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Joint Modeling of Received Power, Mean Delay,
and Delay Spread for Wideband Radio Channels

Ayush Bharti, Ramoni Adeogun, Xuesong Cai, Wei Fan, François-Xavier Briol, Laurent Clavier, Troels Pedersen

Abstract—We propose a multivariate log-normal distribution
to jointly model received power, mean delay, and root mean
square (rms) delay spread of wideband radio channels, referred
to as the standardized temporal moments. The model is validated
using experimental data collected from five different measure-
ment campaigns (four indoor and one outdoor scenario). We
observe that the received power, the mean delay, and the rms
delay spread are correlated random variables, and therefore,
should be simulated jointly. Joint models are able to capture
the structure of the underlying process, unlike the independent
models considered in the literature. The proposed model of the
multivariate log-normal distribution is found to be a good fit for
a large number of wideband data-sets.

Index Terms—temporal moments, mean delay, rms delay
spread, multivariate log-normal, millimeter-wave, wideband ra-
dio channels

I. INTRODUCTION

Standardized temporal moments such as received power,
mean delay, and root mean square (rms) delay spread are
widely used to summarize power-delay profiles (PDPs) of
wideband radio channels. Characterization of these temporal
moments is imperative for understanding the effects of multi-
path propagation on the received signal [1], and hence, for
the design and analysis of communication and localization
systems. The standardized temporal moments are derived
from transformations of the raw temporal moments of the
instantaneous power of the received signal. Therefore, the raw
moments, and consequently the standardized moments, are
dependent random variables. The raw temporal moments have
recently been used to estimate parameters of stochastic radio
channel models from measurements [2]–[7]. Mean delay and
rms delay spread have also been used to fit an extension of
the WINNER II model to measurements [8]. In applications
where multiple temporal moments are used, it can be valuable
to consider their dependencies to avoid biases which can occur
due to false assumptions of independence.

Independent modeling of received power, mean delay, and
rms delay spread is prevalent in the literature, with their em-
pirical averages and cumulative distributions functions (CDFs)
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Fig. 1. Scatter plot of received power and rms delay spread obtained
from AAU-Hall measurements (see Sec. IV-D) is shown in black (above).
The contour lines from independently fitting log-normal distribution to the
measurements is shown in red. The empirical CDFs of the marginals is also
shown with the fitted log-normal CDF in red (below). Note that the received
power is unitless.

being reported frequently while disregarding their dependen-
cies. A survey of the empirical data available for the delay
properties of indoor radio channel is given in [9], where
a variety of marginal models is fit to the mean delay and
rms delay spread from the various data-sets. They obtained
log-normal, Gaussian, and Weibull as the best fit models.
Empirical distribution of delay spread has been modeled using
a log-normal distribution in the 910 MHz channel [10], [11],
the 30 MHz to 400 MHz frequency band [12], at 460 MHz
[13], at 11 GHz [14], and at 39 GHz [15]. A Gaussian
distribution for the rms delay spread has also been proposed
based on empirical data in [16] and [17]. Recently, the rms
delay spread has also been modeled using a bimodal Gaussian
mixture distribution [18] and neural networks [19].

The shortcomings of independent modeling become clear by
considering jointly the received power and rms delay spread
as done in the example in Fig. 1. It is apparent that by
fitting independent log-normal models to the received power
and the rms delay spread, the marginals of the data are
modeled correctly. However, the correlation information in the
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data is lost on modeling them independently. Delay spread is
previously found to be correlated to received power at 60 GHz
[20] and to mean delay in the ultra-high frequency band
[21]. One approach to mitigate this problem is to model the
standardized moments jointly. An exception to the independent
models is the one proposed by Greenstein et al. [11] where
they accounted for the correlation between rms delay spread
and shadow fading after analysing a wide range of outdoor
measurements, mostly in the 900 MHz frequency band. They
argued that rms delay spread is log-normally distributed at a
given propagation distance, and proposed a joint log-normal
model for path gain1 and delay spread with a correlation
coefficient of –0.75. However, they did not take mean delay
into account. Moreover, the correlation coefficient was based
on qualitative analysis of scatter plots and on a single mea-
surement setting. The mutual relations between the means of
the raw temporal moments have been modeled in [22]–[24]
for the in-room case, while their joint distribution was not
studied. To the best of our knowledge, joint characterization
of the temporal moments in the millimetre-wave (mm-wave)
band has not been done before.

Potentially, the temporal moments could be modeled jointly
using a multivariate distribution such that the model could be
fitted to new measurements. Joint modeling of multivariate
random variables is considerably more involved than modeling
of scalar random variables because the model is required
to represent the marginals and the dependency structure in
the data at the same time. Only a few univariate probability
distribution functions (pdfs) exist that have unique multivariate
extensions, such as the multivariate Gaussian, log-normal,
and Gamma distributions [25]. Copulas [26] can also be
used to model the dependency structure between the random
variables, especially when the marginal distributions lead to
a multivariate distribution that is difficult to handle due to
the lack of analytical expression or difficulties to estimate the
parameters.

After considering several of these methods, we conclude
that the multivariate log-normal is a reasonable choice which
provides a good balance between goodness-of-fit and ease of
interpretation. Moreover, there is substantial support for log-
normality of standardized temporal moments in the literature.
In this paper, we propose and validate the multivariate log-
normal model using a wide variety of measurements taken
in different scenarios and frequency ranges, including both
indoor and outdoor settings. Measurement campaigns were
conducted at Lund University [27], University of Lille [28],
and Aalborg University (AAU) [29]. We also present mm-wave
measurements from one indoor and one outdoor campaign in
the 28 GHz to 30 GHz band conducted recently at AAU. We
compare the proposed model with the multivariate Gaussian
and independent marginal models in terms of the Akaike
Information Criterion (AIC). Finally, we investigate the model
fits to the raw and standardized temporal moments from the
measurements. Preliminary results have been published in the
conference publication [30].

1Greenstein et al. [11] defined path gain as the ratio of received power to
transmitted power.

The paper is organized as follows: Section II describes
the raw and standardized temporal moments, and Section III
presents the model. In Section IV we compare the proposed
model with other modeling choices. Section V and VI compare
the model fits to the raw and standardized temporal moments
of the measurements, respectively. Finally, the conclusions are
outlined in Section VII.

II. TEMPORAL MOMENTS

Consider a measurement campaign where the channel trans-
fer function between fixed transmit and receive antennas
is recorded using a vector network analyzer (VNA). Sam-
pling the transfer function, H(f), at Ns frequency points
in the measurement bandwidth B results in a separation of
∆f = B/(Ns − 1) between the points. We assume that
the measurement noise at the nth frequency point, Wn, is
additive and independent of the transfer function, Hn. Then,
the measured frequency-domain signal, Yn, reads

Yn = Hn +Wn, n = 0, 1, . . . , (Ns − 1). (1)

Discrete-frequency, continuous-time inverse Fourier transform
gives the 1/∆f -periodic measured time-domain signal

y(t) =
1

Ns

Ns−1∑
n=0

Yn exp(j2πn∆ft). (2)

Note that y(t) is often referred to as the impulse response
despite suffering from limited bandwidth and noise. This
terminology is somewhat misleading since strictly speaking
the impulse response is the inverse Fourier transform of H(f).
For large bandwidth and high signal-to-noise ratio (SNR), y(t)
can be used as an approximation to the impulse response in
the time interval [0, 1/∆f ], provided that the impulse response
decays rapidly enough. To avoid this confusion, we refer to
y(t) as the measured signal.

The raw temporal moments are summary statistics of the
measured signal y(t), where the kth temporal moment is
defined as

mk =

∫ 1
∆f

0

tk|y(t)|2dt, k = 0, 1, . . . , (K − 1). (3)

Here, a total of K raw temporal moments are computed
“instantaneously” per realization of y(t), giving the K-
dimensional vector m = [m0,m1, . . . ,mK−1]

>. The raw
temporal moments are correlated random variables as they are
all derived from the received signal power, |y(t)|2. The kth

temporal moment is measured in [second]k.
The standardized temporal moments are obtained from the

first three raw temporal moments. The received power, P0, the
mean delay, τ̄ , and the rms delay spread, τrms, are given as

P0 = m0, τ̄ =
m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2

.

(4)
The unit of τ̄ and τrms is in seconds whereas P0 is unitless.
The deterministic relationship between the raw and the stan-
dardized temporal moments is depicted in Fig. 2. The non-
linearity of the above transformations and the dependency of
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Fig. 2. The connections between the magnitude square received signal and
the summary statistics (raw- and standardized temporal moments).

the raw temporal moments complicates the joint character-
ization of mean delay and rms delay spread. Summarizing
Nreal realizations of the measured signal into K temporal
moments therefore results in the K×Nreal dimensional matrix,
M =

[
m(1), . . . ,m(Nreal)

]
. We will focus our discussion on the

first three temporal moments, (m0,m1,m2), as they suffice for
the received power, mean delay, and rms delay spread but it
is straightforward to extend the framework to include more
moments as long as the marginal distributions fit the same
distribution.

Note that the standardized temporal moments in (4) are
computed from the measured signal, y(t), rather than the
channel impulse response. The impulse response is unob-
servable due to the noise and bandwidth limitations. It is
widespread practice to employ a thresholding procedure to
reduce the effect of the measurement noise on the estimation
of temporal moments. However, such procedures require the
setting of a threshold or dynamic range. The choice of the
threshold affects the resulting estimates in a manner that makes
comparison between measurements obtained with different
equipment difficult. For this reason, we omit any thresholding
procedure in the present work.

The finite measurement bandwidth also manifests itself in
the rms delay spread as an approximately additive term equal
to the delay spread of the transmitted signal. This effect can
be partially removed by subtracting the delay spread of the
frequency window. This is widespread practice in the literature
and results in a good approximation if the bandwidth is large
and the SNR is high. However, in case of low SNR and small
signal bandwidth, this can lead to inaccurate and sometimes
negative estimates of the delay spread. For the measurements
considered in Section IV, where the bandwidth is very large,
the effect of the transmitted signal can be ignored. Hence,
we make no attempt to compensate for the effect of a finite
measurement bandwidth.

III. PROPOSED STATISTICAL MODEL

We intend to jointly model the first three raw temporal
moments, (m0,m1,m2), and use the transformation in (4) to
simulate the mean delay and rms delay spread. In principle,
the standardized temporal moments could be modeled instead

of the raw moments. However, the distribution on the raw
moments implies a distribution on the standardized moments
from which sampling is straightforward. Modeling the raw
moments has the added advantage that their means and covari-
ances are easier to compute analytically for a given channel
model than those of the standardized moments due to the non-
linear transformation.

We model the vector m = [m0,m1,m2]> as a multivariate
log-normal variable. The exponential of a random vector
following a multivariate Gaussian distribution is multivariate
log-normal distributed. Let x be a K-variate normal random
vector with mean µ and covariance matrix Σ. Then its entry-
wise exponentiation, m = exp(x), yields a log-normal vector
with pdf

f(m;µ,Σ) =

∏K−1
k=0 (mk)−1√
(2π)K det Σ

× exp

(
−1

2
(ln(m)− µ)>Σ−1(ln(m)− µ)

)
. (5)

Here the logarithm is taken entry-wise. By property of the
marginals of the multivariate Gaussian, it is easy to see
that this transform results in a distribution with log-normal
marginals. Note that the parameters of a multivariate log-
normal are the mean vector and the covariance matrix of
the associated multivariate Gaussian distribution. The en-
tries of µ and Σ are given as µk = E [lnmk] and
Σkk′ = cov (lnmk, lnmk′), for k, k′ = 0, 1, . . . ,K−1, re-
spectively. Given that raw temporal moments are log-normally
distributed, their means and covariances can be related to µ
and Σ as

E [mk] = exp

(
µk +

1

2
Σkk

)
, and (6)

cov (mk,mk′) = exp

(
µk + µk′ +

1

2
(Σkk + Σk′k′)

)
× (exp (Σkk′)− 1) . (7)

Note that we model the raw temporal moments as opposed
to Greenstein et al. [11] who model shadow fading and rms
delay spread as jointly log-normal. With the proposed model,
log-normality is preserved for the received power and mean
delay due to the multiplicative transform applied on m0 and
m1. However, the distribution of rms delay spread depends on
a more complicated transformation (see (4)) and hence cannot
easily be derived in closed form.

A. Estimation of parameters

The parameters of the proposed model need to be estimated
from measured data in order to use the model for simulation
purposes. Here, we refer to the matrix of raw temporal
moments, M, as the data. This data matrix is obtained by
summarizing Nreal realizations of the measured signal using
(3). Assuming independent and identically distributed (iid)
realizations, maximum likelihood estimation of µ and Σ is
achieved by solving the optimization problem,

(µ̂, Σ̂) = argmax
µ,Σ

Nreal∏
i=1

f
(
m(i);µ,Σ

)
. (8)
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TABLE I
SUMMARY OF DIFFERENT MEASUREMENT DATA-SETS.

Data set Bandwidth
(GHz)

No. of
samples

No. of
realizations

Antenna
Tx/Rx

Dimensions
(m3) Scenario Environment

Lund Data [27] 58-62 801 625 Biconical/Open waveguide 3× 4× 3 NLOS Small room
Lille Data [28] 59-61 1601 750 Microstrip/Microstrip 5.20× 7.15× 2.90 LOS Large room

AAU-Industry [29] 3-8 5001 95 Biconical/Biconical 33× 14× 6 Both Industry hall
AAU-Hall 28-30 1500 720 Biconical/Biconical 44× 25× 10 NLOS Large hall

AAU-Outdoor 28-30 2000 360 Horn/Biconical — LOS Outdoor

Since µ and Σ are the mean vector and the covariance
matrix, respectively, of the associated multivariate Gaussian
distribution, their maximum likelihood estimates, µ̂, and Σ̂,
are

µ̂ =
1

Nreal

Nreal∑
i=1

ln m(i), and (9)

Σ̂ =
1

Nreal

Nreal∑
i=1

(
ln m(i) − µ̂

)(
ln m(i) − µ̂

)>
. (10)

B. Simulation from the model

Given a particular value of µ and Σ, simulation from the
proposed model is straightforward. To generate one sample of
m, or subsequently, one sample of (P0, τ̄ , τrms), the following
steps should be performed:

1) Draw x ∼ N (µ,Σ)
2) Compute entry-wise exponential, m = exp(x)
3) Compute τ̄ and τrms from (4)

IV. MEASUREMENT DATA DESCRIPTION

We now describe the different radio channel measurements
used to validate the proposed model. An overview of the
measurement data-sets is given in Tab. I. The parameter
estimates obtained after fitting the proposed model to the
measurements are reported in Tab. II.

A. Data-set from Lund University

Polarimetric radio channel measurements at 60 GHz was
recorded in a small meeting room of dimensions 3×4×3 m3

using a VNA [27]. The room consisted of a table, white-
board, bookshelves, and a window on one of the walls. The
receive antenna was placed at one corner of the room and
the transmit antenna was placed on the table. A water-filled
human phantom was used to block the line-of-sight (LOS)
path to emulate non-line-of-sight (NLOS) scenario. A 5 × 5
virtual array of dual-polarized antennas was used with an
inter-element spacing of 5 mm at both the transmitter and
the receiver. This resulted in a 25× 25 dual-polarized MIMO
system, however, in this paper, we only use the vertical-
vertical polarized channels. Measurements were performed
in the bandwidth range of 58 GHz to 62 GHz using 801
equally spaced frequency points. For further details on the
measurement campaign, see [27].

B. Data-set from Lille University

Measurements were taken in a computer laboratory of floor
area 7.15 × 5.2 m2 at 26 sites, covering the whole room.
The 60 GHz channel sounder developed at IEMN [28] used
two heterodyne emission and reception heads developed by
monolithic integration with frequencies ranging from 57 GHz
to 59 GHz and with intermediate frequencies of 1 GHz to
3 GHz. A dedicated network analyzer allows, after calibration,
the vectored measure of the frequency transfer function by
steps of 1.25 MHz. The resulting impulse response has a
delay resolution of 0.5 ns and a maximum measurable delay of
800 ns. In this paper, we select a subset of the entire data-set,
specifically, taking the measurements from the first three sites
having the same distance between the transmit and receive
antennas in LOS condition. Each site consists of 250 positions
separated by 2 mm. The transmitter was fixed in a corner,
close to the roof, pointed towards the opposite corner. The
receiver was oriented towards the transmitter in the horizontal
plane but not in the vertical one. Horizontal linear polarization
patch antennas were employed.

C. AAU Data, Industry Scenario

Short-range ultra-wideband measurement campaigns were
conducted in a 33 × 14 × 6 m3 industrial factory hall at
the Smart Production Lab, AAU. The factory hall was a
typical high clutter density environment with large metallic
machinery such as welding machines, hydraulic press, and
material processing machines. Measurements were collected
over the frequency range 3 GHz to 8 GHz using a Rhode &
Schwarz ZND 8.5 GHz VNA and omni-directional broadband
bi-conical antennas at both the transmitter and the receiver.
During the measurements, the transmitter was placed at a
fixed location and the receiver location was varied to obtain
horizontal distances between 1 m and 9 m. A total of 95
channel transfer functions were obtained with a frequency
resolution of 1 MHz corresponding to 5001 samples over the
5 GHz bandwidth. Detailed description of the measurements
can be found in [29].

D. AAU Data, Hall Scenario

Measurements were conducted in a large hall scenario as
illustrated in Fig. 3(a). A photo taken during the measurement
campaign is also shown in Fig. 3(b). The hall had a floor
area of 44× 25 m2 with a height of approximately 10 m. As
shown in the picture and the layout sketch, tables, metallic
pillars, concrete pillars, stairs, etc. were in the hall. The
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TABLE I
SUMMARY OF DIFFERENT MEASUREMENT DATA-SETS.

Bandwidth
(GHz)

No. of
samples

No. of
realizations

Antenna
Tx/Rx

Dimensions

(m3)
Scenario Environment

Lund Data [19] 58-62 801 625 Biconical/Open waveguide 3× 4× 3 NLOS Small room
Lille Data [20] 59-61 1601 750 Microstrip 5.20× 7.15× 2.90 LOS Large room

AAU-Industry [21] 3-8 5001 95 Biconical/Biconical 33× 14× 6 Both Industry hall
AAU-Hall 28-30 1500 720 Biconical/Biconical 44× 25× 10 OLoS Large hall

AAU-Outdoor 28-30 2000 360 Horn/Biconical - LoS Outdoor
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metallic machinery including welding machines, hydraulic

press, and material processing machines. Measurements were

collected over the frequency range 3 GHz to 8 GHz using a

Rhode & Schwarz ZND 8.5 GHz VNA and omni-directional

broadband bi-conical antennas at both the transmitter and

receiver. During the measurements, the transmitter was placed

a fixed location and the receiver location is varied to obtain

horizontal distances between 1 m and 9 m. A total of 95

channel transfer functions were obtained with a frequency

resolution of 1 MHz corresponding to 5000 samples over the

5 GHz bandwidth. Detailed description of the measurements

can be found in [21].

D. AAU Data, Hall Scenario

Based on a vector network analyzer (VNA) and the radio-

over-fiber (RoF) technique, an ultra-wideband channel sounder

was developed in AAU [22]. The proposed phase compensa-

tion scheme using optical circulators allows phase coherence

R

T
1

5

10

15

Fig. 4. The layout of the outdoor measurement campaign.

measurements. Moreover, it has been demonstrated in [22]

that the dynamic range for the back-to-back connection with

a optical cable of 300 m at 30 GHz can be 112 dB.

A measurement campaign was conducted with the devel-

oped channel sounder in a large hall scenario as illustrated

in Fig. 3. The hall was with a floor area of 44×25 m2 and

contained tables, metallic pillars, concrete pillars, stairs, etc.

The height of the hall was approximately 10 m. Two quasi-

omnidirectional biconical antennas (with their parameters can

be found in [23]) were used as Tx and Rx antennas, respec-

tively. During the measurement, the Rx antenna was fixed with

a height of 1 m to the ground. The Tx antenna was installed

on a rotator and rotated with 720 uniform steps on a circle

with a radius of 0.54 m. In each step, the channel transfer

function from 28-30 GHz was swept with 1500 samples in

the frequency domain using the VNA. Totally 19 channels

between the Rx and the Tx uniform circular arrays (UCAs)

at different locations were recorded. The selected data is from

the first UCA location, where the distance between Tx and Rx

was around 15 m.

E. AAU Data, Outdoor Scenario

An outdoor measurement campaign was conducted exploit-

ing the same channel sounder used in the indoor hall scenario.

However, some different settings were applied as illustrated in

Fig. 4. The radius of the virtual Tx UCA was set as 0.25 m in

the outdoor scenario, and 360 uniform steps were preformed at

each UCA location. The Rx antenna was fixed on a roof edge

with a height of around 20 m. To increase the SNR, the Rx

antenna was replaced by a horn antenna with a 30◦ (I will

check) half-power-beamwidth (HPBW). Moreover, its main

(a)

Tx UCA

VNA 

Rx antenna

(b)

Fig. 3. The layout (a) and a photo (b) of the indoor hall taken during the
measurement campaign conducted at Aalborg University. The measurements
corresponding to the 1st receive antenna array position are presented in this
paper.

VNA measurements were taken with the ultra-wideband radio-
over-fiber channel sounder developed at AAU [31]. Quasi-
omnidirectional biconical antennas [32] were used. The re-
ceive antenna was fixed with a height of 1 m to the ground
while transmit antenna was installed on a rotator and rotated
with 720 uniform steps on a circle with a radius of 0.54 m.
In each step, the channel transfer function from 28 GHz
to 30 GHz was swept with 1500 samples in the frequency
domain. In this paper we analyse the first of the 19 different
locations recorded. For this location, the transmitter-receiver
distance was around 15 m in NLOS condition.

E. AAU Data, Outdoor Scenario

Outdoor measurements were conducted in an open area to
in-between the two buildings as shown in Fig. 4. The same
channel sounder is used as in the indoor hall scenario. In
this case, the transmitter antenna was rotated with a radius
of 0.25 m in 360 uniform steps. In each step, the channel
transfer function from 28 GHz to 30 GHz was swept with
2000 samples. The receive antenna was fixed on a roof edge
with a height of around 20 m. To increase the SNR, the receive
antenna was replaced by a horn antenna with half-power-
beamwidths around 30◦ in both azimuth and elevation. More-

Rx

Tx UCAs
1

5

10

15

(a)

Tx UCA

Rx antenna

(b)

Fig. 4. Environment for the outdoor measurement campaign conducted at
Aalborg University. Measurements from transmit antenna location number 7
are presented in this paper.

over, its main beam was down tilted to appropriately cover the
transmit antenna. Data was collected from 15 transmit transmit
antenna locations as indicated in Fig. 4. The data presented in
this paper is from the 7th location which was in LOS condition.

V. MODEL COMPARISON

To characterize the raw temporal moments jointly, their
marginal distributions as well as their correlation structure
needs to be well represented. We compare the proposed model
against competing model choices for the available data-sets.

A. Model Comparison using AIC

We compare the proposed joint model with the model of
a multivariate Gaussian distribution. We also include three
independent models for the raw temporal moments based
on log-normal, Gaussian, and Gamma distributions. We omit
comparison with the multivariate Gamma distributions in [25]
as they did not give useful results when fitted to the raw
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TABLE II
PARAMETER ESTIMATES OBTAINED USING MAXIMUM LIKELIHOOD ESTIMATION. EACH ENTRY CORRESPONDS TO THE ESTIMATE FOR SOME SCALAR
PARAMETER θ, WHICH CORRESPONDS TO AN ELEMENT OF EITHER THE 3-DIMENSIONAL MEAN (COLUMN) VECTOR µ OR THE 3× 3 DIMENSIONAL

COVARIANCE MATRIX Σ. THE NUMBER IN BRACKET (δ) IS THE HALF-WIDTH OF THE 95% CONFIDENCE INTERVAL FOR THAT PARAMETER, SO THAT THE
INTERVAL TAKES THE FORM (θ − δ, θ + δ).

Data set Mean vector µ̂(±δ) Upper triangle of Covariance matrix Σ̂(±δ)

Lund
–39 (4× 10−3) 2.8 (0.3)×10−3 2.5 (0.3)×10−3 1.4 (0.3)×10−3

–57 (4×10−3) 2.6 (0.3)×10−3 2.1 (0.3)×10−3

–74 (6×10−3) 5.3 (0.6)×10−3

Lille
–29 (0.03) 0.19 (0.02) 0.15 (0.02) 0.11 (0.03)
–47 (0.03) 0.14 (0.01) 0.19 (0.03)
–63 (0.06) 0.70 (0.07)

AAU-Industry
–36 (0.31) 2.34 (0.67) 1.36 (0.40) 1.24 (0.38)
–53 (0.18) 0.82 (0.23) 0.77 (0.23)
–70 (0.18) 0.84 (0.24)

AAU-Hall
–39 (9× 10−3) 1.4 (0.14)×10−2 1.2 (0.12)×10−2 6.6 (0.76)×10−3

–56 (7× 10−3) 1.0 (0.11)×10−2 6.2 (0.68)×10−3

–72 (5× 10−3) 4.6 (0.48)×10−3

AAU-Outdoor
–40 (1.2× 10−2) 1.3 (0.20)×10−2 9.9 (0.14)×10−3 5.2 (0.82)×10−3

–56 (9× 10−3) 7.6 (1.1)×10−3 4.2 (0.64)×10−3

–71 (5× 10−3) 2.7 (0.40)×10−3

TABLE III
AIC VALUES FOR DIFFERENT MODEL CHOICES FOR THE RAW TEMPORAL MOMENTS. BEST MODEL IS INDICATED IN BOLD. NOTE THAT THE JOINT AIC

FOR THE INDEPENDENT MODELS IS THE SUM OF THE AIC VALUES OF THE THREE MARGINALS.

Data set Multivariate
Log-normal

Multivariate
Gaussian

Independent
Log-normal marginals

Independent
Gaussian marginals

Independent
Gamma marginals

Lund –219636.0 –219573.9 –217787.6 –217750.2 –217777.0
Lille –208357.2 –208665.6 –205657.4 –204816.6 –205589.4

AAU-Industry –29815.61 –28922.53 –29337.3 –28604.83 –29201.75
AAU-Hall –247225.8 –247212.2 –243329.2 –243348.8 –243342.9

AAU-Outdoor –125244.8 –125286.7 –122385.1 –122342.4 –122374.1

temporal moments. Model comparison is done by computing
the Akaike Information Criterion (AIC) value [33] of the com-
peting models. AIC is a common tool for model selection that
estimates the quality of different models relative to each other.
It compares models through their likelihoods, but penalises
models with a larger number of parameters κ. One motivation
for this penalty comes from Ockham’s razor, which states that,
when comparing models, one should prefer the simplest model
which explains the data well. The criterion is computed as
follows

AIC = −2L+ 2κ, (11)

where L is the maximized log-likelihood of the data. Given a
set of models fitted by maximum likelihood to the same data,
the preferred model is the one with the lowest AIC value.
The reader is referred to [34, Ch. 2] for a detailed discussion.
We also considered the Bayesian Information Criterion (BIC),
which penalises more than AIC for a large number of param-
eters; see [35] and [34, Ch. 3]. However, the ordering of the
models was found to be the same for both the criteria, and
therefore we omit the BIC values here.

The models are fitted to the five aforementioned data-sets by
maximizing their likelihood. The parameter estimates obtained
for the proposed model are reported in Tab. II. The AIC values
of the joint fit of the raw temporal moments are reported in

Tab. III, with κ = 9 for the multivariate distributions, and
κ = 6 for the independent marginal models. The proposed
model comes out as the better choice for the joint fit for three
out of five data-sets, with the multivariate Gaussian performing
better for Lille Data and AAU-Outdoor. However, the AIC
values for both the joint models are close to each other. It
is evident that modeling the random variables independently
leads to a significantly poorer fit than either of the joint
models, no matter which distribution is chosen. We remark
that using more complicated models such as copulas [26] to
model the dependency structure may lead to a better fit, but
could be harder to interpret.

B. Log-normal vs. Gaussian Marginals

We now compare the marginal fits of the multivariate
log-normal and Gaussian distributions for modeling the raw
temporal moments. To assess model fit, the quantiles of the
data are plotted against the theoretical quantiles of the model
being assessed. If the model is a good fit, then the quantiles
of the data and the theoretical quantiles should be close to
one another, and the points will hence lie approximately on a
straight line. On the other hand, any deviation from this line
might indicate issues with the fit of the model. See e.g. [36,
Sec. 10.2] for more details. We show the Q-Q plots for two
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of the five data-sets, namely the Lille and the AAU-Outdoor
data, in Fig. 5, as they highlight the difference between the
fits obtained from both the distributions. The Q-Q plots of
AAU-Outdoor data is representative of what we observed for
the other data-sets, therefore we exclude reporting them.

We observe that for AAU-Outdoor data, the marginals
are well-modeled by both the log-normal and the Gaussian
distributions. The fit is similar for both distributions, and
it is not apparent which model performs better. As can be
seen in Fig. 6, the marginals in AAU-Outdoor data are very
close to being symmetric, which means that the Gaussian fits
well. However, for the Lille data, it is evident that the log-
normal distribution outperforms the Gaussian in terms of the
marginals. The log-normal is able to model the left tail and the
center of the distribution very well, but sometimes performs
poorly for the right tail. On the other hand, the Gaussian is
not able to model either of the tails. Moreover, the Gaussian
assigns non-zero probabilities to quantiles below zero, which
is not the case for the data as temporal moments are non-
negative random variables. Hence, the multivariate log-normal
is a better choice. Note that a good marginal fit does not imply
good overall fit in terms of AIC and vice-versa, as is the case
for Lille data. This is simply because the AIC measures a
different property of the model which does not require the
marginals to fit perfectly.

The deviation of the right tail of the data from the fitted
marginals is to be expected due to the low number of such ex-
treme points. Such points are in-frequent and could potentially
arise due to a number of factors such as noise, interference,
measurement conditions, etc. Therefore, we argue that the right
tail is not as important to model perfectly, and thus make no
adjustment for it. However, this should be scrutinized further
in applications where this effect could be important.

VI. MODEL FIT TO RAW TEMPORAL MOMENTS

The parameter estimates, obtained by fitting the proposed
model to the data-sets using (9) and (10), are reported in
Tab. II. We also compute and report the 95% confidence
intervals for each of the estimates in Tab. II, see Appendix A
for details. The confidence intervals are very small for the
mean estimates, and an order of magnitude smaller for the
covariance estimates. The fit of the proposed model to the
various data-sets is shown in Fig. 6 where each row corre-
sponds to a particular data-set. The marginal distributions of
the data and the fitted model is shown on the left, while 2D
scatter plots for all pairs of temporal moments are shown on
the right along with contour lines of the fitted distribution.

Firstly, we observe in Fig. 6 that the distribution of the raw
temporal moments varies across the different data-sets. This is
attributed to the contrasting scenarios that the measurements
were taken in, along with the use of different equipment,
antennas, and measurement settings. We also observe that the
raw temporal moments are highly correlated random variables.
Marginal distributions for Lille and AAU-Industry data are
skewed, while those from other data-sets are more symmetric.
We notice a fanning out of the scatter plots on the top-right
of all the indoor data-sets, which is not present in the outdoor

data. Despite the variability in the data, the proposed model fits
the data well, even the skewed ones. There is a high correlation
between the raw moments, in particular between m0 and m1,
since the basis functions used to compute them in (3) are not
orthogonal. This is captured well by the model.

VII. MODEL FIT TO STANDARDIZED MOMENTS

We now compare the distribution of the standardized tem-
poral moments obtained from the measurements with those
from the proposed model. Mean delay and rms delay spread
are computed from the raw temporal moments using (4), while
the received power is equal to m0. Pair-wise scatter plots of
P0, τ̄ , and τrms from the data and the proposed joint model are
shown in Fig. 7. We also include the samples obtained from
independently fitting a log-normal distribution to the standard-
ized moments from the data-sets. The log-normal is chosen
as it was the best in terms of AIC amongst the independent
models as per Tab. III. Here we exclude the AAU-Industry
data as the low number of sample points makes it difficult
to make any useful conclusions on the correlation behavior.
We observe in Fig. 7 that the standardized temporal moments
are also dependent random variables, and the proposed model
is able to capture their dependency structure. In contrast,
correlation information between the variables is lost when they
are simulated independently.

Sample Pearson correlation coefficients between P0, τ̄ , and
τrms from the data are given in Tab. IV. For paired samples
{(a1, b1), . . . , (am, bm)}, the sample Pearson correlation co-
efficient is defined as

ρ̂a,b =

∑m
j=1(aj − ā)(bj − b̄)√∑m

j=1(aj − ā)2
√∑m

j=1(bj − b̄)2
, (12)

where ā and b̄ are the sample means. We also compute 95%
confidence intervals for the correlation estimates using the
bootstrap method [37, Chapter 6]. The correlation coefficients
obtained from the fitted model, computed from 10,000 samples
to get a robust estimate, are also reported in Tab. IV. Mean
delay and rms delay spread have a positive correlation that
varies from 0.53 for the Lund data to as high as 0.97 for AAU-
Outdoor. The received power is negatively correlated with
both τ and τrms. In general, the correlation tends to increase
with the size of the environment, with the outdoor case being
highly correlated. The model is able to replicate the varying
correlation between P0 and τrms that is observed in the data,
as opposed to having a fixed correlation coefficient suggested
in [11]. Note that the correlation coefficient between τ̄ and
τrms for the model fitted to the Lille data-set is not within the
bootstrap interval. This is due to the banana-like shape of their
scatter plot which is not replicated by the model, see Fig. 7.

VIII. CONCLUSIONS

Joint modeling of received power, mean delay, and rms
delay spread provides more accurate models in a range of
scenarios as opposed to independent modeling. The proposed
model of the multivariate log-normal distribution seems to be a
reasonable choice for simulating these standardized moments,
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Fig. 5. Quantiles of the measured raw temporal moments from Lille (left) and AAU-Outdoor (right) data versus the theoretical quantiles of fitted log-normal
and Gaussian distributions. The theoretical quantile-quantile line passing through the first and third quantile is shown in red.

TABLE IV
SAMPLE PEARSON CORRELATION COEFFICIENTS BETWEEN STANDARDIZED TEMPORAL MOMENTS OF MEASURED DATA. THE CORRELATION

COEFFICIENTS FOR THE MODEL IS COMPUTED USING 10,000 SAMPLES OF SIMULATED DATA. THE NUMBER IN PARENTHESIS (ε) IS THE 95% BOOTSTRAP
CONFIDENCE INTERVAL OF THE CORRELATION ESTIMATES COMPUTED USING 1000 RESAMPLES, SUCH THAT THE INTERVAL IS OF THE FORM

(ρ− ε, ρ+ ε).

Data set ρ̂P0,τ̄ ρ̂P0,τrms ρ̂τ̄ ,τrms

Data Model Data Model Data Model

Lund –0.28 (± 0.06) –0.28 –0.35 (±0.05) –0.36 0.53 (±0.05) 0.52
Lille –0.48 (±0.03) –0.51 –0.20 (±0.05) –0.19 0.89 (±0.02) 0.83

AAU-Hall –0.66 (±0.03) –0.65 –0.87 (±0.02) –0.87 0.70 (±0.03) 0.70
AAU-Outdoor –0.91 (±0.01) –0.92 –0.93 (±0.01) –0.93 0.97 (±0.004) 0.97

however the fit can be improved by using more complex mod-
els. The proposed model is simple, easy to simulate from, and
easy to fit to new measurements in both indoor and outdoor
settings using standard estimators. The raw temporal moments
are dependent random variables which should be simulated
jointly; as a result, the same is also true for the standardized
temporal moments. The correlation of these moments changes
from scenario to scenario, but can be inferred efficiently in
each case.

In the light of the strong correlation observed in the mea-
surements, assuming independence might lead to significant
errors in some applications. Hence, reporting of the marginal
distributions of the standardized moments is insufficient and a
clearer picture can be obtained by considering both their means
and covariances. The correlation between these standardized
moments can be used to validate multipath models instead

of just their marginal fits. The correlation should also be
accounted for in the analysis and simulation of radio channels.

The means and covariances of the temporal moments po-
tentially depend on a number of physical factors. The relation
between the means and the transmitter-receiver distance has
been studied for indoor scenarios. However, the effect of the
distance on the covariance matrix is presently unclear. For
multipath models, the covariance matrix is known to depend on
the first- and second-order intensity functions which governs
the arrival process. Since both intensity functions are affected
by antenna directivity, the covariance matrix should also be.
Nevertheless, these effects are not yet well-understood and
should be the topic of further studies.
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Fig. 6. Density estimates and scatter plots of raw temporal moments obtained from the different measurements (shown in black) versus the density and
contour plots of the fitted proposed model (shown in red). Each row corresponds to one of the data-sets. All the axes are in linear scale. The parameter
estimates are in Tab. II.
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APPENDIX A
PARAMETER INFERENCE FOR THE LOG-NORMAL

In this appendix, we recall how to derive the maximum
likelihood estimates and related confidence intervals for a log-
normal distribution. Let Y = (Y1, . . . , Yd) be a multivariate
log-normal random variable. We will denote this distribution
LN (µ,Σ), where µ and Σ denote the parameters. Then,
X = (X1, . . . , Xd) = (log(Y1), . . . , log(Yd)) is a multivariate
Gaussian random variable with mean vector µ and covariance
matrix Σ. Since the maximum likelihood estimator is invariant
to one-to-one transformations of the data, we can simply take
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Fig. 7. Scatter plots of received power, mean delay, and rms delay spread from data (in black), and from the proposed model (in red). The samples simulated
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scales of the corresponding plots are the same.
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the logarithm of our data points and compute the maximum
likelihood estimate corresponding to Gaussian data. Given N
iid observations {yi}Ni=1, we hence compute xi = log yi for
i = 1, . . . , N , and return the following estimates

µ̂ =
1

N

N∑
i=1

xi, and (13)

Σ̂ =
1

N

N∑
i=1

(xi − µ̂) (xi − µ̂)
>
. (14)

Now, let the K free parameters be combined into a single
vector θ = (α,β), where α = (µ1, . . . , µd), and β =
(Σ11, . . . ,Σdd). Note that Σij = Σji. The Fisher information
matrix reads

I(α,β) =

[
I(α) 0

0 I(β)

]
(15)

where, for 1 ≤ m,n ≤ K, the (m,n) entry of the matrix is

I(α)m,n =
∂µ>

∂αm
Σ−1

∂µ

∂αn
, 1 ≤ m,n ≤ d (16)

I(β)m,n =
1

2
tr

(
Σ−1

∂Σ

∂βm
Σ−1

∂Σ

∂βn

)
. (17)

On further simplification, the entries of the Fisher information
matrix become

I(α)m,n = Σ−1mn, (18)

I(β)m,n =
1

2
tr
(
Σ−1EmΣ−1En

)
, (19)

where Em is a d × d matrix of all zeros except the (i, i)
entry corresponding to βm = Σii which is 1. Note that for
βm = Σij , i 6= j, both (i, j) and (j, i) entry of Em will be 1.
Same goes for En. The 95% confidence interval for the mth

parameter of the Gaussian, (θm ± δm) is

θm ±
1.96√
N

√
I−1m,m

where I−1m,m is the (m,m) entry of I−1.
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[22] G. Steinböck, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs,
“Distance dependent model for the delay power spectrum of in-room
radio channels,” IEEE Trans. on Antennas and Propag., vol. 61, no. 8,
pp. 4327–4340, Aug 2013.

[23] T. Pedersen, “Modeling of path arrival rate for in-room radio channels
with directive antennas,” IEEE Trans. Antennas Propag., vol. 66, no. 9,
pp. 4791–4805, Sep 2018.

[24] ——, “Stochastic multipath model for the in-room radio channel based
on room electromagnetics,” IEEE Trans. Antennas Propag., vol. 67,
no. 4, pp. 2591–2603, Apr 2019.

[25] S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous Multivariate
Distributions. John Wiley & Sons, Inc., apr 2000.

[26] R. B. Nelsen, An Introduction to Copulas. Springer-Verlag GmbH,
2007. [Online]. Available: https://www.ebook.de/de/product/5270140/
roger b nelsen an introduction to copulas.html

[27] C. Gustafson, D. Bolin, and F. Tufvesson, “Modeling the polarimetric
mm-wave propagation channel using censored measurements,” in 2016
Global Commun. Conf. IEEE, Dec 2016.

[28] M. Fryziel, C. Loyez, L. Clavier, N. Rolland, and P. A. Rolland,
“Path-loss model of the 60 GHz indoor radio channel,” Microw. and
Opt Technol. Letters, vol. 34, no. 3, pp. 158–162, 2002. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mop.10402

[29] M. Razzaghpour, R. Adeogun, I. Rodriguez, G. Berardinelli, R. S.
Mogensen, T. Pedersen, P. Mogensen, and T. B. Sørensen, “Short-range
UWB wireless channel measurement in industrial environments,” in
2019 Int. Conf. on Wireless and Mobile Comput., Netw. and Commun.
(WiMob), Oct 2019, pp. 1–6.



12

[30] A. Bharti, L. Clavier, and T. Pedersen, “Joint statistical modeling of
received power, mean delay, and delay spread for indoor wideband radio
channels,” in Eur. Conf. on Antennas and Propag., 2020.

[31] A. W. Mbugua, W. Fan, K. Olesen, X. Cai, and G. F. Pedersen, “Phase-
compensated optical fiber-based ultrawideband channel sounder,” IEEE
Trans. on Microw. Theory and Techn., vol. 68, no. 2, pp. 636–647, Feb
2020.

[32] X. Cai and W. Fan, “A complexity-efficient high resolution propagation
parameter estimation algorithm for ultra-wideband large-scale uniform
circular array,” IEEE Trans. on Commun., vol. 67, no. 8, pp. 5862–5874,
Aug 2019.

[33] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. on Autom. Control, vol. 19, no. 6, pp. 716–723, Dec 1974.

[34] G. Claeskens and N. L. Hjort, Model Selection and Model Averaging.
Cambridge University Press, 2008.

[35] J. Ding, V. Tarokh, and Y. Yang, “Model selection techniques: An
overview,” IEEE Signal Process. Mag., vol. 35, no. 6, pp. 16–34, Nov
2018.

[36] J. A. Rice, Mathematical Statistics and Data Analysis, 2nd ed. Duxbury
Press, 1994.

[37] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. Chapman
and Hall/CRC, May 1994.

Ayush Bharti received the B.E. degree in electrical
and electronics engineering from Birla Institute of
Technology and Sciences, Pilani, India, in 2015, and
the M.Sc. degree in signal srocessing and computing
from Aalborg University, Denmark, in 2017, where
he is currently pursuing the Ph.D. with the Depart-
ment of Electronic Systems. His research interests
include likelihood-free inference, statistical signal
processing, and radio channel modeling.

Ramoni Adeogun received a B.Eng in Electrical
and Computer Engineering from Federal University
of Technology, Minna, Nigeria in 2007 and a PhD in
Electronic and Computer Systems Engineering from
Victoria University of Wellington, New Zealand in
2015. He is currently a Postdoctoral Fellow at Aal-
borg University, Denmark and also as an external
Research Engineer with Nokia Bell Labs, Aalborg,
Denmark. Prior to joining Aalborg University, he
has also worked in various positions at University of
Cape Town, SA, Odua Telecoms Ltd and National

Space Research and Development Agency, Nigeria. His research interests
include channel characterization, machine learning and AI for communica-
tions, intelligent spectrum access and interference management. He is a senior
member of the IEEE.

Xuesong Cai received the B.S. degree and the Ph.D.
degree (Hons.) from Tongji University, Shanghai,
China, in 2013 and 2018, respectively. In 2015,
he conducted a three-month internship with Huawei
Technologies, Shanghai, China. He was also a Visit-
ing Scholar with Universidad Politécnica de Madrid,
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