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From Statistical Model Checking to Run-Time
Monitoring using a Bayesian Network Approach

Manfred Jaeger[0000−0002−5641−8153], Kim G. Larsen[0000−0002−5953−3384], and
Alessandro Tibo[0000−0002−9070−740X]?

Aalborg University, Denmark
{jaeger,kgl,alessandro}@aau.dk

Abstract. We propose a framework for monitoring and updating, at
run-time, the probabilities of temporal properties of stochastic timed au-
tomata. Our method is based on Bayesian networks and can be useful in
various real-time applications, such as flight control systems and cardiac
pacemakers. The framework has been implemented by exploiting the sta-
tistical model checking engine of Uppaal-SMC. By run-time monitoring
a set of interesting temporal properties of a given stochastic automaton
we update their probabilities, modeled through a Bayesian Network. The
main advantages of our method are the capacity to discover non-trivial
dependencies between properties and to efficiently update probabilities
of unobserved properties given real-time observations. We present empir-
ical results on three application scenarios, showing that the query time
can keep up with the speed of some realistic real-time applications. We
also present experiments demonstrating that the Bayesian Network ap-
proach performance-wise enables run-time monitoring while maintaining
or even increasing the accuracy of probability estimation compared to
statistical model checking.

Keywords: Timed Automata · Bayesian Networks · Statistical Model
Checking.

1 Introduction

Stochastic timed automata are powerful modeling tools for designing and ver-
ifying a wide variety of real-time system models, such as real-time monitors
for resource management [9], cruise control system [19] in a car, flight control
systems [24], and cardiac pacemakers [16, 4]. Precise verification of probabilis-
tic properties for such models quickly becomes intractable, and statistical model
checking (SMC)(e.g. [2, 15, 10]) has emerged as a more scalable alternative. How-
ever, SMC in many cases will still not be suitable for querying at runtime under
real-time constraints, since each probability computation is based on first sam-
pling a number of runs of the stochastic automaton, and the required number of
sample runs can become very large when querying probabilities of rare proper-
ties. In particular, when we are interested in queries that can be conditioned on
? Authors listed in alphabetical order
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partial observations of the system behavior, the SMC approach will often not be
viable, since the probability estimation then can only be based on the sampled
runs that are consistent with the given observations.

In this paper we therefore develop an alternative, model-based approach. We
assume that there is a certain number of key system properties of interest. We
then construct a Bayesian network model that represents the joint probability
distribution for these selected properties, and that can be efficiently queried
for probabilities that are conditioned on complex observations. For example, in
a model for a production system involving several processes accessing shared
resources, the key properties might be when and for how long which process has
accessed which resource, and one could be interested in conditional queries for
the expected finishing time of the whole production, given that we have observed
the resource usage of some processes up to the present point in time.

We use machine learning algorithms to construct Bayesian network models
from the same kind of randomly sampled system runs as used by SMC. As we will
see, not only does the Bayesian network model then enable much faster, repeated
querying for different conditional probabilities, it also turns out to be more data
efficient: a Bayesian network learnt from the same amount of random runs often
provides more accurate probability values for the queries of interest, than what
is obtained by SMC. This is because the Bayesian network also identifies the
(conditional) independence structure between the properties, and thereby can
provide accurate probability values even for combinations of properties that
never occurred once in the sampled run data.

In this paper we focus on application scenarios where the goal is forecasting
properties of system runs based on observations made at runtime. For example,
we may want to continuously update a probability estimate for the event that a
system’s battery reaches a critically low level before the current process on the
system terminates. Our method can support other types of applications, however.
For example, a Bayesian network model learned from a timed automaton model
M could be used for fault-diagnosis of a real-world implementation S. Internal
system states that can be observed in simulations ofM may be unobservable in
S, and a model learned from traces ofM can therefore be used to infer hidden
(failure) system states of S.

The use of Bayesian networks for diagnostics and forecasting of biological and
technical systems is, of course, very well established. However, the usual scenario
is that the Bayesian network is either manually constructed by experts, or learned
from observational data of the same type of system to which it later will be
applied. The novelty of our approach lies in the fact that we base the construction
of the Bayesian network on a behavioral model (timed automaton) of the system
that we later want to diagnose or monitor, and that a Bayesian network modeling
and inference approach then becomes a computational alternative to statistical
model checking techniques.

Bayesian networks have previously been used as tools in a runtime verification
scenario [17]. However, the nature of the Bayesian networks used in [17], their
construction and use is very different from what we propose here. The authors
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of [17] use dynamic Bayesian networks (DBNs) which are obtained by a product
construction from a system model given as a Hidden Markov Model (HMM), and
a property monitor given as a deterministic finite automaton. The nodes of the
DBNs then represent time-indexed internal system and monitor states. This is
very different from the nodes in our Bayesian networks, which directly represent
properties of interest of entire system traces. Whereas the DBNs of [17] are
obtained by a deterministic constructions, ours are learned from simulation data.
Finally, the objective of [17] is online monitoring of the current system state. As
explained above, our focus is on forecasting future events and properties in the
full system run.

We implemented and evaluated our approach based on Uppaal-SMC [10] as
the modeling platform for stochastic timed automata, as the sample generator
for random system runs, and as the SMC tool that we compare against.

The paper is organized as follows. In Section 2 we formally review some
background concepts related to timed automata, statistical model checking, and
Bayesian Networks. In Section 3 we present the proposed framework. In Section
4 we report an experimental evaluation of our method on a real-case scenario,
introduced at a first as toy example for a better explanation and then two con-
creted cases. We also perform a comparison between statistical model checkers
and Bayesian Networks in Section 5. Finally, in Section 6 we draw some conclu-
sions and discuss possible extensions as future work. The code we used for the
experiments can be downloaded from https://github.com/alessandro-t/uppaal-
bn.

2 Background

In this section we will review the ingredients of our framework: timed automata
models, statistical model checking, and Bayesian Networks.

2.1 Timed Automata

Timed Automata are finite automata enriched with real-valued variables called
clocks [3]. Clocks measure the progress of time which elapses while an automaton
is residing in some location. Transitions between locations can be constrained
based on clock values and clocks may be reset on transitions. In the tool Up-
paal [20] the modelling formalism is extended to networks of timed automata,
including handshake and broadcast communication primitives, communication
over shared variables as well as a C-like imperative programming language which
allows transitions to be conditioned on and perform complex updates of discrete
structured variables.

Consider the small safety critical Bridge Scenario depicted in Figure 1. Here
a Car needs to cross over bridge, while at the same time a Ship wants to pass
under the bridge. However, for the Ship to make the passing safely the bridge
needs to be open. Conversely, the bridge needs to be closed in order for the Car
to safely cross over the bridge. Obviously, the bridge is only allowed to be opened
in case the Car is not on the bridge.
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Fig. 1. Safety Critical Bridge Scenario involving
a Car and a Ship.

Figure 2 provides a timed au-
tomata based model of the Bridge
Scenario in Uppaal. The model
consists of two timed automata
Car and Ship with their respective
clocks x and y used to constrain
the timing of their transitions: e.g.
the combination of the invariant
x<=10 of the location Car.Init
and the guard x<=5 implies that
the output action carW! will take
place after a delay of d time-units
with 5 ≤ d ≤ 10. When reaching
the various locations, both Car
and Ship broadcast relevant out-
put actions, Car broadcasts carB! when entering the bridge-location Car.B. The
two timed automata synchronize exclusively using the two boolean variables Bcl
(indicating that the bridge is closed) and Bus (indicating that the Car is on the
bridge). Semantically, a timed automaton describes a timed labelled transition
systems, with states being pairs (`, ν), where ` is a location and ν is a valuation
for the clocks, and with transitions being either delays or discrete actions. In a
network of extended timed automata, states are vectors of states – one per com-
ponent – together with concrete values of discrete variables. E.g. in the Bridge
Scenario model of Figure 2 [(Car.B, x = 0), (Ship.W, y = 11.9), Bus = 1, Bcl = 1]
is a reachable state, witnessed by the following transition sequence:[

(Car.Init, x = 0), (Ship.Init, y = 0), Bus = 0, Bcl = 1
]

7.28→ carW!→
[
(Car.W, x = 0), (Ship.W, y = 7.28), Bus = 0, Bcl = 1

]
4.62→ carB!→

[
(Car.B, x = 0), (Ship.W, y = 11.9), Bus = 1, Bcl = 1

]
.

Given the timed automata model of the Bridge Scenario in Figure 2, the sym-
bolic verification engine of Uppaal allows us to verify the crucial safety property
A[] !(Car.B and Ship.B), which is a CTL formula expressing that the Ship

Fig. 2. Timed automata model of the Bridge Scenario of Figure 1.
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and the Car cannot be under/at the bridge at the same time. In addition, we
may be interested in knowing whether the Car or the Ship may reach their re-
spective END-location first. In fact, both outcomes are possible as may be witness
by model checking the reachability properties E<> !Car.END and Ship.END and
E<> Car.END and !Ship.END.

2.2 Statistical Model Checking
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Fig. 3. Cumulative Distributions obtained by
Pr[<=T](<> Ship.END) and Pr[<=T](<> Car.END)

Beyond crucial safety proper-
ties, we are often interested
in more refined performance
analysis of a system. E.g. for
the Bridge Scenario, we would
be interested in the probabil-
ities that the Car or the Ship
finishes first. For such perfor-
mance queries to be mean-
ingful, we need a stochas-
tic semantics of networks of
timed automata, where the
non-deterministic choices of
delays are refined by probabil-
ity distributions, and where
non-deterministic choices be-
tween discrete actions are re-
fined by probabilistic choices.
In the branch Uppaal-SMC,
delays of components are by
default resolved by a uniform
distribution (e.g. in Figure 2 the delay of Car in Init is uniform between 5 and
10 time-units) or an exponential distribution (e.g. in Figure 2 the delay of Ship
in W is given by an exponential distribution with rate 7 ). Other distributions
may be specified by the user. For composite systems, the choice of which compo-
nent will perform the next output action (and at which time) is a race between
the components settled stochastically by the independent delay distributions of
these. We refer the reader to [12, 13, 11] for more details on the semantics of
stochastic timed automata adopted in Uppaal-SMC.

Crucially, the stochastic semantics of timed automata offers the basis of
a probability measure on measurable sets of runs (obtained from a natural
cylinder-construction). In fact, time-bounded reachability, safety properties as
well as Metric Interval Temporal Logic (MITL) properties all describe measur-
able sets of runs [6]. Based on Monte Carlo simulation, the engine of Uppaal-
SMC allows to estimate the probabilities of such (time-bounded) properties by
confidence intervals (the user-desired size and confidence of which determines the
number of simulations needed). In Figure 3, we see that the most likely “winner”
of the Car and Ship depends highly on the timing bound.
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Rather than using MITL or (other logics) for expressing properties of runs,
we will use monitors, being purely inputting, deterministic timed automata, that
are added as extra parallel components to the system. Given a set of (absorb-
ing) accept locations, a monitor M describes all the timed words φM over the
alphabet of the system, that will lead to an accept location. Now, the engine
of Uppaal-SMC allows to estimate p(φM ), i.e. the probability that a random
run of the system will be accepted by M . In [14] monitors are used to express
properties of continuous-time Markov chains. In [1] the logical power of timed
automata monitors is characterized.

Monitors M express logical properties φM of runs, i.e. for any given run
π, φM (π) is either true or false. In this paper, we consider the generalization
to categorical properties ψ, which for any run π returns a value ψ(π) from a
finite domain V = {v1, . . . , vn}. A categorical monitor C over V is a monitor,
but with n designated terminal and absorbing states Sa = {s1, . . . sn} rather
than a set of accept states. Now the categorical property ψC realized by C is
simply ψC(π) = vj whenever the run π reaches the terminal state sj . For the
purpose of this paper, we shall assume that monitors reach an absorbing state
with probability one. In fact, for the models we use in our examples, the stronger
property holds that there exists a fixed upper time bound T , such that monitors
will reach an absorbing state after a most T time-units of the underlying system.

Fig. 4. Monitors from left to right, representing the properties φW, φB, φC, and φEND.

For our bridge example, we can consider for S ∈ {W, B, C, END} the categorical
properties φS, all with domain V = {Car, Ship}, and defined such that φS(π) =
Car iff in the run π car is first to reach S. Figure 4 shows the monitors for these
four properties.

From general stochastic timed automata and the very powerful specification
language of monitors, we obtain probabilistic queries P (ψC(π) = vj) =? that are
undecidable, and therefore outside the reach of exact probabilistic model check-
ing [5]. Approximate estimation techniques like SMC, or the Bayesian network
model-based approach we introduce here, therefore are required.

2.3 Bayesian Networks

A (categorical) Bayesian Network is a directed acyclic graph G = (V,E), where
each node vi ∈ V is associated with a categorical random variables Xi, and
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edges represent dependencies between the random variables [18]. Let N := |V |.
G defines the joint probability of the random variables as a product of conditional
distributions:

p(X1, . . . , XN ) :=

N∏
i=1

p(Xi|Parents(Xi)),

where Parents(Xi) = {Xj |j : (vj , vi) ∈ E}. In our application, we need to solve
the following computational problems:

Structure learning. Given a dataset ofK observations (xi1, . . . , xiN ) (i = 1, . . . ,K)
of the random variables, learn the edges E of G by optimizing an objective that
combines the maximum likelihood criterion with a simplicity objective (sparser
structures are preferred). Out of several objective functions that embody similar
principles, we choose the Bayesian Information Criterion [22] (BIC) score. The
BIC score is asymptotically consistent in the sense that in the large sample limit
the BIC-optimal structure will be a minimal structure (in terms of the number
of numerical parameters it contains) over which the data generating distribution
can be represented [8]. Identifying the BIC-optimal Bayesian network structure
is in general NP-hard in the number of variables [7]. On the other hand, it can be
shown that, again in the large sample limit, greedy search strategies are sufficient
to identify the optimal structure [8]. However, these optimal greedy strategies
operate in complex and highly connected search spaces, so that even though the
number of search steps they require is polynomial, their overall complexity is not.
In all our experiments, we maximize BIC score via greedy Hill Climbing [21],
as implemented in the Python library bnlearn [23] for structure learning. We
note that even though hill climbing does not necessarily give us the BIC-optimal
structure, it will give us in the large sample limit an over-approximation, i.e., a
structure that can represent the data-generating distribution, even though not
necessarily the sparsest possible such structure. As in our context we are able to
generate arbitrary amounts of training data, we can, in principle, approximate
the true distribution with arbitrary precision.

Parameter Learning. Once the structure of G is learnt, the parameters of the
conditional distributions p(Xi|Parents(Xi)) are estimated by maximizing the
likelihood. In our case of categorical random variables, and the availability of
complete data (the values of all random variables Xi are observed in all of the
K samples), this amounts to nothing more than calculating relative frequencies
of the value configurations that are needed for a tabular representation of the
conditional distributions.

Inference. The learnt Bayesian network is used to compute conditional prob-
ability distributions p(Xi|Xh1 = xh1 , . . . , Xhm = xhm) of a query variable Xi

given observed values for a subset of the remaining variables. In the worst case,
this probabilistic inference is still NP-hard in the size of the Bayesian network.
However, several inference techniques exist that often lead to efficient inference
in practice. We make use of the Variable Elimination [25] (VE) algorithm, as
implemented in the python library bnlearn [23].
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3 Methodology

We now describe in detail our approach to combine the power of stochastic
timed automata for modeling complex systems with the ability of Bayesian net-
works for fast and flexible computations of conditional probability distributions.
The fundamental assumption of our approach is that we have at our disposal a
stochastic timed automaton, and that we have identified a number of relevant
categorical path properties φ1, . . . , φN represented by monitors, such that we
need to compute conditional probability distributions involving these properties
either over-and-over again, or under real time constraints at run time (or both).
In the first case our approach will have an advantage over SMC in terms of amor-
tized time complexity (the time needed to construct the Bayesian network will
be more than compensated by much faster computations of query probabilities).
In the second case SMC may not be feasible at all because of its inability to
meet the time constraints.

φB

φW φC φEND

Fig. 5. The Bayesian Network learnt from data generated by the model of Figure 2
and monitors of Figure 4.

We collect data by running K simulations of the stochastic timed automaton,
and recording for each simulation the values returned by the N monitors. This
data is collected in a data table D of dimensions K ×N , where the ith column
then contains values from the domain of φi.

From D we learn both the structure and the parameters for a Bayesian
Networks G, as described in Section 2. Figure 5 shows a Bayesian network for
the path properties defined by the monitors of Figure 4 that was learnt from
10, 000 random executions of the model shown in Figure 2. The model learning
has identified the φB property as the central random variable, and correctly
shows that given the information which of Car or Ship first passes the bridge,
the random variables φC and φEND become independent of φW.

G can be now used to query the probability distribution of any of the prop-
erties, given arbitrary observations of other properties. We illustrate two pro-
totypical query scenarios. The first one is runtime forecasting : here we want
to continuously update the prediction of a variable as the system run evolves.
Figure 6 shows an example where the query random variable is φEND, and we
update the probability distribution for φEND each time the value of one of the
other variables becomes known. Figure 7 shows instead the explicit updates of
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Table 1. p(φW = Car) given the four possible combinations for φC and φEND.

φEND = Car φEND = Ship

φC = Car 0.961 0.5
φC = Ship 0.005 0.005

the Bayesian network of Figure 5 as new properties are observed. We observe
that during this particular run of the system the believed probability of the Car
being the first at END decreases radically at time-point t = 10.53. The second
scenario is diagnostic prediction for unobservable properties. Even though all
the properties in the Bayesian network correspond to monitors in the timed au-
tomata model, in the real world some of these properties may not be observable.
We can then use the Bayesian network to make predictions about the unobserv-
able properties based on what we could observe. In our example, we may assume
that only φC and φEND are observable, due to suitably positioned cameras. We
may then be interested in inferring the state of φW given the available observa-
tions. φW is an interesting property, for example, if one aims to minimize the
waiting time of the boat as this latter pollutes more than a car. Table 1 shows
the probability values for φW = Car given the four possible configurations of the
observable variables.

Car

Ship

Car

Ship

t

p(φEND) p(φEND|φW) p(φEND|φW, φB) p(φEND|φW, φB, φC)

φW = Car φB = Ship φC = Ship

t = 9.15 t = 10.53 t = 19.12

Car

Ship

Car

Ship

Fig. 6. Evolution of p(φEND) as new properties are observed. Note that right after
t = 9.15 the Car most likely arrives first to the end. However, at t = 10.53 the situation
drastically changes due to the observation of φB = Ship.

4 Experiments

We evaluated our method on three different scenarios.

4.1 Bridge Crossing

We consider a more complex set of properties for the Bridge scenario described
in Section 1. We now define properties ψCar,S, ψShip,S for S ∈ {W, B, C, END}.
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Fig. 7. The explict Bayesian network updates as new properties are observed. The red
block represents properties observations.

Associated with these properties are domains TCar,S, TShip,S that each consist
of 8 time intervals.

For example, TCar,B = {[0, 5.931], [5.931, 6.601], . . . , [19.195, 28.614]}, and
ψCar,B = [19.195, 28.614] means that the car has arrived at the bridge between
time points 19.195 and 28.614. To define the time interval domains for each vari-
able we used a random sample of system runs, and quantized the empirically
observed arrival times into 8 bins so that all bins contain an equal numbers of
sample points. As a consequence, prior to any observations, the probability dis-
tribution for each ψ variable is uniform over its domain (cf. Fig. 9 at T = 0).
We also retain the property φEND with domain {Car, Ship} as introduced in
Section 3.

We here consider a runtime forecasting scenario, where we want to main-
tain a continuously updated prediction for the time ψCar,END at which the car
reaches its destination. We learnt a Bayesian network for the joint probability
distribution of the properties from a dataset of K = 10, 000 model simulations.
The resulting Bayesian Network is depicted in Figure 8. Figure 9 reports for
one particular run the evolution of p(ψCar,END) as new properties are observed,
and hence used as evidence. Here, new evidence is obtained at 4 distinct points
in time T1, . . . , T4. The figure shows for each of these timepoints the newly ac-
quired observation, and the conditional probability distribution of p(ψCar,END)
given all observations up to that point in time.

Finally, we estimated the time per query by averaging the query time on
10, 000 model traces, which results to be 0.08 ± 0.05 seconds. Those results
confirm that the Bayesian Network query can keep up with the speed of this
real-time application.
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ψCar,B

ψCar,W

ψShip,C

ψShip,B ψShip,W

ψCar,C

ψShip,END

ψCar,END

φEND

Fig. 8. The Bayesian Network structure for the Bridge Scenario.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
0.00

0.05

0.10

0.15

0.20

0.25
T0 = 0

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T1 : ψCar,W = t5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T2 : ψShip,W = t5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T3 : ψCar,B = t3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T4 : ψShip,W = t5

Fig. 9. The evolution of p(ψCar,END) as new properties are observed:

4.2 Job Shop

Three persons Kim, Manfred, and Alessandro, want to read the four sections
com, spo, pol, and loc (Commerce, Sport, Politics, and Local news) of a shared
newspaper. Each person can read one section at a time and the sections can-
not be shared among the persons. A person must wait until a section becomes
available before reading it. Furthermore, each person reads the sections in a
given order for a different amount of time. Figure 10 depicts an example of or-
dered section requests for each person. For each person, we designed a template
in Uppaal-SMC, an example of which is shown in Figure 11. During each
simulation of the model we are interested in several temporal properties. Let
U = {Kim, Manfred, Alessandro} be the set of persons, S = {com, spo, pol, loc}
the set of sections, and TU = {t0, . . . , tW } and TS = {t0, . . . , tZ} sets of time
intervals. We are interested in evaluating the following properties during each
simulation of the model

– for each u ∈ U the property φu with domain TU representing the time interval
in which u finishes the reading or all sections.

– for each u ∈ U and s ∈ S the property ψu,s with domain TS representing
the time interval in which u finishes to read section s.

We again learnt a Bayesian network for the joint probability distribution of
the properties from a dataset of K = 10, 000 model simulations. The resulting
Bayesian Network is depicted in Figure 12. For this case, the learnt structure
shows two main clusters which involves Alessandro and Kim properties. The
cluster related to Alessandro connects more specific Alessandro properties. A
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Sport

1 ≤ TU ≤ 5

Politics

3 ≤ TU ≤ 6

Commerce

10 ≤ TU ≤ 11

NEWSNEWS

Local News

3 ≤ TU ≤ 6

Commerce

1 ≤ TU ≤ 12

Sport

1 ≤ TU ≤ 6

Politics

8 ≤ TU ≤ 10

NEWSNEWS

Local News

20 ≤ TU ≤ 23

NEWSNEWS

Local News

1 ≤ TU ≤ 3

Commerce

1 ≤ TU ≤ 3

Politics

1 ≤ TU ≤ 5

Sport

1 ≤ TU ≤ 4

ORDER

Kim

Manfred

Alessandro

Fig. 10. Example of ordered section requests for Kim, Manfred, and Alessandro. TU
represents the time units for which each section is requested by a person, e.g. Kim asks
for the com section for at least 10 TU and for at most 11 TU.

Fig. 11. Uppaal-SMC template for Kim. The green statements represent conditions
for executing a transition. The blue statements represent variable updates right after a
transition is executed. The purple statements represents invariants. com, pol, loc, and
spo are boolean variables representing whether the corresponding section (Commerce,
Sport, Politics, and Local news) is free. x is a clock.
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similar behaviour happens for Kim, while the properties related to Manfred are
more distributed over the network.

φKim

ψKim,spoψManfred,spo ψKim,loc

ψManfred,com

φManfred

φAlessandro

ψAlessandro,loc ψAlessandro,spo

ψAlessandro,com

ψManfred,eco

Fig. 12. The Bayesian Network structure for the Job Shop Scenario. Four of the prop-
erties are represented by nodes not connected to any other nodes. For the sake of better
visualization they are not shown in the figure.

With the trained Bayesian Network we can now infer (on new simulations)
probabilities of unobserved properties given the knowledge of real-time observed
properties. Figure 13 shows an example of the evolution of p(φKim) as new
properties are observed and hence used as evidence. Finally, we report in Figure
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Fig. 13. The evolution of p(φKim) as new properties are observed.

14 the empirical query time distribution on 10, 000 model traces, similarly to
Section 4.1. We point out the fact that the estimated query time distribution
has small variance and is concentrated around 0.04 seconds.

4.3 Process Resource Model

In this section we introduce a general process resource model, which can be seen
as a common abstraction of the two previous examples. Here, we assume that
we monitor a set of processes which, for being able to complete their execution,
have to access a set of resources in a certain order. Each resource can be accessed
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Fig. 14. Empirical time distribution estimated on 10, 000 traces.

only by one process at a time and each process can use only one resource at a
time. Furthermore, each process cannot reuse the same resource.

We are here interested in studying the scalability of our approach by mea-
suring the execution time for the queries, when the complexity of the system,
as given by the number of processes and resources, increases. We consider three
different instantiation of the generic system model:

– System A: 5 processes and 5 resources;
– System B: 10 processes and 10 resources;
– System C: 20 processes and 20 resources.

For this scenario we consider two sets of properties: one that contains properties
which capture the ending time for each process, and one that contains properties
which capture the duration for which each process uses a certain resource. Each
property has a domain of 5 time intervals. For a system with n processes and n
resources, this gives us a total of C(n) := n+n2 properties. Similarly to the pre-
vious experimental sections, for each of the three systems we trained a Bayesian
Network on data from 5, 000 sample runs. The learnt models for A, B, C have
C(n) nodes, and 14,16 and 22 edges, respectively. This very sparse connectivity
is due to the fact that the properties are mostly very weakly dependent, and the
BIC score used for training will approximate sufficiently weak dependence by
independence assumptions. The computation times for learning the structure of
the three Bayesian Networks are 38s, 373s, and 1914s (averaged over 5 different
learning runs).1

We simulated a runtime forecasting scenario as follows: for each system we
generated another 5,000 random runs. For each run, we selected the property
whose value was observed last on that run (i.e., the finishing time of the process
that finished last on the run) as the query property. Then, similar to what is

1 All the experiments ran on an Apple MacBook Pro Mid 2015, 2.5 GHz Quad-Core
Intel Core i7, with 16 GB of RAM and only one core has been used.
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shown in Figures 9 and 13, we computed over each run the sequence of con-
ditional probability distributions of the query property, given the incremental
observation sequence. Thus, for a system of size n, a total of 5, 000 ·C(n) proba-
bility queries conditioned on 0 to C(n)− 1 observed properties were computed.

Figure 15 shows the resulting empirical query time distribution for System
A, System B, and System C. The results show that here our approach scales very
well as the size of the system increases. The almost constant query time here
is enabled by the weak dependencies among the properties, and the resulting
sparse connectivity of the Bayesian network. Such an independence structure
cannot be exploited in a similar manner by SMC, as our following results show.
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Fig. 15. Distribution of the query time execution for System A, System B, and System
C.

We ran the same queries that give the results of Figure 15 in Uppaal-SMC.
Since these are conditional probability queries which are not directly supported
by SMC, we calculate a conditional probability p(A|B) as the ratio p(A,B)/p(B),
using two separate SMC estimates for p(A,B) and p(B). Uppaal-SMC requires
the specification of a confidence parameter ε for the width of a confidence interval
that will be returned for the query probability. When [lA,B , uA,B ] and [lB , uB ]
are the confidence intervals for p(A,B) and p(B), respectively, we compute the
confidence interval for p(A|B) as [

lA,B

uB
,
uA,B

lB
]. This can lead to very wide con-

fidence intervals for the conditional, even when [lA,B , uA,B ] and [lB , uB ] have a
small width ε. Ideally, we would use for this experiment ε values such that the
confidence intervals for the conditional probabilities become reasonably small,
and the accuracy of the SMC estimate matches the accuracy of the Bayesian
network values. This is not an easy task, and as the results of the next section
will show, would probably require ε values that are much smaller than what
can feasibly be computed. For the purpose of this runtime comparison we there-
fore simply consider the three values ε = 0.1, 0.01, 0.001, which will only give
very rough estimates for conditionals once the probabilities of the conditioning
observations become small.
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Table 2 shows the average query time for the three models and three ε values.
We set a timeout at 5 minutes. We observe that SMC computation here scales
neither as a function of the system complexity, nor as a function of the precision
parameter ε.

Table 2. Average time per query in Uppaal-SMC

ε System A System B System C

0.1 0.13s 0.52s 3.68s
0.01 1.60s 8.22s > 5m
0.001 > 5m > 5m > 5m

5 Accuracy Analysis

In this section we investigate the accuracy of probabilities calculated with learnt
Bayesian networks, and compare against the accuracy that is obtained by SMC
using a comparable amount of data.

We return to the Bridge scenario described in Sections 1 and 4.1. We consider
the conditional probability distribution

p(φEND = Car|ψCar,W, ψShip,W, ψCar,B, ψShip,B).

For the conditioning variables ψCar,W, . . . , ψShip,B we identify a rare and a com-
mon joint configuration of time-interval values. The rare and common configu-
ration occur 1177, respectively 6147 times in a sample of 1M traces.

We estimated the true query probabilities by repeating 10 simulations of
1M traces each. The mean empirical values of the query probabilities, and the
standard deviation over the 10 simulations is shown in Figure 16 as “Real”. The
negligible standard deviation shows that we can treat the obtained estimate as
the ground truth probability.

We learnt Bayesian networks from K sampled traces for 14 distinct values
of K ranging from K = 50 to K = 600, 000. The probabilities obtained from
the learnt networks for the two different queries are plotted in Figure 16 as a
function of K. As described in Section 4.3, SMC in Uppaal-SMC is not directly
controlled by specifying a sample size, but through a confidence parameter ε. We
ran Uppaal-SMC multiple times, continuously varying ε from 0.05 to 0.00005,
and computing a confidence interval for the conditional query from the confi-
dence intervals at the specified ε level for the two unconditional probabilities.
In Figure 16 the resulting confidence interval is plotted against the size of the
sample that was actually required to obtain the confidence intervals at the spec-
ified ε. The plot also shows the mid-point of the obtained confidence intervals as
point estimates for the query probabilities.
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Fig. 16. p(φEND = Car|ψCar,W, ψShip,W, ψCar,B, ψShip,B) estimated with Bayesian Net-
work in blue and Uppaal-SMC in orange. In green the true probability. Left/right:
estimated probabilities for the rare/common configuration of observed properties.

There are a number of observations we can make from these plots: first,
we see that even for very small ε values (i.e., large sample sizes), the width of
the SMC confidence interval for the conditional probability decreases only very
slowly. This, in particular, indicates that the ε values shown in Table 2 are still
larger than what would be required to obtain reasonably accurate probability
estimates. The point estimates obtained from the Bayesian network converge
to the true probability much faster than the SMC point estimates. This is more
pronounced in the ’rare’ configuration, where SMC is handicapped by the smaller
number of samples that will be relevant for the query probability. The Bayesian
network estimates are less affected by the rarity of the observed values, since
its probabilities are derived from a combination of empirical frequencies, and
inferred conditional independence relationships.

6 Conclusions

We have introduced a framework which links statistical model checking with
machine learning. We exploited Bayesian Networks to learn dependencies among
interesting temporal properties of a stochastic timed automaton. We have iden-
tified real-time application scenarios where our approach can be used. In partic-
ular, we highlight the advantages of the Bayesian Network approach in compar-
ison with SMC for real-time updating of probabilities of unobserved properties
as new property are observed during the evolution of a real-time system. We
empirically validated our framework on three real-time scenarios, showing that
Bayesian Network inference is able to keep up with the evolution of a real-time
system. Furthermore, the estimated probabilities are at least as accurate as what
is obtained from Uppaal-SMC.

It is a interesting subject of future work to extend our approach to learn
also a set of interesting properties, rather than defining the properties a priori.
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This research direction might lead to strengthen the connections between the
machine learning and the statistical model checking domains.
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