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Objective. +is study investigates the potential of an artificial intelligence (AI) methodology, the radial basis function (RBF)
artificial neural network (ANN), in the evaluation of thyroid lesions. Study Design. +e study was performed on 447 patients who
had both cytological and histological evaluation in agreement. Cytological specimens were prepared using liquid-based cytology,
and the histological result was based on subsequent surgical samples. Each specimen was digitized; on these images, nuclear
morphology features were measured by the use of an image analysis system. +e extracted measurements (41,324 nuclei) were
separated into two sets: the training set that was used to create the RBF ANN and the test set that was used to evaluate the RBF
performance. +e system aimed to predict the histological status as benign or malignant. Results. +e RBF ANN obtained in the
training set has sensitivity 82.5%, specificity 94.6%, and overall accuracy 90.3%, while in the test set, these indices were 81.4%,
90.0%, and 86.9%, respectively. Algorithm was used to classify patients on the basis of the RBF ANN, the overall sensitivity was
95.0%, the specificity was 95.5%, and no statistically significant difference was observed. Conclusion. AI techniques and especially
ANNs, only in the recent years, have been studied extensively. +e proposed approach is promising to avoid misdiagnoses and
assists the everyday practice of the cytopathology. +e major drawback in this approach is the automation of a procedure to
accurately detect and measure cell nuclei from the digitized images.

1. Introduction

Cytopathology, a medical discipline born in the 20th century,
was founded by George Papanicolaou in 1928 [1] and became
very popular due to the worldwide known Papanicolaou test
[2, 3] (test Pap). Although cervical cancer represents the vast
majority of cytological diagnoses worldwide, it is not the only

disease that cytopathology deals with. Even in the early days
of cytopathology [4–6], it was used for the investigation of
thyroid gland and body fluids. One of the main advantages of
thyroid cytopathology is its noninvasive or minimally inva-
sive nature. +at is, the biological material is extracted from
patients with nonpainful methods (for example, cells are
extracted using a fine needle).
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Cytopathology of the thyroid gland is a well-documented
method, extensively used for preoperative diagnosis of the
thyroid nodules [7, 8]. +e Bethesda System for reporting
thyroid cytopathology (TBS [7]) is a well-established system
for the evaluation of thyroid lesions [9–11] with link to the
risk for malignancy guiding clinicians towards patient
management. TBS guides cytopathologists in the classifi-
cation of thyroid lesions via established criteria.

+e diagnostic accuracy of thyroid fine-needle aspiration
(FNA) has been reported by many studies as having both
high sensitivity (80%–90.8% [12, 13]) and specificity (60%–
100% [14–16]). Despite, TBS is already widely used in
various countries, and it has its own limitations [17–19],
especially due to gray diagnostic zones. +us, false-positive
or false-negative results can be observed not only due to poor
cellular smears but also misinterpretation of inadequate
representation of the morphological characteristics of the
smear, especially in the case of follicular neoplasms. Ad-
mitted, the experience of the individual cytopathologist, in
both the particular organ and the general diagnostic expe-
rience, is an important factor in a proper diagnosis and is
based mainly on extensive training.

During the last decade, information technology and ar-
tificial intelligence (AI) enabled the creation of computer-
aided systems supporting diagnosis as well as decisions for
therapy and patient management. Among the numerous
machine learning methodologies aiming towards the solution
of such medical tasks are artificial neural networks (ANNs)
[20–32], more classical approaches such as discriminant
analysis [20, 33, 34], classification, and regression trees
[35–38], genetic algorithms [39], and in the last decade, deep
learning [40–42]. Such techniques are not new in the diag-
nostic cytopathology field [43], since they have been already
employed in diagnostic tasks for numerous organs such as the
stomach [33, 44, 45], breast [46–49], urinary system [50–52],
cervix [53–57], and thyroid [58–61] among others.

Given that a gray zone in the thyroid cytopathology
classification system exists, in this study, we focus on the
investigation of the potential of a rarely used ANN (namely,
the radial basis function network—RBF [51]) into the
classification of thyroid specimens based on cytomorpho-
logical characteristics.

2. Materials and Methods

+e study was performed in FNA specimens that had a
follow-up of a histological evaluation from thyroidectomy
specimens (performed at the 2nd Department of Pathology,
National and Kapodistrian University of Athens, Medical
School, “Attikon” University Hospital). +e study was
carried out on cytological slides collected from 2012 to 2016
and conformed to the principles of the Helsinki Declaration.
In addition, it was approved by the Ethics Review Board of
“Attikon” University Hospital, and the requirement of a
signed consent form was waived, since it was based on
archived material and had no invasive or treatment effects
on the patients.

We analyzed liquid-based cytology (LBC) specimens
from 447 patients; from each specimen, various cell types

were isolated and characterized. Table 1 shows the confusion
matrix (histological diagnosis vs. cells measured in the cy-
tological slides). All cases were selected in a serial manner
from the database, and cases without histological confir-
mation were excluded from the study. In a total 288 cases,
the lesion was benign (64.4%), and in the remaining 159
cases (35.6%), it was malignant. We followed the methods of
an approach proposed by Margari et al. in 2019 [62] es-
pecially for the image analysis and the subsequent con-
struction of the ANN system.

2.1. Liquid-Based Cytology (LBC). Liquid-based cytology
(LBC) was used due to the offered advantages over con-
ventional cytopathology, i.e., reduction of air drying arti-
facts, blood and inflammation obscuring the cells reduction,
distribution of the cells in a single layer on the slide in a
smaller area than the conventional allowing rapid screening,
well preserved nuclear details, and the possibility to obtain
additional slides and/or biological material for molecular
tests and immunocytochemical staining. Aspirates were
immersed and rinsed into a vial containing CytoLyt® (fix-
ative solution). Subsequently, a single slide was prepared,
and the +inPrep® technique was applied, as already de-
scribed [63]. Cytology diagnoses were formulated according
to the TBS system [7, 9–11].

2.2. Architecture of the AI System. A system with the ar-
chitecture depicted in Figure 1 was created to classify each
individual patient as benign or malignant by the use of
measurements from the cytological slides. Two different
technologies were used for this application: (a) image
analysis which involves the selection of cell nuclei from the
digitized images and subsequently their measurement; from
this step is a series of measurements characteristic for each
cell nucleus extracted, and (b) the second technological
domain is relevant to artificial intelligence; in this part of the
system, individual nucleus was classified as benign or ma-
lignant by the RBF ANN, which produces a list of classified
nuclei for each cytological slide; this information is subse-
quently fed to a second subsystem (the case classifier), which
can identify individual patients as belonging to the benign or
malignant group. +e case classifier can be based on a
majority logic methodology either for the number of nuclei
within each group or their percentage [58, 64, 65].

2.3. Image Analysis and Nucleus Morphometry. A manual
selection process was applied in order to select represen-
tative nuclei from every cytological slide. +is manual se-
lection process ranges between 10 and 20 minutes per slide
and consists of the definition of the nucleus borders via the
mouse; note that for each patient, a single cytological slide is
prepared. Subsequently, every nucleus was measured by the
computer within milliseconds (note that this is a batch
process that operates massively on identified nuclei). De-
tailed information for extracted nuclear morphometrical
features are summarized in Table 2. +e measurement al-
gorithms have been already reported in the literature

2 Journal of +yroid Research
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[58, 66–68], and descriptive characteristics have already
been reported in our previous article [65].

For image analysis purposes, a computer equipped with a
frame grabber and a digital camera (SONY DFW-X700,
Sony Corporation, Tokyo, Japan) was used. A microscope
(Leica Microsystems GmbH, Wetzlar, Germany) had the
camera attached via a c-mount adaptor and was interfaced

via the appropriate cables to the frame grabber (installed in
the computer). +e images were captured using a 40x ob-
jective and digitized by the frame grabber into 1024× 768
pixels (8 bits for each color component (red green and blue,
i.e., 24 bits of depth).

PathSight version 4.3 (Medical Solutions PLC, UK) was
used to capture the images, and Image-Pro Plus VERSION
4.5 (Media Cybernetics, Inc. Bethesda, MD, USA) was used
for the isolation of nuclei (segmentation) and subsequent
measurement (morphometry). Moreover, Image-Pro Plus
was used for background correction and to remove the
noise caused by the lenses of the microscope, i.e., to alle-
viate noise caused from dust particles interfering in the
light path and calibration for lighting, ensuring that all
images were captured under similar conditions, and
therefore, there was improved reproducibility of results and
quality control.

+e measurements obtained can be categorized into two
types: (a) geometric and (b) densitometric
[32, 64, 65, 67, 69–75]. In general, geometric and densito-
metric can be considered unrelated, as geometric features are
based on the nucleus boundary and are relevant to nucleus
shape characteristics. Carcinogenesis causes destruction
effects of the nucleus—skeleton and cytoskeleton; therefore,
nuclei are deformed, and this is reflected in geometric
characteristics. +e densitometric characteristics are
extracted from pixel values and their spatial distribution
within the nucleus boundary. In detail, the nucleus
boundary is represented as a polygon, and the coordinates of
the edge points of this polygon are used to extract geometric
characteristics; for example, the nucleus area is calculated as
the sum of the triangles that compose the nucleus sur-
rounding polygon. More details on calculation algorithms
can be found in the relevant bibliography for image analysis
[69, 72]. A characteristic image is presented in Figure 2.

2.4. Measured Cytological Structures Training and Test Sets.
+e total number of selected cell nuclei (and colloid
structures) was 41,324 (Table 3); they were picked either
from cell groups or they were found isolated in the field of
view.

About 50% (N� 224) of patients were randomly selected
to form the training set; thus, the measured cytological
structures from these cases were used to train the AI system.
+e remaining cases formed the test set and were used to
evaluate the performance of the system on unknown data
and therefore validate the results.

Since the dataset is not balanced between the classes (288
cases were benign and 159 cases were malignant, i.e., 64%
and 36%, respectively), the random selection of 50% of the
cases to form the training set, eventually, lead to a repre-
sentative selection of the cases respecting this imbalanced
distribution. Actually, the training set was composed of 145
benign and 79 malignant cases (65% and 35%) and the test
set of 143 and 80 cases (i.e., 64% and 36%, respectively). Note
that during the training stage of the ANN, it is important to
respect the data distribution within different classes to avoid
learning towards one direction.

Identification and selection of cell 
nuclei

Nuclei measurement

Radial basis function neural network
for the classification of individual nuclei

Results from ANN for each nucleus
measured for a single patient

Case classifier
(based on the ANN results)

Classification of patient
(as benign or malignant)

A
rt

ifi
ci

al
 in

te
lli

ge
nc

e d
om

ai
n

Im
ag

e a
na

ly
sis

 d
om

ai
n

Figure 1: Flow chart of the system architecture.

Table 2: Image analysis measurements categorized into geomet-
rical and densitometric.

Geometric characteristics Densitometric characteristics
Nucleus area Integrated optical density
Nucleus major axis Mean value of nucleus red color
Nucleus minor axis Mean value of nucleus green color
Aspect ratio Mean value of nucleus blue color
Maximum calliper Mean value of optical density
Minimum calliper Maximum value of optical density
Average value of calliper Minimum value of optical density
Maximum nucleus radius Standard deviation of optical density
Minimum nucleus radius Margination
Radius ratio Heterogeneity
Nucleus perimeter
Nucleus roundness
Fractal dimension

4 Journal of +yroid Research



Nowadays, the most popular percentages used to sep-
arate the data into training and test sets are 70%–30% or
even 80%–20%, following the Pareto principle [76]. In this
study, we preferred to use 50% of the data for training and
the remaining for test for several reasons: (a) we have already
applied successfully this approach in numerous other cy-
tology-related classification problems in the past, (b) there
were a lot of data available, especially in the nucleus clas-
sification domain; thus, we expected that the data variance
would be possible to be “learned” by the 50% of the available
data, (c) less data in the training set reduces the probability
for overfitting (i.e., the ANN learns extremely well the
training set but fails to perform well in the test set), and (d)
we preferred to have almost equal samples in the training
and test sets in order to compare the performance in these
two sets and therefore assess the system robustness.

2.5. �e Radial Basis Function Artificial Neural Network.
Artificial neural networks are mathematical models mim-
icking the human brain structure. +ey are capable to learn
and subsequently recall patterns [43, 77, 78]; thus, they are
ideal to learn the nuclear patterns as these are represented
through the measurements and subsequently assign the
nuclei to individual categories (benign or malignant in this
study).

A radial basis function network (RBF) uses radial basis
functions as activation functions; they have strictly three
layers: (a) an input layer that serves after weighting all the
measurements in all nodes of the subsequent layer (the
hidden layer), (b) the hidden layer that implements a series
of nonlinear RBF activation functions responsible to create
clusters of similar data, and (c) the linear output layer that is
actually a linear combination of radial basis functions results
from the inputs and the neuron parameters and creates the
ANN output (i.e., classification result). Despite RBF, ANNs
are here for more than 30 years (first presented in 1988 [79])
and have many uses, such as function approximation, time
series prediction, classification, and control; among others,

they have not been used extensively in medical applications.
However, they do possess some advantages compared to
classical architectures such as (a) the multilayer perceptrons
have faster training, (b) it is possible to interpret what is the
role of the nodes in the hidden layer, and (c) the number of
nodes in the hidden layer (RBF nodes) is adjusted from the
data.

2.6. Classification for the Patients. Cell nuclei classification
by the RBF ANN cannot on its own assign patients as having
benign or malignant thyroid disease. +us, an additional
subsystem was incorporated according to a technique al-
ready reported in the literature [58, 64, 65]. Specifically, two
different approaches were used called subsequently the
numeric and percentages classifiers; these assign a case as
benign if a number or percentage of nuclei, respectively,
classified as benign by the RBF ANN is above a certain
threshold, otherwise as malignant. In order to find such
threshold, we evaluated the specificity and sensitivity in a
broad range of thresholds starting from 1 (or 1%) and in-
creasing up to 100 (or 100%) with an increment step of 1 (or
0.1). For every value, the percentage of the cases that have
been correctly classified was calculated as well as the sen-
sitivity and specificity. As the most suitable threshold, the
threshold that produced a balanced result between sensi-
tivity and specificity (i.e., minimized their difference) was
used. In order to avoid bias, only the nuclei classified in the
training set were used to find these thresholds.

2.7. Tools and Techniques. +e RBF ANN for nuclei classi-
fication and the algorithms for the determination of the
optimum thresholds were constructed with in-house de-
veloped software for the MATLAB environment (+e
MathWorks, Inc. Natick, Massachusetts, U.S.A.). Moreover,
MATLAB was used to calculate the performance indicators
for the training and test sets and all data combined. Sta-
tistical measures used were specificity, sensitivity, positive
and negative predictive value (PPV and NPV), false-positive

(a) (b)

Figure 2: Typical images from the cytological material with highlighted selected nuclei. (a) Image of nodular hyperplasia (benign); (b) image
of papillary carcinoma. Both images were captured using a 40x microscope objective lens.

Journal of +yroid Research 5
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and false-negative rates (FPR and NPR), overall accuracy
(OA), and odds ratio. A list of the performance indices along
with the mathematical formulas and a short description is
already reported [80].

3. Results

3.1. Results of Cell Nuclei Classification. +e performance of
the RBF ANN was evaluated for the training set, the test set,
and the complete data set (training and test sets combined).
+e results are presented in Table 4.

As expected, the performance (Table 5) was better in the
training set. Comparison of proportions (z-test) revealed that a
statistically significant difference was present in (a) sensitivity
(difference: 1.14%, 95% CI: 0.40%–1.89%, p � 0.0027), (b)
specificity (difference: 4.58%, 95% CI: 4.07%–5.10%,
p< 0.0001), (c) positive-predictive value (difference: 7.74%,
95% CI: −7.06%–8.42%, p< 0.0001), (d) negative-predictive
value (difference 0.87%, 95% CI: 0.29%–1.45%, p � 0.0031),
(e) false-positive rate (difference: 4.58%, 95% CI: 4.07%–5.10%,
p< 0.0001), (f) false-negative rate (difference: 1.14%, 95% CI:
0.40%–1.89%, p � 0.0027), and (g) overall accuracy (differ-
ence: 3.32%, 95% CI: −2.71%–3.94%, p< 0.0001). Note that
due to the large number of nuclei, even small differences in the
percentages can lead to statistically significant differences.

3.2. Results of Patient Classification. As mentioned, two ap-
proaches were used for the classification of patients: the nu-
meric classifier and the percentages classifier, and the results of
these two different methodologies are presented in Table 6, and
the relevant performance indices are presented in Table 7.
Specifically, the threshold that produced the more balanced
results between sensitivity and specificity for the numeric
classifier was 37 nuclei, i.e., if more than 37 nuclei were
classified by the RBF ANN as benign, then the case (i.e., the
patient) was classified as benign, otherwise as malignant. In a
similar approach, the threshold for the percentages classifier
was 51%, i.e., if more than 51% of the case nuclei were classified
by the RBF ANN as benign, then the sample (the patient) was
considered as benign, otherwise as malignant.

Notably, the percentages classifier had better indices for
the three most important metrics: sensitivity, specificity, and
overall accuracy. And in general, these indicators were lower
in the test set. In order to test the stability of the approach, we
performed comparisons (z-test) for the sensitivity, specificity,
and overall accuracy between the training and test sets; for the
numeric classifiers, the difference, 95% CI, and p values were
1.16%, 95% CI: −4.25–6.63, and p � 0.7833; 0.77%, 95% CI:
−4.0–5.57, and p � 0.8850, and 0.92%, 95% CI: −4.1–5.98,
and p � 0.8417, respectively. Similarly, for the percentages
classifier, there was no observed statistically significant dif-
ference. +us, both approaches can be considered as stable.
+is is also reflected by the comparison of the areas under
curve for the receiver operating characteristic (ROC) curves
between the training and the test sets (Figure 3). Specifically,
for the arithmetic classifier, the area under curve (AUC) for
the training and test sets was 97.7% (95% CI: 95.7%–99.7%)
and 96.9% (95% CI: 94.8%–99.1%), respectively, and no

statistically significant difference was confirmed (p> 0.05).
Similarly, for the percentages classifier, the AUC for the
training and test sets was 98.1% (95% CI: 96.2%–100%) and
98.1% (95% CI: 96.6%–99.7%), respectively, and no statistical
difference was possible to be confirmed (p> 0.05). Moreover,
we compared the same three performance indices between
the numeric and percentages classifier (considering the
training, test, and all data combined); again, no statistically
significant difference was proved (p> 0.05 for all compari-
sons). In summary, both case classifiers can be considered
stable between the training and test sets and of similar
performance.

4. Discussion

+e history of artificial intelligence in thyroid cytopathology
is really worth to investigate, so that the evolution of the

Table 4: Cross tabulation of classification results for benign and
malignant cell nuclei and colloid structures by the RBFANN for the
training and test sets.

Benign Malignant Total
Training set 13808 6806 20614

Benign 12517 716 13233
Malignant 1291 6090 7381

Test set 13397 7313 20710
Benign 12028 1335 13363
Malignant 1369 5978 7347

Total 27205 14119 41324

Table 5: Performance indices for the RBF ANN for the training and
test sets and for both sets combined.

Training set Test set Both sets
Sensitivity (%) 82.51 81.37 81.94
Specificity (%) 94.59 90.01 92.29
PPV (%) 89.48 81.74 85.47
NPV (%) 90.65 89.78 90.22
FPR (%) 5.41 9.99 7.71
FNR (%) 17.49 18.63 18.06
OA (%) 90.26 86.94 88.60
PLR 15.25 8.14 10.63
NLR 0.18 0.21 0.20
Odds ratio 82.47 39.34 54.29

Table 6: Cross-tabulation of the patient classification subsystem for
the numeric and percentages classifiers separately for the training
and test sets.

Histology
Numeric classifier Percentages

classifier Total

Benign Malignant Benign Malignant
Training set

Benign 137 8 139 6 145
Malignant 6 73 4 75 79

Test set
Benign 134 9 136 7 143
Malignant 7 73 4 76 80

Total 284 163 283 164 447
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various efforts can be highlighted. +yroid disease and
ANNs first appeared to the authors’ knowledge, in 1993 [81],
and a few years later, the first application in cytopathology
appeared in 1996 [27]. Specifically, it used the back-
propagation training algorithm to train a feedforward three-
layer (one input, one hidden, and one output layers) ANN.
+is ANN was discriminating between benign from ma-
lignant thyroid nuclei, according to nuclear morphometry.
+e number of patients in this article was rather small (51).
At the nuclei classification level, an overall accuracy of 90.6%
was achieved, and classification of individual patients had an
overall accuracy of 98%. +ree years later, in 1999 [61], four
variations of the LVQ classifier (namely, the versions LVQ1,
LVQ2.1, LVQ3, and OLVQ1-optimized LVQ) were tested in
100 patients. A different approach was used, i.e., the mean
value and standard deviation of nucleus morphometry
features were employed for each patient, and in contrast to
this approach, the ANN is applied on individual nuclei; thus,
the patients were represented from the statistics measures of

the cell nuclei.+ese LVQ variations enabled classification of
97.7% benign vs. malignant patients, but no important re-
sults finer classification in the histological subgroups was
reported or obtained. In 2006 [31], Cochand-Priollet et al.
reported on the application of four different classification
methods after nuclear morphometry that was followed by
statistical preselection in order to identify the significant
features (notably only four image morphometry features
were different and were considered important for subse-
quent classification). Four classifiers were compared: (1) a
linear classifier, (2) a two-layer feedforward, (3) a combined
two-layer feedforward ANNS generated by the Ada–Boost
method, and (4) the k nearest neighbor classifier (a method
with many similarities with LVQ). +e results of the clas-
sifiers were between 83% and 94%, with the linear classifier
having the worst performance (65%) in patient discrimi-
nation. +e latter proved that ANNs can exploit their
nonlinear nature to obtain better classification results than
typical statistical approaches such as the linear models.

Table 7: Performance indices for the patient classification subsystems (numeric and percentages classifiers) for the training and test sets and
for both sets combined.

Numeric classifier Percentages classifier
Training set Test set Both sets Training set Test set Both sets

Sensitivity (%) 92.41 91.25 91.82 94.94 95.00 94.97
Specificity (%) 94.48 93.71 94.10 95.86 95.10 95.49
PPV (%) 90.12 89.02 89.57 92.59 91.57 92.07
NPV (%) 95.80 95.04 95.42 97.20 97.14 97.17
FPR (%) 5.52 6.29 5.90 4.14 4.90 4.51
FNR (%) 7.59 8.75 8.18 5.06 5.00 5.03
OA (%) 93.75 92.83 93.29 95.54 95.07 95.30
PLR 16.75 14.50 15.56 22.94 19.41 21.04
NLR 0.08 0.09 0.09 0.05 0.05 0.05
Odds ratio 208.35 155.27 179.03 434.38 369.14 399.28
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Figure 3: Receiver operating characteristic (ROC) curves for the numeric classifier: (a) the training set and (b) the test set.
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In the same arena, in 2007, Shapiro et al. [82] used 197
thyroid follicular tumors (adenomas and carcinomas);
various types of ANNs and different designs were tested
using nuclear morphometry (i.e., area, perimeter, and shape
factor) and nuclear density or texture features (mean value
and standard deviation of gray levels). In a similar approach,
the ANNs were applied on the mean values of the nuclei
measurements; thus, each patient was represented by a single
vector of values. According to the results, the diagnostic
accuracy in detecting follicular tumors was 97%, and the
accuracy of ANNs in discriminating adenomas from car-
cinomas was by 87%. +is research team reported that the
application of ANNs raised the sensitivity of cytological
diagnosis of follicular tumors to 90%, while at these times,
the usual cytopathology approach had sensitivity around
60%.

+e problem of indeterminate results of thyroid cyto-
pathology was first reported in 2004 [83], whereas in a large
group of patients (N� 453), a feedforward ANN was trained
and tested using not only cytopathology results but addi-
tionally combined with clinical data. Patients were separated
into high or low risk for malignancy and reported that only
the cytological parameters contributed towards this classi-
fication. In this study, it was reported that there was no
difference between the training and the test set results; thus,
the method was not only important in the gray zone of
cytopathology of the thyroid but also considered as robust
(note that usually the robustness test is not reported in the
various studies).

In 2006, two important articles presented [84, 85] with
several novelties: (a) a two-layer ANN was employed with
the layer having one input assigned to one training image,
(b) the classification was based on image frequency bands
(i.e., application of the Fourier transform in the two-di-
mensional domain); thus, the novelty was that no complex
morphometry operations were required and most inter-
estingly, the cell identification (an extremely difficult task),
and (c) the proposed system discriminated the cases as
follicular carcinomas, follicular adenomas, or unknown;
thus, the ANN was capable to handle cases impossible to
discriminate. Notably, this approach introduces a gray zone
quite shorter than the cytological.

+e first combinatorial approach was presented by
Daskalakis et al., [86] in 2008, who applied a system
composed of multiple classifiers in order to discriminate
benign from malignant thyroid nodules. +e team used an
ensemble of classifiers and applied combinations of rules in
the classifiers involved. Similarly, to the majority of the
efforts, this study used nuclear morphological features. +e
classification results were in the range of 95.7%, while the
best single classifier had an accuracy of 89.6%. +erefore, a
new combinatorial methodology for thyroid cytopathology
and ANNS was first introduced and had the potential for
better accuracy from a single ANN. Similarly, in 2011 [58],
the application of a combinatorial approach of two ANNs,
one for nuclei classification and a cascaded second ANN for
patient classification based on the LVQ and monolayer
smears, was reported. +e study had relatively a large
number of patients (N� 335). +ese two combined ANNs

had an overall accuracy of 94%.+e study concluded that the
diagnostic accuracy of thyroid FNA can be improved by the
use of ANNs. More interesting results were for follicular
neoplasms suspicious for malignancy and in Hürthle cell
tumors.

Finally, there are approaches that are based on histo-
logical sections. For example, in 2014 [87], Ozolek et al.
presented a method distinguishing follicular thyroid lesions
using the optimal transport-based linear embedding to
segment cell nuclei [88].+e results of the classification were
almost perfect, and the classification was based on isolated
nuclei using a supervised method [89].

Finally, in the recent years, ANNs have been again in the
front line, and there are more efforts reported, for example,
to distinguish follicular adenomas from follicular carcino-
mas [90] or papillary carcinomas [91]. Interestingly, whole
slide imaging applications started to appear, and deep
learning approaches have been introduced [92, 93].

Since there is no standardization on the reported results,
for example, some reports mention sensitivity or specificity
and others overall accuracy, it is extremely difficult to have
comparative results of the various approaches. Moreover,
the classification unit differs, for example, in some reports,
the discrimination is on patients, while in others, on images
and even at the cell nucleus level. Finally, the classification
domain can be between benign or malignant lesions and in
other reports between follicular adenomas vs. follicular
carcinomas. For completeness reasons, Table 8 presents the
various approaches and the applied classification technique,
along with the classification units, domain, and
performance.

+is study has an important novelty; it represents the
first approach that the RBF ANN, a rarely applied ANN in
the field of medicine, is used to discriminate benign from
malignant thyroid patients on the basis of image mor-
phometry in monolayer cytological slides. +e results in-
dicated that the proposed system was robust as compared
between the training and test sets, for both patient classi-
fication approaches, while the performance was in the range
of the performance indicators reported by the other studies
so far conducted.

+e major advantages and novelty of this approach can
be summarized as follows: (a) there is increased objectivity
in the method since there are measurable features, (b) the
slide preparation using the single layer approach and
staining devices contributes towards this objectivity, (c) the
diagnostic accuracy if we consider only the cytological ex-
amination seems increased; however, this is a subjective
measure since it depends on the laboratory performing the
cytological examinations, and (d) the decision mechanism is
based on computers and is not dependent on human factors;
however, note that specialized cytopathologists are required
to define the nucleus borders required for the image mea-
surements process.

More efforts seem to be needed towards the automation
of the procedure, since only a small number of nuclei (about
100/patient) are used both in this study and in other studies.
It seems that the application of whole slide imaging and a
simultaneous detection of higher number of nuclei would be
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Table 8: Performance indices for the patient classification subsystems (numeric and percentage classifiers) for the training and test sets and
for both sets combined.

Reference
number

Year of
publication AI method Number of units Classification domain Performance

[81] 1993 A backpropagation ANN and
a learning vector quantizer 392 cases Diagnosis of thyroid

function

Overall accuracy on test
data subsets was in the

range of 96.4–99.7%, when
extreme values used for
training the overall

accuracy were in the range
of 92.7–98.8%

[27] 1996 Backpropagation algorithm
(three layers) 51 patients Cell nuclei and

patients

Overall accuracy was
90.6% for nuclei

classification and 98% on
individual patients

[61] 1999 LVQ classifier 198 patients
Benign from

malignant thyroid
lesions.

Overall accuracy: 97.8%

[31] 2006

Four methods: (1) a linear
classifier, (2) a two-layer
feedforward ANN, (3) a
combined two-layer

feedforward ANN generated
by the AdaBoost method, and
(4) the k nearest neighbor

classifier (a method with many
similarities with LVQ)

157 patients
Benign from

malignant thyroid
lesions.

(1) 65.17%, (2) 73.20%, (3)
73.20%, and (4) 74.69%

[82] 2007 Backpropagation algorithm
(three layers) 197 smears

Follicular carcinomas
vs. follicular
adenomas

Sensitivity: 97%

[83] 2004

Multilayer perceptron 15
nodes in the input, 1 hidden
layer of 15 units, and an

output layer

453 patients High vs. low risk for
cancer

Sensitivity: 90.6%,
specificity: 62.2%

[84] 2006 Two-layer ANN having inputs
as cytological images

30 images from 10
patients for training and
45 patients with follicular
adenoma and 39 patients
with follicular carcinoma

for testing

Follicular carcinomas
vs. follicular
adenomas

Overall accuracy: 96%

[86] 2008 Multiclassifier system 115 cases Benign vs. malignant
nodules Overall accuracy: 95.7%

[58] 2011 LVQ ANN 335 cases

In follicular
neoplasms suspicious
for malignancy and in
Hürthle cell tumors

Overall accuracy: 94%

[87] 2014
Optimal transport-based
linear embedding for
segmented nuclei

94 patients
Distinguishing

between follicular
lesions

OA LOT-100% except
FVPC vs. FC 87%

[89] 2013
Supervised learning-based
template matching for
segmenting cell nuclei

Microscopy images to
segment nuclei

Texture and shape
variations of the
nuclear structures

Not applicable, used for
nuclei segmentation

[90] 2018
ANN model to differentiate
FA versus FC on the FNAC

material

Microscopy images of
FA–FC (26 and 32 cases

respectively)

Follicular carcinomas
vs. follicular
adenomas

Overall accuracy of 93%
on image analysis and an
overall accuracy of 96% in

automatic image
classification to

differentiate FA and FC

[91] 2018 Convolutional neural network 174 microscopy images Papillary vs.
nonpapillary

Sensitivity: 90.8%,
specificity: 83.3%

[92] 2020 Deep learning algorithm for
whole slide images (WSIs) 908 whole slide images Malignancy

prediction
Sensitivity: 92%,
specificity: 90.5%
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of interest. Moreover, automated cell nuclei identification
and measurement seem to be of interest for further research.
+is approach highlighted a new combined methodology for
thyroid cytopathology that has the potential to evolve to
greatest accuracy and automation.
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