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Abstract
We study the problem of learning Granger causal-
ity between event types from asynchronous, inter-
dependent, multi-type event sequences. Existing
work suffers from either limited model flexibil-
ity or poor model explainability and thus fails
to uncover Granger causality across a wide vari-
ety of event sequences with diverse event inter-
dependency. To address these weaknesses, we
propose CAUSE (Causality from AttribUtions
on Sequence of Events), a novel framework for
the studied task. The key idea of CAUSE is
to first implicitly capture the underlying event
interdependency by fitting a neural point pro-
cess, and then extract from the process a Granger
causality statistic using an axiomatic attribution
method. Across multiple datasets riddled with di-
verse event interdependency, we demonstrate that
CAUSE achieves superior performance on cor-
rectly inferring the inter-type Granger causality
over a range of state-of-the-art methods.

1. Introduction
Many real-world processes generate a massive number of
asynchronous and interdependent events in real time. Ex-
amples include the diagnosis and drug prescription histories
of patients in electronic health records, the posting and
responding behaviors of users on social media, and the
purchase and selling orders executed by traders in stock
markets, among others. Such data can be generally viewed
as multi-type event sequences, in which each event consists
of both a timestamp and a type label, indicating when and
what the event is, respectively.
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In this paper, we focus on the fundamental problem of un-
covering causal structure among event types from multi-type
event sequence data. Since the question of “true causality”
is deeply philosophical (Schaffer, 2003), and there are still
massive debates on its definition (Pearl, 2009; Imbens & Ru-
bin, 2015), we consider a weaker notion of causality based
on predictability—Granger causality. While Granger causal-
ity was initially used for studying the dependence structure
for multivariate time series (Granger, 1969; Dahlhaus &
Eichler, 2003), it has also been extended to multi-type event
sequences (Didelez, 2008). Intuitively, for event sequence
data, an event type is said to be (strongly) Granger causal
for another event type if the inclusion of historical events of
the former type leads to better predictions of future events
of the latter type.

Due to their asynchronous nature, in the literature, multi-
type event sequences are often modeled by multivariate
point process (MPP), a class of stochastic processes that
characterize the random generation of points on the real
line. Existing point process models for inferring inter-type
Granger causality from multi-type event sequences appear
to be limited to a particular case of MPPs—Hawkes pro-
cess (Eichler et al., 2017; Xu et al., 2016; Hall & Willett,
2016; Yang et al., 2017; Achab et al., 2018), which assumes
past events can only independently and additively excite the
occurrence of future events according to a collection of pair-
wise kernel functions. While these Hawkes process-based
models are very interpretable and many include favorable
statistical properties, the strong parametric assumptions in-
herent in Hawkes processes render these models unsuitable
for many real-world event sequences with potentially abun-
dant inhibitive effects or event interactions. For example,
maintenance events should reduce the chances of a system
breaking down, and a patient who takes multiple medicines
at the same time is more likely to experience unexpected
adverse events.

Regarding event sequence modeling in general, a new class
of MPPs, loosely referred to as neural point processes
(NPPs), has recently emerged in the literature (Du et al.,
2016; Xiao et al., 2017; Mei & Eisner, 2017; Xiao et al.,
2019). NPPs use deep (mostly recurrent) neural networks
to capture complex event dependencies, and thus excel at
predicting future events due to their model flexibility. How-
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ever, NPPs are uninterpretable and unable to provide insight
into the Granger causality between event types.

To address this tension between model explainability and
model flexibility in existing point process models, we pro-
pose CAUSE (Causality from AttribUtions on Sequence of
Events), a framework for obtaining Granger causality from
multi-type event sequences using information captured by
a highly predictive NPP model. At the core of CAUSE
are two steps: first, it trains a flexible NPP model to cap-
ture the complex event interdependency, then it computes a
novel Granger causality statistic by inspecting the trained
NPP with an axiomatic attribution method. In this way,
CAUSE is the first technique that brings model-agnostic
explainability to NPPs and endows NPPs with the ability to
discover Granger causality from multi-type event sequences
exhibiting various types of event interdependencies.

Contributions. Our contributions are:

• We bring model-agnostic explainability to NPPs and pro-
pose CAUSE, a novel framework for learning Granger
causality from multi-type event sequences exhibiting
various types of event interdependency.
• We design a two-level batching algorithm that enables

efficient computation of Granger causality scalable to
millions of events.
• We evaluate CAUSE on both synthetic and real-world

datasets riddled with diverse event interdependency. Our
experiments demonstrate that CAUSE outperforms other
state-of-the-art methods.

Reproducibility. We publish our data and our code at
https://github.com/razhangwei/CAUSE.

2. Background
In this section, we first establish some notation and then
briefly introduce the background for several highly relevant
topics.

2.1. Notations

Suppose there are S subjects and each subject s is associated
with a multi-type event sequence {(tsi , ksi )}

ns
i=1, where tsi ∈

R+ is the timestamp of the i-th event of the s-th sequence,
ksi ∈ [K] is the corresponding event type, and ns is the
sequence length. We denote by zsi ∈ {0, 1}K the one-
hot representation of each event type ksi , and use [n] to
represent the set {1, . . . , n} for any positive integer n. To
avoid clutter, we omit the subscript/superscript of index
s when we are discussing a single event sequence and no
confusion arises.

2.2. Multivariate Point Process

Multivariate point processes (MPPs) (Daley & Vere-Jones,
2003) are a particular class of stochastic processes that

characterize the dynamics of discrete events of multiple
types in continuous time. The most common way to de-
fine an MPP is through a set of conditional intensity func-
tions (CIFs), one for each event type. Specifically, let
Nk(t) ,

∑∞
i=1 1(ti ≤ t ∧ ki = k) be the number

of events of type k that have occurred up to t, and let
H(t) , {(ti, ki)|ti < t} be the history of all types of
events before t. The CIF for event type k is defined as the
expected instantaneous event occurrence rate conditioned
on history, i.e.,

λ∗k(t) , lim
∆t↓0

E[Nk(t+ ∆t)−Nk(t)|H(t)]

∆t
,

where the use of the asterisk is a notational convention to
emphasize that intensity is conditioned uponH(t).

Different parameterizations of CIFs lead to different MPPs.
One classic example of MPP is the multivariate Hawkes
process (Hawkes, 1971a;b), which assumes each λ∗k(t) to
be of the following form:

λ∗k(t) = µk +
∑
i:ti<t

φk,ki(t− ti), (1)

where µk ∈ R+ is the baseline rate for event type k, and
φk,k′(·) for any k, k′ ∈ [K] is a non-negative-valued func-
tion (usually referred to as kernel function) that characterizes
the excitation effect of event type k′ on type k.

More recently, a class of MPPs loosely referred to as neural
point processes have emerged in the literature (Du et al.,
2016; Xiao et al., 2017; Mei & Eisner, 2017; Xiao et al.,
2019). These models parameterize CIFs with deep neu-
ral networks and generally follow an encoder-decoder de-
sign: an encoder successively embeds the event history
{(tj , kj)}ij=1 into a vector hi ∈ RNh for each i, and a de-
coder then predicts with hi the future CIFs λ∗k(t) after time
ti (until the next event is generated).

Most MPPs are trained by minimizing the negative log-
likelihood (NLL):

S∑
s=1

ns∑
i=1

[
− log λ∗sksi (tsi ) +

K∑
k=1

∫ tsi

tsi−1

λ∗sk (t′)dt′

]
, (2)

where λ∗sk (t) , λ∗k(t|Hs(t)) is the CIF of the s-th sequence
for the type k. In (2), the first term corresponds to the
NLL of an event of type ksi being observed at tsi for the
s-th sequence, whereas the second term is the NLL of the
observation that no events of any type occurred during the
window (tsi−1, t

s
i ). When there are no closed-form expres-

sions for the integrals
∫ tsi
tsi−1

λ∗sk (t′)dt′, Monte-Carlo approx-
imation needs to be used to approximate either the integrals
themselves or their gradients with respect to the parameters.
However, these approximation techniques are inefficient
and generally suffer from large variances, resulting in low
convergence rate.
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2.3. Granger Causality for Multi-Type Event
Sequences

The Granger causality definition for multi-type event se-
quences is established based on point process theory (Daley
& Vere-Jones, 2003). To proceed formally, for anyK ⊆ [K],
we denote byHK(t) the natural filtration expanded by the
sub-process {Nk(t)}k∈K; that is, the sequence of smallest
σ-algebra expanded by the past event history of any type k ∈
K and t ∈ R+, i.e., HK(t) = σ({Nk(s)|k ∈ K, s < t}).1

We further writeH−k(t) = H[K]\{k}(t) for any k ∈ [K].

Definition 1. (Eichler et al., 2017) For a K-dimensional
MPP, event type k is Granger non-causal for event type k′

if λ∗k′(t) isH−k(t)-measurable for all t.

The above definition amounts to saying that a type k is
Granger non-causal for another type k′ if, given the history
of events other than type k, historical events of type k do not
further contribute to future λ∗k′(t) at any time. Otherwise,
type k is said to be Granger causal for type k.

Uncovering Granger causality from event sequences gener-
ally is a very challenging task, as the underlying MPP may
have rather complex CIFs with abundant event interaction
and non-excitative effect. As a result, existing work tends to
restrict consideration to certain classes of parametric MPPs,
such as Hawkes processes (Eichler et al., 2017; Xu et al.,
2016; Hall & Willett, 2016; Yang et al., 2017; Achab et al.,
2018). Specifically, for multivariate Hawkes process, it is
straightforward from (1) that a type k is Granger non-causal
for another type k′ if and only if the corresponding kernel
function φk′,k(·) = 0.

2.4. Attribution Methods

We view an attribution method for black-box functions as
another “black box”, which takes in a function, an input,
and a baseline, and outputs a set of meaningful attribution
scores, one per feature. The following is a formal definition
of attribution method.

Definition 2 (Attribution Method). Suppose x ∈ X ⊆
Rd is a d-dimensional input and x ∈ X a suitable baseline.
Let Fd be a class of functions from X to R. A functional
A : Fd × X × X 7→ Rd is called an attribution method
for Fd if Ai(f,x,x) measures the contribution of xi to the
prediction f(x) relative to x for any f ∈ Fd, x,x ∈ X ,
and i ∈ [d].

Since it is very challenging (and often subjective) to com-
pare different attribution methods, Sundararajan et al. (2017)
argue that attribution methods should ideally satisfy a num-

1Here, we abuse our previous notation H(t) that denotes the set
of events that occurred prior to t. Appendix D includes a primier
on measure and probability theory for readers who are less familiar
with some concepts in this subsection.

ber of axioms (i.e., desirable properties), which we re-state
in Definition 3.
Definition 3. An attribution method A is said to satisfy the
axiom of:

1. Linearity, if for any f, g ∈ Fd, x,x ∈ X , and c ∈ R,

A(f,x,x) +A(g,x,x) = A(f + g,x,x),

A(cf,x,x) = c ·A(f,x,x).
(A1)

2. Completeness/Efficiency, if for any f ∈ Fd and x,x ∈
X ,

f(x)− f(x) =

d∑
i=1

Ai(f,x,x). (A2)

3. Null player, if for any f ∈ Fd such that f does not
mathematically depend on a dimension i,

Ai(f,x,x) = 0, (A3)

for all x,x ∈ X .
4. Implementation invariance, if for any x,x ∈ X , and

any f, g ∈ Fd such that f(x′) = g(x′) for all x′ ∈ X ,

A(f,x,x) = A(g,x,x). (A4)

Besides these four axioms, we also identify two other useful
properties of attribution methods, which are less explicitly
mentioned in the literature. We state these two properties in
Definition 4.
Definition 4. An attribution method A is said to satisfy

1. Fidelity-to-control, if for any f ∈ Fd, x,x ∈ X , and
i ∈ [d],

xi = xi ⇒ Ai(f,x,x) = 0. (P1)

2. Batchability, if for any f ∈ Fd and any n input/baseline
pairs {(xi,xi)}i∈[n], there exists a function F : Xn 7→
R such that

A(F,X,X) = [A(f,x1,x1), . . . , A(f,xn,xn)],
(P2)

where X , [x1, . . . ,xn] and X , [x1, . . . ,xn].

Many popular attribution methods satisfy most of these six
properties, as we show in the Proposition 1 and 2.
Proposition 1. Integrated Gradients (Sundararajan et al.,
2017) satisfies all four axioms (A1–A4) and two properties
(P1–P2), and DeepLIFT (Shrikumar et al., 2017) satisfies
all but the implementation invariance (A4). In particular, a
choice of F for both methods satisfying batchability (P2) is
F (X) ,

∑n
i=1 f(xi).

Proposition 2. For any U ⊆ [d], let Ū , [d]\U and define
xU t xŪ to be the spliced data point between x and x such
that for any i ∈ [d]

[xU t xŪ ]i ,

{
xi i ∈ U,
xi i ∈ Ū .

(3)
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Then Shapley values (Shapley, 1953) with a value function
vf,x,x(U) , f(xU t xŪ ) satisfies all four axioms (A1–A4)
and the fidelity-to-control (P1).

We include in Appendix B the proofs for both propositions,
as well as a description of Shapeley values.

3. Proposed: CAUSE
In this section, we formally present CAUSE, a novel frame-
work for learning Granger causality from multi-type event
sequences. Our framework consists of two steps: first, it
trains a neural point process (NPP) to fit the underlying event
sequence data; then it inspects the predictions of the trained
NPP to compute a Granger causality statistic with some
“well-behaved” attribution method A(·), which we assume
satisfies the following properties: linearity (A1), complete-
ness (A2), null player (A3), fidelity-to-control (P1), and
batchability (P2).

In what follows, we first describe the architecture of the
used NPP in Section 3.1. Then we elaborate the intuition
and the definition of our Granger causality statistic in Sec-
tion 3.2. Section 3.3 explains the computational challenges
and presents a highly efficient algorithm for computing such
statistic. We conclude this section by discussing the choice
of attribution methods for CAUSE in Section 3.4.

3.1. A Semi-Parametric Neural Point Process

The design of our NPP follows the general encoder-decoder
architecture of existing NPPs (Section 2.2), but we innovate
the decoder part to enable both modeling flexibility and
computational feasibility.

Encoder. First, we convert each event i into an embedding
vector vi that summarizes both the temporal and the type
information for that event, as follows:

vi = [ϑ(ti − ti−1);VT zi], (4)

where ϑ(·) is a pre-specified function that transforms the
elapsed time into one or more temporal features (simply
chosen to be identity function in our experiments), V is the
embedding matrix for event types, and recall that zi is the
one-hot encoding of the even type ki.

We then obtain the embedding of a history from event em-
bedding sequences by

hi = Enc(v1,v2, . . . ,vi), (5)

where Enc(·) is a sequence encoder and chosen to be a
Gated Recurrent Unit (GRU) (Cho et al., 2014) in our ex-
periments.

Decoder. Our design of decoder aims to fullfill the fol-
lowing two desiderata: (a) it should be flexible enough

to produce from hi a wide variety of λ∗k(t) with complex
time-varying patterns; and (b) it should also be computa-
tionally manageable, particularly in terms of computing the
cumulative intensity

∫ ti+1

ti
λ∗k(t′)dt′, a key term in the log-

likelihood-based training given in (2) and the definition of
our Granger causality statistic in the subsequent subsections.

We propose a novel semi-parametric decoder that enjoys
both the flexible modeling of CIF and computational feasi-
bility. Specifically, for each i ∈ [n], we define the CIF λ∗k(t)
on (ti, ti+1] to be a weighted sum of a set of basis functions,
as follows:

λ∗k(t) =

R∑
r=1

αk,r(hi)ψr(t− ti), (6)

where {ψr(·)}Rr=1 is a set of pre-specified positive-valued
basis functions, and α : RNh 7→ RK×R+ is a feedforward
neural network that computes R positive weights for each
of the K event types. In this way, by choosing {ψr(·)}Rr=1

to be a rich-enough function family, the CIFs defined in (6)
are able to express a wide variety of time-varying pat-
terns. More importantly, since the parts relevant to neural
networks—α(·) and Enc(·)—are separated from the ba-
sis functions, we can evaluate the integral

∫ ti+1

ti
λ∗k(t′)dt′

analytically, as follows:∫ ti+1

ti

λ∗k(t′)dt′ =

R∑
r=1

αk,r(hi)Ψr(ti+1 − ti), (7)

where Ψr(∆t) ,
∫∆t

0
ψr(t) dt is generally available for

many parametric basis functions.

Inspired by the dyadic interval bases used by Bao et al.
(2017), we choose the basis functions {ψr(·)}Rr=1 to be the
densities for a Gaussian family {N (µr, σ

2
r)}Rr=1, whose

means are given by

µr =

{
0, r = 1,

L/2R−r, r = 2, . . . , R,
(8)

and the standard deviations by σr = max(µr/3, µ2/3) for
r ∈ [R]. This design of basis functions reflects a reasonable
inductive bias that the CIFs should vary more smoothly as
the time increases. As shown in Figure 1 for an example of
L = 100 and R = 5, the first a few bases, due to their small
means and variances, capture the short-term effects, whereas
the last several characterize the mid/long-term effects.

3.2. From Event Contributions to a Granger Causality
Statistic

Now that we have trained a flexible NPP that can succes-
sively update the history embedding after each event i oc-
currence and then predict the future CIFs λ∗k(t) after ti until
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Figure 1: An example of dyadic Gaussian bases forL = 100
and R = 5. The first a few bases, due to their small means
and variances, can capture the short-term effects, whereas
the last several characterize the mid/long-term effects.

ti+1; we would like to ask: can we quantify the contribution
of each past event to each prediction? Since in our case
λ∗k(t)’s are instantiated by two potentially highly nonlinear
neural networks (i.e., Enc(·) and α(·)), it is not as straight-
forward to obtain the past event’s contribution to current
event occurrence as in the case of some parametric MPPs
(e.g., Hawkes processes).

A natural idea for the aforementioned question would be
applying some attribution method to λ∗k(t)’s. To do so,
however, there are two challenges. First, the predictions
in our case are time-varying functions rather than static
quantities (e.g., the probability of a class, as commonly
seen in existing applications of attribution methods); thus
it is unclear which target should be attributed. Second, as
the input to λ∗k(t)’s are multi-type event sequences with
asynchronous timestamps, it is also unclear which baseline
should be used.

We tackle the first challenge by setting the cumulative inten-
sity

∫ ti+1

ti
λ∗k(t′) dt′ to be the attribution target. This is not

only because the cumulative intensity reflects the overall
effect of λ∗k(t′) on (ti, ti+1], but also because it has a clear
meaning in the context of point processes: it is the rate of
the Poisson distribution that the number of events of type
k on (ti, ti+1] satisfies. More importantly, since the cumu-
lative intensity has a closed form as in (7), its gradients
with respect to its input can be computed both precisely
and efficiently. Note that by adopting this target, the in-
put now includes not only {(ti, zj)}j≤i but also ti+1; thus
we define xi , [t1, z1, . . . , ti, zi, ti+1] and write the target∫ ti+1

ti
λ∗k(t′) dt′ as fk(xi).

As for the second challenge, we choose the baseline of an
input xi to be xi , [t1,0, . . . , ti−1,0, ti+1]; that is, the
one-hot encodings of all observed event types are replaced
with zero vectors. Since xi and xi only differ in the di-
mensions corresponding to the event types, i.e., {zj,kj}j≤i,
by the fidelity-to-control (P1), then only these dimensions
will have non-zero attributions. With completeness (A2), it

further implies that for every type k

fk(xi)− fk(xi) =

i∑
j=1

Aj(fk,xi,xi), (9)

where Aj(fk,xi,xi) is the attribution to zj,kj . Thus, the
term Aj(fk,xi,xi) can be viewed as the event contribu-
tion of the j-th event to the cumulative intensity predic-
tion fk(xi) relative to the baseline fk(xi). Besides, event
timestamps are identical in xi and xi, thus this contribution
comes only from the event type and denotes how type kj
contributes to the prediction of type k for a specific event
history xi.

A Granger Causality Statistic. We have established
Aj(fk,xi,xi)’s as the past events’ contribution to the cu-
mulative intensity fk(xi) on interval (ti, ti+1]. A further
question is: can we infer from these event contributions for
individual predictions the population-level Granger causal-
ity among event types?

To answer this question, we define a novel statistic indicat-
ing the Granger causality for type k′ to type k as follows:

Yk,k′ ,

∑S
s=1

∑ns

i=1

∑i
j=1 I(ksj = k′)Aj(fk,x

s
i ,x

s
i )∑S

s=1

∑ns

j=1 I(ksj = k′)
.

(10)
Here the numerator aggregates the event contributions for
all event occurrences over the whole dataset, and denomi-
nator accounts for the fact that some event types may occur
far more frequently than other types, which can lead to un-
reasonally large scores if used without such normalization.
Note that an event contribution Aj(fk,xsi ,x

s
i ) may be neg-

ative when the event j exerts an inhibitive effect; thus Yk,k′
can also be negative and characterize the Granger causality
from type k′ to type k even when the influence is inhibitive.

Attribution Regularization. One caveat in (9) and (10)
is that our chosen baselines xi have never appeared in the
training procedure, thus the value of f(xi) may be mean-
ingless or even misleading. Ideally, we would like fk(xi)
to be the cumulative intensity of type k given that history
prior to ti consists of “null” events at t1, t2, . . . , ti. Thus
a natural prior reflecting this idea is to make fk(xi) nearly
zero for any handcrafted baseline xi. Such an “invariance”
property on f can be achieved by adding an auxiliary l1
regularization for each xi in the NLL given in (2), leading
to a training objective
S∑
s=1

ns∑
i=1

{
− log λ∗ksi (tsi ) +

K∑
k=1

fk(xsi−1)︸ ︷︷ ︸
negative log-likelihood

+

K∑
k=1

ηfk(xsi−1)︸ ︷︷ ︸
regularization

}
,

(11)
where η is a hyperparameter.
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Algorithm 1: Computation of the Granger causality
statistic.
Input: Event sequences {{(tsi , ksi )}i∈[ns]}s∈[S], an

attribution method A(·), and a trained NPP
Output: Granger causality statistic Y.

1 Initialize Ỹ = 0, I = [S] ;
2 while |I| > 0 do
3 Sample a batch of sequence indices B ⊂ I ;
4 for k = 1, . . . ,K do
5 Compute C = A(

∑
s∈B

∑ns

i=1 F
s
k,i,X,X);

6 for k′ = 1, . . . ,K do
7 Ỹk,k′+=

∑
s∈B

∑ns

j=1 I(ksj = k′)Csj
8 I ← I \ B;
9 Compute Yk,k′ = Ỹk,k′/

∑S
s=1

∑n
j=1 I(ksj = k′),

∀k, k′ ∈ [K].

3.3. Computing the Granger Causality Statistic

While (10) defines Yk,k′’s analytically, it is rather chal-
lenging to compute them. This is because a naive im-
plementation would require applying A(·) at each event
occurrence, which is computationally prohibitive for a
dataset of millions of events. Note that the normalization
in (10) can be easily calculated; so if we write Ỹ sk,k′ ,∑ns

i=1

∑i
j=1 I(ksj = k′)Aj(fk,x

s
i ,x

s
i ), the problem is re-

duced to how to efficiently compute
∑S
s=1 Ỹ

s
k,k′ .

We propose an efficient algorithm to compute
∑S
s=1 Ỹ

s
k,k′ ,

which is summarized in Algorithm 1. At the core of our
algorithm are two levels of batching: (a) intra-sequence
batching, which allow the computation of Ỹ sk,k′ with only
one call of A(·); and (b) inter-sequence batching, which
enables batch computation of {Y sk,k′}s∈B for a mini-batch
of event sequences indexed by B. We explain the details of
these two levels of batching as follows.

Intra-Sequence Batching. As this part only deals with
a particular event sequence, to simplify the notation, we
omit the sequence index s for now. Note that x1 ≺ x2 ≺
· · · ≺ xn and due to the recurrent nature of f , all f(xi)
for i ∈ [n] can be computed in a single forward pass with
the shared input xn. Denote by F = {Fk,i(·)}k∈[K],i∈[n]

a matrix-valued function such that Fk,i(xn) = fk(xi) for
any k ∈ [K], i ∈ [n].

The equivalence between f and F means that,

Aj(fk,xi,xi) = Aj(Fk,i,xn,xn),

which further implies that we can rewrite Ỹ sk,k′ as a weighted
sum of attribution scores for the same input xn and baseline
xn. Since we are not interested in computing the individual
attribution scores but their sum, we can leverage the linearity

property (A1) to compute the attribution scores directly for
the sum, as shown in the following proposition.

Proposition 3. For an attribution method A(·) with the
linearity (A1) and the null player (A3), it holds that

Ỹ sk,k′ =

ns∑
j=1

I(ksj = k′)Aj

(
ns∑
i=1

Fi,ki ,x
s
n,x

s
n

)
. (12)

Proof. The proof is in Appendix B.3. �

Inter-Sequence Batching. We now discuss how to effi-
ciently compute {Y sk,k′}s∈B for a mini-batch of event se-
quences indexed by B. The key idea for a significant com-
putational speed-up here is that if A(·) satisfies batchabil-
ity (P2), we can then batch the computation of different
sequences with a single call of A(·).

To simplify the discussion, we assume without loss of gen-
erality that B = {1, . . . , |B|} and ns ≡ n for all s ∈ B. Let
X = [xs]s∈B and analogously the corresponding baselines
X. We further override our previous notation and denote by
F = {F sk,i(·)}s∈[S],k∈[K],i∈[n] a new tensor-valued func-
tion such as that F sk,i(X) = fk(xsi ). Then with Proposi-
tion 1, we have that

A(
∑
s∈B

ns∑
i=1

F sk,i,X,X) =

[
Aj(

ns∑
i=1

Fi,ki ,x
s
n,x

s
n)

]
s∈B
j∈[n]

.

Time Complexity Analysis. With our two-level batching
scheme, Algorithm 1 only requires O(SK/B) invocations
of A(·), a significant reduction from the O(SNK) invo-
cations required by a naive implementation that directly
calculates Yk,k′’s, where N is the average sequence length.
Since modern computation hardware (such as GPUs) en-
ables calling A(·) with a batch of inputs being almost as fast
as calling it with a single input, our algorithm can achieve
up to three orders-of-magnitude speedup over a naive imple-
mentation on datasets with relatively large N and B. (See
Section 4.2.3 for empirical evaluations.)

3.4. Choice of Attribution Methods

In our experiments, we choose the attribution method A(·)
to be the Integrated Gradients, which is defined as follows:

IG(f,x,x) , (x− x)�
∫ 1

0

∂f(x̃)

∂x̃

∣∣∣∣
x̃=x+α(x−x)

dα,

(13)
where � is the Hadamard product. Nevertheless, CAUSE
does not depend on a specific attribution method but a set
of properties that we have stated upfront; this means that
any other attribution methods that satisfy these properties
(e.g., DeepLIFT) should be applicable to CAUSE. Also
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note that batchability (P2) is only used in the inter-sequence
batching for speeding up the computation; thus, if efficiency
is less of a concern, or the computation of attributions for
different inputs can be accelerated in alternative ways,2

attribution methods that only violate batchability, such as
Shapley values, should also be applicable.

4. Experiments
In this section, we present the experiments that are designed
to evaluate CAUSE and answer the following three ques-
tions:

• Goodness-of-Fit: How good is CAUSE at fitting multi-
type event sequences?
• Causality Discovery: How accurate is CAUSE at dis-

covering Granger causality between event types?
• Scalability: How scalable is CAUSE?

The experimental results on five datasets show that CAUSE
(a) outperforms state-of-the-art methods in both fitting and
discovering Granger causality from event sequences of di-
verse event interdependency, (b) can identify Granger causal-
ity on real-world datasets that agrees with human intuition,
and (c) can compute the Granger causality statistic three
orders-of-magnitude faster due to our optimization.

4.1. Experimental Setup

Datasets. We designed three synthetic datasets to reflect
various types of event interactions and temporal effects.

• Excitation: This dataset was generated by a multivariate
Hawkes process, whose CIFs are defined in (1). The
exponential decay kernels were used, and a weighted
ground-truth causality matrix was constructed with the
`1 norms of the kernel functions φk,k′(·).
• Inhibition: This dataset was generated by a multivari-

ate self-correcting process (Isham & Westcott, 1979),
whose CIFs are of the form: λ∗k(t) = exp(αkt +∑

i:ti<t
wk,ki), where ak > 0 and wk,k′ ≤ 0. A

weighted ground-truth causality matrix was formed with
the pairwise weights wk,k′ .
• Synergy: Generated by a proximal graphical event

model (PGEM) (Bhattacharjya et al., 2018), this dataset
contains synergistic effects between a pair of event types
to a third (outcome) event type; that is, the occurrence
of that pair of event types together would have a greater
effect on an outcome event type than the simple sum of
their individual effects. A binary ground-truth causality
matrix was constructed from the dependency graph of
the PGEM.

2In fact, for almost all attribution methods, the attribution for
different inputs is embarrassingly parallelizable.

We also included two real-world datasets used in existing
literature.

• IPTV (Luo et al., 2015): Each sequence records the
history of TV watching behavior of a user, and the event
types are the TV program categories. This dataset, how-
ever, does not contain ground-truth causality between
TV program categories.
• MemeTracker (MT):3 Each sequence represents how

a phrase or quote appeared on various online websites
over time during the period of August 2008 to April
2009, and the event types are the domains of the top
websites. Like previous studies (Achab et al., 2018;
Xiao et al., 2019), a weighted ground-truth causality
matrix was approximated by whether one site contains
any URLs linking to another site.

The parameter settings for the synthetic datasets and the
preprocessing steps for the real-world datasets are detailed
in Appendix C.1. The statistics of the five datasets are
summarized in Table 1.

Table 1: Statistics for various datasets.

Dataset S K # of events Ground truth

Excitation 1,000 10 250,447 Weighted
Inhibition 1,000 10 250,442 Weighted
Synergy 1,000 10 178,338 Binary

IPTV 1,869 16 966,338 N/A
MT 382,014 100 3,419,399 Weighted

Methods for Comparison. We compared our method to
the following baselines:

• HExp: Hawkes process with fixed exponential kernels.
• HSG and NHPC: Hawkes process with sum of Gaus-

sian kernels (Xu et al., 2016) and nonparametric Hawkes
process cumulant matching (Achab et al., 2018). These
two methods represent the state-of-the-art parametric
and nonparametric methods for learning Granger causal-
ity for Hawkes process, respectively.
• RPPN: Recurrent point process network (Xiao et al.,

2019), to the best of our knowledge, the only NPP that
can provide summary statistics for Granger causality,
which is enabled by its use of an attention mechanism.

The implementation details and hyperparameter configu-
rations for CAUSE and various baselines are provided in
Appendix C.2

Evaluation Metrics. The hold-out negative log-
likelihood (NLL) was used for evaluating the goodness-of-
fit of each method on various datasets, and the Kendall’s τ
coefficient and the area under the ROC curve (AUC) were

3https://www.memetracker.org/data.html
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Figure 2: Hold-out NLLs of various methods, where hori-
zontal lines denote the ground-truth NLLs. CAUSE attains
the best NLLs on all datasets.

used for evaluating the estimated Granger causality matrix
against the ground truth. Non-binary ground-truth causality
matrices were binarized at zero in the evaluation of AUCs.
We performed five-fold cross-validation and report the
average results.

4.2. Detailed Results

4.2.1. GOODNESS-OF-FIT

We start by examining the goodness-of-fit of various meth-
ods on various datasets, since if a method fails to fit the
data, it is unlikely to detect the true Granger causality be-
tween event types. As shown in Figure 2, CAUSE attains
smaller NLLs than all baselines on all datasets, suggesting
that CAUSE consistently has a better fit than all baselines.
Notably, on all three synthetic datasets, the NLLs of CAUSE
nearly match those computed by the ground-truth models.
These results confirm the flexibility of CAUSE in learning
the various types of event interactions and temporal effects.

4.2.2. CAUSALITY DISCOVERY

We now examined the performance of CAUSE on Granger
causality discovery, both quantitatively and qualitatively.

Quantitative Analysis. Table 2 shows values of AUC and
Kendall’s τ of various methods on the four datasets that have
ground-truth causality. The results in the table support the
following conclusions.

First, CAUSE performs the best overall and is most robust
to various types of event interactions. It not only signifi-
cantly outperforms all baselines on three of the four datasets
(i.e., Inhibition, Synergy, and MT), but also achieves a close-
second on Excitation, in which events were generated by a
Hawkes process, and CAUSE is supposed to have a disad-
vantage relative to Hawkes process-based baselines.

Second, once the underlying data generation process vi-
olates the assumptions of Hawkes process and exhibits
complex event interactions other than excitation, Hawkes
process-based methods tend to perform poorly, as seen from
Inhibition and Synergy.

Finally, despite both being NPP-based methods, RPPN per-
forms significantly worse than CAUSE on all datasets. We
suspect that this underperformance is caused by two issues
in RPPN’s construction of the Granger causality statistics
with the attention weights. First, RPPN restricts all atten-
tion weights to be positive, thus cannot distinguish between
excitative and inhibitive effects. Second, attention mecha-
nism may not correctly attribute the model’s prediction to its
inputs, as shown in several recent studies (Jain & Wallace,
2019; Serrano & Smith, 2019).

Qualitative Analysis. Figure 3 shows the heat map for
the Granger causality matrix of IPTV dataset estimated by
CAUSE. Almost all diagonal entries have large positive
values, indicating that users, on average, exhibit strong ten-
dencies to watch the TV programs of the same category.
Several positive associations between different TV program
categories are also observed, such as from military, laws,
finance, and education to news, and from kids and music to
drama. These results agree with common sense and are con-
sistent with the findings of an existing study with HSG (Xu
et al., 2016). Our method also suggests several meaningful
negative associations, including ads to drama and education
to entertainment; such negative associations, however, can
be completely ignored—or even mistakenly attributed as
positive ones—by models that only consider the excitations
between events, such as HSG.

Appendix C.4 provides a detailed analysis of the esti-
mated Granger causality matrix for MT dataset. The
anaylys show that CAUSE identifies major “information-
consuming” domains, such as news.google.com and
bogleheads.org, an active forum for investment-
related Q&A, and CAUSE detects credible excitative re-
lationships between subdomains.
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Table 2: Results for Granger causality discovery on the four datasets with ground-truth causality available. The best and the
second best results on each dataset are emboldened and italicized, respectively.

Excitation Inhibition Synergy MT

Method AUC Kendall’s τ AUC Kendall’s τ AUC Kendall’s τ AUC Kendall’s τ

HExp 0.858±0.004 0.453±0.005 0.546±0.002 0.102±0.002 0.872±0.058 0.251±0.039 0.404±0.009 -0.061±0.005
HSG 0.997±0.001 0.635±0.002 0.490±0.002 -0.013±0.002 0.876±0.007 0.254±0.039 0.539±0.008 0.024±0.005

NPHC 0.782±0.007 0.337±0.010 0.400±0.054 -0.138±0.067 0.741±0.129 0.163±0.087 N/A N/A
RPPN 0.595±0.010 0.136±0.012 0.448±0.003 -0.066±0.002 0.891±0.043 0.264±0.029 0.492±0.004 -0.005±0.002

CAUSE 0.920±0.012 0.533±0.013 0.921±0.021 0.532±0.021 0.991±0.004 0.331±0.003 0.623±0.012 0.075±0.007

Figure 3: Visualization of the estimated Granger causality
statistic matrices on IPTV. Better viewed on screen.

4.2.3. SCALABILITY

Finally, we investigate the scalability of CAUSE in comput-
ing the Granger causality statistic by Algorithm 1. Figure 4
shows how much speedup Algorithm 1 achieves over a naive
implementation with different sequence lengths and batch
sizes. The results demonstrate that with batch size and aver-
age sequence length both being relatively large (i.e., greater
or equal to 16 and 100, respectively), our algorithm can
achieve over three orders-of-magnitude speedup relative to
a native implementation. Furthermore, the speedup scales
almost linearly with sequence length and batch size when
they do not exceed 150 and 16, respectively, which is con-
sistent with our analysis in Section 3.3. Beyond this regime,
only a sublinear relationship between the speedup and batch
size or sequence length is observed, which is because the
GPU we tested on was reaching its maximum utilization.

5. Conclusion
We have presented CAUSE, a novel framework for learn-
ing Granger causality between event types from multi-type
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Figure 4: The speedup achieved by Algorithm 1 relative
to a naive implementation with different average sequence
lengths and batch sizes.

event sequences. At the core of CAUSE are two steps:
first, it trains a flexible NPP model to capture the complex
event interdependency, then it computes a novel Granger
causality statistic by inspecting the trained model with an ax-
iomatic attribution method. A two-level batching algorithm
is derived to compute the statistic efficiently. We evaluate
CAUSE on both synthetic and real-world datasets abundant
with diverse event interactions and show the effectiveness of
CAUSE on identifying the Granger causality between event
types.
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