 0.95 0.86-1.04 0.28 - - - 

B. 

ABC-DLBCL IPI 

0-1 15 2 1 

2-3 125 38 3.57 0.86-14.89 0.080 - - - 

4-5 102 65 10.37 2.51-42.87 0.0012 - - - 

miR-155 

Continuous 242 105 0.85 0.71-1.00 0.052 - - - 

C. 

GCB-DLBCL IPI 

0-1 48 2 1 1 

2-3 140 32 6.22 1.49-25.97 0.012 5.95 1.43-24.86 0.014 

4-5 60 24 12.53 2.96-53.06 0.0006 11.37 2.68-48.26 0.00098 

miR-155 

Continuous 248 58 0.72 0.60-0.86 0.00044 0.74 0.62-0.89 0.0016 
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Supplementary Figures 

Supplementary Figure 1. Schematic presentation of sgRNA for miR-155 knock-out by the CRISPR-Cas9 

technology. The single guide RNA (sgRNA) targets the functional part of miR-155-5p of the miR-155 encoding 

gene MIR155HG.
8 The expected Cas9 cut site is marked by       . The sequences encoding miR-155-5p and miR-

155-3p (miR-155-star) are marked in grey and seed regions are marked in green.  

Supplementary Figure 2. miR-155 expression in DLBCL cell lines. Expression levels of miR-155 in vincristine 

sensitive (OCI-Ly19, FARAGE, SU-DHL-5) and resistant DLBCL cell lines (OCI-Ly7, SU-DHL-8, DB) determined 

by GeneChip miRNA 1.0.2 microarrays. *** p<0.001  
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Supplementary Figure 3. Cell growth post-transduction. Cell proliferation was determined by the trypan 

blue exclusion method after 48 hours of growth in (A) OCI-Ly7, (B) SU-DHL-5, (C) RIVA, and (D) NU-DHL-1 cells 

transduced with LV/miR-155, LV/TuD-155, and LV/MCS. These cell lines were chosen for in vitro studies based 

on ABC/GCB classification, resistance/sensitivity to vincristine, and lentiviral transducibility.9 The latter is of 

great importance, since B-cells generally are difficult to transduce.  
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Supplementary Figure 4. Enrichment plots generated by GSEA analysis for (A+B) miR-155 vs. control and 

(C+D) TuD-155 vs. control. GSEA was conducted for transcriptional profiles of SU-DHL-5 cells transduced with 

LV/miR-155, LV/TuD-155 and LV/MCS (control), respectively. GSEA was restricted to genes sets included in 

the Hallmark collection (50 gene sets) from the Molecular Signature Database. Gene sets with normalized p-

6&.5)@<9<> &/( $#% 1-6&.5)@<9=> 7)2) '0/3-()2)( 3-+/-*-'&/4.8 )/2-',)(9 Significance of each enrichment 

score was calculated by 2000 permutation tests. Since vincristine functions as an antimitotic drug, only 

A) B)

C) D)
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significantly enriched gene sets associated with G2/M checkpoints and mitotic spindle assembly were 

depicted. The green line represents the running-sum statistic used to calculate the enrichment score (ES) of 

the gene set. The ES is represented as maximum deviation from zero encountered in the running-sum 

statistic. The vertical black bars beneath the enrichment score curve indicate the positions of gene set 

members and their expression profile (red, upregulated; blue, downregulated). 

Supplementary Figure 5. Indel frequencies. Indel frequencies determined by TIDE analysis in: (A) OCI-Ly7 

cells transduced with LV/CRISPR-sgRNA-miR-155. (B) OCI-Ly7 cells transduced with LV/CRISPR-sgRNA-

control. (C+D) miR-155 knock-out clone 1 and 2, respectively, which are characterized by a single nucleotide 

insertion on one allele and a 3 nucleotide deletion on the other.  

A) B)

C) D)
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Supplementary Figure 6. Manipulation of miR-155 expression in ABC-DLBCL cell lines do not affect 

vincristine response. (AI+BI) Expression levels of miR-155 were determined upon lentiviral transductions of 

II.
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RIVA cells. (BII) Vincristine dose-response analysis was performed for TuD-155 transduced cells, since miR-

155 was significantly down-regulated. (CI+DI) Similarly, NU-DHL-1 cells were transduced and miR-155 

expression was measured and (CII) vincristine response was investigated in miR-155 over-expressing cells 

(LV/miR-155). Vincristine response is shown as number of cells relative to the no-drug condition. NQ, 

normalized quantity.  

Supplementary Figure 7. Suppression of miR-155 by TuD-155. Dual luciferase reporter assays were 

performed in HEK293 cells co-transfected with psiCHECK-miRtarget, pCCL/U1-miRNA.PGK-eGFP and 

pCCL/PGK-eGFP-TuD.  
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Supplementary Figure 8. miR-155 expression in ABC/GCB subclasses of DLBCL. (A) Expression levels of miR-

155 in the ABC/GCB subclasses of the in-house cohort measured by RT-qPCR. (B) Expression levels of 

MIR155HG determined by microarray (Human Genome U133 Plus 2.0) in the meta-cohort. Significance levels: 

* p<0.05, ** p<0.01, ***p<0.001. NQ, normalized quantity; RMA, Robust Multichip Average normalized. 

A) B)
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Supplementary Figure 9. Analysis of association between progression-free survival and miR-155 

expression. Kaplan-Meier plots depicting progression-free survival of R-CHOP treated DLBCL patients in the 

in-house cohort. The analysis was conducted for (A) all DLBCL patients, (B) ABC classified patients, and (C) 

GCB classified patients. For each cohort, patients were dichotomized by median split of miR-155 expression.  
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Supplementary Figure 10. Correlation analysis between MIR155HG and miR-155 expression. In the in-house 

cohort of 73 samples, the mature miR-155 expression measured by RT-qPCR was well correlated to its 

precursor MIR155HG measured by microarray (HG-U133; 229437_at) (r=0.8, p<2.2e-16). NQ, normalized 

quantity; RMA, Robust Multichip Analysis normalized.  
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Supplementary Figure 11. MIR155HG expression levels in Cheson response evaluation classes. Response 

evaluations of patients in the validation cohort were extracted and investigated for association to MIR155HG 

expression. The analysis was performed for (A) all DLBCL patients, (B) ABC classified patients, and (C) for GCB 

classified patients. Significance levels: * p<0.05, ** p<0.01, ***p<0.001. CR, complete remission; PD, 

progressive disease; PR, partial remission; RMA, Robust Multichip Average normalized; SD, stable disease. 
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Supplementary Table 1. Search strategy in PubMed and Embase 

Database PubMed Embase

Search terms
#2: Vincristine* #2: vincristin*:ti,ab,kw 
#3: Oncovin*  

#4: oncovin*:ti,ab,kw 
#5: Vinblastin* 
#6: #1 OR #2 OR #3 OR #4 OR #5  #6: vinblastin*:ti,ab,kw 
#7: neuropath* #7: #1 OR #2 OR #3 OR #4 OR #5  
#8: i        OR #6 
#9: neurotoxicit* 
#10: sensory impairment*  #9: (peripheral NEAR/2  
#11: #7 OR #8 OR #9 OR #10       (neuropath* OR  toxicit*)):ti,ab,kw  
#12                               #10: #8 OR #9 
#13 #11: leukemia:ti,ab,kw OR 
#14:         lymphoma*:ti,ab,kw  
#15: hematolog* OR haematolog*                                               OR myeloma:ti,ab,kw 
#16: leukemia OR lymphoma*                                             
#17 #13: #11 OR #12 
#18 #14: #7 AND #10 AND #13 
#19: myeloma* 
#20: #12 OR #13 OR #14 OR #15 OR #16   Filters: 
        OR #17 OR #18 OR #19 
#21: #6 AND #11 AND #20  

No filters 
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