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Abstract—The State-of-Health (SoH) of Electric Vehicle 
(EV) batteries is important for the EV owner and potential 
buyer of second hand EVs. The Incremental Capacity 
Analysis (ICA) has by several researchers proven to be a 
promising SoH estimation method for lithium-ion batteries. 
However, in order to be practical useable, the method needs 
to be feasible on a pack or EV level and not only on an 
individual cell level. Therefore, the purpose of this paper is 
to demonstrate the feasibility of the ICA method on real 
EVs. Nickel Manganese Cobalt (NMC) cells used in BMW 
i3 EVs and Lithium Manganese Oxide (LMO) used in 
Nissan Leaf EVs have been tested both on the cell level and 
on car level. The results are consistent and the characteristic 
peaks and valleys of the ICA on car level match with the 
same on cell level. A root-mean-square-error of 1.33 % and 
2.92 % has been obtained for the SoH estimation of the 
NMC and LMO type, respectively. It is therefore concluded 
that the ICA method is also applicable to the car level for 
battery SoH estimation. 

Keywords—Incremental capacity analysis; state-of-
health; estimation; lithium-ion battery; electric vehicle. 

I.  INTRODUCTION  

 The State-of-Health (SoH) of electric vehicle (EV) 
lithium-ion batteries is of huge concern for EV owners and 
potential buyers of secondhand EVs as the battery of the EV 
is one of the most expensive components of the EV. There 
is no universal definition of SoH but capacity fade and 
internal resistance rise are the main contributors to SoH 
reduction. Capacity fade means shorter driving range which 
is more critical for a buyer of a used EV than a marginal 
reduction in acceleration performance due to increased 
internal resistance. In this article SoH refers to the relation 
between nominal new capacity and actual capacity, and a 
new battery is therefore at 100% SoH. The challenge is to 
assess the actual available capacity in an EV. 

Incremental Capacity Analysis (ICA) is often being used 
for battery degradation analysis and identification due to the 
non-destructive nature of the method [1], [2]. However, 
ICA also turned out to be a promising method for battery 
SoH estimation and several researchers have demonstrated 
that the characteristic peaks and valleys, which appear when 
applying the ICA method, can be used to estimate the actual 
capacity of the battery. 

In [3], ICA and Differential Voltage Analysis (DVA) 
was applied on three 60 Ah Lithium Iron Phosphate (LFP) 
cells exposed to cycling aging. It was demonstrated that two 
Feature Points (FP) always were present at the same State-
of-Charge (SoC) level. The accumulated charge between 
those two FPs can be used for capacity estimation with an 
error band of 2 %. In [4], ICA was applied on 10 Ah Nickel 
Manganese Cobalt (NMC) cells exposed to cyclic aging at 
different charging rates and temperatures. A peak was 
identified, who’s values and voltage position was directly 
related to the actual capacity of the cells. A method based 
on Multi Island Generic Algorithm (MIGA) and Gaussian 
Process Regression (GPR) was developed and the 
maximum error of the SoH prediction was reported to be 
3.5 %. In [5], ICA was applied on six 31.5 Ah NMC cells 
exposed to cycling aging at different cycle depths. The data 
was processed by Gaussian smoothing. Thereby several 
peaks and valleys were identified. Two peaks and valley 
correlated with the actual capacity, which could be used for 
SoH estimation with a maximum error of 2.5 %. In [6] three 
different NMC battery cells were exposed to cycling aging. 
The authors demonstrated that the SoH can be described by 
a 1st order polynomial with a normalized Incremental 
Capacity (IC) peak as input. The SoH estimation error 
achieved was below 3.1 %. In [7] NMC cells were exposed 
to calendar aging for different temperature and SoC 
condition. Six peaks and valleys were identified, which 
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potentially gave twelve FPs as each peak or valley has a 
voltage and IC value.  Only four out of the twelve FPs 
showed a good trend with the capacity fade, and a 
Goodness-of-Fit as high as 0.99 was achieved. 

Since very promising results have been reported on SoH 
estimation based on ICA in the scientific literature [3]-[8], 
a natural next step would be to apply the ICA methods on 
real life applications, e.g. on EVs. To the best of our 
knowledge, the work for SoH estimation based on ICA 
method, which is proposed in the scientific literature, is 
mainly carried out in laboratory environments, where the 
temperature, rest time, etc. can be controlled. However, in a 
real-life usage, the battery temperature cannot be expected 
to be controlled in the same manner. Also, there will be 
cables, relays, fuses, etc. in the current path, which will 
create voltage drops as the charging current needs to have a 
certain amplitude in order to be practical feasible [9]. The 
battery-management-system of the car might balance the 
cells during operation meaning that there could be cell-to-
cell variations with respect to SoC level, current, and 
temperature. 

The purpose of this paper is therefore to evaluate 
whether the ICA method can be applied on commercial 
available EVs as a SoH estimation tool. 

This paper is an extended version of [10] in which only 
results for the NMC type used for the BMWi3 EV were 
presented. In this work, besides the results for the NMC 
type, results for the Lithium Manganese Oxide (LMO) type, 
which is used for Nissan Leaf first generation EVs, have 
also been added. In addition, SoH estimation results have 
been added for both types on both cell and car level to 
demonstrate the usability of the ICA method. More 
specifically, this paper provide the following contributions: 

• Evaluation of the ICA method as SoH estimation 
tool on car level in real-life conditions. 

• Comparison of the ICA method for SoH estimation 
at cell level and car level. 

II. METHODOLOGY 

A. Battery data 
In this work, NMC cells used in BMWi3 EVs and 

LMO cells used in Nissan Leaf EVs have been applied. 
Spare modules have been purchased and disassembled for 
both types. In Fig.  1 a spare module consisting of twelve 
series connected cells for the BMWi3 EV can be seen. 
The data of the battery cells and the conditions applied 
during charging and discharging of the cells can be seen 
in Table 1. The C-rate is the ratio of the actual current 

relative the nominal capacity. For example, if the nominal 
capacity is 63.0 Ah, the 0.5 C current is equal to 31.5 A. 

 

 
Fig.  1: BMWi3 battery module being disassembled [10]. 
 
 TABLE 1: DATA OF BMWI3/NISSAN LEAF EV BATTERY CELLS 
AND APPLIED CHARGE AND DISCHARGE CONDITIONS 

Battery type NMC LMO 
Nominal capacity 63 Ah 32.5 Ah 
Maximum charging voltage 4.125 V 4.150 V 
Minimum discharge voltage 3.000 V 2.500 V 
Cut-off charging current (5 % of 1 C) 3.15 A 1.63 A 
Charge rate 0.5 C 
Discharge rate 1.0 C 
Temperature 25⁰C 

 

B. Aging test on cell level 
In order to be able to evaluate the results on car level, 

aging test has been carried out on cell level in a controlled 
laboratory environment. Therefore, calendar aging test of 
six cells of each type have been conducted. During the 
calendar-aging test the cells are exposed to different 
temperature and SoC levels as seen in Table 2. 
     Each month the calendar aging test were interrupted 
and the capacity of the cells was measured by applying 
the charge and discharge conditions in Table 1. 
 

TABLE 2: TEST MATRIX USED FOR CALENDAR 
AGING TEST FOR NMC AND LMO CELLS [10] 

Temperature\SoC 10 % 50 % 90 % 
7⁰C  Cell 6  
35⁰C  Cell 1  
40⁰C  Cell 2  
45⁰C Cell 4 Cell 3 Cell 5 

C. EV measurements 
    To investigate the usability of the ICA method on car 
level two different BMWi3 EVs and a first generation 
Nissan Leaf EV have been tested. The three cars have 
different mileage history, and therefore a difference is 
expected when the ICA-method is applied. The battery of 
all the cars are being drained as much as the cars allows. 
Before charging, the cars are parked inside a workshop in 
order to reach a constant and homogenous battery 
temperature of around 20⁰C for more than 8 hours. The 
cars are being charged with a constant charging rate of 0.4 



C (BMWi3) or 0.5 C (Nissan Leaf) until the maximum 
battery voltage is reached. Then the battery is charged in 
Constant Voltage (CV) mode. The cars are controlling the 
CV mode and the maximum current requested from the 
car to the charger is never violated at any time during the 
charging process. 

The ICA method should in principle be applied on the 
open circuit voltage of the battery as the C-rate will affect 
the peak and valley locations [1], [9]. However, charging 
with a current close to zero is not a practical solution if 
the method should be practical feasible. The choice of C-
rate is therefore a compromise between accuracy and 
speed. It is outside the scope of this paper to go into 
further detail regarding the selection of C-rate, but an 
initial investigation indicated that the 0.4 C and 0.5 C 
charging rate was an acceptable compromise between 
charging time and the distorting voltage drop across the 
resistive elements of the cars, i.e. resistance of the battery, 
cables, relays, etc. 

D. Data processing 
     The ICA method has been applied on both cell level 
and car level. The Incremental Capacity (IC) is defined as 
the capacity 𝑞𝑞 [Ah] differentiated with respect to the 
voltage 𝑣𝑣 [V], i.e. 

𝐼𝐼𝐼𝐼 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
≈ ∆𝑞𝑞

∆𝑣𝑣
.              (1) 

     The change in voltage has been kept fixed at ∆𝑣𝑣 =
40 mV and the corresponding change in capacity ∆𝑞𝑞 [Ah] 
has then been calculated. The capacity is simply defined 
as the integration of the charging current 𝑖𝑖 [A] during 
charging, i.e. 

𝑞𝑞 = 1
3600 ∫ 𝑖𝑖𝑖𝑖𝑖𝑖.              (2) 

    The choice of the voltage change ∆𝑣𝑣 is a compromise 
between on one hand the prominence of the peaks and 
valleys and on the other hand the capability to suppress 
spikes or dips caused by random current changes due to 
the charger. It is out of the scope of this paper to go into 
further detail on this, but the 40 mV turned out to be a 
good compromise between the two considerations 
mentioned above. 

Further more, in order to avoid jumps in the IC values, 
the voltage and capacity have been smoothed using a 
moving average filter with duration of 200 s before (1) 
has been applied. It should also be noticed that IC 
calculation is only applied during the constant current 
charging mode in order to avoid variation of the battery 
voltage due to the ohmic resistance of the current path. 
 

III. RESULTS 

A. Results at cell level – NMC type 
     The charging capacity and incremental capacity of the 
six NMC cells measured over 17 months can be seen in 
Fig.  2 to Fig.  7. As expected, the charging capacity 
becomes smaller, the longer storage time. It is also noticed 
that three peaks and valleys appear, and that there is a 
clear relationship in the evolution of Peak 1, Peak 2, Peak 
3, and Valley 2 on the storage time. On the other hand, for 
Valley 1 and Valley 3, a clear evolution with respect to 
the storage time cannot be seen. 

In order to be able to compare the peaks and valleys at 
cell level to the peaks and valleys on car level, a Partial 
Charging Capacity (PCC) ∆Q is defined between 3.60 V 
and 4.08 V, i.e. 

∆𝑄𝑄 = 𝑞𝑞(4.08 V)− 𝑞𝑞(3.60 V).      (3) 
A PCC is chosen as the complete charging capacity is 

based on the minimum and maximum voltage levels 
allowed by the car. 
 

TABLE 3: NMC PCC AT MONTH 0 (M0) AND MONTH 
17 (M17) AND THE CAPACITY FADE [10] 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 
∆Q(M0) 39.8 Ah 40.0 Ah 40.1 Ah 40.1 Ah 40.2 Ah 40.1 Ah 
∆Q(M17) 32.1 Ah 29.1 Ah 22.4 Ah 38.2 Ah 35.2 Ah 37.9 Ah 
Cap. fade 19.4 % 27.3 % 44.1 % 4.7 % 12.4 % 5.5 % 

 
     As shown in Table 3, Cell 3 (Fig.  4) has lost 44.1 % 
of its PCC and is therefore the cell with the biggest 
capacity loss. In comparison to the other cells, a fourth 
peak and valley are appearing for some of the longest 
storage periods. Peak 1 and Valley 1 are however not 
present for long storage periods. This is in fact also seen 
for Cell 2 (Fig.  3), which is the cell with second biggest 
capacity loss. Peak 1 becomes weaker and weaker and 
eventually fade away. A remarkable behavior is also seen 
in Peak 2. For Cell 1-3, the voltage position of Peak 2 is 
mainly moving to the right, i.e. higher voltage values, the 
longer storage time, whereas as the IC values almost 
remains. However, for Cell 4 and 5, the voltage position 
is almost nearly the same, but the IC value become bigger 
for longer storage time. This means that the IC value of 
Peak 2 isn’t a good SoH indicator as its location depend 
on the aging condition. 



 
Fig.  2: NMC Cell 1 charging capacity (top) and incremental capacity 
(bottom) as function the charging voltage measured over 17 months. 
The arrows indicate the evolution from month 0 (M0) to 17 (M17) [10]. 

 

 
Fig.  3: NMC Cell 2 incremental capacity as function the charging 
voltage measured over 17 months. The arrows indicate the evolution 
from month 0 (M0) to 17 (M17) [10]. 

 

 
Fig.  4: NMC Cell 3 incremental capacity as function the charging 
voltage measured over 17 months. The arrows indicate the evolution 
from month 0 (M0) to 17 (M17) [10]. 

 
Fig.  5: NMC Cell 4 incremental capacity as function the charging 
voltage measured over 17 months. The arrows indicate the evolution 
from month 0 (M0) to 17 (M17) [10]. 

 

 
Fig.  6: NMC Cell 5 incremental capacity as function the charging 
voltage measured over 17 months. The arrows indicate the evolution 
from month 0 (M0) to 17 (M17) [10]. 

 

 
Fig.  7: NMC Cell 6 incremental capacity as function the charging 
voltage measured over 17 months. The arrows indicate the evolution 
from month 0 (M0) to 17 (M17) [10]. 

B. Results at car level – NMC type 
    Two different BMWi3 cars have been used for this 
investigation. The charging capacity and incremental 
capacity of the two cars (Car 1 and Car 2) can be seen in 
Fig.  8 and Fig.  9, respectively. The voltage has been 
scaled down by the number of series connected cells of 
the cars in order to be able to compare with the results of 
the six individual cells.  

 
Fig.  8: BMWi3 Car 1 charging capacity (top) and incremental capacity 
(bottom) as function the charging voltage scaled to cell level [10]. 



 
Fig.  9: BMWi3 Car 2 charging capacity (top) and incremental capacity 
(bottom) as function the charging voltage scaled to cell level [10]. 
 
     First of all, it is noticed that the voltage interval is 
shorter than for the results at cell level. This is simply 
because the cars do not allow such low and high voltage 
limits which has been applied on the individual cells level. 
This means that the Peak 1 is not present on car level as 
the voltage position of Peak 1 is lower than the allowed 
minimum voltage of the car. Peak 1 therefore cannot be 
used as a SoH indicator. However, besides the shorter 
voltage interval, the IC on car level is similar to the one 
obtained on cell level. 
    The PCC at car level for NMC type is determined in the 
same way as for the cells, i.e. by (3). Car 1 (Fig.  8) has 
been measured seven times over a period of 17 days, and 
the mileage therefore only change from 13,223 km to 
13,962 km. The average PCC of the five measurements is 
41.0 Ah, and the maximum deviation of the five 
measurements to the mean is 1.3 %. The location of the 
peaks and valleys is consistent for the seven 
measurements, which indicates that the incremental 
capacity curve is reproducible for the same capacity. This 
is a requirement if the ICA method should be applied on 
car level. 
    Car 2 (Fig.  9) has been measured over a period of nine 
days. The mileage change from 39,105 km to 39,116 km, 
i.e. almost three times the miles as of Car 1. The average 
PCC is 39.2 Ah (with a maximum deviation from the 
average of 0.3 %), i.e. a capacity reduction of approx. 5 
% in comparison to Car 1. It is however, unknown if this 
capacity reduction is because of the higher mileage or 
other factors, i.e. storage conditions. Neither Peak 3 nor 
Valley 3 are present. However, from the results at cell 
level, Peak 3 was disappearing for long storage time, i.e. 
reduced capacity, and Valley 3 was present around 4.05 
V, i.e. at the border of the maximum allowed voltage at 
car level. The reduced capacity of Car 2 in compare to Car 

1 therefore seems to affect the presence of Peak 3 and 
Valley 3. These therefore cannot either be used as a SoH 
indicator at car level. 

C. SoH estimation using ICA method – NMC type 
    If the ICA method should be applied on car level, the 
location of the peaks and valleys at car level need to be 
the same as on cell level for the same capacity. The PCC 
of the NMC battery type due to the voltage and IC 
coordinates of Peak 1 and Peak 2 are shown in Fig.  10 at 
both cell and car level. The same has been done for Valley 
1 and 2 in Fig.  11. It is noticed, that for the voltage 
coordinate of Peak 2 and voltage coordinate of Valley 2, 
good trends are seen with respect to the PCC. A 1st order 
polynomial curve fit is also shown, and it is also noticed 
that the results at car level are on the same line as the 
results at cell level. The voltage coordinate of Peak 2 
however provide the highest goodness of fit (0.97). This 
feature point is therefore selected for SoH estimation, i.e. 

∆𝑄𝑄estimation = 557.17 − 132.43 ⋅ 𝑉𝑉.       (4) 
 

 
Fig.  10: Partial charging capacity shown as function of the Peak 1 (top) 
and Peak 2 (bottom) voltage coordinate (left) and IC coordinate (right) 
of NMC type at cell and car level.  

 

 
Fig.  11: Partial charging capacity shown as function of the Valley 1 
(top) and Valley 2 (bottom) voltage coordinate (left) and IC coordinate 
(right) of NMC type at cell and car level. 

 
 
 



The actual and estimated SoH are defined as the actual and 
estimated PCC relative to the maximum measured PCC, i.e. 

𝑆𝑆𝑆𝑆𝑆𝑆actual = ∆𝑄𝑄actual
max(∆𝑄𝑄)

× 100 %   (5) 

𝑆𝑆𝑆𝑆𝑆𝑆estimation = ∆𝑄𝑄estimation
max(∆𝑄𝑄)

× 100 %. (6) 
The SoH error is simply the difference between the 

estimated and actual SoH, i.e. 
𝑆𝑆𝑆𝑆𝑆𝑆error =  𝑆𝑆𝑆𝑆𝑆𝑆estimation − 𝑆𝑆𝑆𝑆𝑆𝑆actual. (7) 

 
The actual and estimated SoH and the error is shown in Fig. 

12. It is seen that the SoH error for both cell and car level is 
quite low (root-mean-square-error of 1.33 % and maximum 
error 4.25 %) 

 
Fig.  12: Actual and estimated SoH normalized to the maximum PCC 
(top) and SoH error (bottom) for NMC type on both cell and car level. 
 

D. Results at cell level – LMO type 
     The charging capacity and incremental capacity of the six 
LMO cells measured over 13 months can be seen in Fig. 13 to 
Fig. 18. As for the NMC cells, it can be seen that some of the 
peaks and valleys also show a clear evolution due to the aging. 
For most of the LMO results two peaks (Peak 1 and Peak 2) and 
valleys (Valley 1 and Valley 2) are present. A third peak seem 
to take form, but only the prominence for Cell 2 (Fig. 14), is 
strong enough to be identified as a Peak 3. Cell 6 (Fig. 18) is 
stored at low temperatures which result in only 4.1 % capacity 
fade. For this cell only a single peak (Peak 2) and valley (Valley 
2) are present. 

The PCC for the LMO battery cells are defined in the 
interval between 3.45 V and 4.08 V. i.e. 

∆𝑄𝑄 = 𝑞𝑞(4.08 V)− 𝑞𝑞(3.45 V).      (8) 
As shown in Table 4, Cell 3 (Fig.  15) has lost 44.6 % of its 

PCC and is therefore the cell with the biggest capacity loss. It 
was also Cell 3 of the NMC cells which had the highest capacity 
loss. The applied aging condition of 50 % SoC at 45⁰C is 
therefore the worst aging condition for both types of cells in this 
study. 

TABLE 4: LMO PCC AT MONTH 0 (M0) AND MONTH 13 
(M13) AND THE CAPACITY FADE 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 
∆Q(M0) 21.1 Ah 21.2 Ah 21.0 Ah 20.3 Ah 19.5 Ah 21.0 Ah 
∆Q(M13) 18.3 Ah 17.0 Ah 11.6 Ah 16.1 Ah 13.8 Ah 20.2 Ah 
Cap. fade 13.0 % 20.1 % 44.6 % 20.6 % 29.3 % 4.1 % 

 
Fig.  13: LMO Cell 1 charging capacity (top) and incremental capacity 
(bottom) as function the charging voltage measured over 13 months. 
The arrows indicate the evolution from month 0 (M0) to 13 (M13). 

 

 
Fig.  14: LMO Cell 2 incremental capacity as function the charging 
voltage measured over 13 months. The arrows indicate the evolution 
from month 0 (M0) to 13 (M13). 

 

 
Fig.  15: LMO Cell 3 incremental capacity as function the charging 
voltage measured over 13 months. The arrows indicate the evolution 
from month 0 (M0) to 13 (M13). 
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Fig.  16: LMO Cell 4 incremental capacity as function the charging 
voltage measured over 13 months. The arrows indicate the evolution 
from month 0 (M0) to 13 (M13). 

 

 
Fig.  17: LMO Cell 5 incremental capacity as function the charging 
voltage measured over 13 months. The arrows indicate the evolution 
from month 0 (M0) to 13 (M13). 

 

 
Fig.  18: LMO Cell 6 incremental capacity as function the charging 
voltage measured over 13 months. The arrows indicate the evolution 
from month 0 (M0) to 13 (M13). 

E. Results at car level – LMO type 
A Nissan Leaf EV has been used for this study. The 

charging capacity and incremental capacity of the car can 
be seen in Fig.  19. As for the BMWi3 cars, the voltage 
has been scaled down by the number of series connected 
cells of the car in order to be able to compare with the 
results of the six individual cells. 

The PCC at car level for LMO type is defined in the 
same way as for cell level, i.e. by using (8). The Nissan 
Leaf EV has been measured two times over a period of 6 
days, and the mileage therefore only change from 12,416 
km to 12,567 km. The average PCC of the two 
measurements is 17.3 Ah. 

 
Fig.  19: LMO Nissan Leaf car charging capacity (top) and incremental 
capacity (bottom) as function the charging voltage scaled to cell level. 

 

F. SoH estimation using ICA method – LMO type 
As for the NMC type, the PCC are also shown as 

function of the voltage and IC coordinates of the peaks 
(Fig.  20) and valleys (Fig. 21). It is noticed, that only the 
voltage coordinates of Peak 1, Peak 2, and Valley 1 
provide a sufficient relationship to the PCC. The voltage 
coordinate of Peak 2 give the best goodness of fit, but 
unfortunately, none Peak 2 are present at car level. Valley 
1 provide the second best goodness of fit, and therefore 
this feature point is used for PCC estimation, i.e. 

∆𝑄𝑄estimation = 246.56 − 58.99 ⋅ 𝑉𝑉.  (9) 
 

 
Fig.  20: Partial charging capacity shown as function of the Peak 1 (top) 
and Peak 2 (bottom) voltage coordinate (left) and IC coordinate (right) 
of LMO type at cell and car level. 



 

 
Fig.  21: Partial charging capacity shown as function of the Valley 1 
(top) and Valley 2 (bottom) voltage coordinate (left) and IC coordinate 
(right) of LMO type at cell and car level. 

 
The performance of the ICA method as a SoH 

estimation tool applied on the LMO types on both cell and 
car level can be seen in Fig.  22. It is noticed that the error 
on both cell and car level is higher than for the NMC types 
as the root-mean-square-error is 2.92 % and the maximum 
error is as high as 8.54 %. This could indicate that the 
applied C-rate at 0.5 C might be too high for the LMO 
types and require further investigation. 

 

 
Fig.  22: Actual and estimated SoH normalized to the maximum PCC 
(top) and SoH error (bottom) for LMO type on both cell and car level. 

IV. DISCUSSION 

In general there is a good match between the peak and 
valley coordinates at cell level and car level for both the 
NMC and LMO battery types. However, differences are 
also seen. One explanation could be that only calendar 

aging have been considered at cell level in this study, 
whereas the tested cars by nature also are being exposed 
to cycling aging. Cycling aging might affect the peak and 
valley coordinates in another way than pure calendar 
aging. A second explanation could be, that the car battery 
to some degree is considered as a black-box with no 
access points and it is not possible to measure or control 
the battery pack temperature in the same manner as on cell 
level. EV battery packs seem in general to have some 
thermal insulation but not all EVs have or activate active 
thermal management to equalize temperature differences 
and maintain stable battery conditions.  For example, even 
though the cars have been acclimatized, the battery pack 
temperature may increase slightly in some cells during the 
charge process. Also, there might be internal auxiliary 
loads of the car while charging which cannot be 
monitored externally. This means that the actual current 
seen by the battery pack might be different from the 
terminal current fed into the cars. 

V. CONCLUSION 

In this work, the ICA method as a SoH estimation tool 
for EVs has been investigated. The study is based on NMC 
cells used in the BMWi3 EV and LMO cells used in the 
Nissan Leaf EV. Test has been applied on both cell level 
and car level. Characteristic peaks and valleys are 
appearing when performing ICA. These peaks and valleys 
can be used for SoH estimation. The peak and valley 
locations on car level are consistent. It is also shown that 
the peak and valley location on cell level matches with the 
peak and valley location on car level for the same PCC. 
The cars however does not allow deep discharge levels nor 
high charging voltage levels, and some of the peaks and 
valleys present at cell level therefore disappears at car 
level. The SoH estimation applied on the NMC type 
resulted in root-mean-square-error of 1.33 % and 2.92 % 
for the LMO type, whereas the maximum error was 4.25 
% for the NMC type and 8.54 % for the LMO type. It has 
therefore been demonstrated that the ICA method is 
applicable on car level for battery SoH estimation, but for 
this particular study, the NMC battery type provide better 
results than the LMO type. 
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