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Abstract

This PhD thesis looks at the problems associated with Structure from Motion
3D reconstruction for object and surface analysis and inspection. The use
of 3D data has become an important part of many research fields, because
of the additional information and versatility that it provides, compared to
more traditional 2D data. Two main parts of the SfM processing pipeline are
featured in the thesis, with additional sub-parts in each.

Structure from Motion data capturing plays an important part in the suc-
cess and quality of the produced 3D reconstructions. Special care needs to
be taken in the way images are shot, the capturing setup, used cameras, as
well as the processing done to the said images. The thesis contains a number
of publications, which present benchmarks and analysis methods for deter-
mining the quality and robustness of the produced reconstructions. These
benchmarks come with datasets and ground truths, which can be used by
others to further the research. In addition, a capturing environment for pro-
ducing synthetic images is presented, to cut the preparation time and help
users that start in the field. The image capturing can be done both terres-
trially and in the air, using unmanned aerial vehicles (UAVs), so the thesis
presents also a straightforward approach for localization of drones.

Because it relies on 2D images, as input data for creating 3D reconstruc-
tions, SfM does not contain a straightforward way to determine the real life
scale of the captured objects or surfaces. This is why this thesis presents
two ways to determine both the reconstructions’ absolute scale and its uncer-
tainty, by using additional sensors and fusing their data with the SfM data.
Both position sensors like GPS and distance sensors like LiDAR are used for
this and processing pipelines are presented for each.

The produced 3D surface data needs to be also analysed. First, for re-
moving any noise and geometrical errors introduced by SfM and later for
determining the quality of the reconstructions and if they can be used for
their intended tasks. An automatic method for separating noise and real
surface roughness is presented in the thesis, together with a comparison be-
tween SfM and microscopy reconstructions, for determining the accuracy of
the captured data.
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Abstract

Finally, two use cases for using the reconstruction data for classification
of surfaces are presented. The first one classifies the surfaces, depending on
the roughness and how close it is to a standardised sandpaper roughness.
The second use case is for simulating tactile sensations of different surfaces
through changing amplitude and frequencies of a vibro-tactile actuator, using
the roughness information captured with SfM.
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Resumé

Ph.d.-afhandlingen undersøger problemstillinger, der er associeret med ”Struc-
ture from Motion”, også kaldet SfM, rekonstruktion af objekter samt over-
fladeanalyse og inspektion. Brugen af 3D information er blevet en vigtig del
af mange forskningsområder på grund af den information og fleksibilitet 3D
information tilføjer, sammenlignet med traditionelt 2D data. To primære dele
af SfM processen er fremhævet i denne afhandling, med flere underafsnit for
hver.

”Structure from Motion” dataindsamling spiller en vigtig rolle for succe-
sen og kvaliteten af den producerede 3D rekonstruktion. Der skal udvises
særlig omhu i den måde billederne tages på, indsamlingsopsætningen, det
brugte udstyr, såvel som behandlingen af de indsamlede billeder. Afhandlin-
gen indeholder et antal publikationer, der repræsenterer sammenlignings- og
analysemetoder for at definere kvaliteten og robustheden af de producerede
rekonstruktioner. Disse sammenligninger kommer med dataset, og ”ground
truth” data, der kan blive brugt af fremtidige forskere til deres forskning.
Foruden dette, er et indsamlet miljø til at producere syntetiske billeder, der
minimerer forberedelsestiden, og som der kan hjælpe nye forskere inden for
dette felt, også inkluderet. Indsamlingen af billeder kan både gøres fra jorden
og i luften ved brug af ubemandede luftfartøjer (UAV), hvilket er grunden til,
at denne afhandling præsenterer en ligetil metode til lokalisering af droner.

SfM har ikke nogen måde at definere den virkelige størrelse på det rekon-
struerede objekt eller overflader, da SfM grundlæggende bruger 2D billeder
som input data. Dette er grunden til, at denne afhandling præsenterer to
måder til at fastslå både rekonstruktionens absolutte skala og dens usikker-
hed. Den absolutte skala samt usikkerheden udregnes ved hjælp af ekstra
sensorer, hvis data fusioneres med data fra SfM. Både positions sensorer som
GPS, samt afstands sensorer som LiDAR, bliver brugt til dette. Begge disse
processers metode er præsenteret i denne afhandling.

Den rekonstruerede 3D overflades data skal analyseres, hvilket først gøres
ved at fjerne al støj og alle geometriske fejl, som SfM introducerer. Dette er
nødvendigt for senere at kunne definere kvaliteten af rekonstruktionen, samt
vurdere om den kan bruges til dens dertil definerede brug. En automatisk
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Resumé

metode til at separere støj fra den rigtige overflades ruhed bliver præsenteret
i denne afhandling, sammen med en sammenligning af SfM og mikroskopi
rekonstruktioner. Sammenligningen af SfM og mikroskopi rekonstruktioner
er til for at kunne validere hvor præcis den indsamlede data er.

Afhandlingen afsluttes med to eksempler for brugen af den rekonstruerede
data til klassifikation af overflader. Det første eksempel klassificerer over-
flader i forhold til overfladens ruhed sammenlignet med standardiseret ruhed
af sandpapir. Det andet eksempel er simulering af den taktile sensation fra
forskellige overflader ved at ændre amplituden og frekvensen af en vibro-
taktil aktuator. Denne simulering bruger den information om ruhed, der er
indsamlet ved hjælp af SfM.
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Chapter 1

Introduction

Computer vision has rapidly progressed over the past 70 years, starting from
a purely experimental and theoretical field in the 1950s, through the first
commercial recognition systems in the 1980s, to its revolutionization in the
beginning of the 2000s and the 2010s, due to shift in focus on statistical meth-
ods and machine learning. Computer vision has the potential to speed up
and automate many time consuming or dangerous tasks. As the field grows,
so does the need for more diverse data and methods for verifying that data.

Data streams for computer vision can be roughly divided into 2D and
3D, depending on the dimensionality of the captured data. Images, as well
as video sequences, disregarding time progression, are examples of 2D data,
capturing only vertical and horizontal dimensions from a single perspective.
To be able to factor in multiple perspectives of the captured data, a third
dimension - most commonly denoted as depth, is necessary.

Capturing 3D information from the real world has always been of great
interest for many research fields like medicine [1], geology [2], archaeology
[3], the manufacturing [4] and energy industries [5], construction [6] and
even the entertainment industry [7]. Unlike capturing 2D information from
images, 3D data requires either specialized sensors or additional processing
to extract and gather 3D information from 2D streams of data.

This thesis is a part of a larger research project called Leading Edge
Roughness, centered around quantifying the amount of erosion on the sur-
face of wind turbine blades. This research is funded as project number EUDP
2015-I under the Danish national EUDP programme. This erosion can then
be translated into energy production loss. Knowing this relation between
erosion and energy loss, a better understanding when and why blades need
to be changed can be achieved. The core of the project required achieving
a sub-millimeter surface extraction accuracy and the surface analysis to be
performed on-site, while the blades are still in use. This meant that tra-
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ditional wind turbine blade damage detection methods using 2D or even
depth images, would not be able to extract the necessary roughness informa-
tion. On the other hand high resolution 3D scanning methods used on de-
commissioned blades, like capturing microscopy measurements from blade
surface molds, were also not feasible because of the required time and ef-
fort. A high resolution 3D surface capturing method was required, that
could be performed on-site, in sub-optimal conditions. One such method
is the photogrammetry solution for capturing the 3D shape of objects - Struc-
ture from Motion (SfM). SfM is part of the family of photogrammetry based
computer vision algorithms for capturing 3D data and relies on capturing
2D images from multiple positions and using them to reconstruct the 3D
scene [8]. Many SfM algorithms presently exist - from commercial [9–11] to
open source [12, 13] and the field has had a number of landmark publica-
tions [14, 15], that shaped its direction. This thesis was built around tackling
the problems that can arise, when using SfM for producing reconstructions
for 3D surface inspection.

Each problem is attributed to a number of fields and represents a main
chapter of this thesis. A brief summery is given below, followed by the overall
structure of the thesis.

A number of hypotheses are given as part of the introduction, which have
been an integral part of the PhD project and to which answers are given in
the next chapters. These hypotheses are:

1. It is possible to experimentally map the relationship space between
the capturing conditions and setup parameters and the quality of the
resultant SfM reconstructions. This hypothesis is developed based on
the need to ensure that the captured images from a wind turbine blade
can provide an accurate enough reconstruction of the surface, with min-
imal geometrical imperfections and noise. The possible conclusions
from verifying this hypothesis can be extended for the 3D capturing
of every generic object.

2. Capturing sub-millimeter surface details from wind turbine blade
surfaces is possible, provided the used hardware can ensure enough
information is gathered and the capturing conditions are met. Wind
turbine blades have shape and surface characteristics that make 3D re-
constructing them non-trivial. The information gathered from the work
on wind turbine blades, can easily be extended to other reconstruction
scenarios in the manufacturing industry, geology, cultural preservation,
etc.

3. It is possible to automatically scale SfM reconstructions of wind tur-
bine blade surfaces to absolute scale, using late data fusion of the
reconstructions with positioning or distance data, even if it is not
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possible to manually measure the real surface. This is an important
problem to tackle, as capturing surface details through SfM, cannot
normally estimate their absolute real-life scale. This can be especially
problematic, when the surface roughness needs to be further analysed.
Such analysis can be used for estimating energy loss for wind turbine
blades, for capturing the sizes of cracks and defects in manufacturing
and building sites, as well as for representing complex and intricate
surfaces of historical artifacts.

4. Surface roughness information and reconstruction noise are separa-
ble, using 3D mesh and capturing setup analysis. SfM can produce
high resolution reconstructions, but depending on the capturing condi-
tions and the characteristics of the surface, there can be surface noise
and geometric imperfections mixed in with surface details. As the cap-
tured surface roughness of the wind turbine blades will be analysed
and energy loss calculated from it, it is necessary to limit the amount of
captured noise and surface imperfections. The same needs to be true for
every use case, where information is extracted from the reconstructed
surface or objects. Traditional mesh and point cloud surface analysis
can be combined with SfM capturing setup analysis to determine the
likelihood that sub-optimal capturing conditions could lead to noise.

5. It is possible to use the captured 3D surface information for different
analysis contexts and for introducing multimodal interactions. By
3D reconstructing the surface of an object, a digital twin can be cre-
ated, which can later be used for analysing and quantifying the sur-
face properties. The whole Leading Edge Roughness project is build
on the premise that the SfM reconstructions can correctly represent the
wind turbine surfaces and can be used to extract aerodynamic proper-
ties from them. The verification of hypothesis is equally important for
any type of 3D reconstruction use case, where additional information
and conclusions, would be extracted from the resultant object or sur-
face. This data can also be used to convey additional information about
the reconstructed surface using multimodal actuators.

1.1 Structure from Motion Data Capturing

This part of the thesis deals with the possible problems and optimizations
in capturing image data for SfM, ensuring optimal 3D reconstruction results.
The research here focuses on two main areas:

• Image acquisition in real life - how varying capturing conditions can
influence the 3D results and how to test these conditions using a simu-
lated environment
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• Data fusion between images and other means of capturing distance data
for achieving absolute scale of the reconstructions

Both of these areas are inspired by non-trivial problems that can arise in
the SfM processing pipeline. Because SfM is so reliant on the quality of the
captured images, the output 3D reconstructions can dramatically vary de-
pending on the amount of images, overlap between captured images, image
views from which the captured 3D surface is seen, amount and positioning
of lighting and the use of additional equipment like turntables. In addition,
the large number of possible SfM solutions makes it hard to choose the most
appropriate program, depending on the use case and the balance between
robustness verses imperfect capturing setups and quality of the resultant re-
constructions. To properly evaluate these, a number of testing scenarios and
metrics are devised. These are tested both for real life data acquisition, as
well as using a simulated environment, together with approximated real life
lighting and camera capture setups.

The reliance on only 2D image data also introduces other problems, such
as the inability to achieve automatic absolute real life scale of the recon-
structed objects and surface. Although some trivial solutions are present for
remedying this, like manual measurements and the use of markers, a robust
and automatic way of scaling is needed. A number of distance measurement
sensors are tested - both GPS, laser based and ultra sound based and their
output is used for determining the real life scale of the reconstructions. The
uncertainty of the sensors is also taken into consideration and the ways it
influences the calculated scale uncertainty is explored.

1.2 Structure from Motion Data Analysis

The second part of the thesis focuses on analysing the created 3D reconstruc-
tions. The reconstructed surface shape and structure need to be evaluated,
to see if they can successfully capture the real life surfaces. To do this, ini-
tially the output of SfM models is compared to traditional means of surface
details capturing - metrological microscopy. This research aims to verify that
the captured micro 3D roughness structures by SfM are representative of the
real life surface and to see how much of them are lost, compared to a very
precise, but laborious process like microscopy analysis.

Once the data accuracy can be verified, the next steps are to try to find
methods for automatic segmentation of proper surface roughness data and
capturing and reconstruction noise. This is again a non-trivial problem, as
the severity and position of noise of a reconstructed surface, can vary widely
depending on the capturing setup, the real life object’s surface properties, the
illumination of the scene, etc. For that purpose, a number of custom features
are tested for noise detection by classical statistical methods.
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The final step of the reconstruction pipeline is the actual use cases of the
captured 3D data. Because of the very applied nature of the project, not all
work on the use cases was scientifically relevant and thus not featured in
the thesis. Two research use cases are developed, which will be discussed.
The first data use case is for classification of the surface roughness, as stan-
dardized sandpaper roughness values. This way surface micro structures
can easily be compared and verified. The second use case is for using the
captured surface roughness, to reproduce the tactile sensation of the real life
objects, through modulated vibrations. This way additional modalities can
be used when presenting 3D reconstructed information.

1.3 Thesis Structure

The research featured in the thesis is formed as a direct verification of the
posed hypotheses, as well as a reaction to some of the problems and require-
ments faced during the research. In addition to these, some of the applied
work, which has not resulted in publications has been described in Chapter
4. The thesis is divided into an introductory part and papers part.

The introductory part gives an overview to the field of SfM, as well as
the problems related to it separated in the 4 research areas - Image Acqui-
sition, Data Fusion, Reconstruction Evaluation and Surface Information Ex-
traction. The introductory part also contains the state of the art for each
of the 4 research areas. As part of the research necessary for developing
the thesis, a number of datasets were created. The introductory part will also
contain some information on them, as it was deemed necessary to present the
datasets, as many of them are in the field of wind turbine blade inspection
and overall object digitalization using SfM, where full datasets containing
ground truth are always needed. Each research area section ends with a list
of conclusions and observations. A general conclusion section is added at the
end of the introductory part, which aims to summarize the work, presented
in all research areas.

After the introduction, the next two parts contain all the papers, written
as part of the PhD study. Four additional papers were written, during the
employment time, which are not directly connected to the overarching topic
of the thesis and as such are not included in the thesis.
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Chapter 2

Structure from Motion Data
Capturing

This chapter starts with a brief overview of the SfM pipeline. After that, it
presents the problems connected to data capturing for Structure from Mo-
tion and the state-of-the-art for both testing and evaluation. In addition, this
chapter looks at ways for data fusion for solving the problem of scaling the
reconstructed objects to real life absolute scale. As the solving of these prob-
lems is essential for achieving high quality reconstruction results, this chapter
is invaluable for understanding the concepts of SfM.

2.1 SfM Overview

SfM is a part of the family of photogrammetry based reconstruction methods.
In its core SfM is a multi-view photogrammetry method, which relies on
capturing of image data from different positions of an object or surface and
using that data to capture the whole 3D shape. As shown from the research of
[1, 2], images need to be taken from both different positions and orientations,
with a high degree of overlap, in both horizontal and vertical direction. This
is done because surface features need to be seen from different positions and
later on matched between images. This process can be seen in Figure 2.1.

The captured features can come from traditional computer vision feature
extractors and descriptors like SIFT [3] or SURF [4]. The camera settings
information like focal length and resolution, as well as the EXIF camera posi-
tioning and rotation information are then used to compute the intrinsic and
extrinsic matrices for each image taken. These are then combined with the
matched image features to simultaneously compute the a sparse point cloud
of the imaged object or surface, together with precise camera positions. For
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Fig. 2.1: Example of captured image positions in for an SfM reconstruction

doing this, techniques like bundle adjustment can be used [5]. This is an
iterative method, which is highly dependent on the quality and quantity of
the provided input data. The resultant sparse points are transformed into a
dense point cloud by projecting the camera views onto the object and inter-
polating the information. The details captured on the dense point cloud are
thus explicitly tied to the details the cameras could capture, when taking the
images of the object. A number of post-processing steps can then be used
to mesh the point cloud, to smooth out noise from it or to calculate a high
resolution color texture using the image information. The different output
steps in the SfM processing pipeline can be seen in Figure 2.2.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.2: Different output steps of the SfM pipeline, starting with an input image 2.2a, finding
and matching features 2.2b, creating the sparse point cloud 2.2c, interpolation and creation of
the dense point cloud 2.2d, meshing of the point cloud 2.2e and computing the texture from the
input images 2.2f

2.2 Image Acquisition

As mentioned in the previous section, the results from SfM are highly corre-
lated to the quality of the image acquisition setup. This setup can be sepa-
rated into three main categories:

• Camera related - depending on the camera quality and settings, as well
as camera positions and orientation.

• Capturing environment related - the illumination of the environment,
the use of a static versus a dynamic capturing setup, the use of a back-
ground, etc.

• Captured object related - dependent on the "difficulty" of capturing of
the selected object, such as the object’s surface, color, shape and size.

2.2.1 Camera Related

The choice of camera can be extremely important for the quality of the pro-
duced SfM reconstruction. The most straightforward measurement of the
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chosen camera is its resolution, because it directly limits how much informa-
tion can be extracted for the reconstruction. Because most SfM methods are
directed to work offline, time is not regarded as an issue, when processing
high resolution images. This only leaves the computer’s processing power as
the main bottleneck.

Camera resolution

All feature extractors and descriptors are limited by the fidelity, with which
the captured surface is presented in the images. This fidelity can be depen-
dent on many factors - the camera solution, the distance between the camera
and the imaged object or surface, the focal length of the used camera lens.
A measurement of these limitations is the ground sampling distance (GSD).
This is the measurement for how much is the real life distance equivalent of
the distance between two pixel centers on the captured image [6].

GSD =
SwH

FrWim
(2.1)

To calculate the GSD, Equation 2.1 can be used where Sw is the sensor
width of the camera in mm, Fr is the focal length of the camera in mm, H is
the distance between the camera and the photographed surface and Wim is
the image resolution width. To get a better understanding of the difference
that the resolution of the photo can make two examples are calculated - one
with images taken from a camera with a resolution of 2208x1242 and one
from a camera with a resolution of 5472x3648. Two of the other variables
are set the same - 2 meters distance and 70 mm focal length lens, with the
only other difference being the difference in sensor size. The resultant 3D
reconstructions are shown in Figure 2.3, where it can clearly be seen how
much detail is lost in the first example.

Camera sensor

The camera sensor size is closely related to the camera resolution and can also
have adverse effects on both the capturing setup and the reconstruction out-
put. The camera sensor captures all the light coming from the camera lens,
when the shutter is open, meaning that the quality of the captured environ-
mental information of the image is dependent on it. The size of the camera
sensor can vary from a full frame 35mm large sensor, to various cropped sen-
sors. As the sensor grows a number of factors change, that can affect the SfM
image acquisition:

• The larger the sensor size, the larger the field of view of the camera is,
meaning that less images are needed to capture the whole object, with
a high degree of overlap.
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(a) (b)

Fig. 2.3: Difference between SfM reconstructions using images with different resolutions - 2.3a
uses images with resolution of 2208x1242, while 2.3b is reconstructed from images with resolu-
tion of 5472x3648

• The larger the sensor size, the more light and information it can gather,
meaning that less quantization noise is present in the produced image,
which can affect negatively the reconstruction. The larger sensor size
can also lead to larger size of its cells, meaning that more light can be
gathered, leading to better light sensitivity. This sensitivity is translated
to more details in overly dark or bright spots, which can be represented
in the reconstruction.

• The larger the sensor size, the narrower the depth of field, meaning that
parts outside of focus become blurrier. This can both help with remov-
ing details from unwanted parts of the images, but can also mean that
more images need to be taken for the best results while reconstructing.

Camera settings

The camera settings can also have an effect on the 3D reconstruction. Each
of the three main settings in the exposure triangle [7] - aperture, shutter
speed, ISO, can have an effect on how much light the camera can process,
leading to under or over exposure of the resultant image. The exposure
can also be viewed as an additive system, as seen in the APEX exposure
approximation [8], where the exposure can be represented using Equation
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2.2, where Av is the aperture, Tv is the shutter speed, Sv is the ISO number
and Bv is the environmental brightness.

Ev = Av + Tv = Bv + Sv (2.2)

On top of that each of the settings can have additional effects on the image
depending on the value used. Low shutter speed can introduce blurring to
the captured images, removing possible features, used by SfM. A high ISO
can cause a high amount of noise in the images, which can produce false
features and end up degrading the final 3D reconstruction. Wider aperture
settings can cause a shallow depth of field, meaning that less of the image is
in focus, while narrower aperture has the opposite effect. Another thing to
take into account is that if the aperture becomes too small, the effects of light
diffraction become apparent, which can cause blurring. Diffraction can cause
some of the light rays coming into the camera, to be bent and having to travel
more than the ones that are not diffracted and this can cause interference
on the image. This is most noticeable in very small details, as they become
blurred because of the interference between the diffracted and non-diffracted
light rays.

Camera lens

If more detail needs to be capture for the SfM reconstruction, but the distance
to the object or surface cannot be changed, another way to achieve a higher
fidelity is by changing the user camera lens. The higher the focal length of
the lens the farther away images can be taken of a surface or object, capturing
the same amount of detail. On the other hand the higher the focal length the
smaller the field of view (FoV) of the lens, as well as the depth of field (DoF).
Both of these can be calculated, when the focal length of the lens is known.
Field of view can be calculated using Equation 2.3 , where the angle of view
(AoV) is calculated using Equation 2.4 and Ds is the distance to the captured
object, S is the camera sensor width and f is the focal length.

FoV = 2 tan(
AoV

2
)Ds (2.3)

AoV = 2 arctan(
S

2 f
) (2.4)

While the depth of field can be calculated using Equation 2.5, for the
distance to the far and near focus planes FP and Equation 2.6 for calculating
the hyperfocal distance DH , which is the distance between the camera lens
and the closest in-focus object, when the lens is focused at infinity. Here Av
represents the aperture, while CoC is the circle of confusion constant.
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FP =
DH Ds

DH ± (Ds − f )
(2.5)

DH =
f 2

AvCoC
(2.6)

2.2.2 Capturing Environment Related

The capturing environment can also have strong influence on the quality of
the produced SfM reconstruction. One of the most important distinctions for
the SfM capturing process is if it is done in an indoor or outdoor environ-
ment. As part of the thesis work, both indoor and outdoor image capturing
is done and a number of pros and cons are seen for both cases. The indoor
environment can be very structured, meaning that each part of the setup,
illumination and positioning can be carefully monitored and can remain sta-
tionary and without change. A possible negative for indoor capturing is the
necessity for more lighting, which needs to be also very even, as each part of
the surface or object needs to receive relatively the same amount of light. On
the other hand outdoor environments are subject to more changes, that can
drastically alter the capturing setup, like varying lighting conditions, moving
background objects, etc. But outdoor environments can use the sun as a light
source, which helps with the even direct illumination.

Another distinction in the capturing environment is if the image object
or surface is stationary and the camera is moved to achieve different views
or when the camera is stationary and the object or surface are moved. The
first case is very useful for large surfaces or objects and is generally more
robust to different background environments. The second case makes it easy
to capture smaller objects in more confined spaces, but changes in the back-
ground environment can ruin the SfM reconstruction. The capturing setup
also directly ties together with the necessity to use a screen as a background,
when possible, as this eliminates background problems when using a mov-
ing object setup and makes masking easier if necessary as a pre-processing
step, before the SfM reconstruction.

2.2.3 Captured Object Related

The object that is being captured can also have adverse effects on the SfM
pipeline. Objects or surfaces can have physical characteristics that makes it
extremely hard or even impossible to properly reconstruct them using SfM.
In such cases additional techniques are needed, such as capturing epipolar
plane images [9] or using noise pattern projection [10]. Some of the most
problematic object surfaces for SfM are:
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• Transparent surface - as transparent objects refract and reflect light dif-
ferent depending on the viewing positions, capturing and matching
features between images becomes almost impossible.

• Reflective surfaces - the same problem as transparent objects, but addi-
tional specular highlights can remove detail from the surface and hide
possible surface features.

• Monochrome and featureless surfaces - surfaces which are textureless
and do not contain pronounced features make finding enough features
for matching per image a problem.

• Repeated pattern surfaces - surfaces which contain a texture, which
does not change through the whole object, make it easy for the feature
descriptor to produce a large number of false positive matches.

• Thin or flat surfaces - surfaces which exhibit rapid changes of how
much is seen from them, depending on the viewing position, require a
large number of images for proper reconstruction.

2.2.4 State of the Art

Photogrammetry can be summerized as a way to capture and read physical
information from the environment, through the use of images or any type of
recordings. It has been a relevant research topic in one way or another far
before even traditional analog photography. It started as a tool to develop
topological maps, capturing landmark buildings and express perspective of
3D items in flat drawings [2, 11, 12]. With the emergence of analog photogra-
phy and an easier way to capture single and multiple images from different
directions of objects, its use expanded into creation of digitized terrains and
surface, and the acquisition of precise visuals. Later on in the 1980s close
range photogrammetry, started to emerge as a means for capturing data for
surface inspection of bridges, tunnels, dams and building facades [13, 14].

Modern day photogrammetry can be categorised in many ways. Depend-
ing on the size of the structures captured it can go from satellite and aerial
photogrammetry capturing vast parts of the land, to terrestrial photogram-
metry for measuring of specific location and down to close-range, micro-
scopic and medical photogrammetry focused on progressively smaller ob-
jects. Another way to separate it is by the amount of captured images - going
from older single-image photogrammetry, to stereo-photogrammetry capa-
ble of describing more physical and depth characteristics of the environment
and up to multi-view or multi-image photogrammetry, used for capturing
the whole 3D structure of objects and surfaces [2, 15].

In the state-of-the-art photogrammetry has become an integral part of
many industry and research workflows like medicine [16], forensics [17],
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forestry [18], manufacturing [19], entertainment [20]. Multi-view photogram-
metry and especially the bundle adjustment and triangulation variety, that is
Structure from Motion have experienced an incredible surge in the last years.

SfM in particular has mostly transitioned from a purely research com-
puter vision topic into viable products, which come as out-of-the-box solu-
tions, ready made for use by non-professionals. Many of the parts of the SfM
pipeline can be seen in the landmark research papers by [21–23], responsi-
ble for the necessary parts for image position triangulation and optimization
and sparse point cloud computation. While algorithms like the ones pro-
posed in [24], lay the groundwork for dense point cloud reconstruction and
detailed visual representation.

These workflows were later on translated to many state-of-the-art SfM
solutions. Some of these are black box, commercial solution, which do not
offer an easy way to change the underlying computer vision algorithms, to
suit different use cases. Such software solutions are Metashape by Agisoft
[25], ContextCapture by Bentley [26], RealityCapture by Capturing Reality
[27], 3DF Zephyr by 3Dflow [28], etc. On the other hand there are many
open source SfM solutions, which give different levels of granular control of
the underlying algorithms to the end users like MicMac [29], COLMAP [30]
and Meshroom [31].

Fig. 2.4: Example of testing object reconstructions using different SfM methods and 3D sensors
[32]

Even though the development of SfM algorithms is seen as a solved sci-
entific problem, the research around capturing, pre-processing and analysing
the results from it is still going strong. Important problems still exist, like
the optimization of the capturing setups for producing highly accurate 3D
reconstructions, benchmarking the performance of algorithms on different
objects and surface (Figure 2.4), as well as developing testing environments.
Different benchmarks were created depending on the areas, where SfM is
used, like specific ones for archaeology [33], geology [34] or for inspection
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purposes in the wind turbine indutry [35]. Other benchmarks relied on more
general datasets, to look at the overall performance of commercial and open
source application and to find the strengths and weaknesses of each. Exam-
ples of these can be seen in the work of [36] and [32], where image datasets
are used to test the performance of SfM algorithms in close-range captur-
ing scenarios. Other research like the paper proposed by [37], extends this
idea by providing custom self-captured datasets, as well as an online website,
where people can upload the results of their own algorithms in a makeshift
leader board. Capturing images for SfM can become a daunting task, espe-
cially having to consider all the possible pitfalls like camera position, orienta-
tion, settings, illumination and environmental setup. This is why researchers
like [38] and [39], have developed pipelines for creating synthetic images for
testing of SfM solutions (Figure 2.5).

Fig. 2.5: Example of a Blender environment for capturing synthetic images for SfM reconstruc-
tion [38]

2.2.5 Contributions

The research presented in this section was done as ground work for the thesis
research and as a reaction to the lack of robust and extensive overviews,
benchmarks and workflows for testing SfM solutions. The overwhelming
amount of SfM applications and pipelines and the fact the vast majority of
them are presented as expensive blackbox software solution, makes it hard
to judge them on equal ground and to decide which use cases are best suited
to which software.
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(a) ContextCapture (b) Memento Online (c) PhotoScan (d) Reality Capture

(e) 3DF Zephyr (f) Pix4D (g) Memento Offline

Fig. 2.6: Reconstructed objects using different SfM solutions and close they are to a ground truth
object [40], paper A

An important publication as part of the thesis was "Benchmarking close-
range structure from motion 3D reconstruction software under varying capturing
conditions" [40] (presented as paper A). It presents a comprehensive bench-
mark on all the state of the art commercial SfM software solutions 2.6. An
important part of this study is the fact that it focuses on many aspects of the
capturing setup - the captured object, the positions and orientations of the
images, the use of a turntable and the lighting setup. This a useful resource
for comparison of SfM solutions, as the number of general and varied bench-
marks focusing on both variations in capturing conditions and object surfaces
is limited. A number of conclusions were made based on the publication:

• Using images with large overlap and varying horizontal and vertical
angular coverage results in better reconstructions.

• Using a stationary object and a moving camera, produces better recon-
structions than moving objects on a turntable.

• Correct lighting conditions play an important part in producing noise
free reconstructions.

• Commercial SfM software solutions can fall in two categories - ones
fairly robust to sub-optimal capturing conditions, but producing lower
detail reconstructions and ones producing high-detail surfaces, but prone
to failure when presented with worse capturing conditions.

As part of this research two comprehensive image datasets were created,
together with ground truth 3D models made with a high accuracy white
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light scanner from Aicon. The first dataset [41] was comprised of the data
described in the paper. The second dataset [42] was made from all the data
that could not go in the paper and contains images taken with different types
of cameras, as well outdoor and indoor image sets.

The laborious process of creating the datasets, showed that there could be
interest in developing an easy to use application for setting up SfM capturing
environment and taking synthetic images. This way the heuristic process of
choosing the best possible setup for a particular object can be streamlined.
Such a software was developed in Unity and presented in "Interactive Envi-
ronment for Testing SfM Image Capture Configurations" [43] (presented as paper
B). The thing that separated this paper from the state of the art applications,
is the fact that it presented a real-time capturing environment, that users can
potentially move around it and change to suit their needs. The captured
images were also created with an approximated illumination model, so ren-
dering times were almost non-existent. The conclusions from the paper were
that even with the approximated illumination model the produced results
can be useful for setting up initial capturing and it could cut the testing time
significantly. The process is shown in Figure 2.7.

Fig. 2.7: The Unity interactive environment for capturing synthetic images for SfM presented
in [43], paper B

As the main project, that the PhD was connected to, was detecting lead-
ing edge roughness on wind turbine blades, a drone system needed to be
created for capturing images of on-site, in-use wind turbine blades. These
capturing conditions called for the development of semi-autonomous self-
positioning and localisation drone algorithms. This was a non trivial task,
because of the glossy, featureless surface of wind turbine blades, which pre-
vents self-positioning using traditional camera based Simultaneous Localiza-
tion and Mapping (SLAM) algorithms. This led to a research into using Li-
DAR data for drone flight self positioning and achieving the necessary image
capturing patterns. Because of the limited processing power on the drone,
a lightweight LiDAR algorithm using prior information about the wind tur-
bine blade shape was developed. This resulted in the publication of the pa-
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per "LiDAR-based 2D Localization and Mapping System using Ellipse Distance
Correction Models for UAV Wind Turbine Blade Inspection" [44] (presented as
paper C). This paper was presented as an easier and more straightforward
alternative (Figure 2.8) to traditional simultaneous localization and mapping
(SLAM) [45, 46] and flight path planning [47, 48] approaches. The research
path, showed two main conclusions:

• Prior information about the simplified shape of the blade can be uti-
lized, as part of a localization algorithm.

• Additional sensors can provide valuable data that can be used together
with images, as a multimodal input to SfM.

Fig. 2.8: The positioning and localization algorithms using ellipse prior information, as shown
in [44], paper C

This led to the final paper, presented in this section - How Capturing Se-
tups Influence the Quality of SfM Reconstructions for Wind Turbine Blade Surface
Inspection [49], which is awaiting publication from SPIE and presented as
paper D in the thesis. The paper takes what was learned in the previous lo-
calization and mapping research and combines it with the testing paradigms
presented in paper A. The scenarios focus on combinations of different im-
age overlaps, positions and distances from a wind turbine blade and compare
both the representation of the overall blade shape, as well as the roughness
of its surface. The paper demonstrates how the reconstructed surface of the
blade degrades with the changes in the capturing setup (Figure 2.9). Three
conclusions follow from this paper:
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• Both wind turbine blade shape and its surface roughness degrade with
distance.

• Too little or too much image overlap can cause the introduction of sur-
face noise and degradation of surface information.

• Vertical angular variation can help with preserving the texture of the
reconstructed surface, in both rough and smooth parts of the blade.

Fig. 2.9: Degradation of the representation of the overall shape blade, based on changes of the
distance, image overlap and angular variation [49], paper D

These conclusions directly influenced the research path presented in the
next section for doing late data fusion of the SfM results with real-life posi-
tioning and distance data.

2.3 Data Fusion

There are two main reason for pursuing data fusion between the results of
SfM and other real world measurement capturing sensors, as part of the
project. First, the project required measuring wind turbine blades while in
operation. This meant that there was no easy access to the still attached
blades positioned between 50 and 100 m in the air. The project thus relied
on a UAV to be used to capture the necessary SfM data. As part of the
autonomous flight of this drone platform a number of sensors needed to
be researched - for keeping track of the horizontal and vertical position, as
well as the orientation of the drone compared to the world and compared
to the wind turbine blades. These sensors needed to give correct and stable
positions, which could provide the best possible capturing results, as seen
from the results of paper E.
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The second reason is that because of its input of purely 2D images, SfM
cannot easily determine the absolute scale of the reconstructed structures.
Additional information needs to be given to the algorithm pipeline for that.
This can be done, in the form of proper camera calibration data containing
both an intrinsic and extrinsic data for each image taken. Another possibility
is to manually measure parts of the real life surfaces and objects and scale
the reconstructed representations of the same parts, until the measurements
coincide. A third possibility is to use additional sensors to capture real life
data and fuse that that with the SfM reconstruction, using it to calculate the
absolute scale of the object or surface.

2.3.1 Drone Platform

Even though the work on the drone platforms did not result in scientific
publications, understanding it is necessary for bridging the gap between the
capturing setups research and the sensor fusion research. Sensors like the
GPS and LiDAR used for developing the drone platforms, were later used
for providing additional data to the SfM reconstructions for scaling and un-
certainty verification. This is also why these explanations are not set as part of
the additional work chapter 4, as the drone platform development is viewed
as a more integral part of the research process of the thesis.

Fig. 2.10: Initial testing drone - the Iris+, together with its sensor payload

Through the course of the project, a number of drone platforms were
created. They were tested in both indoor and outdoor environments. As
part of the outdoor testing the systems were used both on replicas and on
real wind turbine blades. Three main systems were developed, as part of the
main project and a number of positioning sensors were tested on each. Two
of the platforms needed to be build from scratch, while the third one was
a more out of the box commercial platform. The first testing system, used
to verify the stability and performance of the used positioning and distance
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sensors was a small Iris+ drone, shown in Figure 2.10. This drone could not
carry the camera equipment required to capture images, but could support
all the necessary sensors. The second UAV was a DJI S1000 large payload
drone, which could use the same systems, but could also carry the necessary
camera equipment. The drone can be seen in Figure 2.11. The two system
were mainly used on mock-up styrofoam wind turbine blades to both test
the sensors, but also perform initial 3D reconstructions.

Fig. 2.11: The second testing drone - DJI S1000, used for initial experiments containing both the
capturing camera and the GPS and distance sensors

For the real wind turbine blade testing a third system was selected, as the
previous two were not stable enough. The of the shelf commercial solution
by DJI - the Matrice 600 was chosen (Figure 2.12).

Fig. 2.12: The final UAV platform - the DJI Matrice 600, which was used for the real life image
capturing and sensor test and as part of [50]

The UAV could be used with more precise sensors and finer granularity
of control, for both safely flying around the wind turbine blades, but also
maintaining the necessary positions for proper 3D reconstruction. The UAV

26



2.3. Data Fusion

was tested both on a real wind turbine blade pieces simulating a real scenario,
as well as on site of a wind turbine farm.

2.3.2 Sensors

A number of sensors were tested for both capturing the distance between the
camera and the reconstructed surfaces, as well as positioning and rotation
sensors. For positioning a number of GPS sensors were tested, as they could
provide a 3D position of the drone and the camera in a real world coordinate
frame. This type of sensor can be useful for both the positioning of the
drone, as well as giving initial extrinsic camera positions for the captured
images used for SfM. The GPS works by leveraging positioning information
from satellites orbiting the Earth and triangulating the position of the tracker
based on that. Two GPS solutions were tested - a Pixhawk 2 PIX GPS and
the DJI Matrice GPS. Both sensors gave consistent readings, but had low
precision, making the calculated position move and drift with as much as
1 meter at a time. On top of that the height calculations became worse the
closer to the ground the sensors were. One way to improve significantly both
the accuracy and precision of the GPS readings is to use a real time kinematic
positioning on top of the GPS. This sensor helps to stabilize the GPS readings,
by adding a point of reference on the ground close to the GPS tracker. One
such sensor is the GPS DRTK-2 from DJI, used as part of the project.

Another type of sensor researched as part of the study was the inertial
measurement unit (IMU) sensor, for capturing the precise real world orien-
tation of the capturing platform. The sensor works by employing a combi-
nation of a accelerometer, gyroscope and a magnetometer, together with a
barometer. The combination between these sensors can give the correct real
world X,Y,Z orientation. Initial research was made on IMU sensors, by using
the BNO-055 sensor and later on by using the built-in sensors in the drone
platforms.

Finally, a number of distance measurement sensors were research, as a
means to correctly capture the space between the capturing platform and
the imaged surface. A number of sensors, seen in Figure 2.13 were tested -
from cheap ultrasound distance sensors, to high resolution 2D LiDAR sen-
sors. The ultrasound distance sensor works by letting out a number of sound
pings, listening for their echo and calculating the distance by the amount of
time it took them to return. The LiDAR solutions tested in the project, use a
similar method, by first sending a number of laser lights in a single or mul-
tiple directions and then capturing and measuring the reflected light. These
sensors could be useful for providing additional information, which can be
later on fused with the SfM image information, to provide a better result and
calculate the scale of the reconstruction.
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(a) (b) (c)

Fig. 2.13: Different distance measurements sensors [51] – LiDAR Hokuyo UTM-30LX (Figure
2.13c), LiDAR rpLiDAR-A1 (Figure 2.13b) and ultrasonic distance sensor HC-SR04 (Figure 2.13a)

2.3.3 State Of the Art

Fig. 2.14: The use of control points as markers for SfM reconstruction and capturing real life
scale [52]

As mentioned previously, a lot of the state of the art SfM applications
contain manual ways to measure parts of the reconstructed object or surface
and then compare those measurements with the ones captured from the real
world one and calculate the resultant scale. Another method, that is widely
used especially in geological and forestry SfM research [52, 53] is the use
of markers with known sizes. This method has the added benefit to also
produce high quality reconstructions, but requires manual placement of large
enough markers on the surfaces that will be reconstructed and then detecting
the markers (Figure 2.14). This approach can be also very time consuming
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and out right impossible in some cases, where there is no easy access to the
imaged surfaces.

Fig. 2.15: The use of free fall reconstructing the shape and size of a object [54]

Other proposed solutions for calculating the absolute scale of reconstruc-
tions use prior information about the camera movements like the model of
the motion [54] (Figure 2.15) or the changes in the height [55, 56]. The changes
in the position [50, 57] and orientation [58, 59] of the capturing camera can
also be used.

Fig. 2.16: Combining the output from a full LiDAR scanning and SfM data [60]

Another possibility for capturing the absolute scale is by creating a full 3D
reconstruction using both SfM and another type of 3D scanning solution, like
LiDAR scanning [60] (Figure 2.16), stereo cameras [61] or time-of-flight cam-
eras [62]. In a post-processing step the highly detailed SfM reconstruction,
can be matched to the lower detailed, but precisely scaled and positioned sec-
ondary scans using means like an iterative closest point algorithm (ICP) [63].

2.3.4 Contributions

During the study, a large number of tests were conducted using different
sensors and drone platforms. An initial testing scenario was conducted as
part of the paper "Performance Characterization of Absolute Scale Computation for
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3D Structure from Motion Reconstruction" [50] (presented as paper E) for using
positioning information supplied by a GPS to calculate the absolute scale of a
3D reconstruction. Positioning data was captured from both only a GPS and
a GPS and RTK fusion and a least-squares transformation estimation [64] was
employed to calculate the transformation matrix between the image positions
calculated from the SfM algorithm and the real life ones (Figure 2.17).

Fig. 2.17: Going from the SfM calculated positions with unknown scale to the captured real life
GPS positions [50], paper E

Our study showed, that the results were better than the state of the art
algorithms used as part of the commercial SfM applications. Another as-
pect that was tested as part of the study was the data uncertainty that the
sensor could introduce and how that uncertainty translates to scaling errors.
To test this, a method is proposed, leveraging the covariance propagation
method [65], previously used to detecting uncertainty in pose estimation [66].
It was demonstrated that the sensor uncertainty that propagated through the
calculated scale, can be quantified. The dataset used for making this paper,
was also made available online for easier verification and reproduction of the
results [67]. Two conclusions are taken from the paper:

• Scale uncertainty becomes more problematic, the closer the scale of the
measured surface features is to it. When measuring sub-millimeter sur-
face roughness the relatively lower quality of positioning sensor data,
like the one from a GPS can be detrimental to the achieved scaling re-
sults.

• Positioning sensors cannot account for the captured object’s movement
or position change, which can be especially problematic in something
like a wind turbine blade, which can move dramatically between im-
ages.

These conclusions showed that more research was needed, which was
published in the book chapter "Calculating Absolute Scale and Scale Uncer-
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Fig. 2.18: The LiDAR sensor connected to the DSLR camera used for capturing the testing
data [50], paper E

tainty for SfM using Distance Sensor Measurements" [51] (presented as paper
F). This research builds upon the findings of paper E [50] and tests out the
feasibility of using distance sensors for providing additional real world mea-
surements. These measurements have the advantage of being in the same
coordinate system as the reconstructed surfaces, meaning that the calculated
distances would change if the object was moved or rotated. Three distance
sensors shown in Figure 2.13 were used for testing the proposed solution
- a ultrasonic distance sensor SR04, a low cost LiDAR rpLiDAR-A1 and a
highly specialized professional LiDAR - the Hokuyo UTM-30LX.These sen-
sors were mounted on the camera (Figure 2.18) and for each taken image
for the SfM reconstruction their distance readings to the surface of the object
were captured. Later on when both the surface and the camera positions were
reconstructed, a synthetic distance readings were made from the calibrated
position where the sensor was compared to the camera. The real world and
synthetic readings were compared and from their ratio the absolute scale of
the reconstruction was calculated (Figure 2.19).

The same covariance propagation approach was used to calculate the un-
certainty of the resultant scale. It was shown that because of the lower un-
certainty of the distance sensors, the calculated scale had greater precision
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Fig. 2.19: Finding the absolute scale of the reconstructed object, using the ratio between real
world captured distances and the synthetic distances measured from the SfM object and cameras
[51], paper F

than the GPS positioning approach. In addition, it was demonstrated that
even the low cost distance sensor could provide highly precise scale calcu-
lations, while the more expensive LiDAR sensors were more robust against
imperfections in the reconstructed surfaces like noise or holes.

With this the data capturing and correction parts of the thesis are covered,
the next chapter tackles the problems of SfM 3D data analysis for noise de-
tection, as well as for use in different applications, such as surface inspection
and quantifying and capturing surface roughness.
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Chapter 3

Structure from Motion Data
Analysis

This chapter of the thesis continues the work presented in Chapter 2, by
looking at ways to analyse and use the 3D data obtained from the SfM recon-
structions, after they have been scaled to an absolute real world scale. One of
the most prominent use cases for 3D reconstructions is for surface inspection
in the industries. As part of the larger research project of wind turbine blade
edge inspection, a particular interest presents the quality of surface informa-
tion that can be extracted from an SfM reconstructions and how it matches
to more traditional means like microscopy analysis. Of particular focus to
this chapter is also how can surface roughness be separated from noise cause
by imperfect 3D reconstructions. This is important, because small details can
be lost if surface noise is prevalent on the reconstructions. Finally, the quan-
tification and separation of different scales of surface roughness is also of
interest, so a more ordered classification of different surface can be made for
either inspection purposes or for transference to other mediums. Some of the
text present in this chapter is an edited version of parts from the papers in-
cluded in the thesis [1], as well as the in processing papers [2–4] (ADD NOT
PUBLISHED PAPERS HERE).

3.1 Reconstruction Quality Analysis

3.1.1 Introduction

The analysis of the quality of SfM reconstruction is an important transitional
part between capturing the data and using it to extract and quantify infor-
mation from the real world objects and surfaces. The quality analysis can be
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separated into two parts - separation of signal and noise captured from the
SfM and the quality of the captured signal itself.

The separation between signal and noise for point clouds and 3D meshes
can be a non-trivial problem, as the vision of the two can become subjective
depending on the use case and the analysed surface. In some cases it becomes
much easier to surface smoothing algorithms, which remove the noise, but
can also destroy small geometrical details in the process. Surface smoothing
algorithms can be roughly divided into two types - global isotropic smooth-
ing and local anisotropic smoothing. The first type is present in many of the
SfM reconstruction pipelines, as well as most of the 3D modeling software
solutions. These algorithms do not look at the underlying geometry, but pro-
vide a global smoothing, which makes them faster, especially on large and
complex meshes. The drawback is that they tend to smooth out features and
if larger smoothing values are used, they can even change the overall shape
and size of the mesh. Examples of such isotropic smoothing algorithms can
be seen in the research by [5–7]. On the other hand anisotropic algorithms,
tend to look at the underlying local geometry of the meshes to try to tweak
the severity of the smoothing and preserve smaller details. These algorithms
use statistical methods [8] or machine learning type descriptors [9, 10] to
analyse the underlying structure of the mesh.

(a) (b)

Fig. 3.1: Reconstructed mesh surface before (Figure 3.1a) and after (Figure 3.1b) a global smooth-
ing algorithm is applied to remove the noisy parts. It can be seen how much of the real roughness
is removed in the process

These approaches work for creating aesthetically pleasing reconstructions,
where smaller details are captured by the texture maps and not by the mesh
geometry. These results are good enough for cultural heritage, architectural
or archaeological use cases, where sub-millimeter accuracy is not always im-
portant or for geological use cases, where the larger details are of more in-
terest, than the smaller ones. This becomes a problem, when the surface
reconstructions need to represent sub-millimeter or lower details and when
the size, shape and depth of the surface roughness is required. An example
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of this is given in Figure 3.1, where a part of a wind turbine blade’s surface
is shown before and after a global smoothing algorithm. It can easily be seen
that the smaller details are removed and how much of the information is lost
in the process.

(a) (b)

Fig. 3.2: A real life cup and the reconstruction captured under sub-optimal conditions. The
surface of the reconstruction has a number of noisy patches and geometrical errors and does not
represent the real roughness correctly.

In the case for surface inspection, it is better to be able to identify the noisy
surface patches, so they can be removed from the calculation of the overall
roughness metrics. The necessity for removing patches is demonstrated in
Figure 3.2, where the smooth surface of a cup, has been reconstructed, under
sub-optimal capturing conditions, resulting in a rough mesh, which does not
represent the real life physical characteristics of the imaged object. A number
of challenges make noise identification a non-trivial problem:

• Surfaces can have varying roughness, with abrupt changes between
very smooth and coarse patches

• The shape of the surface can have abrupt changes, ridges and holes

• For the noise identification to be generalized enough, it needs to be able
to detect noise on objects with different sizes

The second part of the quality analysis, after the noise has been separated
from the roughness, looks to evaluate the captured surface geometry and to
determine if it can be used instead of traditional surface analysis methods.
Normally contact measurements [11], computer vision methods [12, 13] or
microscopy [14, 15] are used for capturing surface roughness and irregulari-
ties in the industries. For SfM reconstruction to be useful on the same scale,
the details captured need to be verified. An example for this can be seen in
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Figure 3.3, where a roughness patch of sandpaper has been reconstructed us-
ing SfM and the resultant mesh has been rasterized to capture the depth map
seen from the same direction. In Figure 3.3c and 3.3d, both images have been
segmented to capture only the sand grains representing the roughness. The
SfM reconstruction has captured the overall structure, but much of it has also
been lost or changed in the process. The severity of the loss of information,
needs to be quantified, before using the SfM reconstructions further on.

(a) (b)

(c) (d)

Fig. 3.3: Example of possible information loss, when reconstructing a 3D surface. A sandpaper
patch (Figure 3.3a), has been reconstructed and the depth map (3.3b) has been created. When
segmenting the sand grit from each of the two (Figure 3.3c and 3.3d), its shape and structure is
changed.

3.1.2 State of the Art

The separation between surface information and noise has been a widely
research field in computer vision. The most straightforward way for detecting
noise and geometrical errors on 3D surfaces is by having ground truth of the
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Fig. 3.4: The calculated saliency maps for different types of objects and surfaces [16]

real surface and shape of the object and comparing it to the reconstructed
ones. These type of method rely on calculating values like average distances
between the ground truth and the tested surfaces [17] or the root mean square
errors and difference in surface shape [18]

Fig. 3.5: Parts of the same surface detected with having high roughness, depending on different
neighbourhood voting ratios [19]

A number of algorithms rely on the geometric visibility of the noise on
the 3D surface. These methods closely relate to the way humans perceive
noise, with it being more visible on smoother regions and harder detected
on regions with a lot of details 3.4. The solutions by [20] and [21], rely on
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describing the overall curvature of local patches on the surface and using
the normal information to detect changes in the roughness. The papers by
[16] and [22] extend that research by introducing local features and more
discriminative models, which can better detect changes on the edges and
seams of models.

Other methods build even further on these approaches by fitting geomet-
rical shapes onto the curvature of the 3D surface and calculating roughness
ratios [19] (Figure 3.5) or by calculating the scale invariant and robust saliency
measurements [23] and extracting local 2D and 3D features from neighbour-
hoods of points [24].

Fig. 3.6: Pipeline for deep learning mesh denoising, by detecting the features of noise on 3D
meshes, by [25]

Finally, the manual extraction of features can be completely subverted,
if enough data is present by the use of deep learning methods for surface
evaluation and denoising [25–27]. These methods normally produce better
results, but require large amounts of data (Figure 3.6), no always present for
different types of objects and surfaces.

3.1.3 Contributions

As part of the thesis, two papers (paper G and paper H) [2, 3] have been
written on the topic of quality assessment of SfM reconstructions. The first
paper "Rough or Noisy? Metrics for Noise Estimation in SfM Reconstructions [2]"
(given as paper G) is directed towards finding a generic way for separating
reconstruction noise from surface roughness information. The paper extends
the normally used surface geometry metrics for roughness and noise detec-
tion, by combining them with ones extracted from SfM camera positions and
the capturing environment, to try to determine which parts of the mesh are
most likely to contain noise. Three general mesh based metrics are chosen for
this - local roughness from Gaussian curvature [21], difference of normal [28]
and vertex local spacial density [29], together with a metric extracted from
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Fig. 3.7: The proposed metrics for estimating noise on SfM reconstructions [2]

the reconstructed mesh texture using the local color entropy [30].
These generic metrics are combined with ones specific to SfM reconstruc-

tions, which use the additional capturing information that comes from using
the algorithm. The specific SfM metrics, are selected after analysing the re-
quirements for successful reconstructions, demonstrated by benchmarking
and analysis research. These metrics are as follows - number of cameras see-
ing each vertex [31], projected 2D features [32], vertices in focus [33], vertices
seen from parallel to the surface cameras [34], vertex area of visibility [34].
These metrics are then used for training an Adaptive Boosting ensemble clas-
sifier for estimating noisy from non-noisy surface vertices (Figure 3.7). For
this objects with different shapes and sizes, were reconstructed and manually
annotated into noisy and clean parts and used as training data. We demon-
strated that the algorithms can be used for discriminating between noisy and
clear surfaces, even when surfaces were rough and damaged. Three main
conclusions are taken from the work on this paper:

• An automatic separation of noise and roughness can be achieved with
an accuracy above 85% and used as an initial step, before analysing
reconstructed surfaces. The results from the paper show that in some
cases additional manual inspection would be needed.

• Utilizing SfM image capturing information for estimating the presence
of possible noise, can help with separation of noise from rough surfaces
and produces better results than just using geometrical features, which
adds another 5-6% accuracy to the noise estimation model.
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Fig. 3.8: Comparison between different patches of a wind turbine blade surface reconstructed
using SfM and confocal microscopy [3], paper H

• The selected features can be used in a larger context, with a classifier
trained on generic objects, being used on special surfaces like wind
turbine blades without any noticeable accuracy loss and with precision
of 79% and recall of 88% .

The second paper "High-resolution Structure-from-Motion for quantitative mea-
surement of leading edge roughness [3]" (presented as paper H) focuses on veri-
fying the quality of the SfM reconstruction and determining if it can be used
for sub-millimeter surface inspections of wind turbine blades. To test this
a wind turbine blade is reconstructed both using a SfM algorithm and us-
ing elastomer replica material microscopy [15, 35]. A number of patches of
the surface (Figure 3.8) are then compared using ISO 25178 standard surface
roughness parameters [36] - root mean square height Sq, root mean square of
the surface gradient Sdq and spacial distance at which the texture statistically
different Sal . The paper showed that using a high resolution camera and
optimal capturing settings and conditions, SfM can achieve sub-millimeter
performance and can capture details close to those from confocal microscopy.
The comparison between the microscopy measurements and SfM has lead to
two conclusions:

• SfM can be used to capture surface roughness with sub-millimeter accu-
racy, provided that a high enough resolution camera is used and good
capturing conditions are provided.
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Fig. 3.9: Point cloud semantic segmentation based on extracted 2D and 3D features and using
classical statistical classifiers [24]

• SfM reconstructions provide a somewhat blurrier representation of the
surface, than the combination of replica moulding and confocal mi-
croscopy, but the speed of SfM and the ease of use make it non the less
suitable for wind turbine blade inspection.

3.2 Reconstructed Surface Classification

Once a reconstructed mesh is cleaned up of noise and its quality is validated,
it can be used for extracting information from the inspected surface or ob-
ject. As part of the Leading Edge Roughness project, this data was used to
determine how much the energy performance of a wind turbine blade would
degrade, depending on the surface roughness of its blades. The algorithms
used for these calculations could not be published, as they are confidential
to some of the companies involved in the project. In addition to the main
body of work shown in the previous sections, two use cases of SfM surface
roughness data would be presented in this section, demonstrating both ways
to quantify surface data and use it to create multimodal representation on
the real world object.

3.2.1 State of the Art

Because 3D surface classification is a extensive field, for the state of the art
of this section, only the research in the same direction as thesis study will be
covered. SfM reconstructions can be useful for representing surface informa-
tion for detecting micro and macro roughness, geometrical irregularities or
points of interest. These can be later leveraged for things like mesh and point
cloud segmentation and classification or damage detection. Some examples
of that are semantic segmentation of roads [37], separation of unstructured
point clouds into classes depending on their geometrical properties for ge-
ological use [38], urban planning [39], forestry [40], among others. Other
possible uses for the derived point cloud roughness can be for road analy-
sis [41] and for the analysis of Earth surface changes [42].
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Fig. 3.10: PointNet - point cloud classification, part segmentation and semantic segmentation
using convolutional neural networks [45]

Roughness estimation and classification is mainly based on extracting 2D
and 3D surface descriptors from the analysed point cloud or mesh and using
them to train a supervised or semi-supervised classifiers. Those descriptors
can range from 2D and 3D point cloud properties like point density, nor-
mal orientation and change, etc. [43], to principal component analysis (PCA)
descriptors like linearity, planarity, anisotropy [24, 44] (Figure 3.9) and even
learned descriptors from convolutional and deep neural networks [45, 46], if
enough data for training is present (Figure 3.10).

Once the roughness and surface characteristics of a 3D object are extracted
they can be used in a variety of cases. They can help with the better repre-
sentation of simulations of fluid flow in real life surfaces [47], or give more
information how roughness can influence the surfaces of roads [48] and on
hill slopes [49], or even representing the surface roughness as haptic feedback
for giving more information to professional dermatologists [50, 51].

3.2.2 Contributions

Two papers were written in the field of 3D surface classification [1, 4]. The
two publications tackle different aspects of using the roughness data. The
first paper "Preliminary Study on the Use of Off-the-Shelf VR Controllers for Vi-
brotactile Differentiation of Levels of Roughness on Meshes" [1] (Paper I in the
thesis), focuses on how the roughness from SfM reconstructed objects be
used for extracting haptic feedback for an immersive virtual reality expe-
rience. The paper presents a preliminary study on how the HTC Vive con-
trollers’ built-in vibro-tactile motors can be used to give information about
the roughness of 3D meshes. The roughness is extracted using the difference
of normals method [28] and used to separate the surface of the 3D object into
two classes representing low and high roughness. These areas then influence
the amplitude and frequency of the vibration on the controllers as users inter-
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Fig. 3.11: Testing area for determining if users detect difference in roughness levels only by the
vibrotactile sensation from the calculated roughness values [1], paper I

act with the 3D objects. The interaction is done through a virtual stylus and
no real surface or objects are needed. It was demonstrated that the extracted
roughness metrics can be used, as part of a vibro-tactile system to give users
a better understanding of the 3D mesh, even when the mesh shape was the
same and users could only use the vibration information to judge subtle dif-
ferences (Figure 3.11). A number of conclusion are made from the results of
the paper:

• Small scale roughness can be successfully captured using SfM recon-
struction and used to represent the real surface.

• The amplitude and frequency of vibrations can be manipulated using
the 3D mesh surface to create the sensation of "touching" surfaces with
different roughness.

• More research into vibro-tactile actuators is needed to provide a better
representation of the surface.

The second paper "Quantifying Wind Turbine Blade Surfaces Using Sandpaper
Grit Sizes [4]" (paper J in the thesis) tries to use a comparison to the standard-
ised roughness of sandpaper, to quantify the surface characteristics of wind
turbine blades. Using sandpaper roughness to represent different wind tur-
bine profiles has been widely used in the literature ( [52], [53]) and in the
proposed paper, this idea is extended by using these easily accessible sand-
paper surfaces as units of measurement for the blade surfaces. A number of
sandpaper grit sizes from P40 to P240 [54] are mounted on foam blade repli-
cas and reconstructed using SfM. Surface features are then extracted from
the reconstructions like linearity, planarity, sphericity, change of curvature
and others [24, 44]. These features are used to train a random forest statisti-
cal classification method, which is then used on wind turbine blade surfaces
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Fig. 3.12: Example of wind turbine blade surface segmentation, based on the sandpaper rough-
ness [4], paper J

containing damage and varying degrees of roughness. The blade is then seg-
mented depending on which sandpaper grit size best describes its surface at
each point, as seen in Figure 3.12. Based on the finding of the paper a number
of conclusions can be made:

• The same way sandpapers with different grit sizes are used to replicate
roughness on wind turbine blades, in wind tunnel tests, they can be
used to classify blade surface roughness on 3D reconstructions.

• A combination of local area geometrical, statistical and covariance fea-
tures can be used to explain the geometrical features of reconstructed
surfaces.

• A classifier can be trained to separate wind turbine blade surfaces of
different sizes into the proposed sandpaper grit sizes.

More research is needed to verify that the classified roughness areas,
would behave the same way as a sandpaper of equivalent grit size under
working conditions and this paper sets the stage for feature research like
this.
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Chapter 4

Additional Project Work

As part of the larger project the PhD was connected to, a number of activities
and developments were carried out, which could not be documented, in the
form of papers or publications, because of their proprietary nature, connected
to the participating companies. In this chapter a quick overview will be given
for these activities, which are deemed useful for better understanding how
the papers written for the thesis tie to the larger project. Additional details
will be omitted for the sake of brevity.

4.1 Comparison Tests between SfM and Microscopy

A number of testing scenarios for comparison between the outputs of SfM
and confocal microscopy were evaluated, later culminating with the publi-
cation of two papers [1](paper H) and [2](paper J). The more significant of
these testing scenarios are given in the subsections below.

4.1.1 Testing Wind Turbine Surface Reconstructions

To verify the quality of the wind turbine blade reconstructions produced by
different SfM solutions, their output was compared to that of a comfocal mi-
croscopy. The initial tests were performed on decommissioned blades, stored
indoors. A number of surface patches were selected, roughly separated into
three categories - damaged areas, rough areas and clean areas. Examples of
these patches can be seen in Figure 4.1. The captured images were recon-
structed with the two SfM solutions, which performed best in the benchmark
presented in paper A [3] - Agisoft Metashape [4] and Bentley ContextCap-
ture [5]. These reconstructions were there compared to ground truth surface
captures using a Hirox RH-2000 microscope [6], calculating the root mean
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(a) (b)

(c) (d)

Fig. 4.1: Examples of blade surfaces tested as part of the initial indoor image capturing.

square error between them. An example of the reconstructions from the two
programs and the microscopy can be seen in Figure 4.2.

(a) (b) (c)

Fig. 4.2: Examples of comparison output from microscopy reconstruction (Figure 4.2a), Bentley
ContextCapture SfM (Figure 4.2b) and Agisoft Metashape SfM (Figure 4.2c).

These experiments were later repeated on a smaller wind turbine blade
segment, which was sandblasted to achieve a sufficient erosion level. A num-
ber of patches were again chosen representing the same three categories as
with the previous experiment. For this experiment, the blade segment was
imaged outdoor, under more complex lighting conditions. This was done to
determine if the results obtained from the previous experiment, could be re-
peated outdoor and how much would the quality of the reconstruction suffer
in the process.

From these early experiments, it was determined that SfM could pro-
vide a sufficient reconstruction of the surface features, as long as good cap-
turing conditions were present, but additional experiments were needed to
demonstrate how close to a sub-millimeter accuracy the reconstruction could
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achieve. This was proved later in the paper H [1] in a setup, which more
closely matched the real world one.

4.1.2 Testing the Influence of Texture on SfM Reconstruc-
tions

One of the main questions, that was left unanswered from the initial wind
turbine tests was how much did the reconstruction quality depend on the
surface texture and how much on the surface geometry and shape. To answer
it a number of testing scenarios were created using custom build step artifacts
and sandpaper patches. The step artifacts, were designed so, they could
demonstrate the reconstruction quality at a number of different scales from
10 mm to 0.625 mm. For their reconstruction, different surface textures were
introduced - the monochrome normal one, a projected pattern one and a
randomized drawn one (Figure 4.3), to test out how these would affect the
quality of the reconstruction. It was demonstrated that a more random and
pronounced texture would yield better results, when compared to a ground
truth captured using a comfocal microscopy.

(a) (b) (c)

Fig. 4.3: The step artefact, together with different ways of introducing a surface texture to it - by
projecting it and directly drawn on.

The second part of the experiment was done using sandpaper patches
with different grit sizes from P40 up until P240. These patches were attached
to CnC milled wind turbine blade replicas (Figure 4.4) and reconstructed both
using the SfM and the comfocal microscopy. These reconstructions were com-
pared on the basis of the size and shape of the average sandpaper grain sizes,
as well as the power spectral density (PSD) analysis. The results showed that
SfM reconstructions could deliver the same shape and size of the grains and
to follow the approximate shape of the PSD curve of the microscopy recon-
structions. The same sandpaper patches were later used for the paper J [2],
where the lessons learned from the representation of the sandpaper grit sizes
were applied for classifying the surface roughness of wind turbine blades.
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(a) P40 (b) P60 (c) P80

(d) P100 (e) P120 (f) P180 (g) P240

Fig. 4.4: The sandpaper grit sizes used for reconstruction and testing, the accuracy of SfM
reconstructions, for capturing surfaces with different size roughness.

4.2 Combining SfM Solutions for Improving Re-
construction Quality

One of the lessons learning from creating the benchmarking paper [3] (paper
A), was that SfM solutions can be roughly divided into two categories - those
that produce high quality reconstructions, but are not robust to sub-optimal
capturing conditions and those that produce less detailed reconstructions,
but do not fail when not presented with optimal conditions. This prompted
a research into combining the workflows of two solutions, each from one of
the categories, to leverage their strengths. The two best performing applica-
tions from the benchmarking paper [3](Paper A), were chosen - Metashape
and ContextCapture. Metashape (formally PhotoScan) was proven to achieve
robust initial camera triangulation and sparse point clouds, but was unable to
capture the smaller details of surfaces, with the required clarity. ContextCap-
ture on the other hand was able to much easier achieve sub-millimeter accu-
racy, but it could also easily completely fail in the initial parts of the recon-
struction pipeline, when the illumination and camera positions provided to it
were not optimal. By combining the two applications (Figure 4.5), through a
data parsing and rotation readjustment, cleaner and more robust results were
achieved by removing holes and noise in the final reconstructed meshes (Fig-
ure 4.6). On the opposite side, the approach required more processing time
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Fig. 4.5: Combining the two SfM solutions Metashape and ContextCapture into one processing
pipeline

and the presence of the two SfM solutions, which made it harder to replicate
the results in the long run.

(a) Single (b) Combo (c) Single (d) Combo

Fig. 4.6: Difference between just using ContextCapture and a combo between MetaShape and
ContextCapture

A publication was planned as part of the research done for this combina-
tion approach, but because of delays and work schedule changes, the final
results were produced later in the project’s lifetime. This together with the
rapid development in commercial SfM applications, resulted in the results
being comparable or worse than the current state of the art. It was decided
not to pursue this research further.
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4.3 LiDAR Intensity Roughness Detection

Fig. 4.7: Initial white paper calibration of the Hokuyo LiDAR - X axis shows the LiDAR ray
angle, Y axis is the distance to the paper and Z axis is the intensity change

As part of the developed scanning drone platform and for calculating the
absolute scale of the captured surface data in the paper F [7], a number of
distance sensors were tested. One of these sensors is the Hokuyo LX-30LM [8]
LiDAR. As part of the output data the sensor can calculate the intensity for
each of the 360 degree readings. These intensities depend on the angle and
distance at which they were taken, as well as the surface they were taken
from. These readings have been used for determining the different materials
in the environment [9] and for segmenting them, if necessary to help SLAM
algorithms [10]. This was determined as a viable initial way for fast detection
of areas of changed roughness on wind turbine blades. Once such areas were
detected, the drone would perform a more detailed SfM scanning.

To be able to properly detect rougher or damaged areas on the wind
turbine blade, the LiDAR’s readings need to be calibrated, as the captured
intensities vary with angle and distance. To be able to model these variations,
it is suggested [10], that an initial calibration using a material with know or
a stable reflectance is needed. A white sheet of paper can be such a surface.
An initial calibration of the distance and angle variations of imaging a the
sheet of paper is done (Figure 4.7) and is later used to calculate the relative
reflectance of different surfaces, compared to it using the formulas presented
by [10].

To test if the intensity changes can signalize changes in the roughness of a
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(a) Bumpy (b) Rough (c) Damaged

Fig. 4.8: Wind turbine blade pieces, with different degrees of surface damage

(a) Bumpy (b) Rough (c) Damaged

Fig. 4.9: Wind turbine blade piece Hokuyo LiDAR intensity maps

wind turbine blade surface, a series of test were performed. An example out-
put from the scanning of three different blade segments with varying levels
of roughness can be seen in Figure 4.9, together with the blades themselves
4.8. It was determined that that the method can be used for initial scanning
and determining if the roughness areas are large enough to warrant further,
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more in-depth SfM scanning.
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Chapter 5

Conclusion

The work presented in this thesis is part of a larger research project con-
nected to wind turbine blade edge surface roughness detection using semi-
autonomous drones. The surface roughness is extracted using Structure from
Motion 3D reconstruction. To achieve the requirements of the main project
five hypotheses were set as starting points. The thesis uses the context of
wind turbine blades, as well as a more general research context to prove
these hypotheses:

1. It is possible to experimentally map the relationship space between the
capturing conditions and setup parameters and the quality of the resul-
tant SfM reconstructions.

2. Capturing sub-millimeter surface details from wind turbine blade sur-
faces is possible, provided the used hardware can ensure enough infor-
mation is gathered and the capturing conditions are met.

3. It is possible to automatically scale SfM reconstructed wind turbine
blade surfaces to absolute scale, using late data fusion of the recon-
structions with positioning or distance data, even if it is not possible to
manually measure the real surface.

4. Surface roughness information and reconstruction noise are separable,
using 3D mesh and capturing setup analysis.

5. It is possible to quantify and use the reconstructed 3D surface to explain
the properties of the real world one.

These hypotheses were proven, as part of the various stages of the SfM
capturing, production and analysis pipeline, present in the structure of this
thesis, as themes and sub-themes:
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Thesis Theme Hypothesis
Structure from Motion Data Capturing

Image Acquisition 1, 2
Data Fusion 3

Structure from Motion Data Analysis
Reconstruction Quality Analysis 4, 2
Reconstructed Surface Classification 5

Hypotheses 1 and 2 provided the base assumptions in the research of
SfM. To verify them, the initial steps were to create a number of comprehen-
sive benchmarks and to compare the quality of the output of a number of
state of the art SfM solutions under varying capturing conditions - camera
positions, overlap, illumination, the use of a turntable, different camera res-
olutions. Two datasets were created based on the research, containing both
image data and ground truth for a straightforward comparison. The real life
image acquisition was proven to be time-consuming, so an interactive envi-
ronment for capturing synthetic images was also developed. It was shown
that these images could produce useful reconstruction results, even without
using a real-life illumination model, but just an approximation, in a fraction
of the time it would take traditional 3D modeling applications. The different
camera positions used in the benchmark proved that the quality of SfM out-
put can vary widely, depending on the capturing positions. This prompted
the development of a lightweight localization and mapping algorithms that
could be used for capturing images from wind turbine blades, using prior in-
formation about the shape of the blade. Finally by combining the knowledge
from wind turbine blade localization and the requirements for a good SfM
reconstruction, a study was conducted on how these positions and the dis-
tance from the blade would influence the quality of the SfM output. For this
both a 2D shape and 3D surface feature roughness analysis were conducted,
showing that distance from the imaged surface is the most important factor,
with the amount of imaging positions having smaller impact, but helping
with the robustness of the captured data.

To be able to extract correct surface information from the reconstructions,
hypothesis 3 needed to be verified. It was seen that capturing the correct
absolute real-life scale, was not a trivial problem, especially when there was
no easy access to the imaged surface. This prompted a deeper dive into using
different types of sensors to provide additional information about the captur-
ing environment and surface. This information can be used to create a late
data fusion, which would help with the proper scale of the reconstruction.
Two types of sensors were researched - positioning sensors, like GPS and
GPS-RTK and distance sensors like ultrasound and LiDAR sensors. It was
demonstrated that position sensors could provide an easy way to fuse data
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present on every UAV, with SfM data and calculate the absolute scale. The
problem with this approach was the large uncertainty of the GPS data and
the fact that the positioning measurements could become wrong, if the cap-
tured object was moving. These problems were addressed, by using distance
sensors, as they provided more precise measurements and could follow the
position of the imaged surface. It was also demonstrated that even cheaper
distance sensors could be used for this, providing accurate, but less precise
results, while more expansive sensors would provide more robust results un-
der less optimal conditions. As part of this research it was also tested how
the uncertainty of the calculated scale, would change depending on the un-
certainty of the sensor used to capture the additional data. The dataset used
for this tests was also published to facilitate experimentation.

Once the correctly scaled 3D surfaces were present, the next steps required
further testing of hypothesis 2, as well as the verification of hypothesis 4, for
further processing of the data and extracting information about the scanned
objects. An initial data analysis was made, in order to separate the surface
roughness, from the possible noise and geometric errors that SfM can in-
troduce under sub-optimal conditions. This data analysis used traditional
3D mesh metrics, in combination with metrics specific for the SfM capturing
pipeline, like camera positions, overlap, focus, amount of object surface seen
from each camera, etc. to segment the reconstruction’s surface into noisy and
not noisy points. It was demonstrated that the proposed solution can achieve
a high degree of accuracy and is general enough that it can be used with
objects with different size, shape, color and surface details. Once the usable
data was separated from the noise, the quality of that data needed to be eval-
uated. This was done to test if the data could be used for sub-millimeter
surface inspections. To do this a comparison was made between the SfM
reconstructions and the same surfaces captured by confocal microscopy. It
was shown that by having a camera with high enough resolution, SfM can
produce a surface with a level of detail close to that of a microscopy capture
- capturing the same roughness structures.

Finally, to demonstrate the validity of hypothesis 5, two different use cases
were presented for the surface roughness data coming from SfM. The first one
was for classification of the surface roughness of wind turbine blades, using
standardized measuring structures in the form of sandpaper with varying
grit sizes. For this a number of surface features were extracted from the re-
constructed sandpaper patches and used to train a classifier method. The
method could then assign a number to each point in the blade surface, de-
pending on how close it resembled that sandpaper grit size. A second use
case was presented in the form of using the extracted roughness data for
modulating the amplitude and frequency of a vibro-tactile system, to achieve
the sensation of touching the reconstructed surface. For this the roughness
was classified in different degrees of coarseness. It was demonstrated that an
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user could detect different surface roughness values, using only the feedback
coming from the vibrations of the system.

The work present in this thesis was based on research work encompassing
different topics, fields and use cases. A number of interesting and useful
for the scientific community results were achieved in each of the presented
topics. Many of the topics have been presented as initial research and are
open to follow up work.

A number of directions for future work can be pursued, to build on the
already established research presented in this thesis. Three possible further
research topics are presented as follows:

• Using deep neural networks and wind turbine blade surface data for
detection and classification of surface damage. Building upon the re-
search presented in paper J [1] and paper G [2], which relied on hand
crafted features and traditional classification algorithms, a large quan-
tity of wind turbine surface point cloud data can be used instead. Deep
learning can be used for detecting and classifying surface damage de-
pending on their size, depth, position on the blade surface.

• The combining of multi-sensory data with SfM reconstructions can be
extended. Both 2D and 3D LiDAR data can be used for creating initial
lower resolution blade surfaces, while later high resolution data being
mapped to the same surfaces at specified points of interest. This way
the position of detected roughness can more easily be mapped to the
global blade geometry and additional image data can be projected onto
the lower resolution parts.

• It was seen that light intensity and direction play integral role in correct
roughness detection of smooth surfaces like wind turbine blades. This
idea can be extended by exploring shape from shading. [3] paradigms
for estimating roughness, by combining camera views with light com-
ing from different directions. These light direction can be both ex-
perimentally tested, as well as simulated using ray-tracing and ray-
marching algorithms on the 3D reconstructed models.
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A.1. Introduction

Abstract

Structure from Motion 3D reconstruction has become widely used in recent years in
a number of fields such as industrial surface inspection, archeology, cultural heritage
preservation and geomapping. A number of software solutions have been released
using variations of this technique. In this paper we analyse the state of the art of
these software applications, by comparing the resultant 3D meshes qualitatively and
quantitatively. We propose a number of testing scenarios using different lighting
conditions, camera positions and image acquisition methods for the best in-depth
analysis and discuss the results, the overall performance and the problems present in
each software. We employ distance and roughness metrics for evaluating the final
reconstruction results.

A.1 Introduction

Structure from Motion (SfM) for 3D reconstruction has come a long way in re-
cent years. The technology is at a point where a multitude of commercial and
free packages exist, enabling non-experts to quickly and easily capture high
quality models from uncalibrated images. An example is given in Figure A.1.

Fig. A.1: Example of 4 out of N input images, taken from different view points and the re-
sulting camera position triangulation and dense point cloud creation. The view is from Agisoft
PhotoScan.

Most of these packages are used for landscape reconstruction, creation of
orthomosaics and large scale reconstructions. They can be also used for close-
range reconstructions. This makes them perfect for use in cultural heritage
preservation, artifact digitalization, virtual museums and others. However,
many of these solutions come with high initial and upkeep monetary costs.
This makes choosing the one most suitable for a specific task an important
first step for each project relying on 3D reconstruction - both in result ac-
curacy, resource requirements and performance across varying conditions.
Such an endeavour can require a large investment of time. This is why in our
paper we provide an in-depth overview of the newest and most widely used
commercial software solution tested across various conditions. We concen-
trate on close-range SfM, as opposed to aerial or long-range.
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Six commercial 3D reconstruction software solutions are chosen for testing
in the paper. Each of the solutions takes an unordered list of images as input,
extracts features and creates a sparse point cloud, triangulating the camera
positions. A dense point cloud and a mesh are created by interpolating the
sparse point cloud. Texture of the reconstructed object is also created.

Six different objects are used for the reconstructions, depicted in Fig-
ure A.2. They are selected according to their varying reconstruction difficulty
and different problems that they present like textureless surfaces, repeatable
patterns, symmetrical objects, glossiness, etc. Objects are scanned with a
white light scanner for evaluating the meshes produced by the SfM pack-
ages.

Six different scenarios are tested. These scenarios cover different lighting,
positioning and shooting setups. These experiments show that the environ-
mental conditions have a noticeable impact on the final reconstruction and
affect some software solutions more than others.

For verifying the accuracy of the output meshes from the different pro-
grams, two qualitative methods are chosen: 1) calculating the signed distance
between ground truth objects and the reconstructions; 2) comparing the local
roughness profiles between the ground truth objects and the reconstructions.
The results show that some of the tested packages have more problems recon-
structing glossy, symmetrical and textureless surfaces, than others, resulting
in complete failures. Some programs sacrifice details for a less noisy final
mesh, while others capture more detail, but are very sensitive to noise. A
moving camera setup with uniform lighting also gives higher reconstruction
accuracy than a turntable setup.

A.2 Related Work

SfM is just one of many techniques for 3D reconstruction of objects and ar-
tifacts. Other techniques are beyond the scope of the paper, but for a quick
overview the work in stereo-vision reconstruction [1], structured light [2] or
laser scanning [3] is available for reference.

For SfM reconstruction most resources for benchmarks and comparisons
are either from archaeological context [4] or from geomapping context [5].
These give valuable information, but are mostly focused on one type of sur-
faces and objects to reconstruct under a more limited set of environment con-
ditions. Other resources [6] [7] give more in-depth comparison using both
their own datasets and freely available ones, but lack the comparison for a
larger number of software solutions.
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A.3 Tested Software

We have chosen six of the state of the art software packages for 3D reconstruc-
tion. These products are Agisoft PhotoScan Pro [8], Bentley ContextCapture [9],
Autodesk Memento (ReMake) [10], Pix4D [11], 3Dflow 3DF Zephyr Pro [12] and
Reality Capture [13]. For more information on some of the important features
each of the selected software solutions has, please refer to Table A.1. The
prices are subject to change and are given as they are in the time of writing
this paper and converted to dollars. In the output column four of the most
widely used ones for close-range photgrammetry are given to preserve space
- 3D mesh, texture, sparse point cloud, dense point cloud. Additional outputs
like orthophotos, orthomosaic, fly-through videos, depth and normal maps,
etc. are supported by many of the programs, but are out of the scope of this
paper.

Table A.1: Tested software solutions with some of their most important characteristics. In the
output column the shortened names denote: dense point cloud (DPC), sparse point cloud (SPC).
The price is given for both standard and pro versions. Bolded font denotes the one used for
testing.

Program Outputs Online/Offline OS Scripting
ContextCapture Mesh/Texture/DPC Offline Win Yes

Memento Mesh/Texture Online/Offline Win/Mac No
PhotoScan Mesh/Texture/SPC/DPC Offline Win/Mac/Linux Yes

RealityCapture Mesh/Texture/SPC/DPC Offline Win Yes
3DF Zephyr Mesh/Texture/SPC/DPC Offline Win No

Pix4D Mesh/Texture/DPC Offline Win/Mac No

A.4 Datasets

The six chosen objects are shown in Figure A.2. These objects are selected
based on a number of criteria concerning the properties of the materials that
they are made of. These criteria are used to judge the capability of each soft-
ware to handle different difficult cases, which are considered weak points for
SfM. The criteria are as follows - glossy/smooth surfaces, monochrome colors, very
dark/black color, repeating patterns, partial occlusions, symmetrical surfaces. They
may result in failures in reconstruction, decreased overall accuracy, cause
holes and noise in the resultant point clouds and mesh [14] [15].

As an initial observation the objects are divided into two groups depend-
ing on their perceived reconstruction difficulty. The easy to reconstruct ob-
jects - angel statue, sea vase and bird bath and the hard to reconstruct objects
- black vase, plastic vase and owl statue. The angel statue and sea vase are
perceived as easy because they have a lot of surface detail and features, both
global and local, which should make them easy to reconstruct by all the pro-
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(a) (b) (c)

(d) (e) (f)

Fig. A.2: Testing Objects: a) angel statue, b) bird bath, c) sea vase, d) plastic vase, e) owl statue,
f) black vase. Typical size of the objects is between 25 and 60 cm

grams. They also have some partial self occlusion, which will be tested. The
bird bath is also feature rich and has both very smooth and glossy surface
parts, as well as rough ones. The black and plastic vases are perceived as
hard, because of their color, glossiness and repeated patterns. The owl statue
is chosen as an intermediate object, which has a lot of glossiness and feature
poor parts, as well as non-glossy more feature-rich ones.

The input images are taken using a Canon 6D camera at maximum reso-
lution of 5472 x 3648. A zoom lens with focal length of 70− 300mm is used to
accommodate the different zoom levels needed for the different objects. The
reconstructions are carried out on a stand alone laptop equipped with Intel
Core i7 - 4710HQ at 2.50 GHz, 16 Gb of RAM and a GeForce GTX 970M. The
operating system is Windows 8.1. Each of the six objects has been scanned
with a high resolution, high accuracy white light scanner from Aicon. These
scans are considered detailed enough to be used as a benchmark for the per-
formance. To demonstrate the accuracy and detail of the scans, a cube with
known dimensions is also scanned and the measurement of the 3D model’s
sides are compared to the real world ones. The two differ by an average
of 1.03mm/1.12mm/0.93mm in width/height/depth. Henceforth these scans
will be referred to as ground truth objects, while the outputs from each of
the tested programs will be referred to as reconstructed objects.
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A.5 Testing Scenarios and Results

A.5.1 Main Test Scenario

All six objects are used in the initial test scenario, together with all the tested
programs. The distance between the reconstructed and ground truth objects
is calculated, together with the local roughness. The scenario aims to de-
termine how are the selected programs fairing when tested with both easy
and hard to reconstruct objects, as well as noting their speed, accuracy and
robustness against noise. The test also aims to determine the object factors
which make reconstruction hardest for each of the programs.

The test scenario uses photos captured in an indoor controlled environ-
ment. The image capturing algorithm is as follows - the captured object is
positioned on a turntable; the camera on a tripod is facing the object and is
lower than it for capturing the first set of images at lower angle; one light is
positioned on a stand above the camera so it shines directly at object; a photo
is taken and the turntable is turned 20o; this is done 18 times, so the object is
captured from all sides; the camera on the tripod is then repositioned higher
two times, each time 18 more photos are taken; a total of 54 photos of the
three different height sets. The CanonD6 camera is used for taking photos
as it gives high detail photos, without straining the hardware of the testing
machine.

The total processing time of creating the 3D model is noted for each pro-
gram. For the online version of Memento, the processing time does not give
a proper estimate of the working time. It is given just for a more full presen-
tation of the data. This data is given in Table A.2. A course visual inspection
is done on the created model, focusing on severe problems with the objects.

Table A.2: Processing time in seconds for each of the six objects by the tested software solutions.
Models which contain problems like missing sides, broken parts, floating noise, etc. are marked
with red. Models which could not be reconstructed are given an N/A notation.

Program Angel Bird Bath Owl Sea Vase Plastic Vase Black Vase
ContextCapture 2820 sec 3600 sec N/A 3780 sec 3060 sec N/A
Memento Online 4860 sec 4920 sec 5160 sec 4440 sec 4260 sec 5340 sec

PhotoScan 4020 sec 4500 sec 3780 sec 4560 sec 4740 sec 3480 sec
RealityCapture 5220 sec 6480 sec N/A 6720 sec 2820 sec N/A

3DF Zephyr 3720 sec 4440 sec 4140 sec 4860 sec 3060 sec 4680 sec
Pix4D 4140 sec 3240 sec N/A 4860 sec 3960 sec 3720 sec

Memento Offline 11520 sec 9360 sec 7140 sec 10320 sec 7980 sec N/A

All packages, except Memento offline have comparable processing times,
which depend on the complexity of the reconstructed object. Memento on-
line, PhotoScan and 3DF Zephyr could reconstruct all objects, while Con-
textCapture, Reality Capture and Pix4D experienced the most problems. The
coarse visual inspection is followed by a more qualitative inspection, using
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the ground truth scanner data for comparison. The idea suggested by Schön-
ing and Heidemann [6] is used for this part of the test scenario. In their pa-
per they conclude that each tested program produces 3D models and point
clouds of different density, which also may contain parts of the background
or noise particles. Therefore, it is better to use the reconstructed models as
reference and compare the ground truth data to each, noting the difference.
In addition their idea of using the meshes for comparison is used, as opposed
to using the point cloud. This gives the possibility to test signed distances
using the model’s pre-calculated normals.

(a) ContextCapture (b) Memento Online (c) PhotoScan (d) Reality Capture

(e) 3DF Zephyr (f) Pix4D (g) Memento Offline

Fig. A.3: Pseudo color distance maps between the ground truth and the reconstructed objects.
Red colors indicate distances above the ground truth, blue colors indicate distances below the
ground truth and green colors indicate where the surfaces coincide.

The comparison between the reconstruction and the scanned data is done
using the free open source software CloudCompare [16]. The reconstructed
models are scaled to the absolute scale of the ground truth and registered
to it using an iterative closest point algorithm (ICP) by Besl and McKay [17].
Once the models are registered the distances between the triangles of the re-
constructions and the ground truth is calculated. Using the normals of the
meshes the distance is calculated as signed. These distances are visualized
as pseudo color heat map. The pseudo color maps for the angel statue can
be seen in Figure A.3. The maps are filtered removing distances outside the
interval of [−0.3mm; 0.3mm], for easier visualization. From the distances, the
mean and standard deviation of the distance distribution for the whole object
are calculated. A Gaussian normal distribution is assumed for the modelling
of the distance distribution between the ground truth and the reconstruction.
The mean and standard deviation are given in Table A.3 for the easy to re-

80



A.5. Testing Scenarios and Results

construct objects - angel statue, bird bath and sea vase, together with the
Gaussian distributions for them in Figure A.4. For the hard to reconstruct
objects - the plastic vase, owl and black vase the data is given in Table A.4
and Figure A.5, respectively.

Table A.3: Mean value (µ) in mm and standard deviation (σ) in mm2 of the distance metric for
each software solution for the three objects selected as easy to reconstruct

Angel Bird Bath Sea Vase
Mean/Variance Mean/Variance Mean/Variance

ContextCapture -0.024/0.703 -0.030/0.588 -0.245/2.016
Memento Online -0.089/0.438 -0.039/0.382 -0.408/2.277
PhotoScan -0.109/0.805 0.034/0.175 -0.463/2.321
RealityCapture -0.038/0.486 -0.006/0.143 -0.481/2.421
3DF Zephyr -0.040/1.020 -0.045/1.537 -0.911/3.514
Pix4D -0.194/1.124 -0.060/0.668 -0.425/2.419
Memento Offline -0.080/0.569 -0.046/0.40 -0.255/2.983

A
ng

el

Context
Capture

Memento
Online PhotoScan

Reality
Capture 3DF Zephyr Pix4D

Memento
Offline

Bi
rd

Ba
th

Se
a

V
as

e

Fig. A.4: Histograms of the Gaussian distribution characterizing the distances between the
ground truths and the three easy objects. All the histograms are scaled the same.

The initial speculation dividing the objects into easy and hard ones is
proven by the amount of reconstruction failures. Both the black vase and
the owl statue, experience much higher number of failures, compared to the
other objects. The plastic vase fairs better, but because of its symmetrical fea-
tureless and dark surface, the reconstruction suffers from improperly placed
geometry. This can also be seen from the Gaussian histogram distributions
in Figure A.5, where the distributions for both the black vase and the plastic
vase are much wider, showing larger divination distances from the ground

81



Paper A.

Table A.4: Mean value (µ) in mm and standard deviation (σ) in mm2 of the distance metric for
each software solution for the three objects selected as hard to reconstruct

Plastic Vase Owl Black Vase
Mean/Variance Mean/Variance Mean/Variance

ContextCapture -2.512/10.601 N/A N/A
Memento Online -3.450/6.697 -0.937/3.318 -4.549/5.886
PhotoScan -3.791/7.027 0.371/6.806 -4.331/5.758
RealityCapture -4.395/7.222 N/A N/A
3DF Zephyr -4.814/7.471 0.169/3.191 -4.035/5.933
Pix4D -3.782/7.187 N/A -4.794/6.027
Memento Offline -5.074/7.429 -0.929/0.977 N/A
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Fig. A.5: Histograms of the Gaussian distribution characterizing the distances between the
ground truths and the three hard objects. The missing histograms are programs which failed to
reconstruct the object. All the histograms are scaled the same.

truth. The owl statue has less noisy histogram, but it suffers from holes in the
reconstruction. ContextCapture and Reality Capture demonstrate the overall
smallest mean and variance deviations from the ground truth for the easy
objects, but both programs completely or partially fail when the surfaces are
not optimal. 3DF Zephyr, Memento Online and PhotoScan on the other hand
are much more consistent and have a more graceful degradation of perfor-
mance, but tend to miss smaller details and have an overall high variance in
the distance distribution. From here another observation can be made - the
programs can be roughly divided into ones that capture a lot of small detail
at the price of noise and easier failures - Context Capture, Reality Capture,
Memento Offline and the ones that are more consistent and robust, but fail to
capture details - Memento Online, 3DF Zephyr, PhotoScan. Pix4D is mainly
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aimed at aerial photos and this clearly shows, as the program is much noisier
in all instances.

To determine the amount of noise and over-smoothing of features in the
reconstructions compared to the ground truth, a second metric is introduced.
The local roughness of both the reconstructions and the ground truth is cal-
culated using the Gaussian curvature of the models, which is normalized
to give proper weights to rough patches and smooth patches near edges.
The method is introduced by Wang et al. [18] for assessment of mesh visual
quality. The method is useful in the case of our paper as it generates an
accurate roughness map, which can give both visual and more quantitative
information for the success of the reconstruction. The roughness map is also
visualized as a pseudo color map, which is given in Figure A.6.

(a) Ground Truth (b) ContextCapture (c) Memento Online (d) PhotoScan

(e) Reality Capture (f) 3DF Zephyr (g) Pix4D (h) Memento Offline

Fig. A.6: Pseudo color roughness maps of the ground truth and reconstructed meshes. The
colors go from red to blue through green, depending on how rough the surface is.

From the local roughness map, the histograms of both the ground truth
and the reconstructions is calculated. Using these histograms the Kullback-
Leibler distances [19] between the ground truth and reconstructions are cal-
culated. This gives a measurement of the similarity between the two, which
penalizes deviations from the roughness of the ground truth both caused by
introduction of noise in the reconstructed mesh and in over-smoothing de-
tails in it. Figure A.7 has the results from the roughness histogram distances,
where smaller values give more faithful reconstructions, roughness-wise.

The results from the roughness metric support the division of the pro-
grams. Pix4D introduces a lot of noise and smooths details. This can be
seen in both Figure A.6 and Figure A.7, where it has clear disadvantage in
many of the cases. Figure A.6 also shows that Pix4D, Memento Offline and
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Angel Bird Bath Sea Vase

Plastic Vase Owl Black Vase

Fig. A.7: Bar chart visualizing the calculated Kullback-Leibler distances between the roughness
histogram of the ground truth and the reconstructed objects. The tested software is denoted
with short names - Context Capture (CC), Memento Online (Mon), PhotoScan(PS), Reality Capture
(RC), 3DF Zephyr (3df), Pix4d (Pix) and Memento Offline (Moff).

Reality Capture have introduced a lot of noise on the smoother parts of the
angel, compared to the ground truth, like the stomach and legs, while Me-
mento Online, 3DF Zephyr and PhotoScan have smoothed out small features
in the face and hair of the angel. Memento Offline, Reality Capture and
PhotoScan manage to capture most of the detail on the easier to reconstruct
objects like the angel and the bird bath, without introducing too much noise
as evidenced by the smaller histogram distances. However they fail on the
smoother objects like the plastic vase and the owl, where they introduce un-
certainty noise. Memento Online and 3DF Zephyr tend to over-smooth the
surfaces as evidenced by the bar chart of the sea vase.

A.5.2 Follow Up Test Scenarios

One of the best performing objects - the bird bath is tested in a number of
follow up scenarios under different capturing conditions. This is done to de-
termine the effect of capturing conditions on the reconstruction results. Five
follow up experiments are carried out focusing on different combinations of
conditions. First tested condition is the effect of rotating the camera to cap-
ture images from different views, as opposed to using a turntable to rotate
the object and keep the camera stationary. This test aims to assess if a moving
background and completely static lighting will help with reconstruction pro-
cess, as opposed to the lighting which "moved" with the object in the case of
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using a turntable. The second tested condition is using multiple light sources
for a more even lighting, as opposed to one directional light. The third con-
dition is using different number of photo positions, combined into bands of
photos, with varying height. Five and three bands of photos are created. The
first two contain 18 photos each taken in 20o intervals, the next two contain 9
photos in 40o and the final one contain 4 images. The setup also aims to test if
introducing information from more angles can help the feature point match-
ing algorithm of the tested software solutions. The same analysis pipeline is
used as with the main experiment, using the ground truth scans to compare
with. The results from the different combination of conditions are given in
Table A.5.

Table A.5: Mean value (µ) in mm and standard deviation (σ) in mm2 of the distance metric for the
bird bath object for each of the tested software solution from the five tested shooting scenarios.
The tested software is denoted with short names - Context Capture (CC), Memento Online (Mon),
PhotoScan(PS), Reality Capture (RC), 3DF Zephyr (3df), Pix4d (Pix) and Memento Offline (Moff).

No Turntable Turntable
Multiple Lights One Light Multiple Lights

Five Bands Three Bands Five Bands Five Bands Three Bands
(µ)/(σ) (µ)/(σ) (µ)/(σ) (µ)/(σ) (µ)/(σ)

CC -7.167/13.289 -4.147/8.052 N/A N/A N/A
Mon -0.209/2.028 -0.094/1.306 -0.366/2.148 -0.947/3.826 -0.309/2.305
PS -0.283/2.312 -0.240/2.685 0.206/1.982 -0.212/2.410 -0.167/1.159
RC -0.031/0.284 -0.014/0.689 N/A 0.108/1.710 N/A
3df -0.039/0.584 0.011/0.411 -0.308/2.035 -0.372/2.712 -0.165/0.922
Pix -0.169/0.407 -0.166/1.911 -5.023/12.401 -0.204/1.520 0.061/1.674
Moff -0.105/1.355 -0.071/1.118 -1.135/4.253 -0.389/2.262 -0.114/1.552

The tests show that using static lighting and moving background without
a turntable yields a higher accuracy, with lower mean and standard deviation
values, compared to the turntable results. There is also a difference between
using multiple light sources and just one directional one, with the latter intro-
ducing more noise, which can be seen by the higher standard deviation in the
table above. This shows that if higher accuracy is necessary, a capturing pro-
cess without a turntable and with uniform lighting and more diverce camera
positions need to be used, even if this will cost more time and resources.

A.6 Conclusion and Future Work

Our paper presents a head to head comparison of the state of the art SfM 3D
reconstruction software solutions. As part of the research we tested six pro-
grams - ContextCapture, PhotoScan, Memento, Reality Capture, Pix4D and
3DF Zephyr. We tests the programs on both a variety of challenging objects
and on images taken from different capturing conditions. Reconstruction re-
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sults were evaluated against ground truth objects on the basis of distance
measurement and roughness comparison.

We demonstrated that programs can be roughly divided in two groups -
ones that are more robust to sub-optimal objects and capturing conditions,
but do not manage to capture smaller details and ones that can capture high
amount of details, but degrade in performace and introduce a lot of noise,
once the optimal conditions are not met. Additionally we show that using
a turntable can have a negative effect on the accuracy of the reconstructed
objects, as well as using a single light source. For optimal capture conditions
a moving camera, multiple lights and images taken from multiple locations
and angles are recommended.

As an extension to this paper we propose introducing prior information
to the programs like - camera positions, feature points, markers, etc., as well
as combining multiple software solutions in a pipeline for achieving better
results and helping failed reconstruction attempts on hard to reconstruct ob-
jects. Testing different cameras is also proposed as an extension to the differ-
ent environment conditions.
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B.1. Introduction

Abstract

In recent years 3D reconstruction has become an important part of the manufacturing
industry, product design, digital cultural heritage preservation, etc. Structure from
Motion (SfM) is widely adopted, since it does not require specialized hardware and
easily scales with the size of the scanned object. However, one of the drawbacks of SfM
is the initial time and resource investment required for setting up a proper scanning
environment and equipment, such as proper lighting and camera, number of images,
the need of green screen, etc, as well as to determine if an object can be scanned
successfully. This is why we propose a simple solution for approximating the whole
capturing process. This way users can test fast and effortlessly different capturing
setups. We introduce a visual indicator on how much of the scanned object is captured
with each image in our environment, giving users a better idea of how many images
would be needed. We compare the 3D reconstruction created from images from our
solution, with ones created from rendered images using Autodesk Maya and V-Ray.
We demonstrate that we provide comparable reconstruction accuracy at a fraction of
the time.

B.1 Introduction

Capturing 3D models of objects has become an important part of the enter-
tainment [1], medical [2] and manufacturing industries [3]. Having not only
2D representations of the objects through images, but a whole 3D model can
give more information about the object’s appearance, form and scale. When
a high level of accuracy is needed in the captured 3D model, the go to tech-
nology has been laser scanners [4] and structured light scanners [5], as well
as structure from motion [6]. This paper focuses on SfM.

Fig. B.1: Overview of our proposed solution. A Unity interactive testing environment, an ap-
proximated DSLR camera with changeable settings and a visualization of how much of the
object’s surface has been scanned. The captured images can then be used for SfM reconstruction
testing purposes.

SfM works by first taking images all around the desired object, covering its
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whole surface. Features points are extracted from each image and matched
between images. By triangulating these matched 2D points on the images,
the 3D world coordinates of each camera position, as well as a sparse point
cloud of the scanned object can be calculated. The camera positions and the
sparse point cloud are then adjusted and interpolated to create a much denser
point cloud, which captures a lot of the details of the object. Currently there
exist multiple commercial [7], [8]and open-source [9], [10] solutions for SfM
reconstruction.

Here comes one of the biggest drawbacks of SfM - the reliance on the qual-
ity of the input images. If problems like lack of enough images, blurriness,
over/underexposure or noise are present in the input images, they will result
in lower quality or complete failure of the reconstruction. Further problems
can arise if the captured object has a specular surface, transparent parts or
lacks a detailed surface. Testing different configurations of the capturing en-
vironment, camera settings, capturing conditions and objects can take a lot
of time and can easily become costly if equipment needs to be changed or if
the captured object needs to be processed to make its surface more diffuse.
Additionally, different SfM solutions have varying degrees of robustness to
these problems, making it crucial to know what is the best setup for the task
at hand. A lot of research [11], [12] has gone into looking into how all these
factors contribute to the output of SfM.

Here comes one of the biggest drawbacks of SfM - the reliance on the qual-
ity of the input images. If problems like lack of enough images, blurriness,
over/underexposure or noise are present in the input images, they will result
in lower quality or complete failure of the reconstruction. Further problems
can arise if the captured object has a specular surface, transparent parts or
lacks a detailed surface. Testing different configurations of the capturing en-
vironment, camera settings, capturing conditions and objects can take a lot
of time and can easily become costly if equipment needs to be changed or if
the captured object needs to be processed to make its surface more diffuse.
Additionally, different SfM solutions have varying degrees of robustness to
these problems, making it crucial to know what is the best setup for the task
at hand. A lot of research [11], [12] has gone into looking into how all these
factors contribute to the output of SfM.

B.2 Our Proposed Solution

The normal way to test out different capturing conditions and setups is
by rendering out images from a 3D model in programs such as Autodesk
Maya [13]. This way the user can be in control and change lighting conditions,
camera positions, change the environment, etc. This can produce photoreal-
istic results, but has the shortcoming that it requires in-depth knowledge of
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the used software solution, there is no easy way to observe the capturing
progress. Rendering each image, also takes a long time, making the whole
process cumbersome.

This is why we introduce a solution, which aims to address all the above
shortcomings and deliver results which are comparable. We propose the
creation of a testing environment in Unity, which can approximate the phys-
ical properties of a real world capturing setup for taking synthetic images.
This environment can be used for initial testing with different setup varia-
tions, camera settings, objects, number of images, so a deeper insight can be
achieved in the problem, before spending too much time and resources. In
addition we propose a intuitive visualization of how much of the scanned
object is captured with each image, as well as how much of an overlap there
is between the images. An overview image of our proposed solution can be
seen in Figure B.1.

We compare our solution’s results to both reconstruction results from real
life images, as well as to results from synthetic images produced with Maya
and V-Ray [14], by using a ground truth created with a structured white light
scanner. We demonstrate that our method produces comparable results to the
offline rendering approach in a fraction of the time and captures the overall
shape and detail present in the real life image reconstruction.

In addition we give some use cases for SfM capturing, where our pro-
posed solution can come in handy and introduce some quality of life func-
tions, which will make the normally tedious and long process easier.

B.3 Methodology

To create the testing environment each of the parts of a capturing setup needs
to be modeled - the camera, the environment and the scanned object. The im-
plementation of each of these is explained in detail in the subsections below.
As DSLR cameras are the most widely used type of cameras for SfM 3D re-
construction, the testing environment’s cameras are model after the typical
DSLR parameters.

B.3.1 Camera Approximation

Our proposed solution does not aim to simulate how the physics of a real
camera work. As mentioned before this has been implemented to a much
greater extend in V-Ray for Autodesk Maya and will be extremely challenging
to implement in Unity and even more to make it work in real time. This is
why we choose to simply model how the different parameters of the camera
can change the output image in appearance. The image itself is a "screenshot"
of what a Unity camera renders of the environment and the parameters of
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the camera change this "screenshot" by introducing standard Unity shader
effects, to mimic the real world changes.

A number of camera parameters and functions are modeled for approxi-
mating the results from changing them on the final image - aperture, shutter
speed and ISO, as well as focal length and depth of field. The design consid-
eration while implementing each are given in the sections below.

Focal length and depth of field

To approximate the change of the field of view and zoom level, when ad-
justing the focal length, Equation B.1 is used. In the equation h is the sensor
height and f is the current focal length. The modeled camera’s sensor size
is given as an input and can be changed depending on the modeled camera
and is given in mm. The calculated field of view can be clamped to specific
values to suit the needs of the testing scenario and to best approximate the
effect of using a specific lens with the camera.

f ov = 2arctan(
h

2 f
) (B.1)

To mimic more closely an output image from a real camera, the radial
barrel and pincushion distortions are also implemented. Both distortions are
implemented by modifying the fisheye standard asset shader. As an exten-
sion of this, future work is planned to use camera calibration algorithms on
a number of cameras and lenses to estimate and better model the intrinsic
camera parameters and distortions.

The changing of the depth of field when focusing is done using the depth
of field shader that comes with the standard assets. Changing the focus of
the approximated camera, changes the calculated shader distance from the
camera to the Unity environment, which in turn determines the far plane,
beyond which the shader applies a disc shaped blur filter.

Aperture, shutter speed, ISO

Each of the camera settings, change the intensity of the effects that they in-
troduce to the final rendered image. The steps are taken from [15], which
are used in most of the state of the art DSLR cameras. The aperture is in the
interval between [ f /1.2; f /64], the shutter speed is in [20; 1/8000], while the
ISO is in the interval [100; 51200].

To properly approximate how each of them affects the final exposure the
Additive system of Photographic EXposure (APEX) standard is taken as a
starting point [16]. It treats each of the parameters as an additive system,
in which the increase or decrease of one, results in doubling or halving the
exposure. Equation B.2 shows the relation between the exposure value EV,
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the shutter speed value Tv and aperture value Av, and the ISO sensitivity Sv
and brightness value Bv.

Ev = Av + Tv = Bv + Sv (B.2)

The aperture, shutter speed and ISO components are given in Equation
B.3. In the aperture equation, the square of the aperture is taken, as the
whole area is needed. For the ISO the equation contains N, which is the
constant that gives the relation between the arithmetic sensitivity value and
the value used by the APEX standard, while Sx is the arithmetic sensitivity
value. Each of the equations takes the base-2 logarithm to make the equation
behave linearly.

Av = log2(A2), Tv = log2(1/T), Sv = log2(NSx) (B.3)

Finally, the brightness value Bv, is simplified for the Unity approximation,
as it is calculated as a sum of the intensity values of each light source in the
Unity scene. This is done to approximate the illuminance of the scene. To
approximate the effect of changing exposure, the exposure/brightness shader
is used from the standard shader package, with its value calculated from the
APEX equation.

In addition to changing the perceived scene exposure, each of the three
parameters gives other effects. With lowering the aperture size, the blur disc
size is made larger, allowing more of the scene to come into focus and vice
versa with increasing the aperture size. In addition, with lowering the aper-
ture value, a blur effect is added to the final render to simulate the possible
lens diffraction problem that can arise when the size of the aperture becomes
smaller [17].

Changing the shutter speed changes the amount of blur present in the
final rendered image, if the object or the camera are in motion when the
image is taken. This is modeled by introducing the motion blur effect from
the standard assets.

Changing the different camera parameters is done by switching to the
designated parameter view and moving the specific sliders for each. Figure
B.2 shows the camera parameter view.

B.3.2 Environment Approximation

The most important parts of a SfM capturing setup for small scale objects are
approximated - the lighting, the background and the way to capture different
parts of the scanned object. Each of these parts is developed to be fast and
easy to use.

The lighting is modeled as both an ambient lighting as well as directed
lights. For ambient lighting a number of point lights are used all around the
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Fig. B.2: The camera parameter view. Each of the main camera parameters, plus the focal length
and lens focus can be tweaked from this view, through the use of the sliders.

modeled studio. For a harder directed light, a number of directional lights
can be setup. The number and position of both types of lights can be changed
by the user as needed, as well as the intensity and warmth of the produced
light. Soft shadows are rendered for all the objects in the room.

A turntable is implemented in the middle of the capturing room and the
object for scanning is placed on it. Finally, a green screen is implemented for
use whenever masking is necessary.

B.3.3 Object Approximation

The user can load the desired object into the environment, which is placed
directly on the turntable. As the tested object only exists in the real world,
there can be a number of solutions for substitutes used in the environment.
A coarsely reconstructed version of the final object or a primitive object such
as a sphere, cube, cylinder can be a substitute.

Each time a photograph image is rendered, the seen faces of the captured
object from the camera are calculated using an matrix of raycasts from the
camera. The object’s material can be switched between normal textured view
and a view of the seen faces. In the special view, initially the object is plane
white. The faces that have been seen from one camera view are colored red,
while faces that have been seen from more than one are colored green. Figure
B.3 shows the the object view and the coloring as more images are taken with
enough overlap.

96



B.4. Solution Test and Results

(a) Initial State (b) One image (c) Two images

Fig. B.3: The object coverage view. Initially (B.3a) the whole object’s surface is white. After the
first image, the seen surface is painted red B.3b. After the second image the parts that have been
seen from two or more different camera views are colored green B.3c, indicating that there is
overlap on the captured images.

B.4 Solution Test and Results

We choose to compare a SfM reconstruction produced by images from our
proposed testing environment against ones rendered using one of the most
widely used ways to simulate a physical camera and an image taking setup
- Autodesk Maya and V-Ray. In addition a reconstruction is done using real
life DSLR camera images as a base case.

For the test real life object a stone angel statue is selected, which can be
seen in Figure B.4. The three reconstructed meshes need to be compared to
a ground truth model. A high accuracy ground truth is produced using a
white light scanner.

The next step is to create a real life image capturing setup. A Canon
6D DSLR camera is used. The camera is a full-frame camera with a sensor
size of 35.8mmx23.9mm. The photos are taken with the maximum possible
resolution of the camera - 5472x3648 pixels. The camera is positioned on a
tripod in front of a turntable with the captured object. Two Elinchrom D-
Lite RX4 lights are setup on both sides behind the camera and are targeted
towards the object. A green screen is set behind the object. A photo is taken
and the turntable is rotated each time 20 degrees, until the whole object has
been captured in 360 degrees, which gives a total of 18 images.

The same capturing setup is created both with our proposed solution and
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(a) Real DSLR (b) Maya and V-Ray (c) Our Solution

Fig. B.4: Images used for the reconstruction test. Figure B.4a, is the real life image taken from
the 6D DSLR camera, B.4b is the rendered image from Maya and V-Ray and B.4c is the image
from our proposed solution.

in Maya. In Maya, the physical camera in V-Ray is used for simulating the
Canon 6D with the camera parameters saved from the real life capture. The
same parameters are used in out environment. The resultant images from
the real life setup, the Maya and V-Ray setup and our proposed solution can
be seen in Figure B.4.

For each of the three sets of images, the reconstruction is done using
Photoscan [8]. The program is chosen as it is frequently used by researchers
and provides robust and accurate results compared to other state of the art
solutions [11].

(a) Real DSLR (b) Maya and V-Ray (c) Our Solution

Fig. B.5: Heat map of the distances between the ground truth object and the reconstruction.
Green indicates that the two coincide, while red and blue indicate larger positive and negative
distances between the two.

The three reconstructions are compared to the ground truth scan. The
open source program CloudCompare [18] is used for the comparison. Each
of the reproduced meshes is scaled and registered to the ground truth object.
The signed distances between the faces of the reconstructions and the ground
truth are calculated. These distances are visualized as a heat map on Figure
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B.5, where the blue color shows distances which are below the ground truth
and the red color - distances above the ground truth, while green indicates
that the two surfaces match. From these distances, the mean and standard
deviation are calculated for each reconstruction. These are shown in Table
B.1.

Table B.1: Mean in mm and standard deviation in mm of the distance metric for the three types
of input data - images from a real DSLR Canon 6D camera, rendered images from Maya and
V-Ray and our proposed solution

Solution Mean [mm] Std. Dev. [mm]
Real DSLR -0.38 2.41

Maya + V-Ray -0.43 2.50
Our Solution -0.49 3.51

The table shows that the difference between the reconstruction from the
real DSLR images and the rendered V-Ray images is negligible, as expected.
Only the standard deviation from rendered images is larger, mostly because
the texture on the 3D model has lost some of its detail and has had some
noise added. This is because the images from our solution lack the fidelity
of the other images, as well as the smaller details that would come out from
proper rendered lighting calculation. On the other hand, the Maya + V-Ray
solution took almost 20 hours to render, making it less than ideal for fast
testing and prototyping, compared to the 5 min it took to set the camera
settings, find the proper camera position and take the images through our
interactive environment.

B.5 Use Cases

Going from the work of [19], where multiple SfM solutions have been tested
under varying environmental and object conditions, it is apparent that a lot of
time and work goes into creating a proper setup for a good 3D reconstruction.
It is also seen that problems with the camera, the lighting or the capturing
environment can drastically lower the quality of the produced model. This
is why we introduce a lot of quality of life features in our proposed solution,
which aim to make the capturing and testing process easier.

The camera can be made stationary with the turntable rotating a specified
number of degrees, until the whole object has been scanned. The second way
is by keeping the object stationary, both the standard First Person Shooter
(FPS) controller or the flight controller can be attached to the approximated
camera, so the user can move manually to the desired positions and rotations.

The implemented green screen can be toggled on and off and its color
changed to better contract the color of the object being captured. The lighting
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can be moved and the intensity of the light can be regulated both for the
directional and point lights, to test different possible illumination setups.

To make it easier for users to judge how much of the object’s surface has
been captured from each image an additional visualization mode is imple-
mented. An important part of performing a successful SfM 3D reconstruc-
tion, is providing enough images, covering the whole surface of the object
and having enough overlap between them.

B.6 Conclusion and Future Work

In this paper we proposed a interactive testing environment for capturing
images for SfM reconstruction. Our solution provides an approximation to
the way images of a real life DSLR camera will look like and how the final
image changes depending on the camera settings, focal length and focus. To-
gether with the approximated camera we introduce a capturing environment,
which can be interactively changed by the user, to accommodate different
testing scenarios. Finally we added the possibility for the user to visualize
how much of the scanned object’s surface has been captured with each photo
and is there overlap between different photos.

We tested our solution’s output against an offline rendering output pro-
duced by Autodesk Maya and V-Ray and demonstrated that we achieve sim-
ilar results at a fraction of the time.

For future work we would like to remake the interactive testing environ-
ment in another engine like Unreal, which has the possibility to use physical
cameras and a better lighting model, as well model more of the DSLR intrin-
sic parameters.
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C.1. Introduction

Abstract

The wind energy sector faces a constant need for annual inspections of wind turbine
blades for damage, erosion and cracks. These inspections are an important part of the
wind turbine life cycle and can be very costly and hazardous to specialists. This has
led to the use of automated drone inspections and the need for accurate, robust and
inexpensive systems for localization. Due to low geometrical features on the wind
turbine blade, conventional SLAM algorithms have a limited use. We propose a cost-
effective, easy to implement and extend system for on-site outdoor localization and
mapping in low feature environment using the inexpensive RPLIDAR and an 9-DOF
IMU. Our algorithm geometrically simplifies the wind turbine blade 2D cross-section
to an elliptical model and uses it for distance and shape correction. We show that the
proposed algorithm gives localization error between 1 and 20 cm depending on the
position of the LiDAR compared to the blade and a maximum mapping error of 4 cm
at distances between 1.5 and 3 meters from the blade. These results are satisfactory
for positioning and capturing the overall shape of the blade.

C.1 Introduction

As robots and drones become widely used in different branches of the indus-
try, a need for localization and mapping systems, which are able to work in
non-ideal conditions arises. As the state of the art for drone localization, si-
multaneous localization and mapping (SLAM) is most widely used both from
monocular [1] and stereo camera [2], LiDAR and laser scanners [3, 4]. A lot
of SLAM algorithms for the outdoors are also used together with positioning
from a GPS and orientation from an inertial measurement unit (IMU) [5, 6].
SLAM algorithms work best in environments, which are rich in geometric
features and vary significantly. The precision of these algorithms significantly
suffers when the environment is too featureless or when there are not enough
points of interest, which requires the introduction of algorithm modifications
like visual feature clustering [7] or combining camera and laser scanner depth
data [8]. When the extracted points from laser scanner are not enough, due
to sharp corners or thin surfaces, these modification cannot sustain a high
enough performance. These problems are present when using drones in the
wind energy sector for inspection of wind turbine blades. Normally wind
turbine blades are at heights more than 100 meters and do not have any
other landmarks around them. This, combined with the monochrome color
of the blades and the lack of corners and other geometric features, makes
autonomous localization of the drone and mapping the environment hard.

We propose a cost-effective and easy to implement solution for local-
ization and mapping the overall shape of the blade (Figure C.1), designed
to work in feature-poor wind turbine blade environments, with minimum
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Fig. C.1: Our proposed localization and mapping solution using ellipse distance correction mod-
els.

prior information. Our system is made using the RPLIDAR scanner and the
BNO055 9-DOF IMU for orientation. Our algorithm is based on the assump-
tion that the blade is stopped in a vertical position, at either the top or bottom
and it is the only thing that can be "seen" by the LiDAR. The algorithm uses
prior information for the cross-section width and depth and it models the
blade using primitive elliptical shapes and provides drone positioning in a
much simpler way than conventional SLAM algorithms. The initial angle
between the LiDAR and blade is found by using a 2D iterative closest point
(ICP) algorithm and the angle heading is monitored and maintained using an
IMU. Additionally we model the distance measurement and sampling errors
of the RPLIDAR to boost the accuracy of the localization. We address the
sunlight noise problem of the RPLIDAR with a hybrid hardware and soft-
ware filtering solution. We perform initial ground based tests on the system
to determine its accuracy and error rate by comparing with ground truth
manually measured positions. Additionally we estimate to what extent the
algorithm can capture the overall shape of the 2D cross-section of the blade,
using a ground truth cross-section. Both tests demonstrate that the system
performs well even with a small number of points present from the scanned
area and can be used for drone localization and generation of initial sparse
2D point clouds of the shape of the blade.
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C.2 State of the Art

The use of drones for inspection of wind turbine blades has become a hot
research topic in the fields of computer vision, automation and robotics. The
limited number of points of interest, the featureless and monochrome shape
of the wind turbine blades and the required working height, together with
environment hazards like gusts of wind, blade swaying and weather changes
make localization and mapping non-trivial problems. The research from [9]
shows that inspection by images can suffer significantly if the drone’s lo-
calization and stabilization systems cannot compensate for environment and
weather changes. One way to tackle these problems is to have an initial fly-
through, through which a occupancy map of the blade is created and which
is then used for planning a flight path, as suggested by [10]. Another so-
lution proposed by [11] can come from not only relying on a flying drone,
but create a hybrid flying and climbing vehicle, which uses a combination of
sonar, IMU and LiDAR system to orient itself. Using a dynamic flight path
planning from a camera feed is a another strategy employed by [12] and [13],
combining it together with navigation sensors like an IMU, GPS, barometer,
etc.

We propose a localization and shape mapping system, which uses a Li-
DAR scanner and a IMU, plus a simplification of the wind turbine blade to
a elliptical model for distance and shape correction. Our algorithm is based
on the assumption that only the blade is visible at any time and works even
when as little as 2 or 3 points are obtained from the scanned surface. Before
the correction is done, the data from the LiDAR is cleared of any sunlight
noise readings and the calculated distance errors are removed. The esti-
mated position of the drone is also filtered from noise to provide a stable
localization.

C.3 Methodology

The proposed system, given in Figure C.2, relies on a prior shape information
for a proper positioning. The prior information in our case comes in the form
of a model of the shape of the blade cross-section. Because finding a real
world 3D model for each piece of the cross-section of the different kinds of
blades in a non-trivial and almost impossible task, a simplified elliptic model
is proposed. The elliptical model requires much less prior information and it
gives centimeter precision results as shown in Section C.4. Stray sunlight in
the sensor causes detection noise, which is filtered away using a combination
of a hardware polarization and software k-nearest neighbors and line filters,
before the LiDAR raw data is used.

As an initial step, before the main localization algorithm is started, the
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Fig. C.2: Algorithm and work pipeline overview. From raw LiDAR data and IMU orientation,
to localization of the LiDAR compared to the blade and mapping the points of the blade cross-
section

angle between the blade and drone is calculated using readings from a low-
cost LiDAR from [14], shown in Figure C.3a and an 2D ICP algorithm, as
described in Subsection C.3.3. The angle is used to rotate the ellipse model to
be the same direction as the blade and is then maintained with the readings
from the IMU from [15], shown in Figure C.3b. It is observed that the LiDAR
exhibits errors in its readings which change with the distance from the mea-
sured surface. This error is compensated for by comparing measurements
from the LiDAR and a ground truth readings DISTO laser distance scanner.
The differences are calculated, interpolated and smoothed out using a cubic
spline and used as distance corrections.

Once the data is clear of noise, corrected from the distance errors and
rotated properly, the ellipse distance correction model (EDC model) as seen
in Subsection C.3.2, together with the angle correction from the IMU, are
applied. The localized drone position is filtered to remove false movement
readings, demonstrated in Subsection C.3.4 and the blade points are mapped
accordingly.
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(a) (b)

Fig. C.3: The hardware used for the proposed system - the RPLIDAR and the BNO055 9-DOF
IMU

C.3.1 From Corrected LiDAR Data to Initial Drone Localiza-
tion

The corrected output data from the RPLIDAR comes in the form of angles
between 0 and 2π for each detected object point, together with the distance
to these points. To position the data for each LiDAR reading in a unified
coordinate system the data needs to be first transformed from a polar coordi-
nate system to a Cartesian one. We assume that only the wind turbine blade
is seen by the LiDAR at any given time, so the origin of the new Cartesian
coordinate system is chosen to be the center of the scanned blade. Formula
C.1 is used for transforming the coordinates.

xd = 0− Dmean · sin(αmean)

yd = 0− Dmean · cos(αmean)
(C.1)

Where the xd and yd are the drone coordinates in the new coordinate sys-
tem, Dmean and αmean are the mean distance and angle calculated from all
detected points in a 360 degree reading and (0,0) is chosen as the center of
the polar coordinate system. Once the LiDAR is self localized, compared to
the blade, the LiDAR’s position is used as a new center of a polar coordi-
nate system to find the blade’s previously detected points. The points are
calculated in a Cartesian coordinate system using Formula C.2.

xi = xd + Di · sin(αi)

yi = yd + Di · cos(αi)
(C.2)
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Here xi and yi, are the coordinates of each of the data points in one read-
ing and Di and αi are respectively their distance and angle. The centers used
for projecting the blade points are the LiDAR’s coordinates xd and yd, calcu-
lated in Formula C.1. The whole process is visualized in Figure C.4. The ini-
tial naive approach to localization and mapping yields some problems, such
that the whole cross-section needs to be opened up. Additional processing
is required to get the correct cross-section mapping and position localization.
This is why we introduce the ellipse distance correction model (EDC model).

Fig. C.4: Initial drone localization. The corrected LiDAR data is transformed into a Cartesian co-
ordinate system and the mean angle and distance are used to self-position the LiDAR compared
to the blade. Once these positions are found the detected blade points are reprojected from the
LiDAR position centers. Eight LiDAR positions and the "seen" blade points are plotted in the
Figure

C.3.2 Ellipse Distance Correction Model (EDC model)

Each reading of the LiDAR to the wind turbine blade gives the distance from
the seen blade part to the LiDAR. This model of positioning does not take
into account the full shape and volume of the object that it is building a
profile of. Because each of the LiDAR positions is given from the center of
the coordinate system (0,0), these positions are not correct. In real life the
LiDAR does not measure the distance from the drone to the blade center, but
to the exterior shell/body of the blade. The distance from the center of the
blade to the exterior points that the LiDAR measures is not known to the
LiDAR. This discrepancy leads to improper modeling of the surface shape of
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the blade and incorrect drone position calculation.
To be able to capture the proper shape of the blade profile and the proper

LiDAR positions, an initial guess of the blade form is needed. The wing of
a wind turbine has a very specific and hard to model shape, which changes
with height. Each blade manufacturer has different specifications, numbering
and shape mold. This information is not readily available. This requires a
simplified model, which with some approximation can be used as a substitute
to the blade shape. This model can be further adjusted using known blade
shapes. This also requires two additional assumptions to be done:

• The LiDAR sees only the wind turbine blade;

• The wind turbine blade is stopped;

• The blade’s cross-section width and depth are known;

• The vertical position of the drone is known.

An ellipse is suggested as such a simple geometrical shape, as it closely
resembles the the blade cross-section, especially in the tip. To model properly
the blade’s size for the different heights, an ellipse shape is calculated for each
height slice of the blade. The ellipse points are calculated using the Formula
C.3, where r1 and r2 are the two radii of the ellipse, which are selected based
on the width and depth of the cross-section at the particular blade height and
the angle β ∈ [0 : 2π] .

xe = 0− r1 · sin(β)

ye = 0− r2 · cos(β)
(C.3)

A full model of the blade is created and is saved in a table, for an easy ac-
cess depending on the height of the drone, compared to the blade. Multiple
ellipse models can be created for different blade dimensions and manufac-
turer models. A full 3D model can be seen in Figure C.5.

For each point on the ellipse the radius from the center to the point is
calculated, as well as the angle on a circle with a center in (0,0). Each point
on the ellipse is positioned in the same coordinate system as the points from
the LiDAR. This way when the LiDAR position is calculated using the mean
distance, the distance of the point on the ellipse with the closest angle to the
mean angle of the LiDAR is added to it. This effectively pushes outwards the
mean points and gives an initial guess on the shape of the blade. The dif-
ference can be seen when plotting the blade surface points before and after
the ellipse correction, as seen in Figure C.6 The correction is most notice-
able on the points on the tip of the blade. The whole profile is opened up,
representing the blade cross-section more closely.
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Fig. C.5: Ellipse model for correcting the LiDAR’s position. The 3D model is created with
interpolation of the two radii of the ellipse cross-section in Z direction, following the notion that
wind turbine blades become smaller with height.

(a) Without EDC model (b) With EDC model

Fig. C.6: Example mapping of the blade before and after the EDC model. The points’ positions
are corrected and the whole profile is opened up, especially the blade edge points.

Another problem becomes evident when using the EDC model - the el-
lipse needs to be initially oriented the same way as the blade profile. The
rotation of the blade is initially unknown and needs to be determined before
the correction can be applied to the localization and mapping.

C.3.3 Calculating Initial Angle Between Drone and Blade

The drone’s yaw orientation is taken from the IMU unit. The angle between
the detected blade profile from the LiDAR and the drone is calculated. The
initial angle is used to first orient the ellipse compared to the blade’s orien-
tation for the EDC model and also for keeping the mapped positions at the
same heading. The change in the angle of the wind turbine blade is deemed
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too small, as it will be stopped from moving or rotating for the duration of
the drone flight.

Once a reading from the LiDAR with enough points is registered the angle
between the blade and LiDAR can be calculated using ICP. Heuristically it is
determined that at least 8 points are required in one reading for the ICP
registration to be successful. The sides of the blade are better for registration
than the edge, as they contain more points, which are spread more evenly.
Because the success of the ICP depends on the quantity and quality of the
registration points, a cubic spline is approximated to the scanned points. This
way the scanned points are interpolated and any small noise position errors
are smoothed over. A 2D ICP algorithm by [16] is used to register the LiDAR
points to the prior ellipse model. A rigid registration is performed with only
rotation and translation, as the ellipse is properly sized beforehand, using the
initial information for the width and depth of the blade profile.

Once the registration is completed, the rotation angle is used to rotate the
EDC model. The angle is also added to the yaw angle measured by the IMU
for use with the drone’s yaw holding.

C.3.4 LiDAR position filtering

The calculated LiDAR position compared to the blade fluctuates in time, be-
cause of imperfections of the LiDAR, the varying scanning angles, as well as
the amount of the blade profile seen by the system. Keeping to the theme of
simple solutions throughout the paper, a covariance ellipse error filtering is
chosen, as shown by [17]. This requires the calculation of a covariance ellipse
for each position. Readings which are inside the radius of the ellipse will be
deemed noise and will be disregarded, while the readings outside of it will
be considered as valid readings from the movement of the drone with the
LiDAR.

It is observed that the variance fluctuation changes depending on the posi-
tion of the LiDAR compared to the blade, as the narrower the blade becomes,
the less points there are to detect. Additionally the steeper the seen surface of
the blade is from the position of the LiDAR, the bigger positioning errors are
resultant from the varying scanning angle of the LiDAR. To calculate the co-
variance error ellipse in the needed positions, a semi-circle around the blade
edge is chosen. Fifty measurements with the LiDAR are taken in intervals
of 10 degrees. A plot of the measured positions, angles at each position, to-
gether with a "zoomed in" error ellipse are given in Figure C.7. This angle
orientation is taken from the scanning orientation of the RPLIDAR.

The error ellipse radii are interpolated for each degree in the semi-circle.
Before each calculated position is accepted as a proper one, it is tested against
the accumulated mean of known positions. If it is inside the ellipse radius
for the current LiDAR position angle, with center the accumulated mean of
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Fig. C.7: Positioning error ellipse created from 50 RPLIDAR measurements. The LiDAR is
positioned on each position and is not moved, while the measurements are taken. The readings
from a semi-circle around the blade are used to create a filter for removing position noise. Bigger
position deviations are present at the direction the blade is oriented.

previous know positions, it is discarded. Figure C.8 gives the largest and
smallest radii of the error ellipse at each measured angle.

Fig. C.8: Position filtering small (blue) and large (red) radii(mm) for measurements in 180 degrees
around the wind turbine blade. The radii are getting smaller the farther from the blade’s edge
the measurement is taken.

C.4 System Tests and Results

C.4.1 Localization Test

The first test aims to measure the localization accuracy of finding the position
of the LiDAR compared to the blade. As the system is still in the prototyp-
ing stages, the measurements are done on the ground. A number of ground
truth points are measured around the blade profile, around the blade’s lead-
ing edge between 0.5m and 3.5m. Two sets of fifteen positions are selected.
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The first set is with positions arranged in a circle and the second - in a line.
These are selected, to demonstrate the system’s performance with different
scan patterns. Both sets contain outliers positions to verify the accuracy of the
system in harder localization points. The LiDAR is positioned on each of the
ground truth points and the measured position is computed. Fifty readings
are taken so any noisy measurements can be filtered away. The Euclidean
distance between each of the ground truth positions and measured LiDAR
self positioning is computed, both with and without the ellipse distance cor-
rection model. The resultant error values from the first and second position
datasets are given in Table C.1 and the plotted LiDAR and blade points are
given in Figure C.9.

Table C.1: Results from the first and second set of positions around the blade. The distance
error(mm) between the ground truth position and the one measured by the LiDAR with the
correction algorithm Ealgorithm and with only the raw data Eraw

Dataset 1 Dataset 2
Pos Eraw Ealgorithm Eraw Ealgorithm
1 88.362 76.005 213.102 119.219
2 259.963 210.010 183.806 79.882
3 187.537 119.011 221.196 111.193
4 221.324 118.634 199.417 88.595
5 228.452 104.669 221.512 75.396
6 386.517 81.497 372.165 153.788
7 263.294 64.543 333.901 64.492
8 152.989 16.175 306.109 41.510
9 84.319 12.198 276.031 43.078
10 47.174 18.259 150.436 66.077
11 138.618 42.206 136.805 18.486
12 341.866 51.908 110.823 45.537
13 183.159 135.091 75.766 34.394
14 180.572 110.274 131.246 36.796
15 285.282 84.674 248.219 4.591
Avg 203.295 83.010 212.036 65.536

The results show that the system can provide a stable position estimate for
where the drone is compared to the blade. The biggest differences between
the measured and ground truth points come from positions where just a
small amount of points from the surface can be seen. In addition positions
which are too far away from the blade surface exhibit both lower precision
and accuracy, because the not enough points are sampled by the LiDAR,
which makes faraway point angle and distance estimation jump around too
much. Some larger errors are observed in the first dataset, which can be also
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(a) Dataset 1 without EDC model (b) Dataset 1 with EDC model

(c) Dataset 2 without EDC model (d) Dataset 2 with EDC model

Fig. C.9: Localization test using the first (C.9a and C.9b) and second(C.9c and C.9d) position
datasets. The ground truth data is shown with red dots and the LiDAR calculated positions
with blue dots. The mapped blade points are also plotted, for easier orientation

explained with the problems with the yaw hold and small changes in the
rotation of the LiDAR. In all positions, the introduction of the EDC model is
shown to dramatically increase the accuracy of the localization.

C.4.2 Mapping Test

For testing the mapping capabilities of the LiDAR system, the blade profile is
scanned with a Faro laser scanner and a high quality point cloud is created. A
2D cross-cut of the point cloud is then used as a ground truth, when compar-
ing with the mapped blade point positions. In this test the LiDAR is placed
in positions, forming a semicircle around the blade with three radii - 1.5 m, 2
m and 3 m, for testing the mapping capabilities from different distances. Ad-
ditionally a post-processed mapping from 1.5 m, which has been registered
to the ellipse prior model using the ICP algorithm is given, to demonstrate
one way that the proposed algorithm can be extended to boost accuracy. The
signed distances between each point of the two 2D point clouds is calculated.
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Table C.2: Mean value (µ) in mm, standard deviation (σ) in mm2, minimum (dmin) and maximum
(dmax) in mm of the absolute distance metric between the ground truth and the LiDAR mapped
points from three distances to the blade (Db) - 1.5, 2 and 3 meters

Db µ σ dmin dmax
1.5 10.931 7.322 0.363 38.130

1.5 + ICP 9.323 6.920 0.240 31.038
2 14.891 9.185 0.624 38.395
3 15.645 9.234 1.306 39.296

This is done using the free open source software CloudCompare [18]. From
the distances, the mean and standard deviation of the distance distribution
are calculated. The mean and standard deviation are given in Table C.2 and
the mapped blade surface points are given in Figure C.10.

(a)
Ground

truth

(b) 1.5
meters

(c) 1.5
meters +

ICP

(d) 2
meters

(e) 3
meters

Fig. C.10: Mapped blade surface from the LiDAR, using the EDC model, together with the
ground truth Faro scan and the post-processed 1.5 meter mapping using the ICP algorithm
together with the ellipse prior model. The 2D point clouds get sparser and noisier the farther
away the LiDAR is.

The difference between the ellipse correction model and the blade cross-
section becomes larger the farther away from the edge it goes, because the
scanning is done only in a 180 degree semi-circle around the blade and details
of the back of the blade are sparse. The front of the blade in the LiDAR scans
shows a higher standard deviation and some noisy points, because of the
small amount of points seen from those angles. Even with these problems
and the relatively small sampling density of the RPLIDAR, the proposed
algorithm manages to restore the shape of the blade with centimeter accuracy.
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If a registration is done, the results get closer to the ground truth shape. This
shows that the algorithm can be used as a proper substitute to SLAM.

C.5 Conclusion and Future Work

We propose a low-cost, easy to implement drone localization and mapping
system for wind turbine blades, using a cheap commercial LiDAR and a off-
the-shelf IMU. Our system uses prior shape information in the form of the
ellipse distance correction model. It requires minimum prior information,
it is computationally fast, simpler to implement than conventional SLAM,
it can be easily extended and refined with additional training and provides
satisfactory results. We demonstrate through ground based localization and
a mapping tests that the system can self position and obtain mapping of the
blade cross-cut with centimeter accuracy. In addition we propose a filter for
removing noisy position information. Our algorithm also removes distance
measurement errors and direct sunlight noise, so it can be used both outdoors
and indoors.

As an extension of our work we propose an in-depth test of our sys-
tem and algorithm against the state of the art SLAM algorithms performed
on blade profiles, to verify the calculated accuracy of the system. Testing
the algorithm using a "default" blade shape, which will better resemble the
scanned blades, as a distance correction model is also suggested, as well as
further adjusting it using training sets.
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D.1. Introduction

Abstract

Increased leading edge roughness (LER) is one of the main causes for wind turbine
blade performance degradation. To ensure a consistently high energy output, the
surface erosion of wind turbine blades, needs to be monitored regularly, so preventive
measurements can be done. Capturing 3D surface data is becoming a more and more
popular way to extract and quantify roughness on a micro level. In this paper we
want to test the possibility of using Structure from Motion (SfM) 3D reconstructions
for extracting surface roughness information from wind turbine blades. We test
various capturing scenarios with varying horizontal and vertical image overlap, as
well as varying distances to the blade, using a real blade in outdoor conditions.
We analyze the quality of the reconstructions and provide a benchmark, as well as
guidelines to what are the best possible capturing conditions for ensuring a high
quality and noise free 3D surface results.

D.1 Introduction

Maximizing wind turbine performance is one of the main goal of the wind
energy production industry. For achieving this a large part of the research
goes into the design [1], optimization [2] and ensuring the longevity [3] of
wind turbine blades. A big part of ensuring this longevity, falls on ensuring
a constant monitoring of the surface health of wind turbine blades. The pres-
ence of high leading edge roughness (LER) can be detrimental to the energy
production of the wind turbine blade, with loses between 2% and 5% [4] for
smaller surface imperfections and 8% and 25% for more severe blade dam-
age [5]. An important fact to consider is that larger blade damages start off
from imperfections in the blade surface, because of manufacturing errors,
dirt and debris buildup or changing weather [6]. These surface imperfections
grow and worsen with time, leading to coating delamination and the dep-
recation of the wind turbine blade. To combat these more severe outcomes,
early onset LER needs to be properly monitored.

Surface monitoring is done in a number of ways - by manual inspections
of the wind turbine blades by expert engineers directly on-site, by sub-surface
inspections using ultra sound [7] and thermal cameras [8] and by capturing
the exterior surface with images, for later in-depth analysis [9]. A problem
with these methods is that, detecting small surface imperfections cannot al-
ways be possible, because of the color and geometrical profile of LER. For
these cases capturing the 3D surface can provide this information. There ex-
ist a number of hardware solutions for capturing 3D information from the
environment - laser scanners [10], stereo cameras [11], structured light cam-
eras [12], time-of-flight cameras [13]. A problem with most of these is that
they either do no provide the robustness for being use in an outdoor, hard
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to reach environments like wind turbines or do not provide the necessary
scanning resolution to capture small enough details from the surfaces.

Fig. D.1: Example of the experimental setup, used to test the resultant SfM reconstructions,
created from different distances and angular coverages. We analyse both the overall blade edge
shape, as well as the visual and geometrical 3D profile of the reconstructions

Another possible solution is Structure from Motion (SfM), which com-
bines the needed robustness and resolution requirements. The research by
[14] has proven that SfM using high enough resolution cameras, can achieve
sub-millimeter accuracy, matching microscopy results, if optimal capturing
conditions are provided. In this paper we focus on benchmarking what con-
stitutes these optimal conditions. We propose a number of testing scenar-
ios for reconstructing the surface of a blade mock-up in outdoor conditions,
using varying horizontal and vertical angular coverage and the distance be-
tween the blade and the camera. The blade mock-up is a part of a real turbine
blade, that has been sandblasted to provide different levels of LER. The re-
sultant SfM reconstructions are then analyzed to evaluate both the quality of
captured shape of the blade, as well as the surface roughness. The results
are then used as guidelines for capturing conditions give the best possible
results. We show that adding more images can be beneficial for making the
outcome of the reconstruction more robust to failing, but it also runs the risk
of introduction of noise and shape errors. We also show that surface rough-
ness detail degrades with distance, but more angular coverage can alleviate
the deterioration. An example of the testing setup is shown in Figure D.1.

D.2 State of the Art

Structure from Motion has been used for surface inspection and capturing
roughness details in many industrial contexts. It is widely used in infrastruc-
ture and tunnel and railway inspection [15], [16], road analysis [17], geomor-
phological analysis [18], forestry [19] and cultural heritage [20]. Its use in
wind turbine blade inspection [21], [22] has also started to be considered for
analysing the depth of detected surface damages.
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To produce correct representations of the imaged surfaces or objects, the
quality of the reconstructions need to be able to represent small details and be
free of noise and geometrical errors. Because of its reliance on 2D image data
as input, SfM is dependent on the quality of the used camera sensor, lens and
settings, as well on the capturing setup. Many factors go into the capturing
setup: amount of images taken, the horizontal and vertical angular coverage
from images, the distance from the subject to the camera, the illumination and
the environment, as well as on the surface of the scanned object. A number
of benchmarks have been created to test different aspect of the SfM capturing
process for close-range and large-scale 3D reconstructions [23, 24]. Some
of them compare the between SfM and other 3D capturing methods [25],
while other focus on testing specific SfM solutions, under varying capturing
conditions [26, 27].

For our current paper we take inspiration by the methods and results
presented by [28, 29] and we continue the work on SfM for wind turbine
blade reconstruction [14, 22], by verifying how the results degrade with the
introduction of less optimal capturing setups. It has been shown that the
main reasons for lower quality reconstructions is the lack of overlap [30],
angular coverage [31] and larger distances between camera and subject [32].
In this paper we focus on these three factors. We test the captured data both
using 2D metrics for analyzing the quality of the captured blade shape, as
well as utilizing 3D shape and color intensity metrics for determining how
the surface roughness representation changes.

D.3 Methodology

D.3.1 Structure from Motion Overview

Structure from Motion is part of the family of photogrammetry type of recon-
struction algorithms, used for capturing measurement data through the use
of images. The algorithm relies on reconstructing the 3D shape of objects or
surfaces through multi-view image capture, achieved through positional and
angular coverage. The taken images need to "see", the surface from differ-
ent perspectives, with an appropriate overlap between them [33], of at least
70% to 80%. Keypoints and surface features, like edges, corners or ridges
are extracted from each image and matched between them. Traditional com-
puter vision algorithms like SIFT [34] or ORB [35] are used for that. Outlier
and noise ones are then removed using methods like RANSAC [36]. The left
matched features are then combined with the intrinsic camera parameters,
taken from EXIF data and used to triangulate the camera positions, from
which the images were taken, together with creating a sparse point cloud.
This is done iteratively for all present images, until a rough estimate of the
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Fig. D.2: The wind turbine segment used for the research in the paper, mounted horizontally on
a gantry. The blade can sway in the wind unobstructed, for a more realistic image capture setup.

captured scene is created. This rough 3D estimate is then refined using al-
gorithms like bundle adjustment [37], for minimizing the reprojection errors,
between the calculated and predicted sparse points. Next a dense point cloud
is calculated from the know camera positions and sparse points, using repro-
jection and interpolation of the known information. Finally, if needed 3D
meshes can also be created from the dense point clouds, as well as textures,
using the image information.

From this it can be seen that the quality of the output of SfM, highly
depends on the quality and positions of the captured images. If not enough
information can be extracted from them, this can lead to errors and noise in
the reconstructions or even to failure of the whole processing pipeline. To
test what effects, which different image capturing setups can have on the
reconstructions of wind turbine blade surfaces, in the next subsection, we
will present the capturing methodology used in the paper.

D.3.2 Experimental Setup

For making the experiments a wind turbine blade segment from a decommis-
sioned pitch-regulated wind turbine is selected. The segment is mounted ver-
tically on a gantry, through the use of chains for easier access and to ensure
that the blade still sways in a natural way, for a image capturing setup closer
to real life. The blade segment can be seen in Figure D.2. Before mounting
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the blade segment it has been sandblasted, to simulate the different levels of
wear and tear, present on an in-use wind turbine. This produces variable sur-
face roughness and damaged areas between 1-3mm along the leading edge of
the blade. It has been demonstrated that surface roughness above 1mm start
to introduce efficiency loss to the energy production of wind turbines [38], so
the created areas are deemed sufficient for producing real world results. A
close-up of the area of the blade that is imaged and reconstructed in shown
in Figure D.3

(a) (b)

Fig. D.3: Parts of the blade leading edge, which are selected for 3D reconstruction, containing
both clean and damaged regions

For the capturing setup a Canon 6D camera is chosen, together with a
variable focus 24-105mm lens (Canon EF 24-105mm f/4L IS II USM), set to
its maximum 105mm mark. The resolution of the camera is set to 5472x3648.
The image capture mode is set to manual, for more control over all the set-
tings and for ensuring that the exposure of the images does not change in a
dynamic outdoor environment. Camera settings of aperture, shutter speed
and ISO are set to their appropriate settings.

For testing how the reconstruction output depends on the capturing setup,
three main factors are evaluated:

• Distance from the camera to the blade surface - 2m, 4m and 6m

• Horizontal angular coverage - number of horizontal images per vertical
band - 9, 17 or 33

• Vertical angular coverage - one or two vertical bands, larger angular
coverage.
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The first factor is the distance from the camera to the blade surface. This
determines the resolution, with which the surface will be captured or how
many pixels would represent each millimeter of the surface. To calculate this
the field of view (FOV) and the resolution of the camera are needed, as shown
in Equalion D.1, where wim is the horizontal resolution. For calculating the
FOV, Equation D.2 can be used, where Ds is the distance from the camera
to the subject and AOV is the angle of view of the camera. The AOV can
be calculated using Equation D.3, there sw is the width of the sensor of the
camera, but it can also be the height or diagonal, depending on which angle
needs to be calculated and f is the focal length of the camera.

PixelPerMM =
wim
FOV

(D.1)

FOV = 2 tan(
AOV

2
)Ds (D.2)

AOV = 2 arctan(
sw

2 f
) (D.3)

For this experiment the focal length is set to 105mm, so maximum zoom
level can be achieved and the only thing that is changed is the distance from
the camera to the blade. All the images of the blade surfaces are taken in
semi-circular bands around it, as this capturing setup has been proven to
produce good results [28]. The lower bound of 2m is selected, as it is deemed
that in a real world capturing scenario a unmanned aerial vehicle, would not
be able to safely get closer to a wind turbine blade. The higher bound of 6m
is restricted, by the size of the capturing location. Example of all the image
capturing setups for 2m distance are given in Figure D.4.

The factor of horizontal angular coverage, determines how much of the
wind turbine blade’s surface is shared between images. This can influence
the quality of the feature extraction and matching step of SfM. Images with
insufficient horizontal angular coverage cannot produce enough matched fea-
tures and can tend to produce incorrect matches, this can lead to failure of
the initial triangulation or to incorrectly calculated camera positions. In ad-
dition, because of the shape of the wind turbine blade - a very narrow edge
and two flatter, but still curved sides, the horizontal angular coverage can be
even more important to ensure that a enough features can be matched be-
tween the two sides of the blade. This has proven a known problem when
capturing thin or very curved surface [39], where a distinct lack of matched
feature points is observed. For testing this 33 images were taken in a semi-
circular band around the blade for each capturing distance, keeping the same
radius. Later for producing the reconstructions, two additional datasets were
constructed from these 33 images, by sampling every second and every forth
image, to create respectively a 17 and 9 image dataset.
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(a) 2m1b9img (b) 2m1b17img (c) 2m1b33img

(d) 2m2b9img (e) 2m2b17img (f) 2m2b33img

Fig. D.4: Reconstructed capturing setups for the 2m distance case for both 1 and 2 vertical bands
and 9, 17 and 33 images per band. The capturing setups for the other two distance cases are
setup the same. The blades follow a naming convention of - [distance], [number of bands],
[number of images].

In contrast to the horizontal angular coverage, which is ensured by pro-
viding enough images, the vertical angular coverage, is made harder. Again
because of the shape of the blade, capturing images of its surface from dif-
ferent horizontal angular views is made harder, and having such views is
proven to positively impact the resultant reconstructions [29]. To test this an
image dataset of 33 images in one horizontal band and a image dataset of 66
images in two horizontal bands were created. For the second band the cam-
era was moved moved high enough to ensure a 15 degree angle difference
between the two bands for each of the distances from the blade.

The 3 distance variations, 3 horizontal angular coverage variations and
2 vertical angular coverage variations, were combined to create 18 different
datasets. Because the gantry with the blade was positioned in a relatively
cluttered environment, it was decided to mask everything, but the blade in
all images before using them for 3D reconstruction. This was done, so the
SfM software, would not use information from the background to help with
the reconstruction of the blade. This would be case in a real world capturing
scenario, where the background would be either the featureless tower, the
sky or the ground, which would also be far away and out of focus. Each of
the datasets is then used as an input for Agisoft Metashape [40] and the SfM
reconstruction of each is used in the Results section D.4.
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D.4 Results

All 18 datasets were produced by Metashape. From them three datasets could
not be successfully reconstructed. The 6 meter, 1 vertical band, 9 and 17 im-
age datasets failed on the initial camera and sparse point cloud calculation,
while the 6 meter 2 vertical bands, 18 image dataset was reconstructed, but
the output was incorrectly triangulated resulting in twisted and malformed
results, not representative of the wind turbine blade surface and unusable
for inspection. By analysing the found and matched features for these failed
reconstructions and comparing them to a successful one, we can see that
for the first two cases almost no features that were found could be matched
between the images, while in the third case, the matched features were not
enough. The result found and matched features one of the images are pre-
sented in Figure D.5, where the white dots represent found features and the
blue ones represent matched features. Figure D.5d shows the found and
matched features, from the dataset using 33 images, which was successfully
reconstructed.

(a) 9 images (b) 17 images (c) 2 x 9 im-
ages

(d) 33 images

Fig. D.5: Examples of the found and matched features of images, from 6 meter datasets that
failed to reconstruct correctly. Figure D.5a is from the 9 image dataset, Figure D.5b is from the
17 image dataset, Figure D.5c is from the 9 image two vertical bands dataset and Figure D.5d
shows an image from the 33 image dataset that was successfully reconstructed for comparison.

The results from the other 15 datasets are shown in Figure D.6. All recon-
struction were scaled to absolute real world scale in mm, before any analysis
is conducted on them. From the figure, we can see that some of the results
have geometrical surface and shape errors. To properly represent the quality
of the reconstructions, the need to be analysed. Because of a lack of high qual-
ity ground truth representation of the captured blade, two types of indirect
comparison analysis are conducted as part of the paper. The first one focuses
on the quality of the overall blade shape, based on the 2D cross-section from
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the reconstructions. For this we build a mathematical model of a 2D cross-
section of the blade, as a ground truth and compare the 2D cross-sections
from the reconstructions to it. The second one is directed on the 3D surface
roughness features of the blade segments - comparing how both the visual
and geometrical representation of the roughness changes and degrades with
the different datasets.

(a) 2m1b9img (b) 2m1b17img (c) 2m1b33img (d) 2m2b9img (e) 2m2b17img (f) 2m2b33img

(g) 4m1b9img (h) 4m1b17img (i) 4m1b33img (j) 4m2b9img (k) 4m2b17img (l) 4m2b33img

(m)
6m1b33img

(n) 6m1b34img (o) 6m1b66img

Fig. D.6: Reconstruction result mesh for all 15 datasets. The analysis is performed on both
the geometrical and visual information present on these meshes. The blades follow a naming
convention of - [distance], [number of bands], [number of images].

D.4.1 2D Shape Analysis

To analyse the accuracy with which the SfM reconstruction has captured the
overall shape of the wind turbine blade, without having a high resolution
scan of it, a 2D analysis of blade cross-sections is chosen. Each of the 3D
reconstructions is oriented such that the Z-axis is pointed upwards. A 2D
cross-section in the middle of each blade at the same height is then extracted.
All 15 resultant cross-sections are shown in Figure D.7. From the figure, it
can be seen that some of the reconstructions have strong shape deformations.
This errors will be quantified below.

For testing the accuracy of the captured overall shape, a synthetic 2D
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Fig. D.7: The resultant 2D cross-sections, extracted from each of the 15 reconstructions. Some of
the cross-sections have strong shape deformations, which need to be quantified, by comparison
to a ground truth shape. The blades follow a naming convention of - [distance], [number of
bands], [number of images].

cross-section is mathematically computed, using the same physical measure-
ments as the reconstructed blade. This is done using the Joukowsky airfoil
transform method. To do this the chord length, maximum thickness and
camber of the captured blade are physically measured. The resultant blade
2D cross-section shape can be seen in Figure D.8. As only the blade edge is
reconstructed, as part of the experiments, the trailing edge of the shape is
removed.

Fig. D.8: The produced blade, made by the Joukowsky airfoil transformation method, using
the measurements of the real blade. The red square indicates the part of the blade used for
comparison with the reconstructions.

To compare the mathematical ground truth to the reconstructed cross-
sections, the open source software CloudCompare [41] is used. The ground
truth and all reconstructed cross-sections are saved as X, Y point clouds and
input to the program. Each of the reconstructions is then finely registered
to the ground truth using an iterative closest point algorithm (ICP), which is
explicitly restricted to only 2 axes of the blades and rotation around the Z axis
(yaw) of the shapes. Scaling is also restricted, as the blades are scaled to real
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world sizes, before the ICP algorithm is applied. Once each reconstructed
2D cross-section is registered, mean and standard deviation of the distances
between it and the ground truth is calculated. These values are given in Table
D.1.

Table D.1: Results from the 2D analysis of the shape of the reconstructed blades. The mean and
standard deviation of the distances between the ground truth and reconstructed blade cross-
sections are in [mm]. The blades follow a naming convention of - [distance], [number of bands],
[number of images].

Mean [mm] Std.Dev. [mm]
2m1b9img 2.582 2.424
2m1b17img 0.986 0.793
2m1b33img 0.438 0.656
2m2b9img 1.334 0.963
2m2b17img 0.870 0.573
2m2b33img 0.528 0.324
4m1b9img 1.407 1.333
4m1b17img 0.986 0.654
4m1b33img 0.878 0.727
4m2b9img 0.917 0.629
4m2b17img 0.818 0.617
4m2b33img 0.971 0.553
6m1b33img 0.998 0.827
6m2b17img 3.559 1.549
6m2b33img 2.024 1.076

From Table D.1, it can be seen that the best results are achieved, with a
high horizontal angular coverage of 33 images per vertical band. When intro-
ducing a second band the overall blade shape tends to become less correctly
represented with a decrease of 21% at 2m and a decrease of 11% at 4m in
the results, but the standard deviation also becomes smaller, giving a more
stable overall result. On the other end using only 9 images for either one or
two bands tends to performs the worst for capturing the overall shape. An
introduction of a second band of images for the 9 image horizontal angu-
lar coverage produces a 48% better result at 2m and 35% better at 4m. This
demonstrates that, even though capturing the whole surface from many di-
rections is important for a successful reconstruction of the overall shape of
an object, introducing too many images, can result in lowering the overall
quality, because of the added chance that many of detected features might be
noisy or incorrectly matched. It can also be seen that at 6m, the resolution of
the camera starts to not be enough for capturing enough details, resulting in
worse reconstruction results.
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D.4.2 3D Surface Roughness Analysis

The accuracy, with which each of the reconstructions has captured the rough-
ness of the blade surface also needs to be evaluated. The lack of high reso-
lution ground truth 3D capture of the blade, makes absolute roughness com-
parison impossible, so for this paper we focus on a comparative analysis
between all the SfM reconstructions. This way the possible degradation pat-
terns in the visual and geometrical representation can be detected. By looking
at the images taken from the wind turbine blade (Figure D.3), a number of
observation can be made and used as the grounds for the analysis:

Fig. D.9: The computed DON metric for all 15 reconstructions. All the values are normalized.
It can be seen that with the longer distances more geometrical errors become present on the
smooth parts of the blade and this process is more severe on the 1 vertical band datasets. Also,
a number of blades have large geometrical defects on or close to the edge

1. The geometrical roughness of the 3D reconstruction for damaged re-
gions should be larger and with more variation, because of the multi-
tude of holes and delaminated blade surfaces, as seen by the damaged
regions in examples of Figure D.6.

2. The color of the clean areas of the blade should be more uniform than
in damaged areas

3. The damaged and clean areas are uniform in their appearance, without
any large holes or completely clean, smooth surfaces. If any large geo-
metrical deformities or overly smooth surfaces exist on the reconstruc-
tion, they are caused by reconstruction noise and incorrectly captured
details, as seen in Figure D.6n and Figure D.6d
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Fig. D.10: The computed Entropy metric for all 15 reconstructions. All the values are normalized.
The color difference between rough and smooth parts of the blade becomes smaller with larger
distances, as the surface is represented by much less pixels in each image. The roughness is also
much more represented in the reconstructed surfaces view from two vertical viewpoints.

We look at both the color and the geometrical representation of the wind
turbine blade, as SfM has the possibility to output textured meshes and color
point clouds, which can be useful for damage detection and roughness eval-
uation. For each of the measurements the local area around each 3D point
needs to be used. A KDtree [42] for faster binary searching is calculated
for each of the reconstructions, using the open3D library [43]. For capturing
the geometrical surface roughness representation, the difference of normal
(DON) algorithm [44] is selected, because of its robustness and straightfor-
wardness. Rough and damaged would give higher uniform DON response,
compared to smooth clean surfaces. On the other hand singular peaks of
very high DON measurements, can indicate incorrect and noisy reconstruc-
tion. For the algorithm, first two radii of different sizes are selected r1 and r2.
It is recommended [44] that the difference between the two radii ( r2

r1
) should

be set to 10, for capturing enough smaller surface details. The difference be-
tween the two ∆ is then defined using Equation D.4 [44], where n̂(p, r), is the
normal at point p, using the radius r.

∆ =
n̂(pi, r1)− n̂(pi, r2)

2
(D.4)

The normalized results from computing the DON metric for each of the
15 reconstruction can be seen in Figure D.9. The farther the distance becomes
between the camera and blade segment, the more noise structures, become
apparent on the smooth regions of the blade, while the rough, damaged ares
loose their smaller details, which are replaced, by approximated larger struc-
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tures. In addition, the introduction of more bands gives more pronounced
details to both smooth and rough regions. Some of the reconstructions can
be set as outliers - the 18 images at 2m, the 9 images at 4 meters and the
34 images at 6m, as they exhibit large geometrical errors, on their surface.
These geometrical errors are much more prevalent at 6 meters, which sup-
ports the conclusions taken from the failed reconstructions, that not enough
feature points can be detected and matched at that distance, even when a lot
of images from different viewpoint are present. Excessive number of images,
actually harms the final result, when looking at the 34 and 66 image datasets.

(a) (b)

Fig. D.11: Selected clear and rough surface patches for calculating the average DON and entropy
values, as well as the standard deviation of the values

To evaluate, how the captured color detail of the reconstructed surfaces
change with each of the datasets, the entropy [45] of the intensity information
of each 3D point is also calculated. The higher entropy would show more
pronounced changes in the visual color details captured in the reconstruc-
tion. This in turn will indicate the presence of more smaller surface details
and roughness. It has been shown to give good results for finding surface
roughness for denoising [46] and it can be easily calculated for local 3D sur-
face patches. The surface of each reconstruction is separated into a number
of areas with a specific radius. The entropy of the color information for each
of these areas is calculated using Equation D.5, where Pi is the probability of
a specific intensity occurring at point p and n is the number of vertices in the
area around each point.

H = −
n

∑
i=1

Pi log2 Pi (D.5)

The normalized results from the color entropy calculation for each of the
15 reconstructions are given in Figure D.10. The results show that the color
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intensity diversity is drastically lowered at longer distances, making the sur-
face visible details to blend. This is especially noticeable, when comparing
the 33 and 66 image dataset results for 2 and 6m. The color information for
smaller details on both the smooth and rough regions, is better represented,
when using multiple bands compared to just one band, showing that multi-
ple view directions are required, if the reconstruction needs to contain both
geometrical and color information for surface inspection.

(a) DON

(b) Entropy

Fig. D.12: The average and standard deviation of the DON and entropy values calculated from
the selected smooth and rough patches, seen in Figure D.11

To illustrate the changes in the surface and visual roughness for each of
the reconstructions, two patches are selected from the blade - one represent-
ing a clean area of low roughness and one representing a damaged area of
high roughness (Figure D.11). The average and standard deviation of the
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DON and color entropy values for these patches are calculated and shown in
Figure D.12. We can see that in the case of smooth patch, the average DON
measurement follows a trend of lowering its values with the number of im-
ages in the horizontal direction. The distance between the camera and blade
does not drastically change the calculated geometrical roughness. For the
rough areas the same trends can be seen, but less pronounced. The overall
DON metric also increases, indicating that the captured structures become
larger and deviate more from the real object’s roughness. The standard devi-
ation of the rough regions, is also quite larger than the smooth ones, for the
most part indicating that the roughness details are captured. The reconstruc-
tions with large geometrical errors, are the outlier one exhibiting very high
DON values with high standard deviation. For the entropy calculation a clear
trend of lowering the average values is also observed, for both the rough and
smooth regions, with the smooth ones exhibiting a less steep decline. This
can be explained by the loss of the smaller, finer detail associated with the
damages on the surface, as the distance become bigger. The standard devia-
tion of the entropy calculation is also lowered meaning that the variation in
the colors, indicating surface roughness also is lowered.

D.5 Conclusion and Future Work

Blade inspection is a vital part of the wind energy industry and detecting
damages or an increased roughness profile on wind turbine blades, is in-
strumental for keeping energy production high. The use of 3D point cloud
data for inspection is becoming more wide spread, as it gives another dimen-
sion to the captured information and can be used to more easily detect small
changes in blade roughness.

In this paper we carry out a benchmark on the use of SfM reconstructions
for performing such inspections. A decommissioned wind turbine blade seg-
ment is selected and additional roughness and damaged areas are introduced
to its surface by sandblasting it. We created 18 datasets, by varying the dis-
tance to the blade, the amount of horizontal images and the amount of verti-
cal bands of images. All images were taken in an outdoor environment, from
a vertically oriented blade, to ensure a capturing setup as close as possible to
real life.

We conducted both a 2D and 3D surface analysis on the resultant re-
constructions. The 2D analysis is done on slices extracted from each blade
segment and compared to a mathematically computed ground truth blade
slice. Through this analysis we demonstrated that the more horizontal over-
lap there is between the images, the better the shape of the blade is repre-
sented. While better vertical angular coverage ensuring that all sides of the
blade are represented with a proper shape, which is especially important
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when not enough horizontal coverage exists. The distance from the blade
lowers the results, with larger problems observed at 6m with the current
capturing setup.

The 3D analysis is aimed at analysing how the roughness representation is
changed, with the different capturing setups. Because of lack of a high resolu-
tion ground truth scan of the blade surface, we choose to focus on analysing
how the geometrical and visual representation of the blade surfaces in the
different reconstructions changes. For this we choose two metrics - the differ-
ence of normals for representing the geometrical variation of the surface and
the color intensity entropy for representing the visual variance, which can
be useful for detecting damages and roughness changes. Through analysis
of smooth and rough patches of each of the reconstruction we demonstrate
that the geometrical and color representation of smooth areas follows a strict
trend for lowering the perceived roughness with the amount of horizontal im-
age overlap and with increasing the distance between the blade and camera.
We can see that depending on the chosen of the capturing setup factors, SfM
reconstruction can go from graceful degradation of resolution and captured
features, to a tipping point, at which the algorithm cannot capture enough
data from the environment and the surface, which results in complete fail-
ure to produce an output. This "tipping point" is highly dependent on the
used camera, captured surface properties, like texture, shape, size, material,
as well as the lighting conditions. In the case of the current paper’s exper-
iments, this tipping point can be observed at going from 4 to 6m distance.
This can be aliviated to some extend by introducing more images, with more
diverse horizontal and vertical angular coverage, but even then when the
reconstruction produces a result, there is large possibility that the captured
data is too noisy for capturing the surface characteristics.

Finally we show that if both the overall shape and smaller roughness de-
tails need to be captured from a wind turbine blade, the best capturing setup
would require between 2 and 4 meters of distance from the blade, with at
least 17 images captured in a semi-circle. If less images are taken horizon-
tally, then it is required that more vertical bands need to be taken to capture
enough information of the surface. Finally, capturing too many images can
be detrimental to the results, as it can introduce too many noise features and
outliers, which can skew the reconstructed surface and calculated camera
positions.

For future work we aim to gather high resolution scans of different types
of blades and use them as ground truth for a more in-depth analysis, us-
ing the proposed metrics. In addition, we will want to introduce additional
capturing setup differences in the form of varying illumination, camera focal
lengths and settings.
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E.1. Introduction

Abstract

Structure from Motion (SfM) 3D reconstruction of objects and environments has
become a go-to process, when detailed digitization and visualization is needed in the
energy and production industry, medicine, culture and media. A successful recon-
struction must properly capture the 3D information and it must scale everything to
the correct scale. SfM has an inherent ambivalence to the scale of the scanned objects,
so additional data is needed. In this paper we propose a lightweight solution for com-
putation of absolute scale of 3D reconstructions by using only a real-time kinematic
(RTK) GPS, in comparison to other custom solutions, which require multiple sensor
fusion. Additionally, our solution estimates the noise sensitivity of the calculated
scale, depending on the precision of the positioning sensor. We first test our solution
with synthetic data to find how the results depend on changes to the capturing setup.
We then test our pipeline using real world data, against the built-in solutions used in
two state-of-the-art reconstruction software. We show that our solution gives better
results, than both state-of-the-art solutions.

E.1 Introduction

Fig. E.1: The two sets of corresponding points. On the left an output screen from 3D reconstruc-
tion program with the camera positions and a sparse point cloud, with unknown scale. On the
right the same camera positions in a scaled real world metric units from an external sensor. Es-
tablishing the absolute scale of the reconstruction involves estimation the transformation, which
will transfer the left set of points to the right.

E.1.1 Object 3D Reconstruction

With the emergence of more and more powerful CPU and GPUs, SfM soft-
ware solutions have become widespread and easier to use. This gives both
more specialized industry, medicine and culture preservation users the pos-
sibility to quickly capture objects and environments. Due to the nature of
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SfM, to create a detailed reconstruction of both object and texture, users need
only a camera and the software. This gives SfM solutions the edge, compared
to other low-cost 3D reconstruction solutions, like the ones based on time-of-
flight [1], structured light [2] or stereo cameras [3]. These solutions require
appropriate hardware, together with the specialized software, which gives
them a larger overhead, for users to get into. Examples of 3D reconstruction
using these methods are extensively benchmarked by [4], [5].

E.1.2 State of the Art

An important requirement for the state of the art SfM software is for it to be
both versatile and robust. This is especially true for images taken in environ-
ments with varying conditions and containing objects with different shapes
and sizes. Many of the state of the art SfM solutions fall in the category of
open-source software like OpenSfM [6], COLMAP [7], etc. Other SfM solu-
tions are developed as part of commercial products like ContextCapture [8],
PhotoScan(Metashape) [9] and RealityCapture [10]. All of these solutions
contain a whole processing pipeline going from the input images to a dense
point cloud and mesh. One drawback that SfM has, is the ambiguity of the
scale of the reconstructed object. The 2D information extracted from images,
does not allow determining of the absolute scale of the scanned object. For
obtaining this essential information, additional information is needed from
the user or from external sensors.

This is why the programs also contain different built-in solutions for scal-
ing the final model. In most cases these solutions are either using markers
or manual distance measurement. This works only when there is access to
the reconstructed objects or surfaces. This means that they are unfeasible
for scanning structures with drones or scanning hard to reach or dangerous
places. Another method is using the GPS positions for finding the absolute
scale of the object, but this way does not characterize the performance of
the scaling and do not take into consideration external factors, which can
influence the precision of the scaling.

E.1.3 Using External Sensor Data for Determining Scale and
Noise Sensitivity

We propose a solution for determining the absolute scale for 3D SfM recon-
structions using GPS positioning information, enhanced by RTK for a more
precise estimation of the camera for each image taken. Others have proposed
method for using GPS and RTK [11], [12] for georeferencing and enchant-
ing the SfM reconstruction workflow, but they do not focus on the scale of
the reconstructed objects. Our method is aimed at being used as part of a
unmanned aerial vehicle (UAV) solution for scanning and 3D reconstruction
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of hard to reach surfaces and objects. It also works only with GPS data,
in contrast with other methods using sensor fusion [13]. As the method is
aimed for industrial and historical preservation use, not only is the absolute
scale needed, but also calculating the uncertainty of said scale, as well as
determining how capturing conditions and external factors might influence
it. As an example, we show that when you have 3 captured horizontally
spaced camera positions from the reconstruction process, a scaled distance of
100mm on a reconstructed object can be with uncertainty of 0.1mm. While the
same scaled distance, when calculated from 18 captured horizontally spaced
camera positions has uncertainty of 0.007mm.

Our main contribution is this combination of estimating the absolute scale
and its sensitivity to noise, which in the end gives both precise and robust
results.

To test our approach, we first analyze the sensor and determine its ac-
curacy and precision. We then do a series of simulated test scenarios to get
a baseline of the expected performance. Finally, we test the method in a
real world testing scenario and compare results to the scaling results pro-
duced by the two 3D reconstruction programs - ContextCapture and Photo-
Scan(Metashape). We demonstrate that our method gives better results than
the state-of-the-art, while also providing a reliable uncertainty metric.

E.2 Methodology

E.2.1 SfM Pipeline

To understand the proposed workflow, the SfM pipeline needs to be first
explored. SfM relies on information captured from multiple images around
the scanned objects. Features are extracted from each image and matched.
Normally algorithms like SIFT [14], SURF [15] are used. From these matched
points a sparse 3D point cloud can be triangulated using bundle adjustment
[16] and the camera positions can be back-projected. From these a dense
point cloud and subsequent mesh can be created. The problem is that there
is no information in 2D images alone on how big the scanned object is - is
it a city or a model of a city? This is also reflected in the calculated camera
positions.

E.2.2 Least-Squares Transformation Estimation

When capturing the images, the positions of the cameras can be saved in real
world coordinates. The GPS-RTK can be directly positioned on the camera
or on a drone caring the camera. To calculate the real world scale of the
reconstruction, the transformation between the two sets of coordinates needs
to be determined - the ones calculated by the SfM software and the ones
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given by the GPS-RTK. This is shown in FigureE.1, where an output of SfM
software is shown on the left side and the GPS-RTK points are shown on the
right side.

Because there is clear a correspondence between the SfM camera positions
and the GPS-RTK positions and the unknown transformation consists only of
translation, rotation and uniform scaling, a simple least-squares estimation
algorithm is considered. An implementation of the classical algorithm by [17]
is chosen and customized for the needs of the paper. For the algorithm to
work the two point sets need to have non-collinear points and no outliers.

We need to also take into consideration the problem of the lever-arm off-
set between the GPS antenna and the camera [18]. As an initial calibration
step the real-world distance between the two is measured and used as an
additional input for the Least-Squares estimation algorithm.

ai = T(bi), ai ∈ A, bi ∈ B (E.1)

T =


sR11 sR12 sR13 t1 + xo f f
sR21 sR22 sR23 t2 + yo f f
sR31 sR32 sR33 t3 + zo f f

0 0 0 1

 (E.2)

If the two point sets are A = [a1, a2, ..., am], for the known one and B =
[b1, b2, ..., bm] for the unknown one, where each set is comprised of m number
of points and each point has a x, y, z components. Then the transformation
matrix T between the two needs to be calculated, such that it satisfies Equa-
tion E.1. To do that, the sum of squared errors e2 shown in Equation E.3
from [17], needs to be minimized, where s is the scale, R is the rotation and t
is the translation component of the transformation matrix (Equation E.2). The
real world offset between the two sensors is given as xo f f , yo f f , zo f f inputs.

e2(R, t, s) =
1
m

m

∑
i=1
||ai − (sRbi + t)||2 (E.3)

To test out the algorithm’s results, a synthetic point set of 18 points is
created. The number of points is chosen such that it coincides with the tests,
performed later. A new set of points is then created, by giving the point set,
a random translation, rotation and scaling. The two sets are used in the least-
square estimation algorithm. The result estimated transformation matrix is
exactly the same as the one introduced to the ground points to create the un-
known ones. This is seen in Figure E.2, where the estimated transformation
matrix is used on the Utah teapot, to transform it to the coordinate’s initial
position, together with the unknown positions.
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Fig. E.2: Visualization of the output of the least-squares transformation estimation algorithm.
The initial position, orientation and scale are first transformed to "unknown" ones. The estima-
tion algorithm is then used to find the transformation from the "unknown" one to the initial one.
The Utah teapot is added for easier visualization

In the real world this is not the case, as measuring equipment is always a
subject to additive noise. This needs to be taken into consideration, when us-
ing the least-squares estimation algorithm. This will transform Equation E.3,
where C = A + N, with A being the known locations and N = [n1, n2, ...nm]
is the added noise component, with each noise ni = [nx, ny, nz]T . The next
subsections will verify the sensor readings and model the noise.

E.2.3 Verifying Sensor Readings

For the paper the sensor provided by DJI [19] is used, as it has a very small
margin of uncertainty in the positioning information - less than 0.02m in
horizontal direction and 0.03m vertically, in good weather conditions. This
precision needs to be verified, before using it. Because the sensor works only
when attached to a drone controller, the whole platform is used for the test.
The sensor is started and its readings are saved each second for a period
of 5 minutes. The readings are taken when the whole platform is on the
ground, to eliminate inconsistencies from the readings when the platform is
in motion. The sensor is then manually moved to another location and the
readings are again taken. The calculated position standard deviation for the
first point is 0.0175m in horizontal direction and 0.0244m in height and for the
second point the standard deviations are 0.0174m and 0.0251m respectively.
The values are thus in the interval given in the documentation by DJI. With
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the real world positioning uncertainty verified, the next step is to create a
number of synthetic testing scenarios, where the uncertainty is used as a
noise component. These scenarios are used to investigate aspects of how the
GPS-RTK noise influences scale noise.

E.2.4 Synthetic Testing Scenarios

For the synthetic tests to be as close to a real world test, the point sets are
setup as real SfM capturing positions. The tests are designed to determine
the amount of camera positions needed and the amount of vertical camera
bands. To gather enough variation in the calculated scale after the noise
input in each of the tests, the least-squares estimation step is done a number
of times, each time with a different sampling of noise input.

Number and sampling of image positions

The first synthetic test scenario looks at how the number of input camera
positions affects the results of the scale factor. The least-squares estimation
method requires at least two positions for estimation of the transformation.
In the paper by [20], a circular pattern of images is used, with the position of
each image, changing by 20 degrees. This gave 18 images per circular pattern.
For a simpler and easier image capture for the real world test scenarios de-
scribed in the later sections, the circular pattern is changed to a semi-circular
one, leaving the number of image positions to 18 again, giving a 10 degree
separation between them. This gives the final testing interval - 3 to 18 po-
sitions. The minimum number of positions is set to 3, as at least 3 points
are needed to estimate the 3D transformation. To test this we start with the
full number of 18 positions going from 0 to 180 degrees. Then every time
we lower the number of positions we do not just remove the last one, but
we resample the left ones so they always cover the whole interval of 0 to 180
degrees, but have larger distance between them.

The synthetic test is done once without resampling, starting with 18 posi-
tions and removing positions, until only the first two are left. The second run
of the test is done with removing and resampling the positions until only the
0 and 180 degree ones are left.

To model the positioning noise for each instance, a random sampling of
the uncertainty values captured directly from the GPS-RTK. This of course
introduces the problem that not enough data has been captured for a more
diverse modeling of the uncertainty. We will address this in the next subsec-
tion.

The obtained results are shown in Figure E.3. When resampling the posi-
tions, as points are removed the additional separation between points helps
with lowering the calculated scale’s error. This is especially evident up until
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Fig. E.3: Results from the resampling versus no resampling synthetic test. Resampling the
captured positions so the first and last one are always at 0 and 180 degrees, after removing
positioning information drastically lowers the standard deviation of the calculated scale

10 image positions. After that the two methods have comparable result stan-
dard deviations, which converge at 16 image positions. This shows that if not
all image positions can be captured, it is better that the captured ones have
maximum separation. In addition, the standard deviation settles at around
12 or 13 image positions.

Number of vertical bands

The second test scenario is designed to check how many vertical bands of im-
ages and image positions are needed. The previous test showed that worse
scale uncertainty is achieved when no resampling of the points is present.
This test will explore if better scale uncertainty can be achieved with more
vertical separation between the positions, if no resampling is used. The work
of [20], shows that three bands of photos give the best possible reconstruc-
tion results. The paper however manually scales the output meshes, so no
conclusions are given on how the scaling is affected by the bands. To test
this we choose to test with one, two and three position bands respectively.
This will determine if the additional spatial change between the positions in
different bands, given to the least-squares estimator, will make a difference
to the calculated scale factor.

The synthetic test is started with one band of vertical separation and 18
camera positions. The number of positions is reduced by one for each test
until only 3 positions are left. The same is done for two and three vertical
band tests. The estimated scale factor is calculated from each and standard
deviation is calculated from all the possible results. The results are given in
Figure E.4.

153



Paper E.

Fig. E.4: Results from capturing of positioning data from different number of vertical bands.
More vertical bands help with the uncertainty of the scale. Both the larger number of points and
the additional spatial information help with that.

Table E.1: Change in the scale standard deviation when going from 1 to 2 bands and from 2 to
3 bands for the minimum and maximum number of tested point positions. The change from 2
to 3 bands is almost twice as small showing that the gained accuracy, is not enough to offset the
larger amount of data, longer capturing time, etc.

Difference
Points 1 and 2 bands (%) 2 and 3 bands (%)
2 43.75 14.60
18 11.26 27.51

As expected, the high standard deviation decreases as we introduce ad-
ditional vertical positions in the form of more bands. This is both because of
the larger number of points and additional vertical separation. If we look at
the difference between the standard deviations of the calculated average scale
we can see a relation between the number of bands and number of points.
The data is given in Table E.1. When more points are present in each band
the gains won by going from one to two bands are not big, but if multiple
bands need to be taken, then it will be much better to capture three. When
less points are present in each band it is necessary to have as much bands
as possible, so the benefits from the additional number of points and separa-
tion can be felt. To strike a balance between number of bands captured and
scale precision gains, we choose to use two bands for the real world testing
scenario for testing against the state of the art.
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E.2.5 Covariance Propagating of Positioning Noise

The way the noise is introduced in these synthetic tests and the performance
characterization of the scale calculation is found, can be cumbersome, as the
test needs to be done a large number of times. A better solution to this is
using covariance propagation [21] of the noise. This will give the relation
between the uncertainty in each GPS-RTK position and the uncertainty in
the final calculated scale. The idea has been shown to give good results
[22], as long as there are independent input parameters, which are used in
a function - no matter analytically or iteratively found, to calculate a set
of output parameters. As each captured GPS-RTK position is used in the
calculation of the scale factor through the least-square estimation, this means
that we can express the transformation calculation as represented as s =
f (C), where s is the estimated scale and C is the GPS-RTK positioning set
together with the introduced noise. We do not use the second positioning set
B obtained from the SfM reconstruction, as an input parameter, as it is treated
as a constant. We use the method demonstrated in [22], for determining
the covariance matrix of the input parameters. This of course need to be
done for each of the three dimensions for each of the points. The standard
deviation of the calculated scale will depend both on the standard deviation
of the uncertainty of the measured GPS-RTK positions and the first derivative
of the function. To find the standard deviation of the scale, the first order
approximation needs to be done to the covariance matrix, as seen in Equation
E.4 and then used together with the dependence of the scale to the positions
in all 3 dimensions, as given in Equation E.5. Where ∆ is the covariance
matrix of Q and is described as Equation E.6, for each of its dimensions.
Thus Q is a combined vector containing all the dimensional data for each
position Q = [x1, y1, z1, ..., xm, ym, zm]1x3m

∆ =



σ2
x1

0 0 . . . 0
0 σ2

y1
0 . . . 0

0 0 σ2
z1

. . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . σ2

xm 0 0
0 . . . 0 σ2

ym 0
0 . . . 0 0 σ2

zm


3m×3m

(E.4)

σ2
s =

∂s
∂Q

∆
∂sT

∂Q
(E.5)

∂s
∂Q

=
[

∂s
∂x1

∂s
∂y1

∂s
∂z1

... ∂s
∂xi

∂s
∂ym

∂s
∂zm

]
(E.6)

To test if the iterative approach and the covariance propagation approach
will yield the same results. Again the testing scenario of subsection E.2.4 is
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used, both with and without resampled positioning data. The results can be
seen in Figure E.5. The two approaches achieve closely matched results for
both positioning data types. The average difference between the calculated
scale standard deviation from 3 to 18 points between the two approaches,
without resampling positioning data is 12.07%, while with resampling the
difference falls to 4.88%. In addition the covariance propagation approach
follows a smoother overall curve of progression, meaning less chance for ran-
dom noise in the estimated scale standard deviation. This also demonstrates
that the covariance propagation method gives very accurate estimation of the
standard deviation of the scale, while bypassing the assumptions about the
nature of the uncertainty’s distribution.

Fig. E.5: Comparing the interations approach to the covariance propagation approach for calcu-
lating scale uncertainty from position uncertainty. The comparison is made for different number
of input positions and a different way of resampling the positions

E.3 Real World Testing

Two objects are chosen for the test. They can be seen in Figure E.6. The objects
are chosen because they represent two different 3D reconstruction use cases -
the statue represents a digital heritage use case, while the wind turbine blade
represents an industrial use case. Both cases require precise scale estimation.

For each of the two objects, two vertical bands of 18 images are taken in
a semi-circle. The horizontal separation between the images is 10 degrees,
while the vertical separation between bands is 20 degrees. The images are
taken with a Canon 5Ds at maximum resolution 8688x5792. This camera is
chosen, so enough information is captured from the objects and the chance
of the 3D reconstruction failing or having errors is minimized.

The camera positions are manually determined with a laser range finder.

156



E.3. Real World Testing

(a) Angel Statue (b) Blade Segment

Fig. E.6: Two test objects used for 3D reconstruction. Each represent different reconstruction
challenges and reconstruction cases

This is done so that any possible random positioning accuracy fluctuations
on the GPS-RTK, caused by weather conditions, pressure changes or envi-
ronment effects are removed. A second reason for this is that this way the
experiment can be done in an indoor environment, removing the possible
illumination changes that can affect the final reconstruction.

For the reconstruction both PhotoScan(Metashape) and ContextCapture
software is used. The two solutions have a number of built-in ways to scale
a model - using point markers that the user directly adds to the model and
have been measured beforehand, printing marker trackers and putting them
around the scanned object and detecting them in the images, adding coordi-
nates to the camera positions from GPS. For testing our proposed solution,
we have chosen the method that is most relevant - adding camera positions,
together with the images and using them to scale the object.

Because the built-in solutions do not have a measurement of the uncer-
tainty of the scaling, the comparison will be done only on the basis of the
calculated scaling factors. For comparing the calculated scale factors, the re-
constructed objects will be scaled using these factors and the distance will be
measured manually on the real world object and the scaled reconstruction.

As there are no ground truth scaled model to compare the scales from
the three methods, a manual measuring of the objects is chosen. A number
of parts of the two real world objects are measured with a caliper, which
has a resolution of ±0.02mm, when measuring objects below 100mm. The
reconstructed and scaled model are imported into CloudCompare [23] for
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measuring the same parts. By measuring multiple parts of the models and
averaging the difference between the real world measurement and the scaled
model measurement, the effects of the possible human errors, while manually
measuring are minimized.

(a) Angel Statue (b) Blade Segment

Fig. E.7: Reconstructed and scaled model. The ContextCapture and PhotoScan(Metashape) re-
constructions are scaled using the built-in solutions in the software. For our proposed solu-
tion(Paper), the unscaled ContextCapture reconstruction is used as basis. The brightness differ-
ence in the models is due to the different ways the programs normalize the texture color. In
addition the model from PhotoScan(Metashape) reconstructed a larger portion of the blade and
looks larger even though the scale is comparable.

The obtained scaled models are given in Figure E.7. Just by looking at
the models, no observable difference can be seen. Table E.2 contains the
average measured distance errors from measuring ten different parts in the
real world and on the reconstructed objects, as well as the standard deviation
from the measurements. The results show that our proposed solution gives
better results, because the mean error distance is the lowest compared to the
other. Even if we factor in the manual repeated measurement error, shown
as the standard deviation of the distance in the table, the results obtained by
our method are better or the same as the build in solutions.

Table E.2: Average distance error between measurements from the real world object and the
reconstructed model, for the two tested objects - angel (A) and blade (B). The results are in mm
and the comparison is made between our proposed solution (Paper) and the built-in scaling
solutions in ContextCapture (CC) and PhotoScan (PS)

Paper (mm) CC (mm) PS (mm)
A 0.35 ± 0.063 0.48 ± 0.069 1.04 ± 0.093
B 0.18 ± 0.012 0.23± 0.008 0.56 ± 0.009

σ2
metric = D2

S f M · σ
2
s (E.7)

Furthermore the scale uncertainty in mm can be also easily measured
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through our proposed solution. We can take two random points from the
unscaled measured object and calculate the Euclidean distance between them
in unknown units - DS f M. As we have calculated the scale uncertainty, de-
noted as σs, we can use Equation E.7 as given in the book by [24], to calculate
scaled distance uncertainty σ2

metric in the chosen metric. To demonstrate how
this uncertainty can be useful, we recalculate the real world reconstruction’s
scale uncertainty, by using different number of position data - from 2 to 18.
Each uncertainty is then used to find the metric uncertainty of the distance
between the same two randomly chosen points. The results from the test can
be seen in Figure E.8. The calculated metric uncertainty decreases with the
introduction of more and more point positions.

Fig. E.8: Correlation between the number of positions used to calculate the scale uncertainty and
the metric uncertainty when measuring the real world distance between two points on a object

E.4 Conclusion and Future Work

In our paper we presented a pipeline for computing the absolute scale of
a 3D model reconstructed using SfM. Our method relies on using external
positioning information from a GPS-RTK sensor, which has an inherent un-
certainty present in the provided data. We provide an analysis of this uncer-
tainty and how it propagates to the calculated absolute scale and results in
a scale uncertainty. Through a series of tests we demonstrated how changes
to the number of positions used and their spatial relationship can also influ-
ence the scale uncertainty. We tested two ways to find the scale uncertainty
- an iterative method and a mathematical covariance propagation of noise
method.

Finally, we tested our proposed pipeline against the scaling solutions
available in state of the art SfM software solutions - ContextCapture and
PhotoScan(Metashape). We demonstrate that we achieve better results, on
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top of providing more information about the scaling uncertainty.
As a extension to the current paper, we propose testing the pipeline us-

ing data captured through drone flights. This way the GPS-RTK positioning
information can be tested in different weather and environment conditions.
Additionally the testing on objects with different sizes will provide data on
how the method scales with size and if the uncertainty depends on the size
of the scanned object. Finally, different positioning systems would also be
tested and modeled - both indoor and outdoor, to make the pipeline more
versatile.
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F.1. Introduction

Abstract

Capturing details of objects and surfaces using Structure from Motion (SfM) 3D re-
construction has become an important part of data gathering in geomapping, medicine,
cultural heritage and the energy and production industries. One inherent problem
with SfM, due to its reliance on 2D images is the ambiguity of the reconstruction’s
scale. Absolute scale can be calculated, by using the data from additional sensors.
This chapter demonstrates how distance sensors can be used to calculate the scale
of a reconstructed object. In addition, the authors demonstrate that the uncertainty
of the calculated scale can be computed and how it depends on the precision of the
used sensors. The provided methods are straightforward and easy to integrate into
the workflow of commercial SfM solutions.

F.1 Introduction

Structure from Motion (SfM) techniques have matured throughout the years
to become viable commercial solutions for 3D reconstruction. This is due
to the techniques’ scalability, relative ease of use and the fact that they do
not rely on specialized equipment. This positions SfM as a useful substitute
for other reconstruction approaches that require both specialized hardware
and software, like structured light [1], stereo [2] or time-of-flight cameras [3],
when real-time performance is not necessary.

The algorithm pipeline for SfM is extensively documented by [4] and the
accuracy of different solutions for varying use cases are discussed by [5, 6].
There are several approaches to performing SfM reconstruction, but a typical
algorithm takes 2D images looking at the reconstructed object or surface,
from different positions and directions. Another important feature of SfM is
the possibility to use it both with images from precisely calibrated capturing
setups [7], as well as with in the wild image datasets [8], requiring more post-
processing in filtering the image data and clustering it, but saving on long
capturing times.

In the SfM processing pipeline, a number of feature points are extracted
from each image and matched with features from the input images. These
feature matches are filtered and together with the intrinsic parameters of the
cameras are used in a bundle adjustment algorithm to triangulate the camera
positions in 3D space, as well as a sparse point cloud. A depth map and dense
point cloud are then computed. Finally, if needed, the dense point cloud is
meshed and a texture is calculated from the images. One drawback of using
only uncalibrated 2D images as input is that the scale of the reconstruction is
ambiguous. To calculate the absolute scale, additional information is needed.
This information can be captured manually, by using objects of known sizes
in the images or by using additional sensors.
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This chapter focuses on using additional sensors for calculating the abso-
lute scale of the 3D reconstruction. It demonstrates a step-by-step solution
which uses external distance sensors to provide the necessary information.
In addition, the authors take into consideration that real-world sensors’ read-
ings contain level of uncertainty, which in turn is transferred to the calculated
scale. The discussed solutions take this into consideration and demonstrate
that these uncertainties can be quantified.

The chapter’s contributions to the field of SfM can be summarized as:

• A lightweight and easy to implement method for finding the absolute
scale of a SfM reconstruction using distance sensors;

• The method is easy to integrate into existing commercial SfM solutions,
as it requires only simple outputs, such as a 3D mesh and camera posi-
tions and orientations;

• The method is flexible and can be used both with expensive LiDAR
solutions, as well as cheap distance measurement sensors, as it does
not require capturing the object surface;

• The uncertainty of the computed absolute scale can be calculated, when
high precision is required.

F.2 State of the Art

All state of the art SfM solutions, both open-source [9–11] and commercial
[12–14], contain some kind of built-in way to manually scale the final 3D
reconstruction using information captured from the environment. Normally,
users can manually measure parts of the real and reconstructed objects and
compute the resultant scaling factor. Another widely used method is relying
on markers with predefined shapes and sizes. These markers are put on the
reconstructed object or surface and are captured in the images. Later the
scale of the object can be calculated from the ratio between the real-world
size of the marker and the captured size. Both methods rely on the fact that
the real object is easily accessible and are time consuming, which makes them
not ideal for all use cases. In addition, there is no easy way to predict any
introduced uncertainty to the calculated absolute scale.

Other approaches for estimating the scale, base assumptions on known
factors of the capturing environment, like the height [15, 16] or the kine-
matic model of the motion [17]. Finally, some approaches rely on data from
external sensors. Positioning data is widely used for geo-referencing and
scaling the reconstruction, as seen in the work by [18–21]. Other multimodal
approaches [22, 23] take advantage of inertial measuring units (IMU) for cal-
culating the positioning, rotation and movement of the cameras. Combining
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SfM and LiDAR scans has the added benefit of determining the scale of the
reconstruction, as shown by [24, 25].

Building on the findings of the state of the art, a lightweight scaling so-
lution can be achieved by introducing additional sensor data. This way data
for the scaling can be captured together with the image data without the
need for additional manual measurements. Position sensors are widely used
for outdoor SfM reconstruction, but their reliance on GPS and other external
position sensors makes them impractical for indoor use. Another problem
with these systems can arise if the captured object or surface moves, while
images are taken, as the captured positions are normally of the camera. To
mitigate this problem, the position of the captured object needs to be tracked
as well, making the setup even more complicated. Movement tracking sen-
sors like IMUs are another possibility, but they require filtering and constant
calibration to offset the possible drifting. Finally, distance sensors like LiDAR
solutions give high precision measurements, but most present systems try to
create a full 3D scan of the environment, which can introduce considerable
computation load.

The solution described in the chapter takes the idea of using distance
measurements from the camera to the captured object or surface, to calculate
the scale of the reconstruction, but minimizes the necessary readings. It does
not need to create a full 3D scan and can be used with both single direction
distance measurement sensors, as well as high-quality multi-directional Li-
DAR solutions. This can streamline the often long and complicated process
of capturing additional data for SfM reconstructions and provide a simple
scaling way to already existing 3D reconstruction pipelines [26].

Additionally, because all sensors possess a certain amount of noise in their
readings, the solution takes that into account and computes the scale together
with the amount of uncertainty. This way highly precise measurements can
be taken from the reconstructions.

F.3 Methodology

The methodology is divided into parts, containing the different steps that go
into building the proposed solution. As an initial step, a basic SfM pipeline
will be described and the production of a 3D reconstruction, with an un-
known absolute scale, together with the other outputs needed for the pro-
posed solution. Using this as a basis, the proposed solution of using distance
sensors is introduced. For producing a 3D reconstruction with an absolute
scale, two main parts are needed – a calibrated fixed rig containing the dis-
tance sensor and the camera used for SfM and an algorithm for comparing
the real distance measurements, to the ones captured from the reconstructed
objects or surfaces. Finally, when needing high degree of accuracy in the
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calculated scaling factors, the uncertainty introduced by the used distance
sensors needs to be taken into account. To do this, two additional parts are
introduced in the proposed solution – an initial sensor uncertainty modeling
and an algorithm for propagating this uncertainty to the calculated scaling
factor.

F.3.1 SfM Reconstruction Overview

For reconstructing objects or surfaces using SfM, only a normal color camera
sensor is required. More importantly, images need to be taken of the scanned
object, from varying positions and angles, so the overall shape, size and sur-
face detail can easily be described. Images need to be taken with a certain
degree of overlap, normally at least 70% to 80% overlap, as specified in the
work by [4, 5]. From each image a number of feature points are extracted and
matched between images. Feature extractors and descriptors like SURF [27],
SIFT [28], FAST [29] or ORB [30] are used with a lot of commercial SfM, hav-
ing proprietary solutions. From these matched features, together with the
calculated intrinsic camera calibrations, a 3D triangulation is done between
the unordered images, using any of the many bundle adjustment implemen-
tations [31]. This results in the creation of a sparse 3D point cloud, plus the
calculation of the back-projected camera positions. The sparse point cloud
can then be densified, by interpolating the information from the calculated
3D points. The resultant dense point cloud can be meshed if needed, with ad-
ditional steps like texture calculation from projecting the camera images onto
the 3D model, removing noise, closing holes, etc. If no additional informa-
tion is provided to the application, the final output is scaled to an unknown
scale, with the SfM applications trying to guess a correct one depending on
the calculated camera positions, intrinsic parameters, size of the captured ob-
ject, etc. This calculated scale can vary from one object to another and can be
different even between multiple computations on the same datasets, as seen
in Figure F.1.

Fig. F.1: Example of a SfM reconstruction, resulting in a 3D object with unknown absolute scale.
Several images of the object are taken from different positions and angles

168



F.3. Methodology

F.3.2 Scaled SfM Reconstruction Using Distance Sensors

To introduce an absolute scale to the SfM pipeline additional real-world data
is needed. In the method proposed by the authors this data comes from
distance sensors. In the next chapter the basis for the proposed algorithm
will be explained. For this chapter the sensor used as an example is the
mid-range LiDAR solution by Hokuyo - the UTM-30LX [32]. As it will be
shown in the later chapters and the Results section, this sensor can easily
be interchanged with other cheaper alternatives and the proposed methods
will retain their validity. Initially the chosen sensor needs to be attached to
a fixed rig together with the camera, used for capturing images for SfM. The
transformation between the two needs to be calibrated as well. This initial
calibration needs to be done only once and after that the rig can be used
together with the proposed algorithms for calculating the absolute scale of
the captured objects.

Extrinsic Calibration Between Camera and Sensor

An initial extrinsic calibration between the real-world camera and each used
distance sensor needs to be calculated. This calibration provides the position
and orientation of the sensor compared to the camera, which eliminates prob-
lems that can arise from the lever-arm effect [33], which is normally present
when using GPS sensors for georeferencing. It also gives an initial guess for
the scale of the reconstructed object. It is important to note that in a perfect
world this calibration would be enough to give a correct absolute scaling fac-
tor, but because of possible errors in the calibration and initial positions of
the camera and sensor, here the authors use it only as an initial guess, which
is used as a basis for the second part of the proposed method. Also, this part
needs to be done just once as long as the transformation between the sensor
and the camera is not changed. The proposed calibration steps are the same
for any used distance sensor.

To prevent any unintended movements, the sensor is mounted on a bracket
together with the camera with the forward direction of the two pointing at
the same direction, as seen in Figure F.2a. The position and orientation be-
tween the two in unknown and the proposed calibration is done using a 3D
checkerboard, consisting of a flat plane with a set of 24 four sided pyramids,
as shown in Figure F.2b. This design is chosen over a completely flat one, as
it provides depth resolution for the readings on the distance sensor.

Here the required coordinate systems need to be explained. First there
are the distance sensor readings’ 2D local coordinate system, which are rep-
resented as polar, using angles and distances. Next are the local coordinate
systems of the reconstructed cameras, each with their orientation. Finally,
there is the world coordinate system of the 3D reconstructed object, in which
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(a) (b)

Fig. F.2: The 3D checkerboard calibration artifact, used for finding the transformation between
the sensors and the camera.

both the cameras and the object are position. To achieve a proper calibra-
tion, the sensor readings’ 2D local coordinates, need to be expressed as in the
world coordinate system of the reconstruction. To perform the calibration
between the cameras and the sensors, each needs to be able to produce a 3D
view of the checkerboard.

For the capturing camera’s view, the 3D model is produced from a SfM
reconstruction from multiple images. To ensure a correct reconstruction both
horizontal images in a semi-circle and vertical images are taken, with distance
sensor readings taken together with the vertical images. A SfM 3D point
cloud is produced from these images.

Next the same needs to be done from the distance sensor’s readings. Be-
cause the sensor’s readings are in its local coordinate system, they need to
be transformed into the unified coordinate system of the SfM reconstructed
point cloud. SfM solutions calculate the camera positions together with the
reconstructed objects. For simplicity, the authors will show the calculation
for one camera, from the full set k = [1, 2 . . . C]. same calculations are valid
for all other cameras.

The camera position is used as an origin point to transform the distance
sensor’s readings to the proper coordinate system. To do this first, the sen-
sor readings are transformed from polar to Cartesian coordinates, with the
camera position as origin, using Equation F.1, where in the case of the HC-
SR04, the direction angle of the only distance measurement is set at 0 de-
grees. In the equation, xorigin,yorigin,zorigin are the coordinates of the camera
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position origin, li is the sensor distance at angle φi for each of the readings,
where the number of readings can vary and for simplicity it is expressed as
i = [1, 2, . . . nk].

xi = xorigin − li cos φi

yi = yorigin − li sin φi

zi = zorigin

(F.1)

The transformed sensor point set is then rotated in 3D space from the
camera’s local coordinate system to the global coordinate system of the re-
construction, using the camera’s calculated rotation matrix, denoted in Equa-
tion F.2 as R. The SfM dense point cloud and transformed Cartesian readings
from the UTM-30LX LiDAR can be seen in Figure F.3.xiw

yiw
ziw

 = R

xi
yi
zi

 (F.2)

Fig. F.3: The two-point clouds used for the initial calibration process for detecting the transfor-
mation between the camera and sensor. Point pairs are manually selected from the dense SfM
point cloud and the sparse sensor point cloud and aligned. Here the points captured from the
UTM-30LX LiDAR are shown, with other sensors, using the same method for calibration

Once the 3D point cloud, created from combining all the distance read-
ings, is in the same coordinate system, as the one created from the SfM re-
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construction, the final transformation between them can be done. This trans-
formation finds the position of the distance sensor’s origin compared to the
capturing camera, at each position. There are a number of manual and au-
tomatic ways to achieve this, but because there is no direct correspondence
between the points of the two point clouds, the authors use the manual cloud
alignment tool, which comes with CloudCompare [34]. To calculate the trans-
formation matrix, a number of equivalent points are selected from the two
point clouds and the distance error between them is minimized. As a result,
a transformation matrix is calculated, which is used in the next part of the
method.

Absolute Scale Calculation Using Distance Measurements

Once the initial calibration is done once, the next steps can be done for each
measured object or surface. For each camera position, a sensor reading of
the distance to the object is taken. These distance readings are used as input
for the proposed solution, together with the reconstructed SfM object and the
camera positions and orientations. The process is shown in Figure F.4 and
explained in the next paragraphs.

Fig. F.4: Second part of the solution for finding the absolute scale of a SfM reconstruction using
the ratio between real-world and calculated distance measurements.

To calculate the absolute scale of the SfM reconstruction, the real-life sen-
sor measurements from each camera position need to be compared to the
distances calculated from reconstructed camera position to the reconstructed
object or surface. Naturally, in a best-case scenario these two distances can be
the same, but because of the way SfM calculates the reconstructed object, as
well as imperfections in the calibration, etc., the two distances can be far off.
Initially each camera position is taken and the inverse transformation matrix,
calculated in the initial calibration part, is used to find the position of the dis-
tance sensor for that camera. A ray is cast from the distance sensor’s position
toward the reconstructed object and if they hit it, the distance between the
two is calculated and saved. The number of rays cast from the position of the
sensor for each camera depends on the angular resolution of that sensor. To
demonstrate the idea, in Figure F.5a the rays that hit the reconstruction from
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one sensor position are shown, while in Figure F.5b, the same is shown for
a number of sensor position. The two figures show calculated distance rays
created using the characteristics of the UTM-30LX LiDAR.

(a)

(b)

Fig. F.5: Visualization of the rays from a single camera and the points hit on the object (Figure
F.5a), together with the ray hits from each camera on the reconstructed mesh (Figure F.5b).
UTM-30LX LiDAR readings. For easier visualization only a subset of the vertices of the mesh is
visualized

To simplify the calculations, an average distance r̄, is computed from all
the calculated distance rays rj, for each camera position. The number of
distance rays j = [1, 2, . . . mk] can vary from camera to camera, depending on
the shape of the reconstructed mesh and is denoted with mk.

To calculate the scale factor between the real-life object and the recon-
struction, real sensor readings are needed from each camera position. Here it
is important to note that a hypothesis is made that for each camera position
that the real sensors have readings on the object, the same camera position
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also has calculated ray distances from the reconstructed object mesh. With
this the number of cameras is denoted by k = [1, 2 . . . C], where C is the num-
ber of camera positions with readings both from the real and reconstructed
object. The real-life sensor measurements are denoted in the same way, as
the one used for the extrinsic calibration - li, where i = [1, 2, . . . nk]. Here
again the readings can vary from camera to camera and for simplicity they
are marked with one variable. From all the sensor readings of each camera
an average distance measurement is calculated l̄. From the two average dis-
tance readings – the real life one and the reconstructed one the scaling factor
sk can be calculated as a ratio for each camera position. An average scaling
factor is calculated from the factors calculated for each camera position. This
calculation is presented in Equation F.3. Here is important to note that if a
single direction distance sensor is used, like the HC-SR04, then nk = mk = 1,
for each camera and the average values of both the real and the calculated
distances, can be substituted for the single reading.

s =
1
c

c

∑
k=1

( 1
nk

∑nk
i=1 li

1
mk

∑mk
j=1 rj

)
=

1
c

c

∑
k=1

(
l̄k
r̄k

)
(F.3)

Normally one pass should be sufficient to calculate a proper scale factor,
but there are a number of complicating factors, which can make this calcula-
tion incorrect:

• Imperfections in the initial extrinsic calibration – because the initial cal-
ibration requires manual input and uses a distance minimization algo-
rithm, there is always a possibility of falling into a local minimum, not
representative of the best possible solution of the transformation;

• Captured objects or surfaces can have complex shapes with both micro-
and macro-roughness, which can present problems for both the real
distance sensor’s readings, as well as for the distance readings from the
reconstructed object. Small changes in the direction of the cast ray can
give large changes in the returned distances. This can be mitigated with
the use of distance sensors with higher angular resolutions in both 2D
and 3D, but it is still a large factor for less complex sensors;

• Because of the way SfM works, by matching features from multiple 2D
images, it is prone to creating surface noise and reconstruction inaccu-
racies, when the capturing conditions are sub-optimal. These problems
can be mitigated somewhat with the use of surface smoothing and de-
noising algorithms, but can still interfere with the calculated distances
from the reconstructions, throwing off the initial computed scaling fac-
tors.
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A way to deal with these possible problems is to do multiple iterative
passes on calculating the scaling factor. Before each pass the previously cal-
culated factor is used to scale the reconstruction. Rays are then cast again and
a new factor is calculated. The algorithm stops either after a predetermined
number of times or when the calculated Root Mean Square Error (RMSE)
between the real sensor distances and the calculated ones from the recon-
struction drops below a certain threshold. Once the end criteria are reached,
the final scaling factor s f inal is calculated, by multiplying all the temporary
factors s, as seen in Equation F.4, where g is the number of iterations needed
to reach the end criteria. Here it is important to note that the average sensor
distance lavgis measured in [mm]. In the first iteration of the algorithm the
ray distances are unitless [.], while in the consecutive iterations the they are
again in [mm]. This means that the final unit of the scaling factor is also [mm].

s f inal =
g

∏
1

s (F.4)

For most SfM reconstruction this can be a final result, which would be
useful for detecting the absolute scale in a simple and straightforward way,
with minimal additional captured data. But when a high degree of precision
is required from the reconstruction, for example for surface inspection, where
millimeter or even sub-millimeter accuracy is the norm, additional steps are
required. Each used sensor has inherent noise and uncertainty in its readings
and this uncertainty can propagate to the calculated scale, making data mea-
surements from the reconstruction more unreliable. This problem has been
expressed in the paper by [21], using the notion that uncertainties from one
type of variables, in this case scale, can propagate to another type of mea-
surements, for example surface measurements. In Equation F.5 taken from
the paper, the uncertainty of a calculated scale factor is denoted as its vari-
ance σ2

s . The measurement DS f M in unknown scale is taken from the surface
of a 3D object and subsequently scaled to absolute scale using that scale fac-
tor. Then it will display a measurement uncertainty σ2

metric , proportional to
the scale factor’s uncertainty. If the scaling uncertainty is known, then this
can be predicted and better-quality measurements can be achieved.

σ2
metric = DS f M · σ2

s (F.5)

The next chapters look into modeling the distance measurement sensors’
uncertainties and propagating this uncertainty through the algorithms used
for calculating the absolute scale factors.
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F.4 Uncertainty Modeling and Propagation

To demonstrate the uncertainty modeling of a distance sensor, a number of
hardware solutions are chosen. These solutions range in price, the type of
distance data they capture and their performance. The three sensors are a
low-cost ultrasonic distance sensor HC-SR04, a low-cost LiDAR solution -
the rpLidar-A1 [35] and the already mentioned Hokuyo UTM-30LX. Figure
F.6 shows the sensors, as well as examples of the captured uncertainties from
each one. A more in-depth explanation is given below. Initially their distance
capture uncertainty is calculated, which will later be used as an input in the
propagation algorithm.

(a) (b) (c)

Fig. F.6: The distance sensors used for testing the proposed solution – ultrasonic distance sen-
sor HC-SR04 (Figure F.6a), LiDAR rpLiDAR-A1 (Figure F.6b) and LiDAR Hokuyo UTM-30LX
(Figure F.6c)

Distance Sensor Modeling

The three used sensors provide different measurement resolutions and un-
certainties, as well as maximum measured distances. The HC-SR04 provides
a single measurement and can measure between 0.1-4m, the rpLidar-A1, can
measure between 0.5-12m and has an angular resolution of around 1 degree,
the UTM-30LX can measure between 0.5-30m and has an angular resolution
of 0.25 degrees. The distance measurement uncertainty of the sensors at
multiple distances needs to be captured for use in the scale uncertainty cal-
culation. To do this, readings of each sensor are taken in intervals of 0.2m,
from 0.5m to 3.1m. The bottom interval is chosen, because of the limitations
of the tested sensors. The top interval is chosen, because of the size of the
laboratory where the tests were conducted. A ground truth is taken for all the
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readings using a Leica DISTO laser distance meter, with a known accuracy
of less than 0.03m. A matte, flat and smooth surface is used for taking the
readings to minimize errors from laser beam reflections. For the two LiDAR
units, only the central beam is taken into consideration, for simplification of
the measurements. At each distance 500 readings are taken. Both the dis-
tance error between the ground truth and the measurement and the standard
deviation between the 500 measurements are calculated. These are shown in
Figure F.7 and Figure F.8. To verify that the method for capturing the read-
ings is correct, the standard deviation of the measurements captured by [36]
for the similar Hokuyo UST-20LX are plotted as a comparison. It can be seen
that the authors’ results exhibit similar standard deviation to those. To cre-
ate the uncertainty values used in the second part of the proposed solution,
the standard deviation measurements for each of the devices are interpolated
and smoothed using a spline fitting. The created values are used as a look-up
table depending on the capturing distance. The distance errors are also used
to correct the captured measurements when using the sensors.

Fig. F.7: Captured distance standard deviations from the tested sensors - UTM-30LX, rpLidar-A1
and HC-SR04, together with the results taken from [36] for comparison

Propagation of Distance Uncertainty to Scale

As the final scaling factor is calculated, the next important thing to take into
account is the possible noise and uncertainty, that the used sensor might have
introduced to it. The authors’ proposed solution is based on the described ap-
proach for covariance propagation of noise for computer vision as described
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Fig. F.8: Captured distance errors from the tested sensors - UTM-30LX, rpLidar-A1 and HC-SR04.
The distance errors are calculated from as a difference between the captured measurement and
ground truth measurements.

by [37]. This method is chosen as it has been demonstrated to give good
results in the work by [38] and [21], as long as the input parameters used are
independent from one another and are used in a function to calculate the out-
put parameters, whose uncertainty needs to be found. The method works for
both analytically and iteratively computed functions. In the work by [21] the
method is used for calculating the uncertainty of the calculated scale, when
using position measurements from a GPS. In that case the position in each
dimension is used as a separate input parameter. To use the same numerical
approach with distance measurements, the proposed equations needs to be
simplified, so it can be used with only one input parameter. Equation F.6
described in the paper, can be used with the data produced by the authors’
proposed solution, but the differentiation needs to be calculated only for the
average measured distance from each camera position.

σ2
s =

∂s
∂l

∆
∂sT

∂l
(F.6)

To do this the modelled sensor variance is subtracted and added to the
average sensor measurements for each camera in turn and the scale is calcu-
lated for each, as seen in Equation F.7. The other part of Equation F.6 that
needs to be changed is the calculation of the covariance matrix, again as there
is only one input parameter. The new matrix is shown in Equation F.8, where
the average sensor uncertainty is the calculated one from Equation F.9.
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σ̄2
lk
=

1
nk

σ2
l (F.9)

If the captured sensor readings for each camera positions are used as
random variables, then they will contain the already extracted uncertainty, in
the form of variance, which is denoted as σ2

l for each reading. In Equation F.9,
the average variance ¯(σ(lk)2) for the average sensor distance for each camera
k = [1, 2 . . . C], is taken from Equation F.3, where only the real sensor’s data
contains uncertainty. From the average of the real distance sensor’s readings
the variance can be represented using Equation F.10, based on the theorem
2 from [39], describing representing the variance of a linear function and a
variable, in the current case that variable is the number of measurements
per camera, nk. From there the average variance can be represented using
theorem 4 [39] as a sum of all the variances of all measurements per camera
(Equation F.11).

σ̄2
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1
n2
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(F.10)

σ2
∑

nk
i=1 li

= nkσ2
l (F.11)

By using Equation F.6 and taking two simplifications into account, the
scale uncertainty can be computed in a more straightforward manner:

• The measured distances from the cameras to the object should be roughly
the same for all images;

• The number of distance readings per camera from the real world and
the cast rays to the reconstructed object needs to be the same.

The first simplification can be restrictive, but in the work by [5] and [40],
it is demonstrated that for achieving the best results in SfM reconstruction, a
circular or hemispherical capturing path is needed. For this type of capturing
the distances can be relatively uniform. The second simplification can also
be followed if a set number of measurements are selected depending on the
distance sensor and the same number is set for the calculated measurements
from the reconstructed object. Taking this into account and expressing that
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nk = mk and f = r̄k , is the average distance measurement for all cameras
k = [1, 2 . . . C], then a new simplified expression can be made, as shown in
Equation F.12.

σ2
s =

1
n2c f 2 σ2

l (F.12)

This expression gives a number of relations between the used variables.
From the above, it can be seen that the scale uncertainty drops with both
the number of camera positions with sensor measurements and the num-
ber of measurements per positions. This can be explained by the fact that
the more positions there are, the more information for the distances between
the cameras and the object’s surface there is. Also, the more measurements
there are per camera position, the less likely it is that the sensor’s uncertainty
will affect. In addition, the distance from the camera to the object can affect
the uncertainty in a number of ways. If measuring large distances, a small
millimetre sensor uncertainty will not give a lot of weight to the scale cal-
culation, but if the reconstruction is done using images and measurements
close to the object the distance uncertainty will be more pronounced. The
proposed uncertainty solution is tested in the Results section and compared
to two additional uncertainty calculation solutions.

F.5 Implementation

Fig. F.9: Pipeline of the proposed solution. The bulk of the calculations are done using Python,
with the needed inputs coming either from the distance sensor or as output from the chosen SfM
software.
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An overview of the implementation of the proposed solution is given in
Figure F.9. The initial data comes as an output from the chosen SfM solu-
tions. Because the reconstructed object or surface is going to be used for
casting rays and measuring distances, a mesh is suggested. The calculated
camera positions and orientations are also used as input for the proposed so-
lution. These inputs are used in the main implementation together with the
calibrated transformation between the camera and the sensor in the rig. The
used algorithms are built in Python, together with the library trimesh [41],
used for the implementation of casting rays and calculating the distance be-
tween their origin and the hit point. The position of the distance sensor is
calculated for each camera location using the calibration transformation ma-
trix and the position and orientation of the camera. Once the location and
orientation of the sensor is known, a number of rays are cast from it. The
number and density of the rays depends on the chosen sensor and set input
parameters – single or multi distance measurement sensor, angle resolution
and maximum working distance. The distances of all rays hitting the re-
constructed object are captured. The real-life sensor measurement for each
camera, corrected using the distance error expectation is used together with
the ray distance to calculate a scaling factor. The average scale factor for all
camera positions is calculated. This scaling factor is used to scale the recon-
struction and camera positions and the process is repeated until the differ-
ence between the real measurement and the ray one is minimized. The sensor
measurement uncertainty is calculated using Equation F.12, with the average
number of measurements and the average distance between the cameras and
the reconstructed object computed as part of the scale calculation.

F.6 Testing and Results

To test the performance of the proposed solution, a number of testing scenar-
ios are created, using each of the three distance sensors. Five distinct objects
with different shape, sizes and surface characteristics are chosen. To provide
a comparison of the proposed method’s performance, the authors compare it
to two existing scaling solutions that rely on camera position data.

F.6.1 Testing Setup

The five objects are selected to represent different 3D reconstruction scenarios
- for both the industry and cultural preservation. The chosen objects can
be seen in Figure F.10. Two of the objects are wind turbine blade pieces.
Scanning wind turbine blades for detecting damages, by unmanned aerial
vehicles (UAVs), has become widely used in the energy industry and a lot of
research has been done on it [42, 43]. In addition, this type of scenario would
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require a sensor-based way to scale the computed SfM reconstructions, as
it is normally hard to manually measure the real-life blade surfaces or to
place markers on them. The other three objects represent examples of digital
cultural heritage preservation. Scanning fragile or hard to reach objects is
another common use of SfM reconstruction, where access can be restricted
and neither manual or marker-based scaling can easily be used. In addition,
the five objects were chosen based on widely varying surface profiles and
shapes, which can be used to judge the robustness of the proposed method.

(a) (b) (c) (d) (e)

Fig. F.10: The five objects were selected to represent two types of application scenarios, which
may require the use of SfM reconstruction with absolute scale. The first group represents is
artifacts for digital cultural preservation - an angel statue (Figure F.10a), a duck statue (Figure
F.10b) and a vase (Figure F.10c). The second group represents surface inspection for the industry,
with examples of two types of wind turbine blade, denoted as the small one (Figure F.10d) and
large one (Figure F.10e)

Initially, a number of images are taken from each of the five objects, in
a 180-degree semi-circular pattern. This method of capturing the image is
used, as it has been shown by [5, 44] that it produces good reconstruction
results with the minimum needed image positions. For each image a sensor
measurement is also taken. A Canon 5Ds DSLR camera is used with a 30-
105 mm zoom lens and the taken images are with a resolution of 8688x5792.
This way the possibility of inaccuracies on the reconstruction can be mini-
mized and the only possible error can come from the scaling methods. Once
the images are taken, a reconstruction is made of each object using Agisoft
Metashape.

F.6.2 Scale Test Results

The method presented in this chapter is compared to the built-in solution
present in Metashape and the positioning-based solution used by [21], from
here on referred to as NM. The built-in solution from Metashape, takes the
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positioning data as input and as it reconstructs the object, it tries to use the
data as initial guess where the cameras are. This has the effect that it also
scales the model, but the used algorithm itself is proprietary and undisclosed
by the company. No possible scaling uncertainties are calculated as well.
The NM method uses positioning data for each camera. The data is cap-
tured from a GPS, with a real-time kinematic (RTK) add-on, which makes
the positioning information much more accurate, compared to the normal
GPS. A least-squares estimation is then used to calculate the transformation
between these positions and the ones calculated by the SfM algorithm. The
method makes the assumption that for each measured position there is a
corresponding calculated one, without outliers. For testing purposes, the
GPS-RTK sensor uncertainties in each direction are taken as they are and
used in the present chapter. Because both the built-in solution and the NM
one requires camera positions and the testing scenarios for these chapters
are conducted indoor, the positioning data is captured manually, using the
same laser range finder used for capturing the distance sensor uncertainty.
In each direction the readings of the range finder are calculated and put in
a global coordinate system, contained in the room where the experiments
are conducted. As an added benefit this means that the captured positioning
data is much more accurate than possible with a real positioning sensor like a
GPS. In turn this will ensure that the two methods produce the best possible
results for comparison to the proposed solution.

Table F.1: Absolute percentage difference between the averaged real-world and scaled 3D object
measurements. For the proposed method three different sensors are used and for comparison
the position-based built-in solution in Metashape and the solution by NM are tested. The two
LiDAR sensors provide better or similar scaling performance than the position-based solution,
while the low-cost single distance sensor still produces usable scaling factors.

Object
Metashape

[%]
NM
[%]

UTM-30LX
[%]

rpLidar-A1
[%]

HC-SR04
[%]

Angel 4.12 3.20 2.07 3.89 5.53
Duck 1.99 1.44 0.90 2.33 2.82
Vase 0.55 0.36 0.22 0.50 0.69
Small Blade 7.60 7.09 5.49 7.06 10.12
Big Blade 13.92 13.64 12.52 13.79 18.63

The reconstruction is first created in Metashape, without an absolute scale.
It is then scaled with all three tested solutions. To compare the accuracy of
each of the calculated scale factors, a number of ground truth measurements
need to be done. A number of parts of each of the real objects are manu-
ally measured with a digital calliper with an accuracy of 0.02mm. The same
parts are measured on the reconstructed objects after they have been scaled
with the scaling factor from each of the methods. To minimize the possible
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effect of human error from the manual measurements, each part is measured
multiple times and an average measurement is calculated. To measure how
close, the scaling from each method is to the real-life scale of the objects the
absolute percentage difference between the real and the scaled measurements
is calculated. The absolute percentage differences for each part of the object
are then averaged for the whole object and a final scaling accuracy metric
is calculated. The results from that can be seen in Table F.1, with graphical
representation in Figure F.11.

Fig. F.11: The absolute percentage difference between the average real-world and 3D object
measurements for each of the reconstructed objects. The proposed solution is tested with each
of the distance sensors, together with the Metashape build-in solution and the method proposed
by NM.

F.6.3 Scale Uncertainty Test Results

The calculated scale uncertainty is also tested for each of the tested distance
sensors from the proposed solution. For inputs each of the distance sensors,
uses the calculated distance uncertainty lookup table. The results from the
final scale factor uncertainty are given in Table F.2.

To test if the proposed simplified scale uncertainty solution gives proper
results, it needs to be compared to other methods for calculating uncertainty.
The work from [21], describes two different ways for introducing and com-
puting scale uncertainty – a repeated approach and the numerical differen-
tiation approach, already explained in the Methodology Chapter F.3. Each
of the two methods is implemented with distance measurements as the in-
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Table F.2: Calculated scale uncertainties for each of the five tested objects, with each of the
distance sensors.

Object
UTM-30LX

[mm2]
rpLidar-A1

[mm2]
HC-SR04

[mm2]
Angel 2.86e-10 1.01e-08 3.52e-08
Duck 5.79e-10 5.02e-08 2.90e-08
Vase 1.84e-10 4.34e-09 3.03e-08
Small Blade 1.04e-10 6.21e-09 1.25e-08
Big Blade 1.42e-10 2.65e-09 5.51e-08

put parameter and their results are compare to the ones produced by the
simplified calculation. The angel statue has been chosen as a test object.

Repeated Approach

The most straightforward way to compute the scale uncertainty from the
distance sensor uncertainty is through repeated calculations. A zero mean
Gaussian distribution is created from the standard deviations, obtained from
the sensor uncertainty modelling. This distribution is then randomly sam-
pled and values from it are added to the real sensor measurements for the
3D reconstruction. The scale is then calculated as normal and saved. This
process is done repeatedly 1000 times, by randomly sampling the measure-
ment fluctuations. Once all the final scale factors are calculated, their vari-
ance is calculated. This approach is easy to implement, but requires a lot of
computation time to achieve good results, as well as a large pool of sensor
measurements.

Table F.3: Comparison between three methods for calculating the scaling uncertainty – simplified
model demonstrated by the authors and two methods described by [21] – a numerical model
using covariance propagation and a repeated calculation model.

Sensor
Simplified

[mm2]
Numerical

[mm2]
Repeated

[mm2]
UTM-30LX 2.86e-10 3.14e-10 2.95e-10
rpLidar-A1 1.01e-08 1.15e-08 1.05e-08
HC-SR04 3.52e-08 3.53e-08 3.65e-08

Results

The scale uncertainty for each of the three sensors is calculated for the angel
statue. The results from each of the three used methods are given in Ta-
ble F.3. As it can be seen from the table, the simplified model demonstrates
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discrepancy in the produced results for the sensors, which have higher un-
certainty, combined with a smaller number of measured distances. The other
two uncertainty computation approaches give comparable results.

F.6.4 Discussion

Analysing the results from the testing, it can be seen that the authors’ pro-
posed solution using the UTM-30LX LiDAR gives the best scaling results,
together with the lowest scale uncertainty. This is an expected result, as the
sensor has the highest angular resolution, together with the lowest distance
measurement uncertainty. The other distance sensors also give progressively
worse results depending on their distance measurement accuracy and the an-
gular resolution. More interesting are the results from the HC-SR30 distance
sensor. Even though the sensor has a comparatively small measurement dis-
tance and low distance accuracy, it manages to provide satisfactory results in
all cases, expect the second wind turbine blade. All tested algorithms show
difficulties in scaling the wind turbine blades. It is theorized that this can be
a problem from the reconstruction itself, as both objects are relatively harder
to reconstruct and have noise in the reconstructed 3D models, as well as in
the positioning of the cameras. This can result from glossiness of the surfaces
and the lack of features. Additionally, the two blades have elongated shapes,
which could additionally present problems, especially for the single distance
measuring sensors, while with the help of more measuring points the two
LiDAR solutions give a better average representation.

Looking at the scale uncertainty calculation, the same trend can be seen.
The images with distance reading from the three sensors are taken from
roughly the same positions and the same number of camera positions are
used. From Equation F.12, that leaves only the number of distance measure-
ments per camera position and measurement uncertainty as changing vari-
ables. It can be seen that, because the sonic sensor relies only on one reading
and has the highest uncertainty, the produced scale from it also exhibits the
highest uncertainty. On the other hand, the UTM-30LX sensor produces a
lot of distance readings and together with the relatively smaller uncertainty,
it achieves lower scale uncertainty values. That said, the cheap sensor still
manages to produce good results and is viable for use.

When comparing the proposed simplified method to the other two com-
putationally more expensive methods, comparable results are achieved. This
shows that simplified method can be a useful approximation, when the longer
computational times of the other method are prohibitive. More tests need to
be conducted to get a predictive trend how the simplified method’s results
will behave with different distances, number of measurements and sensors.

Overall the proposed method gives better or comparable results to the
two solutions using positioning sensors. Combined with the robustness of
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a distance sensor, which can be used both indoor and outdoor and in vary-
ing conditions, the fact that the method does not require additional external
hardware, and the flexibility that switching to a cheaper, but lower resolution
sensor still gives usable results, shows the validity of the proposed solution.

F.7 Conclusion

One of the problems connected to SfM is the inability to compute the absolute
scale of a reconstructed object, without additional information. This chapter
proposed a method for finding the absolute scale and scale uncertainty, by
using the readings of distance sensors. The method can be made to work
with a wide array of sensors and can easily be integrated into a SfM working
pipeline, as it requires minimal additional information. Furthermore, the so-
lution is robust enough to provide usable results with as little as one distance
measurement per image.

The proposed method requires a one-time extrinsic calibration for getting
the transformation between the camera used for SfM reconstruction and the
distance sensor. After that, the scale calculation can be done with only the
captured distance measurements and an iterative method used to improve the
accuracy of the computed scale, as well as the uncertainty brought about by
the used distance sensor. To test the flexibility of the proposed method, three
different distance sensors are used - from a low-cost single direction sensor to
two 2D LiDAR solutions. The authors compare the proposed solution to two
position-based scaling methods, using five different objects from different
application scenarios. It is shown that the proposed method gives better
performance to built-in scaling solutions and position based solutions, when
used with comparably high-grade sensors and that the performance is still
usable, when dropping to a low-cost single direction sensor.

Finally, it is shown that the scaling uncertainty is proportional to the in-
put sensor’s measurement uncertainty, and the proposed simplified method
achieves comparable results to the more computationally intensive meth-
ods. This gives the possibility that both the scaling calculation approach and
the uncertainty computation can be simply computed with only base sensor
readings and modelling.
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G.1. Introduction

Abstract

Structure from Motion (SfM) can produce highly detailed 3D reconstructions, but
distinguishing real surface roughness from reconstruction noise and geometric in-
accuracies has always been a difficult problem to solve. Existing SfM commercial
solutions achieve noise removal by a combination of aggressive global smoothing and
the reconstructed texture for smaller details, which is a subpar solution when the
results are used for surface inspection. Other noise estimation and removal algo-
rithms do not take advantage of all the additional data connected with SfM. We
propose a number of geometrical and statistical metrics for noise assessment, based
on both the reconstructed object and the capturing camera setup. We test the cor-
relation of each of the metrics to the presence of noise on reconstructed surfaces and
demonstrate that classical supervised learning methods, trained with these metrics
can be used to distinguish between noise and roughness with an accuracy above
85%, with additional 5-6% performance coming from the capturing setup metrics.
Our proposed solution can easily be integrated into existing SfM workflows as it
does not require more image data or additional sensors. Finally, as part of the testing
we create an image dataset for SfM from a number of objects with varying shapes
and sizes, which are available online together with ground truth noise annotations -
http://dx.doi.org/10.17632/xtv5y29xvz.2.

G.1 Introduction

(a) (b) (c) (d)

Fig. G.1: Illustration of SfM reconstruction geometrical errors, which need to be distinguished
from real surface roughness. Noise parts are shown in red.

Structure from Motion is widely used for visualization and inspection
purposes in the building [1–3], manufacturing [4] and energy industries [5],
as well as for geology [6–8] and cultural preservation [9–11]. Because of the
reliance of SfM on 2D image data, it is prone to geometric noise and topolog-
ical defects, if optimal image capturing conditions are not met (Figure G.1).
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Fig. G.2: Overview of the proposed idea for using metrics extract from the mesh and capturing
setup used for SfM reconstruction, to determine if the underlying surface is noisy or rough.

This has prompted a number of benchmarks [12–14] on the accuracy and ro-
bustness of SfM solutions, as well as on the best possible lighting conditions,
camera positions, image density and captured object surface characteristics.
The problem of determining if noise is present on a 3D reconstructed mesh
and differentiating between noise and the inherent roughness that surfaces
and objects have is not a trivial one. Because topological defects and noise on
the surface of SfM reconstruction are cause by a combination of sub-optimal
capturing conditions, the surface properties of the scanned object and the
camera used to capture the 2D, they cannot easily be quantified.

The main contribution of this paper is the exploration, development and
evaluation of a number of metrics for determining if the underlying 3D re-
constructed surface is noisy or rough. A overview of the idea proposed in
this paper is shown in Figure G.2. The proposed metrics are chosen based
on the known weaknesses of SfM solutions, as well as on the underlying
principals used in many of the state of the art mesh simplification, quality
assessment and denoising algorithms, given in the next section.

G.2 State of the Art

Most of the commercial SfM solutions rely on global or isotropic smoothing
algorithms. These algorithms remove noise, but smooth out smaller details.
Reconstruction solutions like Metashape [15], ContextCapture [16], Reality

198



G.2. State of the Art

Capture [17], etc. use this approach, with additional options for mesh surface
refinement. Such global denoising algorithms are also presented by [18–20].

Local feature or anisotropic algorithms analyse the underlying mesh ge-
ometry and normals to distinguish noisy areas from high surface roughness
areas and preserve smaller details. The research from [21] uses a pre-filtering
step and a L1-median normal filtering, while [22] uses filtered facet normal
discriptors and training of a neural network for calculating regression func-
tions. Other research is focused on classifying normal regions and using
isotropic neighbourhoods [23] or iterative estimation of normals and vertex
movement [24, 25].

Another important factor for detecting noise is the geometric visibility of
roughness, especially on complex surfaces. There are multiple proposed so-
lutions by [26–29], using local visibility features, curvature calculation and
normals to detect parts of meshes with low or high roughness. These meth-
ods are used both for detecting noise on a smooth meshes, but also for intro-
ducing watermarking to meshes without distorting their appearance.

Most of the described mesh denoising algorithms are not focused directly
on SfM reconstructions and thus they do not use a lot of the information
which can be taken from SfM production pipelines. In this paper we pro-
pose noise detection metrics, which can be used to distinguish noise caused
by sub-optimal SfM reconstructions from the inherent roughness of the re-
constructed objects. These metrics combine knowledge taken directly from
3D meshes reconstructed using SfM, with information taken from their tex-
tures, as well as from the camera setup used to capture the images used for
reconstructing the object, such as camera positions, orientations, focal length
and internal parameters. No external sensors or additional captured data are
required for any of the presented metrics. With this our main contributions
in this paper can be summarized:

• We present a number of metric that can be easily calculated as part of
the normal SfM workflow;

• We explore the correlation between each metric and the presence of
noise on reconstructed objects;

• We train classical supervised learning methods using combinations of
these metrics and demonstrate verify their accuracy;

• We test the metrics on a number of objects with varying surface tex-
tures, shapes and sizes to verify their robustness;

• We provide the captured database of images used to create the SfM
reconstructions, together with the manually annotated ground truth
data as part of the paper. This way others can use it for comparison
and testing noise detection and removal implementations.
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G.3 Methodology

As part of this paper we propose nine metrics for detecting noise on SfM
reconstructed meshes. These can be divided into two groups - metrics based
on findings in the areas of mesh visual quality and roughness detection, and
ones based on the SfM reconstruction weaknesses to sub-optimal capturing
conditions. Five main observational hypotheses are made for the appearance
of noise and geometric inaccuracies in SfM reconstructions and for each, one
or more metrics are chosen as a way to describe each one. The observations
are given in the numbered list below, with corresponding metrics shown in
Table G.1. In the next sections, each of the metrics will be explained in detail.
A visualization of each of the metrics on the surface of a reconstructed mesh
is given in Figure G.4.

1. Noise manifests as either clumped together high frequency vertices or
flat patches and holes - when the initial feature detection and matching
methods in the SfM pipeline do not produce enough correct matches,
the produced 3D surfaces can end up overlapping or missing parts.
These manifest in geometrical surface errors, as seen in Figure G.3a;

2. SfM noise normally comes from smooth, monochrome colored surfaces
- monochrome surfaces normally lack robust features like edges and an-
gles, while smooth and transparent surfaces, produce reflections, which
change with the view direction, making correct feature matching im-
possible (Figure G.3b);

3. Noise is present on parts of the object that have not been seen from
enough camera positions - SfM needs to gather information of the ob-
ject from multiple directions, to provide a correct geometrical represen-
tation of the micro and macro shape of the surfaces. Not enough camera
variation can lead to 3D surface "guessing" and deformed patches. Ex-
ample of this can be seen in Figure G.3c, where one object obscures
another surface from being seen by the cameras resulting in noise;

4. Noise is present on parts of the object that have been seen from enough
camera positions, but were not in focus - surface features need to be
extracted and matched, but if parts of the object are blurred and out
of focus, not enough information can be extracted from them. This is
visualized in Figure G.3d, where the back of the object becomes out of
focus, resulting in not enough features captured;

5. Noise is present on parts of the object that have been seen from enough
camera positions, but those positions were not diverse enough - if all
the capturing positions are from the same direction, not enough infor-
mation can be extracted for the shape of the surface. This can be seen in
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Figure G.3e, where multiple images are taken from a surface, but none
of them have enough angular diversity in vertical direction, resulting in
the reconstruction of the bottom of the surface being noisy.

(a) Observation 1 (b) Observation 2

(c) Observation 3 (d) Observation 4

(e) Observation 5

Fig. G.3: Examples of the five main observational hypotheses, used as a basis for the chosen
mesh-based and capturing setup-based metrics

In the subsections below we will focus on each of the metrics’ theoreti-
cal basis, extraction methods, interpretation, etc. For easier readability each
of the metric abbreviations will have a subscript of m for mesh-based or s
for capturing setup-based. Before computing each metric, the reconstructed
object is scaled to absolute real-world scale. Once all the metrics have been
presented, they will be analysed to determine their level of correlation. This
will be presented in the Results section G.5.

G.3.1 General Mesh-based Metrics

In this subsection we will cover the metrics extracted directly from the 3D
reconstructed mesh. They are based on the vertex positions, normals and
vertex color. These metrics are based on observational hypotheses 1 and 2,
presented in Section G.3.
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(a) LRGCm - mesh-based (b) DONm - mesh-based (c) VDm - mesh-based

(d) VIEm - mesh-based (e) NCVs - setup-based (f) PFs - setup-based

(g) ViFs - setup-based (h) VPCs - setup-based (i) VAVs - setup-based

Fig. G.4: Visualization of all the proposed metrics as heat maps. For LRGC, DONm, VDm, higher
values (indicated with red color) indicate higher risk of noise, while for VIEm, NCVs, PFs, ViFs,
VPCs and VAVs - higher values, indicate lower risk of noise.
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Table G.1: The five observational hypotheses and the chosen metrics, used to describe them.
The different metrics are either based only on the reconstructed mesh itself or on the capturing
setup - camera positions, intrinsic parameters, etc.

Num Metrics Type

1
Local Roughness from Gaussian Curvature (LRGCm)

Difference of Normals (DONm)
Vertex Local Spatial Density (VDm)

Mesh-based

2 Vertex Local Intensity Entropy (VIEm) Mesh-based

3
Number of Cameras Seeing Each Vertex (NCVs)

Projected 2D Features (PFs)
Setup-based

4 Vertices in Focus (ViFs) Setup-based

5
Vertices Seen from Parallel Cameras (VPCs)

Vertex Area of Visibility (VAVs)
Setup-based

Local Roughness from Gaussian Curvature (LRGCm)

Rationale: Noise on the SfM surface appears as a geometric disturbance, which
creates high roughness areas on otherwise smooth surface patches.

The first calculated metric is the mesh’s local roughness, depending on a
metric closely related to Gaussian curvature. The metric was first proposed
by [27], in their paper for mesh quality assessment. Local curvature is widely
used for visual quality assessment and denoising, as a characteristic describ-
ing the local changes of the surface. Their proposed algorithm first calculates
the Gaussian curvature like metric (GC) in an area around each vertex, es-
sentially describing how much the area deviates from a planar surface. This
is done using Equation G.1, where N(F)

i is all the neighbour faces around a
point i and αj is the angle between the current vertex and the one which is
incident to it.

GCi =

∣∣∣∣∣∣∣2π − ∑
j∈N(F)

i

αj

∣∣∣∣∣∣∣ (G.1)

Once the local curvature is calculated, a Laplacian matrix of the angles
between the connected neighbours and each vertex is derived. Finally the
local roughness metric LGRC is defined as a weighted difference between the
Gaussian curvatures of each vertex and its neighbours, weighted according
to the calculated Laplacian matrix. This is shown in Equation G.2, where Dij

is the Laplacian matrix and N(V)
i is all the vertices in the neighbourhood of

the current one. An in-depth explanation of the method can be seen in [27].
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LRGCi =

∣∣∣∣∣∣GCi −
∑

j∈N(V)
i

(Dij · GCj)

∑
j∈N(V)

i
Dij

∣∣∣∣∣∣ (G.2)

This metric is robust to curved surfaces and gives gradual and smooth
values. The method gives a scale independent surface roughness measure.
An example of the metric can be seen in Figure G.4a, where higher values
denote higher roughness and higher risk of noise.

Difference of Normals (DONm)

Rationale: Noise on SfM surfaces appears as high frequency surface changes, espe-
cially on the edges of the mesh and surrounding holes in it.

The metric is proposed by [30] and is used for surface roughness detec-
tion, point cloud segmentation, obstacle detection, etc. It is a scale dependent
local value, sensitive to specific resolutions of roughness. Two radii r1 and
r2 of different sizes are chosen around each vertex. The normals of the area
below the neighbourhood for each radius are computed and their difference
gives the final metric. Equation G.3 is used for calculating the difference of
normals , where n̂(p, r) is the normal of the surface under each of the radii
for every vertex i and r1 < r2. Get the final measure, the magnitude of this
vector is calculated, which is between [0, 1].

DONi =

∣∣∣∣ n̂(pi, r1)− n̂(pi, r2)

2

∣∣∣∣ (G.3)

In their work, [30] demonstrate that high frequency areas contain smaller
details in point clouds. SfM noise is normally represented as high frequency
signal in clustered areas on the surface of the reconstruction. This is why we
focus on capturing very high frequency surface changes. The radii are set
heuristically to a percentage of the size of the reconstructed object - 2% of the
size of the object, for the larger one and a factor of 10 smaller for the smaller
radius, as suggested in [30]. This makes it independent from the scale of the
object. With these input parameters, the difference of normals is especially
sensitive to roughness at the edges of objects and allows it to provide a more
focused additional roughness metric to LRGCm metric. The calculated metric
is visualized in Figure G.4b, where higher values denote higher difference
between the local normals and higher risk of noise.

Vertex Local Spatial Density (VDm)

Rationale: When surface errors occur in SfM reconstructions, the resultant recon-
struction contains areas of high vertex density, even on supposedly smooth real world
object areas.
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This metric is based on point cloud segmentation methods like the one
proposed by [31], using area of interest spatial neighbourhood grouping like
K nearest neighbours. This metric is calculated by first computing a num-
ber of progressively larger search radii, connected to the overall size of the
reconstructed object. The size is chosen heuristically and is in the interval
RVD = [0.1% : 0.5%] from the size of the object, as this is seen as the vertex
density that best explains the possibility of noise. The mesh global maximum
of neighbours for each of the radii is calculated. A percentage of these maxi-
mum values is taken and used as a threshold in the subsequent calculations.
The lower this percentage is the less the local spatial density can be before it
is viewed as problematic. For this paper the percentage is set to 60%.

For each vertex the number of neighbours is captured for each of the
radii. If the number is above the threshold, a score is given for that vertex.
The more instances get a number higher than the threshold, the higher the

final score for that vertex. This is shown in Equation G.4, where N
(rj)

i is the

set of all neighbours for the current radius, N
(rj)
max is the maximum set of all

neighbours, DC is the density coefficient in percentage and s is the score.
This way a vertex density score scaled to the global density of the object
on multiple size levels is achieved. This makes the metric invariant to the
scale of the object and it can be comparable between objects of different sizes.
The calculated density metric is shown in Figure G.4c, where higher values
indicate parts of higher vertex density and higher risk of noise.

VDi = ∑
rj∈RVD

s(j) , for s(j) =

{
1, if N

(rj)

i ≥ DC · N(rj)
max

0, otherwise
(G.4)

Vertex Local Intensity Entropy (VIEm)

Rationale: SfM reconstruction tends to produce errors and noise when the object
surface is featureless and monochrome [32].

The intensity for each vertex is calculated from the texture RGB data.
These intensities are then used to calculate the local entropy of the mesh.
Color has been used for mesh and depth map denoising [33], [25] and it is
shown to give good results. We choose to use entropy [34], as it can be more
easily calculated locally on a point cloud, compared to other edge detection
algorithms and can give a measure of the surface color intensity change. To
calculate the entropy H we use Equation G.5, where Pi is probability of the
occurrence of the specific intensity level at vertex pi and N is the maximum
number of possible intensity values equal to 256. The visualization of the
entropy is given in Figure G.4d, where higher values indicate higher entropy
and more varied surface color, with lower risk of noise.
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H = −
N

∑
i=0

Pi log2 Pi (G.5)

G.3.2 Capturing Setup-based Metrics

The following metrics are unique for SfM meshes, as they are extracted from
the camera capturing setup and utilize the position, orientation, view den-
sity of the cameras, etc. The main factors for selecting these metrics, are
the dependencies demonstrated by [14, 35, 36], between the quality of the
capturing setup and the resultant reconstruction. To calculate these met-
rics a Unity implementation is created for positioning the reconstruction and
calculated camera positions, as well as reprojecting the necessary data. We
use the Unity engine, because of the easy programming pipeline using C#,
fast ray cast computation and the possibility to visualize and compute large
3D model relatively fast and easy. An overview of the used development
pipeline is given in Section G.4. These metrics are based on the hypothesis
observations 3, 4 and 5.

Number of Cameras Seeing Each Vertex (NCVs)

Rationale: To create a good SfM reconstruction, a high amount of overlap between
images is required [9], [11], which means that vertices "seen" by many cameras have
a lower risk to contain noise.

To compute this metric, all the pixels of each of the calculated cameras are
projected to the reconstructed mesh. The metric is calculated by projecting
the captured images from the calculated camera positions towards the re-
constructed mesh. Each vertex is scored depending on the amount of image
pixels projected onto it, meaning that the higher the score the more cameras
have "seen" the vertex. The visualization of the metric is shown in Figure
G.4e.

This metric gives an overview of how certain we are, the data created
by the SfM system is representative of the real world object. If not enough
cameras see certain parts of the objects, there is a bigger chance that those
parts will contain noise or holes. The following metrics will expand on the
information captured by this metric.

Projected 2D Features (PFs)

Rationale: To create the SfM reconstruction, 2D feature points are extracted from
each image. These features are matched between images and used in the triangulation
of the sparse point cloud and the reprojection of camera positions [37]. By projecting
these points to the mesh, areas of higher certainty can be found, by exploiting the fact
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Fig. G.5: An image used as input to the SfM solution and calculated feature points. A radius
is set around each of the features and all points that are in the area are projected to the recon-
structed mesh

that areas not containing any found and matched features, will produce lower quality
reconstructions

We look at the 2D features extracted in the triangulation and camera po-
sition calculation step of the SfM pipeline. In this step features are extracted
from each image and matched between them. In most SfM solutions, these
2D feature descriptors are not disclosed, but they are mostly variations of
SURF [38] or free alternatives like FAST [39] and ORB [40]. An example
image with captured feature points can be seen in Figure G.5, where it can
be seen that smooth areas like the eyes and noise of the bunny statue have
much less features. For each camera position, the already calculated feature
descriptor points are extracted. A radius around each point is set and the
points under that area are projected to the 3D reconstructed model. For each
3D point the metric as aggregated depending on how many of these matched
feature point areas are projected onto it.

The higher the value of this metric for each vertex, the more 2D features
were projected onto it. Figure G.4f shows this metric. As these 2D features
are used in the reconstruction itself it is hypothesized that a high metric will
have less noise.

Vertices in Focus (ViFs)

Rationale: Structure from Motion matches points between images for creating the
initial sparse point cloud and camera position and orientation calculation. If parts of
the object are captured out of focus, these points would have blurring on them. This
can increase the possibility for reconstruction noise to be present in these parts.
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To calculate the metric, first the near Np and far Fp focal plains are calcu-
lated for each camera using the formulas presented in Equation G.6. There
H f is the hyperfocal distance, which is the distance between the camera and
the closest surface, which is in focus, when the lens is focused on infinity,
while the CoC is the circle of confusion calculated according to [41]. The
focal length F and aperture A are known from the EXIF data present in the
images and the distance to the object D is calculated from the camera to the
closest surface of the reconstruction. Because the object is scaled before cap-
turing the metrics, the measured distances between cameras and the object
should be in correct units.

Np =
H f · D

H f + (D− F)
, Fp =

H f · D
H f − (D− F)

(G.6a)

H f =
F2

ACoC
, CoC =

F
1720

(G.6b)

A ray is cast from each pixel of the camera, to the corresponding face
from the reconstructed model and the distance between the two is calculated.
Vertices of faces outside of the focal planes are scored with -1 for cameras
which have seen them, while ones that are inside the focal planes are scored
with 1. A lower score indicates more out of focus cameras having seen the
vertex and a higher chance of it being noisy. The metric can be seen in Figure
G.4g, where the lower the value, the more times it has been out of focus and
the higher risk for noise.

Vertices Seen from Parallel Cameras (VPCs)

Rationale: Even if multiple images have captured the surface of the object, if all of
them "see" it from large angles, without at least one central image to connect them,
there is a possibility of SfM calculation error [42].

This metric is captured by computing the angle between each normal and
the forward direction of each of the calculated cameras that can "see" the
vertex. This is achieved by using Equation G.7, where αm is the calculated
angle between the normal Ni of vertex vi and the camera forward direction
vector C f for each camera seeing the vertex [0, i]. Two 3D vectors are parallel,
if the angle between them is either 180 or 0 degrees, but the camera has to
be able to see the vertex, so an angle of 0 degrees is not likely. The closer at
least one angle is to 180 degrees, the less chance there is of noise. Figure G.4h
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Fig. G.6: Visualization of the calculated hemisphere positioned above each vertex in the mesh
and the camera position, together with the intersection points. The distance from the camera to
the vertex position is made in a smaller scale for easier visualization. Once all the intersection
points are found the area between them is calculated and the ratio between it and the whole area
is used for the metric

show this metric.

αi = arccos
C f · Ni

|C f · Ni|
(G.7a)

αmax = max
{1:i}

αi (G.7b)

Vertex Area of Visibility (VAVs)

Rationale: To capture a surface’s shape, SfM requires images from multiple posi-
tions and angles, so all parts of the topology are visible. If only little variation is
given in the imaging positions, the resultant mesh can exhibit noise patches, surface
deformations and holes [42].

The metric requires the calculation of the area in space, from which each
vertex is seen. We assume that the object surface is visible from every camera
point of view. To model this metric, first a hemisphere is placed on the
position of each vertex, oriented depending on the underlying normal. A
hemisphere is chosen, as the assumption is that the cameras need to be able
to physically see surface and the presence of self-occlusion. A ray is cast from
each camera that "sees" the vertex. The points of intersection between each
ray and the hemisphere are calculated and their 3D coordinates are saved. An
example of this can be seen in Figure G.6, with the camera position pulled
closer and the hemisphere colored for easier visualization.

We then project the points in 2D, to avoid working with spherical geom-
etry. The Lambert azimuthal equal-area projection, is chosen as it represents
correctly the area in all regions of the sphere. For the projection Equation
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Fig. G.7: Overview of the implementation pipeline, showing what input and programming
environments are used to calculate each of the metrics. The mesh-based metrics are directly
computed in Python, while the capturing-setup based ones use a combination between Python
and the Unity game engine.

G.8 is used, where (x, y, z) are the Cartesian coordinates of the points on the
sphere and (X, Y) are the projected ones. The metrics is calculated as a ratio
between the area of the projected points and the whole area. An example of
the metric can be seen in Figure G.4i, where the higher the values are, the
higher the area of visibility is and the lower the risk of noise. This means that
even if a lot of cameras have seen the point if their angular coverage from
different positions is not large enough this would be penalized.

X =

√
2

1− z
x, Y =

√
2

1− z
y (G.8)

G.4 Implementation

In this section a short overview of the implementation pipeline is given. The
different processing environments for extracting each of the metrics are given
in Figure G.7. The initial data of the reconstructed mesh, the camera positions
and orientations and extracted feature points are taken directly from the SfM
software. For our current implementation Agisoft Metashape [15] is used,
but the same data can be extracted from many of the commercial and open
source SfM applications. In our case Metashape uses a Python based API
for automation of the SfM pipeline, which can be also used to extract the
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required data and parse it in a structure, used for metric extraction. For
the purely mesh-based metrics only the reconstruction itself is used and the
processing is done directly in Python. For extracting data and manipulating
the 3D data, the library open3D [43] is used in. The extracted features are
manipulated and the areas around them calculated, by using OpenCV [44] for
Python. The capturing setup-based metrics are calculated through the use of
the Unity game engine [45]. The engine uses C#, with specific optimizations
for vector and GPU computations. Normally used for making games and
interactive experiences, we use the powerful 3D features of the engine, the
camera settings and the fast and easy ray calculating capabilities. The data
from the Metashape Python API in these cases is saved to a custom format
containing all the mesh data - vertices, faces, normals, color information, as
well as camera positions and orientation. For these metrics, the EXIF data
from each image is also used, for calculating the proper field of view and
depth of field of each of the cameras. The setup-based metrics are calculated
per mesh vertex, by casting rays from each pixel of the camera positions to
the reconstructed surfaces. An example view of the Unity implementation is
given in Figure G.8a, where the reconstruction together with the calculated
camera positions and their forward direction vectors are given. The projected
points on the mesh are used to calculate the NCV metric and show which
parts of the object are seen by the particular camera. The input photo and the
equivalent view from the Unity camera are given in Figure G.8b and G.8c

G.5 Testing and Results

Testing the proposed metrics is done in a number of steps. First the correla-
tion between the different metrics is calculated. This will give an initial idea
if any of them give redundant information, too similar to the others. The
second step is to create a dataset of images and SfM reconstructions. These
objects have varied sizes, shapes, roughness levels and are made from differ-
ent materials with different textures. We then manually annotate each one of
the reconstructions on a vertex level - as noise and not noise. This annotation
is used as ground truth for testing the accuracy of the proposed metrics.

We then separate the reconstructed objects into testing and training data
and use the metrics together with the annotated data to train a number of
supervised learning classification methods. The accuracy of the proposed
metrics can then be evaluated for segmentation of the testing data into noise
and not noise vertices.

To evaluate if all metrics are useful for detecting noise, we first calculate
the correlation between the appearance of noise and each of the metrics. We
then use that information to retrain the best performing supervised classifi-
cation method on different subsets of the metrics and evaluate the resultant
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(a) View from NCV metric calculation

(b) Input image (c) Unity camera view

Fig. G.8: Views from the Unity implementation used for the capturing setup-based metric ex-
traction.

accuracy.
Finally, we also evaluate the proposed solution in a wider industrially

relevant context, by using a reconstruction of a wind turbine blade for testing
and evaluating the results from it.

G.5.1 Data Gathering

To ensure the robustness of the proposed metrics, objects with different shape,
size, roughness and color, as well as material are used. All the objects are
shown in Figure G.9. Special care was taken to create a diverse set of objects,
to lower the possibility of bias in the proposed metrics. Some of the ways the
dataset can be separated:

1. By size of the objects - we have objects ranging from 150 mm (cups
shown in Figure G.9i, G.9j, etc.) to 800 mm (the black vase Figure G.9d
and sea vase Figure G.9f), together with the wind turbine blade segment
(Figure G.14a), which is more than 1500 mm long;

2. By material - we have objects made from stone, ceramics, plastic, clay,
wood and metal. This guarantees that we can have varying surface
properties like reflectivity, texture and color variation;
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3. By shape complexity - we have objects with simple shapes and repeated
patterns like the different cups and vases, as well as objects complex
shapes. With all the possible problems that can arise from that - self-
occlusion (Figure G.9c) or thin and narrow regions (Figure G.9g, G.9h).

A Canon 5Ds DSLR camera is used for capturing images of the objects.
The resolution was set to 8688x5792 and a zoom lens with a variable focal
length of 30-105 mm was used. The zoom lens was used, so the focal length
can be easily changed depending on the size of the object. The focal length
was set at the start of the capturing process for each object and kept the same
throughout, only being changed if needed, once a new object is selected. This
is done to guarantee, that the captured object is always in frame and most
parts of it also in focus. The focal length was changed depending on the
size of the object. For the initial and subset tests 36 images were taken in a
circle around each object in one horizontal band. The camera is setup to such
a height, so it stays perpendicular to the side of the objects. The research
by [14], shows that this one vertical band capturing setup ensures that the
objects can be reconstructed, but there is a possibility of geometrical noise on
their surfaces. For the industrial context test 2x17 images in vertically stacked
horizontal bands were used, because of the larger size of the wind turbine
blade, compared to the objects used in the initial and subset. This way the
front of the blade can be captured and reconstructed. All the objects were
reconstructed using Agisoft Metashape and all the required data - camera
positions, orientations, internal parameters, etc. was extracted from the pro-
gram workflow, as explained in Section G.4. To make them more manageable
to work with the reconstructions are sub-sampled to around 50k vertices. The
actual number depends on the size and complexity of the shape of the object.

For testing the proposed solution and training the classification meth-
ods, a roughness/noise ground truth is created for all the used objects. The
ground truth is made manually by annotating all the reconstructed meshes
and masking all vertices of surfaces containing noise or any other topological
defects (Figure G.12). The software used for annotation of the mesh vertices
is also developed in Unity (Figure G.10) and at the end of the process the
information for each vertex for each of the objects is saved into an array of
values - showing 0 for clear surfaces and 1 for noise and geometrical de-
fects. This annotated data is also used for testing the correlation between the
appearance of noise and the different metrics.

G.5.2 Correlation Analysis

The correlation between the different independent metrics needs to be tested,
to ensure that highly correlated ones are removed, as they do not give any
new information and can introduce uncertainty and interfere the detection of
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(a) Bunny (b) Bird Bath (c) Angel (d) Black Vase

(e) Plastic Vase (f) Sea Vase (g) Duck (h) Rooster

(i) Squares (j) Stripes (k) Grey (l) Orange (m) White (n) Flower

Fig. G.9: Objects selected for the robustness test. These objects have widely varying shape, size,
roughness profiles and materials.

the noise. In addition, the correlation between the metrics and the appearance
of noise is also analysed. To compute the correlation between the metrics a
correlation matrix is calculated using the Pearson correlation coefficient [46].
The matrix is shown in Figure G.11.

We choose to consider a cutoff between metric correlation higher than 0.5
and with the dependent variable lower than 0.1. From the correlation matrix
it can be seen that one of the metrics has a high correlation with the others
- the number of cameras seeing each vertex (NCVs). Because this metric is
quite generic and much of the information that it carries is present in the
vertices seen from parallel camera (VPCs), with correlation of 0.65 and the
vertex area visibility (VAVs), with correlation of 0.53, as well as projected
2D features (PFs) metric, we choose not to include NCVs in the final set of
metrics.

The correlation between the independent variable metrics and the de-
pendent variable, which in our case is the presence of noise and geometric
inaccuracies, is further explored. From the correlation matrix in Figure G.11,
we can deduce that three mesh roughness metrics LRGCm, DONm and VD
have the highest correlation with the presence of noise. This is expected as
these metrics are directly connected to the topology of the mesh. From the
capturing setup-based metrics the most correlated ones to the presence of
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Fig. G.10: View from the annotation tool used for creating the roughness versus noise ground
truth for each of the meshes. The vertices painted red are set as reconstruction noise

noise are PFs, NCVs, ViFs, but NCVs has been removed from consideration
dues to the high correlation with the other metrics. These observations will
be used in Section G.5.4, when different subsets of the metrics are tested out.

G.5.3 Initial Testing

For the initial test we use all the proposed metrics, except NCVs. Further test-
ing of subsets of metrics, will be given in Section G.5.4. The metrics are used
to train a number of supervised learning classification methods - support vec-
tor machines (SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision
trees (DT), as well as more complex ensemble methods - random forests (RF)
and AdaBoost (AB). The implementations are taken from Scikit-learn [47].
The hyperparameter used for each classifier are given in Table G.2. Because
of the limited number of test objects, we use a cross validation, where we
train on all, but one and test on it. We do this for each of the objects. Because
the two classes - noise and not-noise are not balanced, an oversampling strat-
egy is deployed when pre-processing the training data. The oversampling is
done using Synthetic Minority Over-Sampling Technique (SMOTE) [48].

Because of the imbalanced dataset, we focus not only on the accuracy,
but on the precision, recall and F1-score, which are shown in Table G.3. The
table presents the average of all calculated performance factors for all the
tested objects. From these, the AdaBoost classifier provided the best results,
depending on the combination of the calculated factors.

All the tested classifiers give satisfactory results, with high recall, which
indicates that it classifies noise vertices as such. On the other hand they also
classify non-noise vertices as noise, which is shown by the low levels of pre-
cision. This shows that metrics can be useful for signalling to possible areas
of noise and can be a part of a semi-automatic SfM noise detection pipeline,
where a user then verifies the results. For a better understanding of the per-
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Fig. G.11: Correlation matrix of the used metrics, together with the dependent variable. For
easier visualization the metrics are shown with their coded names - VPCs: vertices seen from
parallel camera, VAVs: vertex area visibility, ViFs: vertices in focus, NCVs: number of cameras
seeing each vertex, PFs: projected 2D features, VIEm: vertex local color entropy, LRGCm: local
roughness from Gaussian curvature, DONm: difference of normals and VDm: vertex local spatial
density.

Table G.2: Used hyperparameters for the tested classification methods - support vector machines
(SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT), random forests (RF)
and AdaBoost (AB).

Method Parameters
SVM C = 8, kernel = linear, gamma = scale
RF n_estimators=150, max_depth=10, min_sample_split = 3
AB n_estimators=150, learning_rate = 0.5

KNN n_neighbors = 5, weights = uniform, algorithm = auto
NB default parameters
DT criterion= entropy, max_depth=10, min_sample_split = 2

Table G.3: Average results from the fourteen objects and the chosen classical classifiers - support
vector machines (SVM), K-nearest neighbours (KNN), naive Bayes (NB), decision trees (DT),
random forests (RF) and AdaBoost (AB).

Method ACC Precision Recall F1

SVM 0.816 0.569 0.842 0.679
RF 0.824 0.580 0.879 0.699
AB 0.851 0.630 0.844 0.742

KNN 0.812 0.568 0.789 0.660
NB 0.809 0.558 0.832 0.668
DT 0.824 0.578 0.885 0.699
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formance of the best performing model, the pseudo-colored visualizations of
the annotated and classified noise vertices are also given in Figure G.12. Some
notable problem areas can be seen on rough objects like the bird bath (Fig-
ure G.12h) and the sea vase (Figure G.12l) and objects with complex shapes,
which have been reconstructed correctly, but have small noise patches - like
the bunny (Figure G.12g) and the angel statue (Figure G.12i). On these objects
the noise is either closely integrated into the surface roughness frequency or
is quite sparse, compared to the overall size of the object.

Further complicating the non-trivial task are the manually annotated ar-
eas. For example, in the case of the two white cups (Figure G.12e and Figure
G.12f) the overall low reconstruction accuracy, means that there is noise with
different levels of severity. Where the cutoff between acceptable surface and
noise is, can become very arbitrary, without classifying the whole surface as
noisy. One way to alleviate this is to have multiple people annotate the same
objects and get an average annotation. This will be further explored in the
Conclusion and Future Work section G.6.

G.5.4 Subset Testing

The calculated results in the previous section are based on all metrics except
NCVs. To test how much influence each of the metrics have on the calculated
performance, a number of subset tests are performed. Five main tests are
setup as shown in Table G.4. Because both the LRGCm and DONm, are used
in the literature for point cloud classification, they are used separately, as
a baseline, naive, first test for detecting noise on SfM reconstructions. The
second test checks if NCVs will have negative influence in the results, because
of its high correlation with VPCs and VAVs metrics. All other metrics are
used for this test scenario. Using the information gathered in Section G.5.2,
the LRGCm, DONm and VDm are set as main metrics, because of their high
correlation with the presence of noise. The third scenario tests how important
are the mesh and capturing setup-based metrics for the performance of noise
detection. The fourth test takes the three designated main metrics and creates
five subsets, but adding each of the capturing setup-based metrics, to see how
important are they separately. The final test again takes the main metrics and
combines them with the other ones, which are either the more correlated or
the less correlated to the noise.

The best performing classification method from the initial test is chosen
for this scenario - AdaBoost. It is retrained with the different subsets of met-
rics and the results are given in Table G.5. Again the average of the calculated
performance factors using the leave one out strategy for cross validation. For
visualization purposes the resultant detected noise from each subset, for one
of the test objects is shown in Figure G.13, together with the ground truth
annotated noise.
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(a) Squares Cup (b) Stripes Cup (c) Grey Cup (d) Orange Cup

(e) White Cup (f) Flower Cup (g) Bunny (h) Bird Bath

(i) Angel (j) Black Vase (k) Plastic Vase (l) Sea Vase

(m) Duck (n) Rooster

Fig. G.12: The annotated ground truth vertices on the left and the same classified vertices using
our proposed method on the right. The noise vertices are colored red, while the non-noise ones
are blue.

Table G.4: Four main subset test scenarios. Each of the scenarios is designed to test the impact
of different metrics or combination of metrics on the final results.

Test Description
1 LRGCm and DONm separately
2 All metrics, with and without NCVs
3 Mesh-based versus capturing setup-based metrics
4 Each capturing setup-based metric’s impact
5 Impact from different combinations of setup-based metrics
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Table G.5: Results from testing different subsets of the proposed metrics. Each of the subsets is
used to train the best performing classification method from the first testing scenario AdaBoost.
Different subsets are created to test the posed question in Table G.4

Subsets ACC Precision Recall F1 Test
Only LRGCm 0.723 0.492 0.652 0.574 1
Only DONm 0.686 0.407 0.788 0.537 1
All, without NCVs 0.889 0.674 0.863 0.756 2
All, with NCVs 0.852 0.635 0.848 0.725 2
LRGCm, VDm, DONm (Mesh-based) 0.828 0.592 0.833 0.692 3
(Mesh-based) + VIEm 0.837 0.611 0.822 0.701 3
VPCs, VAVs, ViFs, PFs 0.707 0.425 0.753 0.544 3
(Mesh-based) + PFs 0.840 0.615 0.829 0.706 4
(Mesh-based) + ViFs 0.838 0.615 0.809 0.699 4
(Mesh-based) + VAVs 0.837 0.612 0.811 0.698 4
(Mesh-based) + VPCs 0.839 0.614 0.824 0.704 4
(Mesh-based) + NCVs 0.831 0.603 0.799 0.701 4
(Mesh-based) + PFs, ViFs 0.814 0.565 0.869 0.683 5
(Mesh-based) + VIEm, VPCs, VAVs 0.839 0.615 0.822 0.703 5

The naive approaches to using only the LRGCm and DONm, yield overall
lower results, showing that only analysing the roughness profile of the recon-
struction, cannot completely separate noise from real world surface rough-
ness. The results also show that, as expected, the mesh-based metrics give the
highest effect on the performance of the classification method, meaning that
they are the most useful in discriminating between noise and surface rough-
ness. The texture metric VIEm helps boosting the overall accuracy and preci-
sion of the detection. This can be seen in Figure G.13, with a lot less random
noise vertices, compared to the purely LRGCm, VDm, DONm trained detec-
tor. The capturing setup-based metrics on their own are too vague to properly
discern between noise and surface roughness, as seen from the lower overall
accuracy. When introducing them to the mesh-based metrics, it can be seen
that they also boost the overall performance when segmenting the noise from
the roughness. Overall different combinations of the metrics can be useful in
different situations, depending if it’s more important to detect more of the
noise correctly, but also miss-classify some of the roughness as noise, or vice-
versa. The combination between the mesh-based metrics with the different
capturing-setup metrics also shows that depending on the structure of the
objects different capturing metrics can be useful. Larger objects benefit more
from the ViFs and VPCs metrics, while smaller objects benefit more from
VAVs and VPCs metrics. The PFs metrics is the one that always gives posi-
tive impact to the performance, as it is directly connected to the captured 2D
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Fig. G.13: Visualization of the noise detection results, using different subsets of metrics, to-
gether with the ground truth annotation. The different testing scenarios are separated for easier
comparison.

feature points.

G.5.5 Industrial Context Test

The final test is made to give a wider industrial application context to the
proposed metrics. We want to test if the described metrics can be used on
data from different areas. This will also provide a better understanding on
the generalization capabilities of the proposed metrics. We choose to test on
wind turbine blade data, as this is an industrial inspection area, which has
began to use SfM for capturing information more and more and research is
focused on ensuring the high quality of the reconstructions [49]. In addition,
wind turbine blade data is hard to acquire, because of the requirements by
blade manufacturers, that blades in use are not normally imaged. If the
proposed metrics can be used to train noise recognition methods on generic
data and then can be used no wind turbine blade surface reconstructions, it
would make researching and benchmarking SfM results from blades surfaces
much more easily accessible.

For the test, a decommissioned wind turbine blade segment is selected
(Figure G.14a). To ensure that the blade has different types surface rough-
ness and damaged areas, it has been additionally sandblasted. The image
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(a) (b) (c)

Fig. G.14: The wind turbine blade used for the second testing scenario (G.14a), together with the
precision-recall curve of the classification model (G.14b) and the visualized annotation compared
to classified vertices (G.14c). Red vertices are noise, blue are non-noise.

capture was done in an outdoor environment. Because the object is consider-
ably larger than the ones used in the previous tests and normally the leading
edge and sides of blades are inspected, a different image capture pattern is
selected. Two vertical bands of 17 images in a semi-circle pattern are cap-
tured, leading to 34 images in total.The best performing classifier is chosen
from the first two tests - AdaBoost.

We choose also the best performing combination of metrics - all, except
NCVs. All the reconstructions used in the previous testing scenarios are used
as training data for AdaBoost. To evaluate the performance of the metrics
on the blade, ground truth noise and roughness annotations are also made
for it. The calculated classification results have an accuracy of 0.843, while
the precision is 0.786 and recall is 0.877. For this test the precision-recall
curve is also calculated for giving a better idea of the performance of the
trained model using the proposed metrics (Figure G.14b). We chose to use
it instead of a ROC curve, on the basis of the unbalanced dataset. This way
the calculated results are going to be less skewed and "optimistic" [50]. The
area under the curve (AUC) of the precision-recall curve is 0.877. Finally,
the pseudo-colored visualization of the classified and annotated vertices for
the wind turbine blade model are given in Figure G.14c. Overall the metrics
provide acceptable results, by capturing all the problem areas around the top,
bottom and back of the object, without miss-classifying the real damaged
areas of the edge of the blade. This shows that a transfer learning effect can
be used, where the training can be done on more easily accessible generic 3D
reconstruction objects and how noise is seen on them and then the trained
classifier can be used on specialized input data like wind turbine blades, with
high level of accuracy.
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G.6 Conclusion and Future Work

The problem of detecting noise and geometric disturbances of 3D recon-
structed meshes resulting from SfM is a non-trivial one. In these meshes noise
and regular surface roughness can exhibit the same characteristics, making it
difficult for detecting noise without miss classifying the roughness. This is
why in this paper we present a number of metrics based on both the mesh
surface and on the capturing setup. This combination of metrics is chosen,
as it has been observed from the state of the art in SfM testing and bench-
marking, that the appearance of geometrical errors and noise on the recon-
structions is highly correlated to the quality of the capturing setup, the used
camera and the number of images taken. By combining these metrics and
analysing their performance we are trying to address a gap in the knowledge
of SfM results and how they can be used in applications like industrial in-
spection and surface roughness estimation. In addition, none of the proposed
metrics require external sensor data and can be easily integrated in normal
SfM production pipeline.

To test the metrics a dataset of images is captured from a number of ob-
jects with different shapes, sizes, textures and materials. These objects are
then reconstructed and the metrics are captured from them. The amount of
correlation between the metrics and between the metrics and the presence
of noise is computed and is seen that only one of the metrics - the NCVs
is highly correlated to the others. A number of classical supervised learn-
ing classification methods are trained on the metrics, together with ground
truth manually annotated data. The results from classifying the meshes as
noisy and not noisy vertices are shown to be usable, with the metrics gener-
ally giving a good overview which parts of the meshes contain noise, with
some noise miss-classified as roughness. On the other hand surface patches,
which contain real life damages are correctly classified as not noise. The cap-
tured dataset of images, together with the ground truth annotations will be
available online for use for training and testing purposes.

Different combinations of the proposed metrics are also tested, to see how
individual metrics influence the performance of detecting noise. We demon-
strate that a naive approach of just using the roughness of the surface of the
reconstruction does not yield high quality results, with an overall accuracy
between 0.68 to 0.72. The results could be dramatically improved by intro-
ducing a combination of all the mesh-based metrics proposed in the paper,
pushing the accuracy to 0.85. The mesh-based metrics manage to describe
the rough parts of objects, but tend to be less discriminative between the
parts with high roughness and the ones with geometrical errors. The use
of capturing setup-based metrics is shown to be helpful in discerning be-
tween the two, as they pinpoint areas of the reconstructed surface, that have
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been reconstructed under sub-optimal conditions. Combining them with the
mesh-based metrics yield at least another 5-6% increase in the performance
of the noise estimation, depending on which mesh-based metrics, they are
combined with.

Finally we test the larger context of the proposed metrics for detecting
noise on 3D reconstructions, which have significant difference from the data
used for capturing the training metrics. This way such robustness can be
tested. A wind turbine blade is selected, as their inspection has become
of particular research interest. The blade also has a different size, shape and
material from all the other tested objects. We demonstrate that we can achieve
usable results, without miss-classifying any surface damage as reconstruction
noise. This result also shows that the proposed metrics can be used as a form
of transfer learning, where a noise detector can be trained on generic widely
available data and then used on specialized data, which does not contain a
large enough dataset, like wind turbine blade surfaces. The produced results
of 0.843 accuracy 0.786 precision and 0.877 recall, show that the same level of
quality of noise estimation can be achieved for wind turbine blades, which
can be seen as an extended general applicability of the presented research.

The next step in verifying the results of the publication, would be com-
paring the reconstructed meshes to ground truth of the object, captured with
a high resolution scanner. The difference between the two can be used, as a
more objective noise ground truth, which can be then used to compare to the
estimated noise risk. A look into global deformations in the overall shape of
the reconstructed objects, as well as self-occlusions and fractal parts of the
objects, can also be used to further introduce more metrics for assessing the
risk of noise. Finally, one can also look even more into the influence of the
camera specifications on the possibility of noise, such as the use of fixed fo-
cus lens versus an automatic focus one, as well as the use of rolling versus a
global shutter.

Our future work would build on the results from this paper, by comparing
them to both traditional mesh denoising algorithms and newer point cloud
and mesh classification methods using convolutional and deep neural net-
works. For this a larger dataset of SfM object reconstruction is being build,
so enough data is present. Finally, it is deemed interesting to look into detect-
ing the illumination levels of the environment and see if they can be used as
reliable indicators, as the role of the capturing setup lighting in the presence
of noise, requires more research.
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H.1. Introduction

Abstract

Over time, erosion of the leading edge of wind turbine blades increases the leading
edge roughness (LER). This may reduce the aerodynamic performance of the blade
and hence the annual energy production of the wind turbine. As early detection
is key for cost-effective maintenance, inspection methods are needed to quantify the
LER of the blade. The aim of this proof-of-principle study is to determine whether
high-resolution Structure-from-Motion (SfM) has the sufficient resolution and ac-
curacy for quantitative inspection of LER. SfM provides 3D reconstruction of an
object geometry using overlapping images of the object acquired with a RGB cam-
era. Using information of the camera positions and orientations, absolute scale of
the reconstruction can be achieved. Combined with a UAV platform, SfM has the
potential for remote blade inspections with a reduced down-time. The tip of a decom-
misioned blade with an artificially enhanced erosion was used for the measurements.
For validation, replica moulding was used to transfer areas-of-interest to the lab for
reference measurements using confocal microscopy. The SfM reconstruction resulted
in a spatial resolution of 1 mm as well as a sub-mm accuracy in both the RMS surface
roughness and the size of topographic features. In conclusion, high-resolution SfM
demonstrated a successful quantitative reconstruction of LER.

H.1 Introduction

Erosion of wind turbine blades poses a challenge for wind energy operation
and maintenance [1]. Erosion of the leading edge (LE) increases the surface
roughness and reduces the aerodynamic performance of the blade [1, 2].As
the shape of wind turbine blades is specifically designed to achieve maximum
energy efficiency [3],this increased leading edge roughness (LER) may lead
to a reduced annual energy production of the wind turbine. Through CFD
modelling, several studies have found that even a small degree of LE erosion
can lead to 2%-5% loss in annual energy production [4–6]. Severely eroded
blades with high levels of LER can experience losses from 8% and up to
25% [4, 7, 8]. As LE erosion over time can develop from small pinholes to
large areas of coating delamination [4, 9], early detection of the severity of
the erosion is important. At later erosion stages, extensive blade repair may
be necessary causing expensive turbine down-time. Thus for early erosion
detection, inspection methods for measuring the surface topography of the
blade are needed to quantify the LER.

Visual inspection have long been applied for condition-monitoring of wind
turbine blades [10]. In recent years, unmanned aerial vehicles (UAV) have re-
ceived increased interest for remote inspection of wind turbines [11–16] with
a lower downtime compared to manual rope-access inspection. From 2D im-
ages captured by the UAV, deep learning methods [13, 15] can be used for
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detecting damages and erosion on the blades. However, while the 2D infor-
mation can reveal the presence and location, quantification of the blade surface
roughness requires high-resolution 3D data.

Structure-from-Motion (SfM) is a camera-based method that provides a
3D reconstruction of an object geometry with a simple, fast and low-cost ac-
quisition [17–19]. Aided by a rapid development of both open source [20, 21]
and commercial software solutions [22–24], SfM has found industrial inter-
est in e.g. construction site monitoring [25–27] and infrastructure inspec-
tion [28–32]. A lot of research has also been done in the performance of SfM,
for different use cases [33, 34]. As input for the SfM reconstruction, over-
lapping images of the object from different positions and orientations are
acquired using a RGB camera. Feature points are extracted and matched be-
tween the 2D input images using local feature descriptors such as SIFT [35] or
ORB [36]. From the feature points and intrinsic camera parameters, a sparse
3D point cloud as well as the camera positions and orientations are com-
puted. Using information from reprojected camera views, further points can
be added to create a dense point cloud, which can be further meshed [37, 38].

The accuracy of a SfM reconstruction is influenced by a number of fac-
tors. Since SfM depends on triangulation of feature points, the accuracy is
affected by the angular coverage of the acquired images [19, 39] and scales
with the the capturing distance from camera to object [38, 40, 41]. Further-
more, a sufficient texture level is required for enough distinct features on
the object surface to be tracked from image to image [19, 42]. Low texture
regions may result in empty regions of the point cloud [43]. To evaluate
the accuracy, the SfM reconstruction is typically compared to another optical
technique such as a LiDAR or laser scanner. This can be done either by direct
point-to-point comparison with the SfM point cloud [19, 44, 45] or raster-to-
raster comparison of digital elevation models (DEM) [46, 47]. Either way, the
comparison is influenced by the measurement uncertainty of the reference
points [47]. Common metrics for reporting the accuracy are the standard de-
viation (SD) [17, 33, 44] and root mean square deviation (RMSD) [41, 43, 46].

Within wind energy, SfM has previously been investigated for 3D recon-
struction of blade geometries [11, 16]. However, these studies did not have a
sufficient resolution to reconstruct the surface topography directly and rather
used the color texture to identify damages. With high-resolution SfM, a point-
sampling distance below 0.1 mm/pixel can be achieved which allows for re-
construction of the surface roughness [48, 49].

In this proof-of-principle study, we investigate the potential of high-resolution
SfM in quantitative inspection of wind turbine blades. We envisage a scenario
where an UAV carrying a high-end RGB camera is capturing images of the LE
of blades. Using these images, a SfM reconstruction of (parts of) the LE is per-
formed from which quantitative measures of the LER can be extracted. The
study seeks to answer two main questions. Firstly, to demonstrate whether
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a sufficient resolution can be achieved to reconstruct the LER of a blade.
Secondly, what is the performance of high-resolution SfM in providing quan-
titative measures of the surface topography of the LER. A mock-up of an
eroded blade was fabricated by artificially enhancing the LER of the tip of a
decommisioned blade. The SfM capturing was done using a handheld cam-
era and in an outdoor environment to mimic realistic inspection conditions.
In the high-resolution acquisition, the images were acquired from a distance
of roughly 2 meters using a 300 mm lens. We believe these conditions to be
representative of what the envisaged UAV inspection scenario might operate
with.

For evaluating the accuracy of the SfM reconstruction, selected areas on
the blade surface were extracted from the point cloud and converted to a
DEM. Replicas of the same areas on the blade surface were made using
replication moulding and transferred to the lab. Replication moulding is
a demonstrated method for transferring hard-to-access surface topographies
to a substrate suitable for microscopy measurements [50]. In the replica-
tion of surface roughness, accuracies at the sub-micrometer level have been
demonstrated using elastomer replica materials [51–56]. Using confocal mi-
croscopy (CM) measurements of the replicas, a DEM was created for direct
raster-to-raster comparison to the SfM reconstruction. The resolution of the
SfM reconstruction was evaluated using Fourier analysis and RMSD calcula-
tion. For validation of the resolution analysis, a model was constructed by
reducing the resolution of the reference DEM and adding noise. This model
DEM was then compared to the SfM DEM. Finally, the quantitative perfor-
mance in measuring LER was evaluated using surface roughness parameters
and topographic feature sizes.

H.2 Methods and Materials

H.2.1 Blade Mock-up

A decommissioned wind turbine blade was available for the experimental
setup. The blade had been used in a modern 2 MW pitch-regulated wind
turbine. Span-wise, the outer two meters of the blade that already had some
erosion was used. To better resemble the examples of severe LE erosion expe-
rienced from field inspections [4, 8, 9], the erosion was artificially increased
by sandblasting the LE. At this level of erosion, large areas of laminate are
exposed along the LE with depths of 1-3 mm. Severe erosion was chosen for
this study for two main reasons. Firstly, depths of these magnitude are at the
order where the aerodynamic performance is significantly impacted. A study
by [57] found that the critical height of roughness for lowering the maximum
lift of wind turbine blades was above 1 mm. Secondly, a large surface rough-
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ness represents a good pass/fail test of the feasibility of high-resolution SfM.
If the resolution was not sufficient for resolving large erosion structures, it
would not function for less eroded surfaces either.

For inspection of a wind turbine in operation, we envision that the turbine
is stopped with the inspected blade in a vertical position. To simulate this,
the blade was mounted vertically in a gantry, which was welded together
for the purpose of this work. To include the effect of oscillations, chain links
were used to fix the blade mock-up to the gantry, which let the blade segment
move freely in the wind. The height of the gantry was 5 meters, resulting in
a distance of 5 meters from the very tip of the blade to the ground. The blade
setup on the gantry, together with the scissor lift used to capture all the data
for this paper can be seen in Figure H.1.

Fig. H.1: The wind turbine blade segment positioned on the built gantry, together with the
scissor lift used for capturing image and replica data.

H.2.2 SfM Capturing Conditions

The image capturing process of the proof-of-principle study was done in an
outdoor environment to ensure realistic capturing conditions. A commercial
DSLR camera (Canon 5Ds) with a variable zoom lens (Canon 70-300 f/4-5.6L
IS USM) was used with the focal length fixed at 300 mm. Camera parame-
ters and settings are summarized in Table H.1. As the capturing was done
outdoors, a number of prerequisites need to be taken into account:

• The natural illumination can change between images.
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• The sides of the blade mock-up may not be evenly illuminated.

• Wind can cause oscillations of the blade mock-up, which can change its
position and orientation compared to previous images.

Since the accuracy of the SfM reconstruction depends on the stability of
light conditions, camera settings should be robust to environmental changes
in light direction and intensity. In addition, the settings should take into ac-
count the possible motion of the blade. The chosen ISO, shutter, and aperture
settings are shown in Table H.1. They represent what we believe to be reason-
able compromises between exposure for outdoor conditions, becoming less
sensitive to motion blur (shutter) and not having to worry too much about
too shallow depth-of-field (aperture).

Table H.1: Camera parameters and settings for the outdoor capturing setup.

Camera Parameters Values
ISO 800
Shutter Speed [sec] 1/200
Aperture f/16
Focal length [mm] 300
Image size [pixels] 8688x5792
Sensor pixel size [µm] 4.14
Capturing setup
Distance to blade [m] 2
Angular spacing [◦] 10
Capturing bands 3
No of images 57
GSD [µm/pixel] 27

For the initial proof-of-principle study, a manual and hand-held image
capturing was performed. A part of the wind turbine blade was chosen that
contained a variation in surface topography across the leading edge - from
very rough damaged areas to smoother clean areas. The part of the blade
chosen for 3D reconstruction is shown in Figure H.2.

A semi-circular 180-degree capturing pattern is used for the image captur-
ing. This capturing method was shown by [34] and [58] to produce high accu-
racy reconstructions, while also minimizing the number of required images.
Three horizontal semi-circular bands each with 19 images were acquired giv-
ing a total of 57 images. To ensure enough vertical separation between the
horizontal bands, the first band was taken from the ground level looking to-
ward the suspended blade. To capture the other two bands a moving scissor
lift was used. The captured positions can be seen in Figure H.3b. This way the
blade surface could be captured from different positions and angles both in
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Fig. H.2: Testing blade together with the region chosen for reconstruction. The zoomed-in parts
are of the two sides of the blade

horizontal and vertical direction, ensuring maximum cover. The semi-circles
were centered around the wind turbine blade with a distance of 2 meters
from camera to blade. The capturing settings are summarized in Table H.1.

For a fixed focal length, the capturing distance determines the ground
sampling distance (GSD), i.e. the spatial size on the object that each pixel
in a captured image covers. Using a pinhole camera model, the GSD can be
calculated as the camera sensor pixel size p multiplied by the ratio of the
distance between camera and surface D over the focal length f as shown in
equation H.1.

GSD =
D
f

p (H.1)

With the used settings in the study, the GSD was 27 µm/pixel which
corresponds to approximately 36 pixels/mm on the blade surface.

H.2.3 SfM Reconstruction

For SfM reconstruction, the commercial stand-alone software package Agisoft
Metashape by [22] was used. It was selected as it has previously demon-
strated a high accuracy compared to other state of the art solutions, while be-
ing robust against sub-optimal capturing conditions [34]. The pipeline from
input images, 3D reconstruction and extraction of depth map patches is vi-
sualized in Figure H.3. An overview of the process is given below.

The captured images H.3a were imported to Metashape and a triangula-
tion, feature extraction and matching step were performed to find the camera
positions and key feature points from the input images H.3b. From these po-
sitions and feature points, a sparse point cloud was formed. Next in the
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(a) Input images (b) Camera pose (c) 3D geometry

(d) Reconstruction in color (e) Patch in color (f) DEM of patch

Fig. H.3: Pipeline for 3D reconstruction using SfM. H.3a) Initially, images were acquired at every
10 degrees of a half circle around the wind turbine blade at three different heights and tilt angles.
H.3b The camera pose of the images and points on the object surface were then calculated. The
reconstructed surface geometry without H.3c and with color H.3d. Extracted patch from the
reconstruction shown as H.3e (color) texture and H.3f resulting DEM.

reconstruction process a dense point cloud was created and meshed into a
triangle mesh H.3c. Finally a (color) texture is build from the visual data
from the input images H.3d.

To establish an absolute scale in the SfM reconstruction, the known cam-
era positions and distance from camera to blade surface were utilized. The
method presented in [59] was followed. The scale was calculated using a
least squares transformation estimation between the reconstructed camera
positions and the manually measured positions in the real world.

For evaluating the SfM reconstruction, three areas R1, R2 and R3 were
selected for comparison to reference microscopy measurements. The areas
were chosen to include distinctive surface topography features and cover the
boundary between intact coating and damaged surface. For each area, a dig-
ital elevation model (DEM) was created from the reconstruction using the
following pipeline. First, for further processing and analysis of the mesh
the reconstruction was imported to the software CloudCompare [60]. For
each area, a patch of roughly 35 mm x 35 mm was created from the main
reconstructed point cloud. The patches were oriented with the Z axis per-
pendicular to the mesh surface, and were rasterized into a DEM of the sur-
face topography H.3f. This was done by an interpolation of the point-cloud
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points to a map with equidistant point spacing and using the average z-values
of each grid space. The resulting pixel size was chosen to be 13, 3µm to match
the reference microscopy images.

H.2.4 Replica Moulding

Replication was performed for each of the R1, R2 and R3 areas described in
section H.2.3. As a replication material with a fast curing time and resolu-
tion down to 0.1 µm, Repliset T3 by Struers [61] was selected. In previous
studies, the replication of surface textures using Repliset has achieved a sub-
micrometer accuracy [55, 62]. The RepliSet T3 is a black two-part silicone
rubber which consists of a polymer and curing agent. For replication, the
two parts were pushed out of the cartridge, mixed in a static-mixing noz-
zle and applied onto the blade surface H.4a. Immediately after application,
backing paper was placed on top of the mixture and attached by applying a
small force as shown in Figure H.4b. The mixture set for 15 minutes and then
the replica was removed from the blade surface by hand.

(a) (b)

Fig. H.4: Replication of an area on the blade mock-up. Figure H.4a illustrates the application
of the combined polymer and curing agent from a static-mixing nozzle. Figure H.4b shows the
backing paper being attached by applying a gentle force to the replication material.

H.2.5 Confocal microscopy

Confocal microscopy (CM) was used to produce reference DEMs of the R1,
R2 and R3 areas. The three replica of the blade surface were measured us-
ing a calibrated PLU NEOX confocal microscope by Sensofar [63]. For each
replica, an extended area of approx. 35 mm x 35 mm was measured by
stitching around 400 individual images. A x5 magnification objective with
an NA of 0.15 was used. For each image, a 4x4 binning was used resulting
in a final pixel size of 13.3 µm. To ensure a superior resolution for the CM
measurement, the pixel size was kept smaller than the GSD of the SfM re-
construction. The vertical step size (z-axis) used was 12 µm. The 3D surface
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reconstruction, stitching and creation of a DEM were performed using the
proprietary SensoSCAN software.

The sensitivity of the CM microscope in the vertical direction (z-axis) was
calibrated using a set of step height transfer standards. Traceability was en-
sured through calibration of the standards by e.g. an AFM equipped with
laser interferometer. The amplification coefficient of the z-axis had a relative
uncertainty lower than 3%.

H.2.6 Image processing and data analysis

The main software programs used for the surface topography analysis were
the Scanning Probe Image Processor (SPIP) [64] version 6.6.3 as well as cus-
tom scripts in MATLAB version 2019b. SPIP is an image processing program
with special tools for accurate characterization of image structures.

Initially using SPIP, each SfM and reference DEM were levelled by sub-
tracting a least-squares parabola fit from the overall shape. This way the long
wavelength curvature of the surface was removed, while the short wavelength
surface roughness could be preserved. Then for each area, the SfM DEMs
were co-registered using a Fourier correlation approach in MATLAB.

From the co-registered DEMs, geometrical quantities were extracted from
both SfM and microscopy reference. The chosen quantities are the depth and
height of topographic features.

SfM reconstruction quality

To evaluate the quality of the SfM reconstruction, two parameters were cho-
sen; The instrument transfer function at 50% value (ITF50) and the maximum
value of the cross-correlation function (CCFmax).

The ITF50 value is a measure of the spatial sharpness, which is analogous
to the MTF50 value of the modulation transfer function. ITF50 is found as the
spatial wavelength at which the instrument response is half the value of the
reference. The definition of ITF is shown in (H.2) [65]. For the calculation, a
region on the surface containing a height is selected. For each line across the
height step, the ratio of the 1D Fourier transforms of the instrument function
and reference is calculated. The ITF is found as the mean of all lines in the
region.

ITF( f ) =

〈 ∣∣∣∫ ∞
−∞ z(x, y)e−i2π f xdx

∣∣∣∣∣∣∫ ∞
−∞ zre f (x, y)e−i2π f xdx

∣∣∣
〉

y

(H.2)

CCFmax has a value between 0 and 1 and describes the spatial similarity
of a set of co-registered measurement and reference topographies. If the
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measurement is very close to the reference, the value of CCFmax will be close
to 1. CCFmax is found as the maximum of the normalized 2D cross-correlation
function [66].

fCCF
(
tx, ty

)
=

∫∫
A z(x, y)zre f (x− tx, y− ty)dxdy√∫∫
A z2(x, y)dxdy

∫∫
A z2

re f (x, y)dxdy
(H.3)

Surface Roughness

Prior to performing the surface roughness analysis, an S-filter of 25 µm and
an L-filter of 10 mm were applied to the DEM in accordance with [67]. A
plane was chosen as reference surface using a least-squares linear fit to the
height values of the DEM. The following areal surface roughness parame-
ters as described in [68] were calculated: Sq, Sdq and Sal . These parameters
were chosen as they describe different and complementary features of the
surface topography as explained below. The analysis was performed using
the "Roughness Analysis" tool of the SPIP application software.

• Sq is the root mean square height of the z-values with respect to the
reference surface. Sq describes the overall height variation of the DEM.

• Sdq is the root mean square of the surface gradient. As Sdq depends
on variations in the local slope, it is sensitive to the short wavelength
components of the surface topography.

• Sal is the auto-correlation length, and is a measure of the spatial dis-
tance a which the surface texture becomes statistically different. Sal is
calculated as the minimum distance in frequency space at which the
auto-correlation function decays to 0.2 in value. Therefore, Sal contains
information on the long wavelength components of the surface topog-
raphy.

H.3 Results

The performance of the SfM reconstruction is illustrated in Figure H.5. In
H.5a and H.5b, the SfM and reference DEM of replication area R1 are shown.
Both have been processed as described in section H.2.6. The blue box indi-
cates the subregion used for the ITF analysis. As seen in panel H.5a, the SfM
DEM captures the main topographic features although the resolution is less
than for the reference in H.5b. While short wavelength topography variations
are missing, holes, edges and the larger glass-fiber structures are visible in
the SfM DEM.

The ITF function was calculated from the SfM and Reference DEM of area
R1 as described in section H.2.6. The ITF was not calculated for R2 and R3 as

240



H.3. Results

(a) SfM (b) Reference (c) Model

(d) ITF (e) SfM-Reference (f) Model-Reference

Fig. H.5: H.5a Reference, H.5b SfM and H.5c model DEM of replication area R1. The blue box
indicates the area used for the calculation of ITF50. The scalebar is 5 mm. H.5d ITF for SfM and
two model curves based on filtering the reference DEM with and without noise added. H.5e-H.5f
Residual of SfM and model DEM with respect to reference DEM.

no height step was present in these areas. In H.5d, the ITF function for SfM
is shown (blue solid line) with the 50% value indicated in dashed black lines.
As stated in Table H.2, the ITF50 spatial wavelength was 1.3 mm.

In order to validate the shape of the SfM ITF, a model was developed
based on the reference DEM. First, the reduced resolution of the SfM recon-
struction was approximated by applying a Gaussian low-pass filter to the
reference DEM. A filter with a FWHM of 0.65 mm was used to give the
model DEM the same ITF50 value as the SfM. As seen in Figure H.5d, the
ITF of the filtered reference (dashed red line) matches the long wavelength
values of the SfM ITF. However, at higher frequencies the filtered reference
has lower values than the SfM. In a second step, structured noise centered at
0.5 mm and 0.1 mm wavelengths was added (dash-dotted yellow line). The
two noise components was constructed through Gaussian low-pass filtering
of Gaussian noise with an amplitude selected to match the SfM ITF. In H.5c,
the model DEM using Gaussian filter and noise added is shown for area R1.
Similarly, a model DEM was created for both area R2 and R3 using the same
Gaussian FWHM and noise settings.

In Table H.2, CCFmax and RMSD values for both SfM and model DEM
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are shown for all replication areas. The CCFmax values for the model were
close to 1 for all areas. For SfM, the values were >0.9 for both R2 and R3
indicating a very close horizontal spatial resemblance. A slightly smaller
value was found for R1. Overall, the CCFmax values indicate that an accurate
scaling of SfM was obtained. As seen in the table, the RMSD values for
SfM are between 0.1-0.2 mm, which is several times larger than the model
values between 0.03-0.04 mm. This discrepancy is illustrated in the residuals
shown in Figure H.5e and H.5f. While large differences are observed near
sharp edges for both model and SfM DEM, the SfM residuals also contain
a waviness that accounts for the larger RMSD value. The waviness has a
wavelength in the order of 10 mm which shows up as large variations in the
long wavelength part of the ITF in Figure H.5d.

Table H.2: Quantitative values for evaluating the SfM reconstruction. CCFmax and RMSD are
included for all three areas R1 to R3 while ITF50 was only calculated for R1.

Replication area R1 R2 R3
ITF50 [mm] 1.3
CCFmax, SfM 0.86 0.95 0.93
CCFmax, Model 0.98 0.99 0.995
RMSD, SfM [mm] 0.099 0.12 0.21
RMSD, Model [mm] 0.038 0.036 0.031

To evaluate the surface roughness of the SfM reconstruction, two regions
within each of the R1, R2 and R3 areas were selected as shown with blue
solid lines in Figure H.6a to H.6c. Of the six regions named S1 to S6, an
extensive erosion of S1 and S3 resulted in a topography dominated by glass-
fiber structures while S2, S4, S5 and S6 still had an intact surface coating.

The roughness parameters Sq, Sdq and Sal were calculated for each of the
S1 to S6 regions as described in section H.2.6.

The roughness values for both SfM and reference are shown in Table H.3
and illustrated in scatter plots in Figure H.6g to H.6i. Overall, both SfM and
reference values show a larger roughness for the eroded S1 and S3 regions
than the regions with intact coating. However, when comparing the three
roughness parameters on the scatter plots, some differences are clear. While
the SfM values for Sq and Sal vary within around 10%-20% of the reference
values. the SfM values for Sdq are systematically lower than the reference by
around 50%. The absolute RMSD deviations for S1 to S6 were 9 µm for Sq,
0.5 for Sdq and 0.2 mm for Sal .

Three distinctive topographic features were selected in the R1 and R2
areas; Two depressions D1 and D2 (red dashed lines) and a height step H1
(yellow dotted lines) as shown in Figure H.6a and H.6b. For all features, the
depth and height measurements for the SfM DEM are close to the reference
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(a) R1, Ref (b) R2, Ref (c) R3, Ref

(d) R1, SfM (e) R2, SfM (f) R3, SfM

(g) Sq (h) Sdq (i) Sal

Fig. H.6: H.6a-H.6c Reference and H.6d-H.6f SfM DEMs of area R1, R2 and R3, respectively,
with prior image processing as described in section H.2.6. Surface roughness regions S1 to S6
are indicated with solid blue lines. Depressions D1, D2 and ridge H1 are indicated with dashed
red and dotted yellow lines, respectively. The scalebar is 5 mm. H.6g-H.6i Scatter plots of SfM
and reference values for Sq, Sdq and Sal , respectively. The dotted line indicates where SfM values
are equal to reference values.

as shown in Table H.3. The relative deviations between SfM and reference
are less than 16%, and the absolute deviations were less than 0.2 mm with an
RMSD of 0.1 mm.
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Table H.3: Quantitative values for surface roughness and topography features. The roughness
parameters Sq, Sdq and Sal for regions S1 to S6 were calculated using an S-filter of 25 µm and an
L-filter of 10 mm. The depth for depression areas D1 and D2 and height for ridge area H1.

Replication area R1 R2 R3
S1 S2 S3 S4 S5 S6

Sq, Ref [µm] 78 31 96 35 37 51
Sq, SfM [µm] 61 28 106 39 36 44
Sdq, Ref 1.03 0.78 1.02 1.22 0.69 0.90
Sdq, SfM 0.43 0.45 0.45 0.50 0.55 0.35
Sal , Ref [mm] 1.04 1.12 1.41 0.66 0.73 0.64
Sal , SfM [mm] 1.25 0.84 1.66 0.85 0.66 0.88

D1 H1 D2
∆z, Ref [mm] 0.57 0.34 1.51
∆z, SfM [mm] 0.66 0.30 1.68

H.4 Discussion

The reconstructed SfM displayed a high sharpness and resolution. From the
ITF50 value, we have that features down to 1.3 mm appear sharp. Conversely,
the Gaussian FWHM of 0.65 mm from the model DEM gives a measure of the
spatial resolution, i.e. the smallest distinguishable features. The resolution of
around 1 mm is one to two orders of magnitude lower than the GSD of 27
µm, which is in line with previous high-resolution SfM studies [48, 49].

The high value of CCFmax for the R2 and R3 areas shows a good spatial
resemblance between SfM and reference measurements. The slightly lower
value for R1 could either indicate an insufficient resolution or an imperfect
co-registration. Since the CCFmax values for the model DEM were close to 1,
the resolution seems sufficient to preserve the topographic features. The ac-
curacy in co-registrating the DEMs could be limited by the replication mould-
ing. While the replica ensures a high replication accuracy of the surface
roughness, the overall shape is not preserved when demoulding the replica.
Although a levelling was applied, a waviness was still observed in the resid-
ual of the SfM DEM with respect to the reference as seen in Figure H.5e.
Nonetheless, as the waviness had a wavelength of 10 mm it did not impact
the ITF50 value of 1.3 mm.

Furthermore, as indicated by the model DEM, a rather high noise level
was present in the SfM DEM. Some of this may originate from the point cloud
densification or the interpolation when creating the DEM. Varying light in-
tensity may also affect the reconstruction as reported by [11]. Further studies
are needed to determine the potential for reducing the noise level.

The surface roughness analysis show relatively good results for SfM mea-
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surement of both Sq and Sal parameters. The resolution of the SfM recon-
struction was sufficient as both Sq and Sal are most sensitive to the low spa-
tial frequencies, i.e. structures larger than 1 mm. Similarly, the topographic
features D1, H1 and D2 had large spatial widths which ensured good results
for the measured depths and heights. In contrast, a poor result was seen for
the Sdq parameter which is sensitive to high spatial frequencies, i.e. structures
smaller than 1 mm.

The potential for using the Sq parameter in quantitative characterization
of LER is illustrated in Figure H.7. First, the SfM reconstruction was unfolded
to a flat shape and extracted as a DEM using CloudCompare. A region cen-
tered on the LE was selected as indicated with a box in Figure H.7b. For each
10 mm x 10 mm square in the region, the Sq parameter was calculated and
visualized in red in Figure H.7c. The strength of the red color indicates the
Sq value in each square with a lower bound of 20 µm (no color) and upper
bound of 100 µm (color saturated). As seen, the Sq values are low for areas
with the coating still intact, and high along the eroded leading edge. This
indicates the potential for high resolution SfM for quantitative inspection of
LER.

(a) SfM curved shape (b) Plane shape (c) Sq visualization

Fig. H.7: Visualization of LER. The curved blade geometry seen in H.7a was unfolded to a flat
shape shown in H.7b from which a region centered on the LE was selected as indicated by the
box. For each 10 mm x 10 mm square in the region, the Sq parameter was calculated. In H.7c,
the strength of the red color indicates the Sq value in each square. The scalebar is 10 mm.

For quantitative inspection of the blade erosion, the resolution of the SfM
reconstruction needs to match the size of erosion structures, i.e. pits, gauges
and delamination. From inspection reports of LE erosion structures, [4] con-
sidered pits and gouges with widths down to 0.5 mm and depths from 0.5
mm to 3.8 mm. In the study by [9], widths down to 2 mm and depths from
0.1 mm to 1 mm were investigated. In both studies, the delamination covered
tens of millimeters in width and 1-3 mm in depth. The lower end of these
feature sizes correspond very closely to the obtained resolution of 1̃ mm.
Conversely, as the results of the SfM measurements of topographic features
D1, H1 and D2 showed, depths from 0.3 mm - 1.5 mm could be successfully
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measured using high-resolution SfM.

(a) f = 100 mm (b) f = 35 mm

Fig. H.8: Model DEM of a SfM acquisition of area R1 with H.8a 100 mm and H.8b 35 mm focal
length. The model DEMs were created by Gaussian low-pass filtering of the R1 reference DEM
of Figure H.5b with FWHM of 1.9 mm and 5.5 mm, respectively. The scalebar is 5 mm.

Had the SfM resolution been lower by e.g. using a shorter focal length,
the surface roughness and smaller topographic features would not have been
visible. This is illustrated in Figure H.8 by a model DEM of a SfM acquisition
of area R1 with a 2 m capturing distance using a 100 mm (H.8a) or 35 mm
(H.8b) focal length. These settings correspond to a GSD of 0.08 mm and 0.24
mm, respectively. The model DEMs were created from the R1 reference DEM
of Figure H.5b by applying a Gaussian low-pass filter with a FWHM of 1.9
mm and 5.5 mm, respectively. As seen, already for the 100 mm focal length,
the glass fiber structures are becoming blurred. For the model of a 35 mm
focal length, even the topographic features appear blurred.

In previous studies which applied SfM to reconstruct blade surface, the
low resolution would have made a quantification of LER infeasible. In com-
parison, the settings used by [11, 16] resulted in a GSD of around 0.3 mm
which corresponds to the model in Figure H.8b. Rather than quantifying the
surface topography, they relied on the texture of the reconstruction to locate
damages on the blade surface. An advantage of using a lower resolution is
that a larger surface area of the turbine blade can be covered in a single re-
construction. Applying high-resolution SfM to reconstruct the full length of
a blade would require a very long inspection time and result in a challenging
amount of data.

For full blade inspection, 2D images with even lower resolution can be
applied which require fewer image acquisitions and a lower acquisition time.
However, in this approach the absolute geometry is not obtained, and the
LER is not quantified. Instead other methods would be needed to indicate
the presence and location of LER such as the deep learning approach used by
[13]. In many ways, the proposed high-resolution SfM is complementary to
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this deep learning approach. By combining both, an initial inspection using
low-resolution 2D images would indicate the location of LER on the blades.
Afterwards, high-resolution SfM could be applied to quantify the severity of
the located erosion, which could be used to estimate the aerodynamic impact.
Furthermore, if these inspections were combined with a probabilistic model
such as a dynamic Bayesian network model [69], the development of the
erosion in time could be estimated. This would provide an input for when to
conduct repairs on the blade.

H.5 Conclusion

This proof-of-principle study demonstrated the successful application of high-
resolution SfM to quantify the surface roughness of a decommissioned tur-
bine blade. To better resemble the LE erosion observed from inspections, a
severe level of erosion with a large area of delamination was applied to the
blade. To mimic realistic inspection conditions, the blade was hanged ver-
tically in an outdoor setting, and the SfM image acquisition was conducted
hand-held to ensure a level of vibrations. Using a 300 mm focal length and 2
m distance from the blade, a 1 mm spatial resolution of the SfM reconstruc-
tion was obtained.

To validate the SfM scan, smaller regions of interest were transferred to
the lab using replication moulding and measured with confocal microscopy.
From the co-registered SfM and reference regions, a number of surface rough-
ness parameters and topographic feature size were extracted. The quanti-
tative results of surface roughness and topographic feature sizes displayed
sub-mm accuracies. Compared to the reference, the RMSD value was 9 µm
for the Sq roughness using an S-filter of 0.025 mm and L-filter of 10 mm,
while the RMSD value was 0.1 mm for the depths and heights of topographic
features. The results demonstrate the potential for using high-resolution SfM
for quantitative measurement of LER on wind turbine blades. Quantitative
measurements of LER from blades in operation could aid in creating more
realistic CFD models and improve blade inspections.

In future work, a high-resolution SfM inspection using a UAV should be
carried out on the blade of a wind turbine in operation. The camera would be
mounted in a gantry on the UAV platform to allow for the same poses relative
to the blade as in the current study. These settings would allow a more
thorough investigation of the effects of vibrations from UAV platform and
turbine on the image acquisition and the quality of the 3D reconstructions.
In addition, the sensitivity of high-resolution SfM towards surface roughness
should be investigated further through measurements on blade surfaces of
varying erosion severity. Further studies are also needed on the influence
of the texture and color contrast of the blade surface on the quality of the
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reconstructed surface details.
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I.1. Introduction

Abstract

With the introduction of new specialized hardware, Virtual Reality (VR) has gained
more and more popularity in recent years. VR is particularly immersive if suitable
auditory and haptic feedback is provided to users. Many proposed forms of haptic
feedback require custom hardware components that are often bulky, costly, and/or
require lengthy setup times. We explored the possibility of using the built-in vibro-
tactile feedback of HTC Vive controllers to simulate the sensation of interacting with
surfaces with varying degrees of roughness. We conducted initial testing on the pro-
posed system, which shows promising results as users could accurately and within
short time discern the amount of roughness of 3D models based on the vibrotactile
feedback alone.

I.1 Introduction

In recent years there has been a steady rise of the number and quality of VR
solutions. All these systems aim to immerse users by using a combination
of visual and audio modalities together with a sense of presence in the VR
environment, which is achieved by internal or external head and hand track-
ing. For interacting with the VR environment, the state-of-the-art solutions
usually rely on controllers. However, the reliance on controllers and the im-
possibility to touch and feel models in the 3D environment have hampered
immersion. Virtual reality applications in many areas can benefit from the
introduction of haptics, such as phantom limb pain [1] and stroke rehabili-
tation [2, 3], interactions for blind users [4], data visualization [5], cultural
heritage [6], etc. Normally this is done through the use of custom hardware,
which makes reproducibility hard and expensive.

In this paper we present an initial study on the use of the built-in vibration
motors in the HTC Vive [7] controllers for detecting and differentiating dif-
ferent levels of roughness on meshes in VR. We tested our solution on fifteen
participants of varying VR skill levels, using high detail 3D reconstructions
of real world objects to achieve natural interactions. The participants did
not see the real roughness of the object, but could only perceive it through
the tactile sensation provided by the vibrotactile feedback of the controller.
All users, independent of their skill level, managed to correctly distinguish
the different levels of roughness of the 3D objects in a short amount of time.
Thus, the research in this paper serves as a proof of concept that different lev-
els of roughness can be successfully communicated through VR controllers
without any additional hardware.

259



Paper I.

I.2 State of the Art

Haptic feedback has two main parts - kinesthetic and tactile feedback. Kines-
thetic feedback uses the feeling coming from a person’s muscles and tenders
to distinguish the object that is being touched, grabbed, or held. Tactile feed-
back comes from the feeling of the skin sensors on the fingers and palms
when an object is touched and can convey the shape, texture, and roughness.
Introduction of haptic feedback to VR solutions is a non-trivial problem. This
paper is focused solely on tactile feedback.

Haptic interfaces can be divided into passive and active. Both types can
be useful for different cases in VR. Passive ones rely on the shape of the
controller and try to mimic real life objects or surfaces. Examples of these
can be seen in the work of [8, 9]. Active haptic feedback controller rely on
moving parts, actuators and sensors, to dynamically mimic changes in the
environment or the virtual objects. Examples of active haptics can be found
in [10–12]. Active haptic controllers are of bigger interest to the current study.

Another possibility of active haptics is the introduction of custom tactile
controllers, as seen in the work by [13–15] or sensors directly attached to the
users’ fingertips [16, 17]. These controllers rely on a combination of actuators,
inertial measurement units and electromagnetic coils to create a very precise
sense of touch, but they require custom hardware, are normally quite bulky
and are not readily available for the general public. Work is also done on
directly using the controllers coming with the VR systems. Some research
focuses on augmenting the controllers with additional functionality [18–20],
while others rely directly on controllers’ vibration [21, 22].

We base the study in this paper on the idea that controller vibration can
give an active haptics idea of the surface of 3D objects in VR and help users
differentiate levels of roughness.

I.3 Methodology

Our proposed approach follows the research using integrated controllers, as
this makes it easier to replicate and test, as well as simpler to introduce and
explain to users. This means that the sensation of tactile feedback needs to be
simulated to the user, so the proper information is understood. Our hypoth-
esis is that the built-in vibrotactile features in the HTC Vive controllers can
achieve this sensation, but only if the provided vibration motors are carefully
controlled. In this way, VR interactions with 3D models can be achieved that
are relatively close to touching a surface with a hand-held stylus in the real
world.

The implementation uses Unity with the SteamVR plugin [23]. The Steam
VR API exposes three parameters for modulating the vibration of the VR
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controllers: amplitude, frequency and duration of the vibration. Each of the
se parameters has set value constrains:

• Amplitude can take floating values between [0..1]

• Frequency accepts floating values between [0..350]

• Duration of vibration accepts floating values for the amount of seconds,
with a lower bound value determined by the hardware limitations of the
vibration motor

A limitation of the vibration feature is that the motors can not run all the
time, therefore we have set a heuristic minimum distance of 5 mm between
sampling mesh surface points before which the controller’s motors are not
started. This will ensure that there are pauses between the repeated acti-
vations of the haptic motor and will limited the produced vibration noise.
Additionally to mitigate the possibility of noise we sample the surface of the
object once every 0.1 seconds.

Fig. I.1: Rendering of our virtual VR stylus connected to the VR controller. The virtual stylus
is used to virtually "touch" objects. The stylus is only seen in VR and does not exist on the real
controller. The red rays cast from the stylus are shown for easier explanation of method and are
not visible, when using the application.

Our system detects the underlying mesh roughness by calculating the an-
gle between two sampled surface normals. To help with directing the users,
in VR a 3D model of a stylus is placed on top of the Vive controller as seen
in Figure I.1.

Rays are cast from each vertex point of the mesh of the stylus in the
direction of their surface normal vectors. The intersections of these rays with
other surfaces determine the contact point between the stylus and another
surface. The maximum allowed distance of intersection points is dependent
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on the shape of the stylus, with additional length to ensure contact at the
various possible orientations. All contact points are checked starting from
the tip of the stylus and going down. When two contact points are sampled,
the angle between their normals is calculated and analysed. This angle can
be between [0, π], as seen in the work of [24], as smooth movement on the
stylus on the surface is assumed.

As this is a pilot study, it was decided that the most straightforward ap-
proach is to lock the duration and leave the amplitude as the only actively
adjustable quality in the experiments. Thus, the underlying surfaces can be
approximated without the need to map the physical surface profile to vi-
bration frequency. This introduces the problem that smaller surface details
cannot be communicated through the vibration. To mitigate that and after
analysing the difference between the normals, we simplify the underlying
surface roughness to a binary classification for the vibration controller:

• Surface patches with large angle between the normals result in vibra-
tion with high amplitude, i.e., momentary, tactile "bumps" – approxi-
mating very rough areas

• Surface patches with small angle between the normal result in low-
amplitude, continuous vibration – approximating ambient roughness.

The two cases are distinguished by considering the calculated angle dif-
ference: if it is less than 6 degrees, then it is a low-amplitude vibration patch;
if it is greater than 6 degrees, then it is hard vibration case. This threshold
was selected heuristically after multiple trials as a believable approximation
of the underlying tested surfaces. Thus our system has an dynamic compo-
nent in changing the amplitude and passive component in changing between
levels of predetermined frequency. The values of the frequency levels are
selected after a number of internal trials:

• In case of a large normal angle the vibration duration is set to 0.075
seconds and the frequency to 16 Hz.

• In case of a small normal angle the vibration duration is set to 0.025
seconds with a frequency of 344 Hz.

The amplitude in both cases is dynamically modulated depending on the
difference between the normals and the distance between the sampled points.
The distance between samples is used to change the amplitude, to better ap-
proximate the feeling of dragging the stylus on a real surface. If we consider
that the motion on the surface is continuous, the larger the distance between
samples, taken at equal time steps, the faster the stylus is moving. Our hy-
pothesis is that faster movement has the tendency to "smooth out" the feeling
of a rougher surfaces.
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The vibrations are only sent if the user’s finger is on the trackpad since
this is the part of the Vive controller where the vibrotactile feedback is felt
most distinctly due to the position of the vibration motor.

I.4 Experiment and Results

To test how much information about the object’s roughness our proposed
solution can offer users, we designed an experiment, which relied solely on
the tactile information.

I.4.1 Experiment Setup

(a) (b) (c)

Fig. I.2: Three objects used in the experimental evaluation. The first two vases I.2a and I.2b are
used in the initial training phase, while the third vase is used in the testing part.

Three real world vases were selected and digitized using Structure from
Motion (SfM) reconstruction, through the commercial software Metashape
[25]. The vases were selected because of their roughness profiles. The two
vases in Figure I.2a and Figure I.2b have a simplified roughness profile of a
wave and a checkerboard pattern, which was useful for the training phase
of the experiment, where users were familiarized with the setup and left to
explore it, until they felt comfortable with it. These patterns provided an easy
way to understand the relation between the visual appearance in VR and the
tactile sensation that the controller vibration provides when interacting with
the objects. A view from the initial training part can be seen in Figure I.3.
The real world objects were selected, to give participants an object that both
has small scale roughness, but also large scale surface shape. Our hypothesis
is that this will make distinguishing the different levels of roughness harder
and will limit the possible effects from users learning the roughness from for
example a planar shape.

The third vase, seen in Figure I.2c, was used as a basis for the experi-
ment. Three copies of the reconstructed 3D mesh were made and each was
smoothed. Three degrees of smoothing were utilized which were generated
by Laplacian smoothing in Meshlab [26]. The original reconstruction and the
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Fig. I.3: View from the training area, where the users could try out and test the tactile feedback
on the two simple surface objects.

three smoothed copies can be seen in Figure I.4. Because we were not check-
ing if users can precisely measure roughness, but if users can distinguish and
order different degrees of roughness, the degree of smoothness were chosen
heuristically by experimenting with different configurations. To be sure that
the vase and the three smoothed copies follow a "smoothness progression", a
patch was taken from each of them and the root mean square height Sq was
calculated from each one [27]. The least rough vase was almost completely
smoothed, to provide an almost blank slate compared to the other three.

(a) Label D (b) Label B (c) Label A (d) Label C

Fig. I.4: The vase used for the testing phase (a), together with the other three progressively
smoother copies (b) to (d). The labels from A to D were set as seen in Table I.1

The four vases were set on pedestals in VR with letters A, B, C, and D. The
roughness levels, together with the set label letters and the calculated Sq are
shown in Table I.1. The letters are purposely randomly assigned depending
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Table I.1: The roughness levels of each of the four objects, together with the labels denoting
them and the calculated root mean square height Sq. The letters are given at random to the
different roughness levels and are used when testing

Roughness Sq [mm] Label
Most 0.5569 D

Second 0.5114 A
Third 0.4784 B
Least 0.0304 C

Fig. I.5: View from the testing area, with the four identically looking vases. Each of the vases has
the collider of a object with different level of roughness. The objects are labeled and a red patch
is selected on them, to help directing the attention of the users. A close-up of the underlying
patch roughness is shown for easier understanding and is not visible for the users. The objects
are rotated between users.

on the roughness level. The rendering of their meshes was deactivated with
only the colliders left. On top of each of them a completely smooth model
was rendered, so users had no way of visually seeing the real roughness. The
testing setup can be seen in Figure I.5. Between each user test the positions
of the vases were randomly rotated, but the combination between letter and
roughness was not changed. We rotate the vases to avoid directional bias
from users, when checking which object they interact most with. This bias
can manifest in right or left handed participants going always to the object
on their left or right, which without the rotation can always be the same. To
help directing the attention of the users, a specific patch of all the vases was
selected, where the roughness is particularly pronounced and colored red. A
close-up of underlying roughness of the patch is shown in Figure I.5, while
the users just saw a smooth red surface.
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I.4.2 Participants and Captured Data

Fifteen participants tested the system by using the experimental setup. The
users had an age between 23 and 35 years and varying degrees of proficiency
using VR. Each user was left to first explore the training part of the exper-
imental VR setup, while the facilitator explained to them how to use the
system. Once the user was comfortable, they were teleported to the testing
part, where they were asked to try to order the four identically looking vases
depending on the perceived roughness profile, when they interacted with
them. The users had unlimited time and were instructed to use the specified
red patch on the vases if they had a hard time distinguishing the objects.
Once the users were ready, they gave their idea of the ordering of the vases.
The time between the start of the experiment and the end was taken, as well
as the amount of times the user had interacted with each of the four vases.

I.4.3 Results and Discussion

All fifteen participants could successfully order the objects from roughest to
smoothest. The average completion time was 124.8 seconds, with a standard
deviation of 68.3 seconds. The large standard deviation was caused by three
participants, who took more than 200 seconds to complete the experiment.
All three of the participants had little or no experience in using VR, thus,
their slower completion time can be attributed to some extend to their inex-
perience. The completion times for all users, depending on their proficiency,
can be seen in Figure I.6. Here it can be seen that some of the people with
no proficiency took a lot of time, due to not being fully comfortable using a
VR controller and overall a lot more variation is seen in their times. People
with high proficiency have a lower spread and do not require a lot of time to
distinguish between roughness levels successfully.

The number of times users interacted with each of the four objects can
give an overview, which object was the most difficult to categorize. The re-
sults for each user, depending on their proficiency level, for each of the objects
can be seen in Figure I.7. These results reflect the completion times, discussed
above, with some deviations, showing that some users were interacting with
the objects more, while other were more passive. Again users with no pro-
ficiency required more interactions and focus more on the smoothest object
C.

Table I.2 expands more on the captured results. The values in Most Interac-
tions denote the number of times each of the four objects has been interacted
with the most by the users. On the other hand, Least Interactions denotes the
number of times each object has been interacted with the least amount of
times. The table shows that the object with the most roughness D, has never
been interacted the most times and has been interacted the least amount of
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Fig. I.6: Completion times for each user, grouped by the three VR proficiency levels.

time by most users. This shows that people generally really easily decided
how rough it was and did not need more interaction. On the other hand,
the smoothest object C is both the most interacted object by the most people,
as well as the second least interacted object. This points to the fact that the
order in which users interacted with the objects is important for discerning
their correct roughness. As expected, starting with the roughest object is most
beneficial. Finally, the two in-between objects A and B, had approximately
the same level of difficulty, but once users made up their minds on the most
and least rough, they could decide on the in-between ones easier. On top of
that some participants commented on that they could hear the haptic motors
spin, those who did comment on it were told to try and ignore it. But it is
unclear if it had an impact on the results.

Table I.2: The most and least interacted with labeled objects. The results are created from the
fifteen participants.

A B C D
Most Interactions 5 4 6 0
Least Interactions 3 3 4 5

I.5 Conclusion and Future Work

Our experiment demonstrated that information about the surface rough-
ness of 3D objects can be communicated through the use of tactile sensation
achieved by the built-in vibration capabilities of HTC Vive controllers. With
the help of a virtual VR stylus, users can use the same natural interactions
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Fig. I.7: Number of times users interacted with each of the four objects, grouped by the three
VR proficiency levels. Each time users touched the objects, this is counted as an interaction.

as in real life to "feel" the surface of an object. The preliminary experiment
demonstrated that users can order objects by their perceived vibration surface
roughness without visual cues. The test showed that users could relatively
fast decide which is the roughest of multiple, visually identical objects, as
well as the smoothest and order them always correctly.

There are some limitations of this preliminary study. The limited scope of
the test and the limited number of participants resulted in results which are
too homogeneous and do not show enough variation to further improve the
system. To address these shortcomings, additional experiments are planned.
In particular, we want to investigate the influence of amplitude and frequency
of the vibrotactile feedback on the perceived roughness. Another experiment
could explore how much of an impact the sound of the controller has on the
haptic feeling as some of the test participants mentioned that they could hear
different noises from the motors in the controllers.
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J.1. Introduction

Abstract

Surface inspection of wind turbine blades is a necessary step, to ensure longevity
and sustained high energy output. The detection of accumulation of damages and
increased surface roughness of in-use blades, is one of the main objectives of inspec-
tions in the wind energy industry. Creating 3D scans of the leading edges of blade
surfaces has been more and more used for capturing the roughness profile of blades.
An important part in analysing these surface 3D scans is the standardization of the
captured data across different blade surfaces, types and sizes. In this paper we pro-
pose using sandpaper grit sizes to quantify the surface characteristics of captured
blade 3D scans. Sandpaper has been widely used for approximating different levels
of blade surface roughness and its standardized nature can be used to easily describe
and compare blade surfaces. We 3D reconstruct a number of different sandpaper grit
sizes - from coarser P40 to a finer P180. We extract a number of 3D surface features
from them and use them to train a random forest classification method. This method
is then used to segment the surfaces of wind turbine blades in areas of different sur-
face roughness. We test our proposed solution on a variety of blade surfaces - from
smooth to course and damaged and show that it manages to classify them depending
on their roughness.

J.1 Introduction

Surface inspection is a required part of ensuring the proper working condi-
tion of machinery and infrastructure in industries like agriculture [1], trans-
portation [2], manufacturing [3], energy production [4] among other. An
industry that is particularly susceptible to the effects of infrastructure dam-
ages and degradation is the wind energy production industry. For achieving
maximum wind turbine performance, blades need to be inspected regularly
and potential damages caused by weather erosion, animals and imperfections
in the manufacturing process [5–7], need to be detected as soon as possible.
It has been shown that the presence of even small surface roughness devia-
tions and damages can cause 2% and 5% loss in energy production [8], with
numbers as high as 25% for larger damages and surface imperfections [9].

Wind turbine blade inspection is normally focused on the leading edge of
the blades, as it is shown that damages there affect performance the most [10].
Inspection can be done manually by experts on site or in a laboratory setting
through contact measurements and microscopy analysis [11, 12]. Another
possible way that combines the precision and thoroughness of a structured
laboratory inspection, without the need for stopping production or disassem-
bling is by using machine vision methods [13, 14]. This normally requires
capturing images of the surface, which are used for detecting potential dam-
ages and imperfection. 2D Images can be used for training vision based
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systems for detection of damaged areas and capturing measurement on the
severity of the damages [15, 16]. These algorithms require a lot of image
data of both clean and damaged surfaces of wind turbine blades, which is
information that is not easily accessible. These systems also cannot normally
quantify the micro surface roughness of the blade, as they lack depth infor-
mation. This depth information can be captured by reconstructing the 3D
surface, using a techniques like Structure from Motion [17–19]. This 3D data
can then be used to extract information, about the surface quality.

To quantify this information and be able to compare it between blade sur-
faces, a standardized model of measurement of surface roughness is required.
Profile roughness metrics part of the ISO 4287 [20] standard are used for es-
timation of the details of line scans of surfaces. Examples of these metrics
are the arithmetic mean deviation of the assessed profile Ra, the root mean
square deviation of the profile Rq, the maximum peak Rp and valley Rv depth
of the profile, etc. These profile metrics can be extended to a 3D area, by us-
ing the ISO 25178 [21] standard, a plane is fitted to the surface to patches and
the metrics are calculated from their values. In this paper we want to extend
these metrics representation, by classifying the surface based on sandpaper
roughness that best describes it. Sandpaper with different sizes of grit has
been widely used in the literature for modeling wind turbine blade rough-
ness in testing scenarios in wind tunnels [22–24]. It has been shown that
surfaces with attached sandpaper patches exhibit the same behaviour as if
they had the same roughness profile. By classifying wind turbine blades,
into different sandpaper roughness profiles, their degradation can be more
easily communicated and compared between blades. In addition, sandpaper
surface grits are standardized [25] and easily accessible, making reproduction
of results easy and straightforward. Finally, 3D data of sandpaper surfaces
can be much easily obtained and used for training of a roughness detection
methods, than real wind turbine blade surface data with different levels of
surface damages.

J.2 State of the Art

Wind turbine blade analysis can be used to calculate the predicted energy
production [26] and the utilization coefficients of turbines [27]. It can be
also used for introducing a more granular control on the flow control and
aerodynamic properties of blades [28, 29].

Capturing of 3D data from the surface of wind turbine blades is a widely
researched topic. Two main approaches to capturing 3D can be seen in
the state of the art - for on-site inspections [30], when the wind turbine
has been just stopped and off-line laboratory inspections, where decommis-
sioned blades are normally inspected [12]. The first type of inspection is
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performed on a more regular basis and aims to keep the blades in as close
as possible optimal conditions, while the second type is focus on under-
standing why and how a blade failed or it was decided that the damages
are too severe. For on-site inspections normally use cameras and 3D sen-
sors like LiDARs are mounted on unmanned aerial vehicles [17, 31]. These
aim to produce less high detailed reconstructions, which could under op-
timal capturing conditions capture enough information to give an estimate
of the current condition of the blades. Laboratory inspections normally use
more detailed surface analysis technique, employing electronic microscopes
or surface probes [32, 33]. These methods can capture very high resolution
sub-millimeter accuracy reconstructions of the blade surfaces.

In this paper we try to classify wind turbine blade surfaces using sandpa-
pers with different grit sizes. As sandpapers have known surface properties,
we can then infer the same information about the blade surfaces. In addition,
sandpaper data is widely used for simulating how different surface rough-
ness affects the aerodynamic characteristics of wind turbine blades and their
energy production potential. We base our research on traditional supervised
learning methods, using hand crafted features like the ones presented in the
work of [34–37], for use on large scale LiDAR point cloud segmentation,
focusing on extracting geometrical features, which describe the underlying
surface in a robust way. Our proposed solution uses 3D sandpaper data to
train a Random Forest classifier, which is later used to segment wind turbine
blade surfaces into ares best described by the different sandpaper grit sizes
This information can be later used to model test setups or to better evaluate
how the roughness would affect the blade, based on sandpaper wind tunnel
tests. We show that the proposed approach gives promising results.

J.3 Methodology

J.3.1 SfM Overview

As both the sandpaper patches and the testing data is captured using Struc-
ture from Motion (SfM), we will first give an overview of the method, for
easier reproducibility. SfM is a part of the multi-view stereo algorithms, that
uses only 2D image data from different positions and view directions to re-
construct the full 3D surface of an object [38]. A number of images with a
certain overlap are used as input to the algorithm. Features are extracted
from each image and matched between images. This can be done using al-
gorithms like SIFT [39] or ORB [40]. These matched features, together with
information about the intrinsic parameters of the camera used to take the
images, are used to iteratively triangulate the camera positions and create
a sparse point cloud of the scanned object. The sparse point cloud is then

277



Paper J.

refined using bundle adjustment [41] and a dense point cloud is interpolated
by then known 3D sparse positions. Finally, a mesh can be created from the
dense point cloud, together with textures from the reprojected image infor-
mation.

J.3.2 Sandpaper 3D Reconstruction

Table J.1: Sandpaper grit size and the nominal average particle diameter in mm [42]. The nota-
tion of each grit represents the size of the particles in it.

Grit size Nom. av. diam. (mm)
P40 0.425
P60 0.269
P80 0.201

P100 0.162
P120 0.125
P180 0.082

A number of sandpaper grit sizes are chosen for developing the training
examples and given in Table J.1, together with their average particle size.
This standard is proposed by [42] and widely used. The "P" notation of the
grit sizes is inversely related to the coarseness of the sandpaper material and
represents the size of the particles, embedded in the material. These grit
sizes are chosen, because they are widely used for blade roughness approxi-
mation [24] and because the nominal average diameter of their grit structure
is representative of blade roughness values, at which energy production loss
starts to be observed [10]. Structure from Motion is chosen for 3D recon-
struction of the sandpaper surfaces, as it provides high degree of accuracy,
without the need for specialized sensors or hardware. To more closely mimic
how roughness on a wind turbine blade edge would behave, the sandpaper
patches are mounted on blade replicas made from styrofoam. The replicas
are modeled after the NACA 633418 blade and can be seen in Figure J.1.

For 3D reconstructing the blade replicas a Canon 5Ds camera is used.
As proposed by [43], a semi-circular pattern with a 1.5m radius is used and
18 images are taken in three different heights of the leading edge with the
sandpaper attached. The thus created 54 images are then used as an input to
Metashape [44], a commercial SfM solution, shown to produce high detailed
and robust reconstructions. The large amount of captured images is chosen,
to ensure that enough detail is captured for each grit size, so it is correctly
represented and minimizing the possibility of surface imperfections [45]. An
example of the resultant point clouds for grit size P40, with and without a
texture can be seen in Figure J.2.
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Fig. J.1: Example of styrofoam blade replica, with sandpaper installed on the leading edge. The
shown sandpaper has a grit size of P40

(a) (b)

Fig. J.2: Example of the leading edge reconstructions with sandpaper attached to them - with
and without a texture

J.3.3 Sandpaper Feature Extraction

We extract a number of features from the sandpaper point clouds, as pre-
sented in the work by [46]. To calculate these features first the local neigh-
bourhood around each point needs to be extracted. A faster binary searching
for the distances between all points is done using a KDtree [47], using the
implementation from [48]. In their work [46] and [35] test features extracted
from different types of neighbourhood selection for each point - single scale
neighbourhood of fixed size, single scale neighbourhood of changing size,
combination of multiple scales of neighbourhoods and even a combination
of multiple scales of neighbourhoods of different shape. From the results
of their work it can be seen that a combination of multiple neighbourhoods
gave the best results, of extracting descriptive features. We choose to this ap-
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proach, but focus on neighbourhoods of the same shape, as the reason they
used ones with different shapes was that the classes they were trying to de-
tect were considerably varying in shapes and sizes. This is in sharp contract
to the uniform sandpaper roughness structures, we are working with. We
choose the neighbourhood scales, in a way that they can encompass the av-
erage particle sizes of the selected sandpaper grits as seen in Table J.1. We
choose spherical neighbourhoods with radii in the interval [1 . . . 0.1] mm and
a delta change of 0.1 mm. This creates 10 progressively smaller scales of
neighbourhoods. If not enough points are present in the neighbourhood for
calculating the features, it is zeroed out.

Three types of features are selected, as described in [46] and [35], [37] -
fundamental geometrical properties of the point clouds, local shape covari-
ance features and local statistical shape distribution features. These features
are calculated for each neighbourhood scale and combined. As described
by [46], the fundamental geometrical properties are as follow:

• Local point density of the neighbourhood around a given point (Figure
J.3a),

• The farthest distance between points in the neighbourhood (Figure J.3b),

• The maximum height of difference between points in the neighbour-
hood, where height is expressed in the direction of the average normal
of the neighbourhood (Figure J.3c),

• The standard deviation of the height differences between points in the
neighbourhood, where again the height is expressed in the direction of
the average normal (Figure J.3d).

A visualization of these features for a neighbourhood size of 1mm on the
P40 sandpaper are shown in Figure J.3, where just a small area of the whole
sandpaper leading edge is visualized.

The local shape features [46] and [35] are based on the use of covariance
features [49] and require the calculation of the eigenvalues λ1, λ2, λ3 of each
neighbourhood scale. These features are as follows:

Linearity: Lλ =
λ1 − λ2

λ1
(J.1)

Planarity: Pλ =
λ2 − λ3

λ1
(J.2)

Sphericity: Sλ =
λ3

λ1
(J.3)
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(a) Local Density (b) Farthest Distance

(c) Maximum Height (d) Height Std. Dev.

Fig. J.3: Example local fundamental geometrical properties, extracted from the P40 sandpaper
grit size. Just a small part of the sandpaper leading edge is shown for easier visualization.

Omnivariance: Oλ = 3

√√√√ 3

∏
i=1

λi (J.4)

Anisotropy: Aλ =
λ1 − λ3

λ1
(J.5)

Eigenentropy: Eλ = −
3

∑
i=1

λi ln λi (J.6)

Sum of Eigenvalues: Σλ =
3

∑
i=1

λi (J.7)

Local surface variation: Cλ =
λ3

∑3
i=1 λi

(J.8)

To calculate the eigenvalues, we first calculate the covariance matrix, of
the point positions inside of the neighbourhood and extract the eigenvalues
from it, which are then sorted in descending order. Example of how these
features look on a P40 sandpaper, calculated from a neighbourhood size of
1mm is given in Figure J.4.

The third type of features are the statistical shape distribution features.
These distributions are derived from the work by [50], for parameterization
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(a) Linearity (b) Planarity (c) Sphericity (d) Omnivariance

(e) Anisotropy (f) Eigentropy (g) Sum of Eigenval-
ues

(h) Local Surface Vari-
ation

Fig. J.4: Example local covariance features, extracted from the P40 sandpaper grit size. Just a
small part of the sandpaper leading edge is shown for easier visualization.

of the whole object’s shape, but for use as local features, they can be used on
neighbourhoods of points. These distributions are calculated as histograms
of randomly sampled shape values. These shape values are based on five
metrics:

• D1 - distance from the neighbourhood centroid, to a random point from
the same neighbourhood J.5a,

• D2 - distance between two random points from the neighbourhood J.5b,

• D3 - the square root of the area between three random points from the
neighbourhood J.5c,

• D4 - the cubic root of the volume of a tetrahedron made from four
random points from the neighbourhood J.5d,

• A3 - the angle between three random points from the neighbourhood
J.5e.

We follow the suggestions by [35] and calculate the distributions as his-
tograms with 10 bins and 255 random samplings from each neighbourhood
scale. These results in 100 statistical distribution features per point. The
visualization of the five used metrics, can be seen in Figure J.5.

These features are extracted from each of the reconstructed sandpaper
patches and used to train a Random Forest classifier. The same classifier is
used in the work of [35] and is proven to provide good results, when used
with these features.
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(a) D1 (b) D2 (c) D3

(d) D4 (e) A3

Fig. J.5: The five density metrics, used to calculate the statistical shape distributions, as proposed
by [50]

J.4 Experimental Scenarios and Results

Two testing scenarios are created as part of the paper. The first one is an
initial simple classification scenario, which uses test reconstructed sandpaper
patches. These patches are then classified by the trained Random Forest clas-
sifier, to prove that the selected features can describe the surface of sandpaper
patches of different grit size and is selective enough to be used to describe
the surfaces of wind turbine blades. The second testing scenario uses decom-
missioned wind turbine blades and classifies their surface depending on how
close it resembles different sand paper grits.

(a) P40 (b) P80 (c) P180

Fig. J.6: The three sandpaper patches, used as an initial test for how good are the used features
for describing the sandpaper surface.
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Table J.2: Results from the initial sandpaper data test. The known grit sizes are given horizon-
tally and the predicted grit classes are given vertically. It can be seen that highest percentage
prediction for each corresponds to the real grit size of the patch.

Grit Size P40 P80 P180
P40 0.761 0.013 0.002
P60 0.193 0.127 0.101
P80 0.029 0.696 0.010
P100 0.007 0.055 0.059
P120 0.003 0.104 0.253
P180 0.007 0.005 0.575

To ensure that the training and testing data do not come from the same
sandpaper samples, the testing sandpapers for the first scenario are selected
from a different manufacturer. This testing data represents three grit sizes
- a rough grit size P40, a medium grit size P80 and a fine grit size P180.
The three sandpaper patches are reconstructed using Metashape, using the
same capturing protocol given in Subsection J.3.2. The resultant reconstruc-
tions are shown in Figure J.6. These reconstructions are then used as testing
data, to determine if the chosen features could describe unknown sandpaper
surfaces, before transferring the knowledge to another type of surface. The
resultant confusion matrix is given in Table J.2. It can be seen that the highest
percentage prediction for each of the testing sandpaper patches, showed in
bold, corresponds to the real grit size of that patch. Some of the other grit
sizes are also detected, as each of the patches contains smoother and rougher
areas. For the P180, some problems come from the possible present recon-
struction noise and low frequency surface roughness (Figure J.6c), which can
be classified as higher grit sizes.

For the second testing scenario three wind turbine blades, with varying
surface roughness are selected. All the selected blades have been decom-
missioned and contain both smooth and very rough and damaged surface
patches. One is a full blade, from which a number of patches are selected for
reconstruction and the other two are smaller blade segments, which are used
whole for the experiments. Four patches are selected from the full blade -
two representing damaged and very rough areas and two representing rela-
tively clean areas, with small amounts of surface roughness. The large blade,
together with the two blade segments are shown in Figure J.7.

The four patches and two blade segments are reconstructed using Meta-
shape, following the same capturing protocol presented in Subsection J.3.2.
The selected features, presented in J.3.3, are extracted from the blade recon-
structions and used as testing data for the Random Forest classifier. The re-
sult point clouds with pseudocolor information, on which sandpaper rough-
ness best describes each point is given in Figure J.8. The P40 grit size is
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J.4. Experimental Scenarios and Results

(a) Large Blade (b) Segment 1 (c) Segment 2

Fig. J.7: The three wind turbine blades used for the second experiment. Four patches with
varying degree of roughness are selected from the first large blade, while the other two segments
are used whole

shown as red color and the P180 as dark blue color, with all other grit sizes
represented with the in-between colors.

As there is no ground truth for calculating the accuracy of the surface
classification, its quality will be represented in a different way. Each blade
surface is separated into spherical neighbourhoods and a plane is fit to the
points inside these neighbourhoods. The roughness is then calculated as the
distance to this best fitting plane. The radius of the spherical neighbourhood
is heuristically selected to best capture the roughness of the whole blade point
cloud. The process is done through the roughness calculation functionality of
CloudCompare [51]. The distance between this roughness and the calculated
surface classification into sandpaper roughness is then computed for each
point. For this purpose the classified sandpaper roughness for each point is
substituted for the nominal average diameter of the sandpaper grains given
in Table J.3.2. To quantify these distances we then calculate their root mean
square error (RMSE) and standard deviation, which would give an overview
of how good the sandpaper roughness is fit to the blade surface. These values
are presented in Table J.3. It can be seen that the damaged surface parts are
mostly classified as a P40 grit, with the parts that have varying degrees of
roughness classified as the smaller grit sizes. The P60 and P120 have the
least amount of point classified as them. The smooth and clean surfaces,
especially on the two patches (Figure J.8g and J.8h) and on the blade segments
are represented with P180 grit size. From Table J.3 it can be seen that on
average the rougher patches exhibit a higher RMSE between the sandpaper
representation and the real roughness. The smoother patches have less errors
in the representation and a less standard deviation in these errors. The blade
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Paper J.

(a) Patch 1 (b) Patch 2 (c) Patch 3 (d) Patch 4

(e) Patch 1 (f) Patch 2 (g) Patch 3 (h) Patch 4

(i) Segment 1 (j) Segment 1 (k) Segment 2 (l) Segment 2

Fig. J.8: Results from segmentation of the wind turbine blades, visualized in pseudocolor, where
P40 grit is shown as red and P180 is dark blue, while the other grit sizes are the colors between
them. Just the point cloud is also given for each, for easier visualization of the roughness.

segments on Figure J.8j has a larger RMSE value, because the damages on it
exhibit roughness values, which far exceed the values of the sandpaper grits.

Table J.3: Results from comparing the sandpaper roughness value given to each point, to the
roughness calculated by measuring the distance of the point to the best fitting plane in an area
around it

RMSE [mm] Std. Dev. [mm]
Patch 1 0.179 0.113
Patch 2 0.125 0.069
Patch 3 0.070 0.009
Patch 4 0.101 0.060

Segment 1 0.162 0.110
Segment 2 0.288 0.122

J.5 Conclusion

In this paper we presented an idea for segmenting wind turbine blade sur-
faces depending on the sandpaper grit size that best represents their rough-
ness. This solution aims to provide a standardized method classifying surface
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roughness of wind turbine blades that can be used for calculating their en-
ergy output and performance, as well as more easily modeling them for tests
in wind tunnels.

We selected six different sandpaper patches with varying grit sizes and 3D
reconstructed them using SfM. We then extracted a number of geometrical,
covariance and statistical features from neighbourhoods with progressively
smaller sizes. We used these features to train a Random Forest classifier.

To test the proposed solution we first evaluated the classier on a testing
set of sandpaper patches. We verified that the extracted features could be
used to identify each grit size of the training set. We then introduced surface
data from three wind turbine blades. The data represented surfaces with
varying degrees of surface roughness and damages. These surfaces were also
3D reconstructed and then used as a testing dataset. We demonstrated that
we Random Forest classifier managed to sufficiently segment the surfaces
and to represent their roughness as sandpaper grit sizes.

To give a definitive answer if quantifying the surface roughness of wind
turbine blades is possible using sandpapers of different grit sizes, a number
of wind tunnel experiments need to be made. A blade with certain surface
roughness would be tested against an equivalent blade, with sandpapers of
grit sizes representing the same roughness profile. The aerodynamic proper-
ties of each of them would need to be computed and compared.
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This thesis focuses on the problems surrounding Structure from Motion 
(SfM) data capturing and analysis in the context of 3D surface inspec-
tion. The use of 3D point clouds and meshes has become more wide-
ly spread, because of the additional level of information that they con-
tain compared to more traditionally used inspection data like 2D images. 
Through the thesis, each part of the SfM pipeline is examined. From looking 
at best practices when capturing images both terrestrial and in the air using 
unmanned aerial vehicles and developing simulation environments for test-
ing capturing setups. Through the development of automatic methods for 
detecting the absolute scale of the reconstructed surfaces, using additional 
information from GPS and LiDAR data. Finally, analyzing the resultant re-
constructions to determine their accuracy, the presence of noise, and possible 
use cases, like conveying the surface profile through vibrations and segment-
ing it into different roughness areas.


