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Abstract

The cyclical varying pitch (CVP) propeller is a propeller which pitches the
propeller blades cyclically. This is to compensate for the non-uniform wake
field that the propeller operates in behind the ship hull. Conventional pro-
pellers on the market today are either a fixed pitch (FP) propeller or a con-
trollable pitch (CP) propeller. Common for both of these propellers is that the
blades pitch cannot be adapted in a cyclical manner. The CVP propeller is not
available on the market today, but it has the potential to improve the perfor-
mance of the propeller with respect to efficiency, shaft vibrations, cavitation,
pressure pulses and noise.

Through a state-of-art review four challenges, in realising the CVP pro-
peller, are identified. These challenges are: how to design the optimum pro-
peller blades for the CVP propeller, how to determine the optimum pitch
trajectory for the CVP propeller blades, how to design the cyclical pitch mech-
anism and how to ensure the reliability of the CVP propeller. These different
challenges are, to some degree, coupled with each other. For example the
design of the propeller blades is a trade-off between the propeller efficiency
and the cavitation extent. This trade-off depends on the cyclical pitch trajec-
tory and the power consumption for the cyclical pitch mechanism. In this
dissertation some of the problems associated with the identified challenges
are addressed.

One of the problems addressed in this dissertation is how to determine
the required power and torque to pitch the propeller blades according to a
desired pitch trajectory. This is in order to be able to account for the power
consumption of the cyclical pitch mechanism in the design of the CVP pro-
peller and make requirements for the cyclical pitch mechanism. This is ad-
dressed by making a model which is able to determine the forces and torques
acting on the propeller blades during the cyclical pitching. The model estab-
lished is applied to a CVP propeller case previously considered in another
study. Two different pitch trajectories are investigated and compared to the
propeller blades being fixed. Using the model no gain in the propulsion ef-
ficiency is obtained because the blade geometry is the same for each of the
pitch trajectories. Furthermore, it was found that the pitch trajectory, which
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Abstract

should minimise the variation in the blade thrust, increases the variations
instead.

Another problem addressed in this dissertation is how to determine the
optimum pitch trajectory for the CVP propeller. The optimum pitch trajectory
investigated in this dissertation is the pitch trajectory which minimises the
variation in the hydrodynamical forces and torques acting on the propeller
blades when the propeller geometry and operating conditions are known.
Ideally, the efficiency, cavitation, etc. should also be included when determin-
ing the optimum pitch trajectory but they are not, because of the limitations
in the model established. Using the model established in an iterative man-
ner to determine the optimum pitch trajectory, is computationally expensive
and therefore four alternative models are proposed. These models require
fewer computational resources to evaluate and are therefore more suitable
for determining the optimum pitch trajectory. Each of the models has their
own pros and cons, but the most appropriate models are used to determine
a series of optimum pitch trajectories. The validation of these optimum pitch
trajectories is to be made in the future.

Experimental open-water and self-propulsion tests are made with a CVP
propeller and a CP propeller to compare the relative difference between the
two propellers. The experiments are made in model scale to reduce the finan-
cial costs. The test setup used for the experiments was designed and fabri-
cated for this project. There were two purposes for making the experiments.
One was to validate the performance improvement of the CVP propeller ex-
perimentally. The results showed an improvement in the efficiency, but the
improvement was generally not large enough to be outside the uncertainty
bounds of the experiments. The other purpose of the experiments was to get
experimental data which could be used to validate the model established for
the CVP propeller. The reliability of the experimental results was not good
enough to be able to validate the different model components for the CVP
propeller. This has to be addressed in the future.

vi



Resumé

En "cyclical varying pitch" (CVP) propeller er en skibspropel, hvor stignin-
gen på propellens blade kan ændres cyklisk. Dette bruges til at kompensere
for det ikke-ensartede medstrømningsfelt, som propellen opererer i bag skib-
sskroget. De konventionelle propeller på markedet i dag er enten en "fixed
pitch" (FP) propeller eller en "controllable pitch" (CP) propeller. Fælles for
disse propellere er, at bladstigningen ikke kan tilpasses cyklisk. CVP pro-
pellen er ikke tilgængelig på markedet i dag, men den har potentiale til at
forbedre ydelsen af propellen med hensyn til effektivitet, akselvibrationer,
kavitation, trykimpulser og støj.

Gennem en ”state-of-the-art” analyse identificeres fire udfordringer for
at kunne realisere CVP propellen. Disse udfordringer er: hvordan designes
de optimale propelblade til CVP propellen, hvordan bestemmes det opti-
male cykliske stigningsforløb for CVP propelbladene, hvordan designes den
cykliske stigningsmekanisme, og hvordan sikres pålideligheden af CVP pro-
pellen. Disse udfordringer er til dels koblet med hinanden. Eksempelvis, så
er designet af propelbladene en afvejning mellem propellens effektivitet og
dens kavitation. Denne afvejning afhænger af det cykliske stigningsforløb
og effektforbruget for den cykliske stigningsmekanisme. I denne afhandling
adresseres nogle af problemerne for de identificerede udfordringer.

Et af problemerne adresseret i denne afhandling er, hvordan bestemmes
den krævede effekt og moment, der skal bruges på, at propelbladene følger
det ønskede stigningsforløb. Dette er for at kunne redegøre for effektfor-
bruget af den cykliske stigningsmekanisme i designet af CVP propelbladene
og for at kunne opstille krav til den cykliske stigningsmekanisme. Dette løses
ved at lave en model, der er i stand til at bestemme kræfterne og momenterne,
der påvirker propelbladene under det cykliske stigningsforløb. Modellen an-
vendes på et casestudie af en CVP propel, der tidligere er blevet undersøgt i
et andet studie. Heri undersøges to forskellige stigningsforløb som sammen-
lignes med fikserede propelbladene. Ved anvendelse af modellen observeres
der ingen forbedring i fremdrivningseffektiviteten, fordi bladgeometrien er
den samme for hvert af de undersøgte stigningsforløb. Det findes endvidere,
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Resumé

at stigningsforløbet, som skulle minimere variationen i propelbladets frem-
drivningskraft, i stedet for øger variationen.

Et andet problem adresseret i denne afhandling er, hvordan bestemmes
det optimale stigningsforløb for CVP propellen. Det optimale stigningsfor-
løb, der undersøges i denne afhandling, er det stigningsforløb, som minime-
rer variationerne i de hydrodynamiske kræfter og momenter, der påvirker
propelbladene, når propelgeometrien og driftsbetingelserne er kendte. Ideelt
set bør effektiviteten, kavitationen osv. også inkluderes, når det optimale stig-
ningsforløb bestemmes, men det er det ikke på grund af begrænsningen i den
etablerede model. At bruge modellen til at bestemme det optimale stignings-
forløb iterativt er beregningsmæssigt tungt, og derfor foreslås fire alternative
modeller. Disse modeller kræver færre ressourcer og er derfor mere egnede
til at bestemme det optimale stigningsforløb. Modellerne har deres fordele
og ulemper, men de bedst egnede modeller bruges til at bestemme en serie af
optimale stigningsforløb. Valideringen af disse stigningsforløb skal foretages
i fremtiden.

Eksperimentelle åbenvands- og selvfremdriftstests er udført med en CVP
propel og en CP propel for at kunne sammenligne den relative forskel mellem
de to propeller. Eksperimenterne er udført i modelskala for at reducere de
økonomiske omkostninger. Opstillingen brugt til forsøgene er designet og
fremstillet til dette projekt. Eksperimenterne har to formål. Det ene for-
mål er at validere ydelsesforbedringen ved at bruge en CVP propel eksperi-
mentielt. Resultaterne viser en forbedring i fremdrivningseffektiviteten, men
forbedringen er ikke stor nok til at være udenfor usikkerhedsgrænsen for
eksperimenterne. Det andet formål med eksperimenterne er at få eksperi-
mentelle data, der kan bruges til at validere de etablerede modeller for CVP
propellen. Pålideligheden af disse eksperimentelle resultater er ikke god nok
til at kunne validere de forskellige elementer af modellen for CVP propellen.
Dette skal addresseres i fremtiden.
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Chapter 1

Introduction

"The maritime industry is seeking to decrease the costs of their operations.
Especially, in the shipping industry which has experienced a decline in freight
rates in recent years. The shipping industry is therefore seeking more energy
efficient solutions to increase their profit [93]. Shipowners are not the only
ones who are interested in improving the energy efficiency of their vessels.
The international community is also interested in reducing the emission of
greenhouse gases, due to global warming and other polluting gases and par-
ticles. The shipping industry was responsible for approximately 2.2% of the
global CO2 emission in 2012 [93]. The International Maritime Organization
(IMO) has made the Energy Efficiency Design Index (EEDI) for new build
ships and the Ship Energy Efficiency Management Plan (SEEMP) in order to
make the shipping industry focus on energy efficient solutions" [31]1.

"The EEDI is a measure of the CO2 emission to the transported cargo in
gram CO2 per ton mile [gCO2 /ton mile]. A low EEDI is equivalent to a high
energy efficiency of the vessel and a high EEDI is equivalent to low energy
efficiency of the vessel" [31]. The EEDI requirements for bulk carriers, tankers
and container ships are shown in Figure 1.1. From Figure 1.1 it is seen that
the EEDI requirements for new build ships will become more strict in the
future. "For example a new build container carrier with 100,000 DWT built
before 2015 may emit ≈ 15 [gCO2 / ton mile], a container carrier built after
2025 may only emit ≈ 10 [gCO2 / ton mile]" [31]. In order to fulfil the EEDI
requirements it is necessary to focus on improving the energy efficiency of
the ship propulsion for new built ships.

"Decreasing the EEDI of a vessel also leads to a reduction of emission
gases such as NOx, SOx and particles. New emission limits are continuously
being introduced for the emission of NOx and SOx gasses" [31].

1The paper [31] is cited throughout the introduction in order to avoid self-plagiarism.
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Figure 1.1: EEDI reference line for bulk carrier, tanker and container made from the data in [41].
The different phases shows the year for which the EEDI requirements are valid for new vessels.

"Reducing the EEDI of a vessel can be accomplished by many means, like
changing the fuel, more efficient engine, more efficient hull design and more
efficient propulsor" [31]. In this project the focus will be on the propulsor of
the ship.

1.1 Propulsors

Propellers have been used for ship propulsion for many decades. Over the
years the propeller design has continuously developed and it is still in a pro-
cess of development to this day. A number of the different kinds of propellers
has been developed over the years: see Figure 1.2. Many different forms of
propulsion technologies have been developed: Figure 1.2 shows just a selec-
tion of some of these.

The fixed pitch (FP) propeller, shown in Figure 1.2a, and the controllable
pitch (CP) propeller in Figure 1.2b are the two fundamental propeller types.
The propellers are usually uniquely designed for each vessel or vessel series.
The FP propeller has the largest market share of the two, but the CP propeller
has gained a larger part of the market over the last couple of decades [20].
The other propulsion technologies such as the ducted, azimuth, podded and
contra rotating propellers use either a FP or a CP propeller. The FP propeller
can be made in one piece as shown in Figure 1.2a. Alternatively, the FP pro-
peller can be made with detachable blades for replacement in case of damage,
or a change in the desired operation of the propeller. The CP propeller in-
corporates a mechanism which enables a change in the pitch of all the blades
simultaneously during the operation of the ship and this gives a better ma-
noeuvrability compared to a FP propeller. The thrust of a CP propeller can
be controlled by pitching the propeller blades, whereas the thrust from a FP

2



1.1. Propulsors

(a) Fixed Pitch Propeller [67]. (b) Controllable Pitch Propeller
[67].

(c) Ducted propeller [67].

(d) Azimuth/Podded Propeller
[11].

(e) Contra-rotating pro-
peller [48].

(f) Paddle-Wheel [95].

(g) Cycloidal propeller also
called a Voith-Schneider
Propeller [91].

(h) Waterjet [78]. (i) Oscillating foil or animal in-
spired propulsion [61].

Figure 1.2: Different propulsion technologies for driving marine vessels.

propeller is changed by changing the rotational speed of the shaft. There-
fore the thrust response of the FP propeller has a larger time constant due to
the inertia of the shaft and motor. This is especially disadvantageous when
stopping the ship or in a reversing manoeuvre. With the CP propeller it is
possible to have a constant shaft speed whilst controlling the thrust from the
propeller by pitching the blades. This is an advantage when the propulsion
shaft drives a generator whereby a constant shaft speed can be maintained
with the CP propeller while still being able to manoeuvre the ship. The FP
propeller usually has a slightly better efficiency than the CP propeller. This is
due to the ratio between the hub diameter and the propeller diameter for the
FP propeller is lower than the ratio for the CP propeller [20]. The bigger the
ratio, the lower the efficiency. The hub of the CP propeller is usually bigger
because it contains the mechanism for changing the pitch.

The ducted propeller in Figure 1.2c, the azimuth/podded propeller in
Figure 1.2d and the contra-rotating propeller in Figure 1.2e all consist of ei-
ther a FP or a CP propeller. Ducts are used to either accelerate, deaccelerate

3



Chapter 1. Introduction

or smoothen the inflow into the propeller [20]. This makes it possible to in-
crease the bollard pull or to design more efficient propellers. The difference
between an azimuth and podded propeller is in the location of the motor.
For azimuth propellers the motor is inside the ship hull and for the podded
propeller the electrical motor is placed in the propeller pod itself [20]. The
azimuth/podded propellers have the advantage that they give a better ma-
noeuvrability of the ship compared to the more conventional solutions. The
contra-rotating propeller comprises of two propellers, each rotating in the
opposite direction of each other and thereby helping to balance the torque.
The aft propeller recovers some of the rotational energy from the ahead pro-
peller [20] thereby increasing the efficiency. Similar propeller concepts such
as the overlapping and tandem propellers can be found in [20].

The other propulsors; the paddle wheel in Figure 1.2f, the cycloidal pro-
peller in Figure 1.2g, the animal inspired oscillating foil Figure 1.2i and the
waterjet propulsor in Figure 1.2h are all alternative propulsors to the conven-
tional FP and CP propellers. The paddle wheel does not see much application
anymore and is therefore not discussed further. The cycloidal propeller is a
vertical propeller placed on the hull bottom and can provide a high mano-
euvrability by controlling the cycloidal variation in the pitch. The waterjet
propulsor uses a pump to increase the momentum of the incoming water
before it is discharged aft ship. The change in momentum creates the thrust.
The animal inspired oscillating foil propulsor is still under research and has
not found commercial application.

The typical performance criteria used to evaluate the performance of a
propeller are:

• Thrust

– The propeller should satisfy the thrust requirement for the ship to
move at the required speed by overcoming the ship resistance.

• Efficiency

– To minimise fuel consumption it is desired to maximise the effi-
ciency of the propulsion system. This includes the motor, shaft
line, propeller and hull.

• Shaft vibrations

– Because the propeller operates in a non-uniform flow field (elab-
orated below) the forces and torques affecting the blades and the
propeller varies with time. The mechanical parts of the propeller
should therefore be designed such that they do not have the same
natural frequency as the force/torque oscillation. The parts should
also be dimensioned to avoid fatigue failure.

4



1.1. Propulsors

• Cavitation

– The thrust of the propeller is generated by having a pressure dif-
ference over the propeller. The propeller blades are divided into
a pressure side and a suction side. On the suction side, the pres-
sure may become lower than the vapour pressure of the water and
the water therefore changes phase from liquid to vapour. This is
called cavitation. The performance of the propeller is degraded by
cavitation and in some cases it results in erosion of the propeller.
Erosion occurs when the vapour gets into a zone close to the blade
surface with a pressure higher than the vapour pressure of the wa-
ter, the vapour therefore collapses/implodes. This implosion close
to the blade surface can destroy the blade and erode it.

• Pressure pulses

– Because the propeller has a finite number of blades, the pressure
towards the ship hull pulsates. This is because the pressure to-
wards the ship hull is lower when there is a blade towards the hull
and the pressure is higher when the blade has passed. The pres-
sure therefore pulsates towards the ship hull and thereby induces
vibrations throughout the ship.

• Noise

– The primary sources of noise are cavitation, propeller singing and
machinery, where cavitation induced noise is usually the dominant
source [77]. Propeller singing is due to vortex shedding resonances
with the natural frequency of the blade.

– "Requirements for the noise depends on the ship type. For mer-
chant ships there are requirements for the noise due to the work
environment of the crew and guidelines have been made by IMO
[21]. For cruise ships and ferries it is desired to minimise the noise
to ensure a more comfortable trip for the passengers. Research
ships have requirements for the noise to minimise the influence
on the measurement devices on board the ship. Naval ships and
submarines want to minimise the noise to make it harder to detect
the vessel by sonars etc." [31].

– "It is believed that the noise from ships also influences the life
of marine mammals. IMO has therefore issued guidelines for the
noise emission to reduce the impact on the life of marine mammals
[42]" [31].
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Chapter 1. Introduction

• Reliability

– "Reliability of a propeller is a major concern for the owner of the
vessel. If the propeller is unreliable, the vessel has to be docked
more often and the probability of unexpected breakdowns increases.
Docking a vessel is expensive and an unexpected breakdown and
following docking means that the vessels cannot be in operation.
Taking the vessel out of operation means that the owner cannot
create a revenue with the vessel in this period and has to cancel
contracts on planned work. The FP propeller is normally consid-
ered to be more reliable than a CP propeller. The CP propeller
contains more parts which can break and it has a number of parts
which moves relative to each other. This introduces wear which
over time can make the propeller break down" [31].

The above performance parameters for the propeller depends on the pro-
peller design, the ship hull and the operating conditions for the vessel. "The
operating conditions of the ship and the ship hull design influences the flow
into the propeller because the propeller operates behind the ship hull i.e.
in the wake of the ship. The flow field in which the propeller operates is
called the wake field. An example of the wake field for a single screw ship is
shown in Figure 1.3 as the velocity ratio between the local axial velocity (va)
of the wake field and the ship speed (Vs). A larger ratio equals a higher axial
velocity and a lower ratio equals a lower axial velocity" [31].
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Figure 1.3: Wake field for a single screw ship. The clear center is where the propeller hub is
located.
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The velocity distribution in a ship’s wake field is typically non-uniform as
shown in Figure 1.3. The wake field shown in Figure 1.3 is for a single screw
ship and these wake fields are usually symmetric about the 12, 6 o’clock
axis. Ships with twin screw propellers do not have symmetric wake fields
and they usually have smaller velocity variations in the wake field. Because
of the velocity variations in the wake field, the flow conditions around each
propeller blades varies cyclically as the propeller rotates. The varying flow
conditions results in shaft vibrations and transient cavitation. The transient
cavitation typically occurs when the blade is in the wake peak (12 o’clock
position in the wake field in Figure 1.3).

The design engineer has to consider the propeller thrust, efficiency, vibra-
tions, pressure pulses and cavitation when designing the propeller blades.
The thrust that the propeller should be able to generate is typically specified
beforehand by the operating conditions of the ship. The thrust should be
large enough to maintain the desired ship speed. While satisfying the re-
quirement for the propeller thrust the designer should optimise the propeller
with respect to the efficiency. The obtainable efficiency is typically a trade-off
with the cavitation and vibrational performance of the propeller. To under-
stand this trade-off, it is necessary to understand the fundamentals of the
hydrodynamics of propellers which there is given a short introduction to in
the following. For more details about the hydrodynamics of ship propellers
the reader is referred to [21, 56].

A conventional propeller blade is a cascade of foils of different sizes and
alignments relative to each other as shown in Figure 1.4. The left hand side
of Figure 1.4 shows the expanded view of the foil’s shape over the span of the
propeller blade. The right hand side of Figure 1.4 shows the foils projected
onto concentric cylindrical surfaces with their center in the propeller shaft.
This projection of the foils is usually used for propeller blades. An example

Foil Section View Projected Blade View

Leading Edge
Trailing Edge

Figure 1.4: Cascade of foils which forms a propeller blade.

7



Chapter 1. Introduction

of a foil that could be used for a propeller blade is shown in Figure 1.5.
There are a number of different standard foils which can be used to form the
propeller blade. One of these is the well known NACA series developed by
the National Advisory Committee for Aeronautics (NACA), later renamed to
National Aeronautics and Space Administration (NASA). The choice of foil
shape depends on the desired performance characteristics but the common
shapes used for marine propellers are the NACA16-series and NACA6-series.
The alignment of the foils relative to each other is described by the three

Rake

Skew induced rake

Skew

Pitch

Foil
Chamber Line
Chord Line
Mid Chord Point
Quarter Chord Point
Propeller Plane
Propeller Center
Leading Edge
Trailing Edge

Figure 1.5: NACA 16 foil.

parameters, skew, rake and pitch, as shown in Figure 1.5. The size of the foil
is described by the three parameters, chord, camber and thickness. All six of
these parameters vary with the radial position of the foil segment in order to
form the blade. The design problem for a propeller blade is to determine the
radial distribution of these six parameters in order to satisfy the performance
criteria of the propeller.

The loads acting on a propeller blade are due to pressure and viscous
effects acting on the blade due to the relative motion between the blade and
the fluid. Considering a 2D foil section of a blade (Figure 1.6a), the loading
per unit span is determined as [21]:

FL =
1
2

ρ c CL (αa) v2
r (1.1)

FD =
1
2

ρ c CD (αa) v2
r (1.2)

Mp =
1
2

ρ c2 CM (αa) v2
r (1.3)

FL is the lift force per unit span which is acting perpendicularly to the re-
sulting velocity vector, see Figure 1.6a. FD is the drag force per unit span
which is acting parallel to the resulting velocity vector. Mp is the pitching
torque about the aerodynamic center located at a quarter chord length from
the leading edge. c is the chord length of the foil. ρ is the density of the
fluid. vr is the resulting velocity and is a result of the local axial velocity va
due to the ship’s advance in the water and the velocity due to the rotation of
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1.1. Propulsors

the blade segment ωp r. CL, CD and CM are the lift, drag and pitch-moment
coefficient respectively, which depend on the angle of attack, αa. An example
of these coefficients dependency on the angle of attack is shown in Figure
1.6b. αa is the angle between the incoming fluid velocity and the chord line
of the foil. β is the advance angle of the incoming fluid and αp is the pitch
angle of the foil. To determine the thrust from the propeller blade and the
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Figure 1.6: (a) Flow condition about foil section of the propeller blade. (b) Lift, drag and pitch-
moment coefficient for NACA6412 [12].

blade’s contribution to the shaft torque, the forces have to be projected onto
the appropriate axis and integrated over the radius as:

T =
∫ rp

rhub

FL(r) cos (β(r))− FD(r) sin (β(r)) dr (1.4)

Q =
∫ rp

rhub

(FL(r) sin (β(r)) + FD(r) cos (β(r))) r dr (1.5)

T is the blade thrust. Q is the blade’s contribution to the shaft torque. To
determine the propeller thrust and torque, the contribution for each blade
should be added together. rhub and rp are the radius of the hub and propeller,
respectively. r is the radial integration variable.

The above approach is called the blade element theory and describes the
general principle for the propeller, but as it is stated, it does not account
for the induced velocities which are important when it comes to propellers.
The induced velocities are generated due to the spanwise lift distribution
along the blade and the finite span which are commonly accounted for using
the lifting line theory. To determine the induced velocities, it is necessary
to introduce the Kutta-Joukowski theorem which describes the relationship
between lift force and circulation. The Kutta-Joukowski theorem is stated
as [21]:

FL = ρ vr Γ (1.6)
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Chapter 1. Introduction

Γ is the circulation around the foil. The principle of the lifting line theory
is to replace the cascade of foils with a line vortex, whose strength varies
along its span. This is illustrated in Figure 1.7. The strength of the line vortex
is called the bound circulation Γb. There is also a free circulation Γ f which
is shed from the blade into the blade’s wake due to the bound circulation
varying along its span and that circulation is conserved which is stated in
Kelvin’s theorem. The Kutta-Joukowski and Kelvin’s theorems assume an
inviscous fluid. The presence of the circulation shown in Figure 1.7 induces

Figure 1.7: Principle of lifting line theory.

velocities in the fluid. The induced velocity at a point from a line segment
with a circulation Γ can be determined using the Biot-Savart law as [21]:

dvi =
Γ

4 π

dl× r

|r|3
(1.7)

vi is the induced velocity vector. l is the line segment vector and r is the
distance vector from the line segment to the point. To calculate the collective
induced velocity, all the bounded and free circulations have to be considered.
This means that each blade influences the other blades.

The induced velocities change the velocity triangle shown in Figure 1.6a to
that shown in Figure 1.8a. Instead of using the previous advance angle, β, to
calculate the angle of attack, the hydrodynamic pitch angle, βi is used instead.
In Figure 1.8a an additional tangential velocity, vt, has been added due to the
propeller operating in the non-uniform wake field of the ship. The wake field
shown in Figure 1.8b also includes the in-plane transverse velocities which
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1.1. Propulsors

were previously omitted to simplify the explanation. The transverse velocities
can be divided into a tangential and radial velocity component which vary
with time due to the propeller’s rotation. The advance velocity varies radially
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Figure 1.8: (a) Velocity triangle acting on a foil including the induced velocities. (b) Wake field
of a single screw ship.

and circumferentially which makes the advance velocity for each foil segment
vary with time as the propeller rotates. The advance velocity is lowest in the
wake peak. The lower advance velocity gives a large angle of attack and the
lift and drag force on the foil therefore increase in the wake peak.

As previously discussed, then the performance of the propeller is a trade-
off between the efficiency, the cavitation and the vibrational performance
of the propeller. For example if the propeller cavitates too much, then the
engineer can decrease the pitch or the camber of the blade. By decreasing the
pitch or camber, the blade is not as heavily loaded, but this also decreases
the thrust of the propeller. To compensate for this decrease the chord, has
to be increased which, in turn, increases the area of the propeller blades
and this results in an increase in the viscous drag on the propeller, and this
reduces the efficiency of the propeller. The engineer can also add skew to the
blade in order to reduce the vibration and change the transient cavitation.
The skew makes the different sections of the blade enter and exit the wake
peak at different times and this smoothens the effect of the wake peak on the
propeller blade’s performance.

The efficiency of a propeller may be improved by using energy saving
devices. Some of these energy saving devices are presented in Figure 1.9
with their potential energy savings [65, 72]. The propeller and the energy
saving devices interact with each other which typically results in them be-
ing designed at the same time. The aim for most of the energy saving de-
vices is to reduce the rotational energy shed into the fluid or to recover some
of it. Transferring rotational energy to the fluid does not contribute to the
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Figure 1.9: Energy saving devices and their potential efficiency gain and the combination possi-
bilities from [65].

propulsion of the ship. The rotational energy shed into the fluid has different
sources which means that different concepts may be combined and others
not. The concepts that cannot be combined regain the same source for the
rotational energy.

The post-swirl fins, pre-swirl fins and Mewis duct affect the flow condi-
tions for the propeller which can contribute to less rotational energy being
shed into the fluid. Improving the flow conditions for the propeller may
make it possible to design a better performing propeller including the effi-
ciency. The rudder bulb and the propeller boss cap fins (PBCF) reduce the
rotational energy shed from the hub. The Kappel propeller blades and the
nozzle both reduce the tip vortex from the propeller blades by which the
rotational energy shed into the fluid is reduced. The duct can also be used
to improve the flow condition around the propeller thereby making it pos-
sible to design more favourable blades for the propeller. Furthermore, with
the duct it is also possible to get more thrust at lower ship speeds. A more
detailed overview can be found in [10] showing the influence of the energy
saving devices on the different energy sources.

1.2 Cyclical Varying Pitch Propeller Concept

"Common for both the FP and CP propeller is that they are not able to adapt
to the local flow conditions in the wake field. This means that the angle of
attack varies with the blade’s position in the wake field, thus introducing
some problems such as transient cavitation, increased pressure pulses, in-
creased noise, lower efficiency, shaft vibrations and larger fatigue stresses for
the propeller blades" [31].
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1.2. Cyclical Varying Pitch Propeller Concept

A propeller which adjusts the pitch of the propeller blades individually
to adapt to the flow conditions of the wake field is called a cyclical varying
pitch (CVP) propeller. The CVP propeller should be able to reduce vibra-
tions, pressure pulses, transient cavitation, fatigue stresses, noise etc. when
compared to the FP or CP propeller. This should make it possible to design a
CVP propeller which is more efficient than a FP or CP propeller. "The FP pro-
peller may be more efficient than the CVP propeller if a significantly larger
hub is required for the CVP propeller or more power is required to pitch the
blades than is saved with the CVP propeller. The operational principle of the
CVP propeller is shown in Figure 1.10 for a section of the propeller blade
operating in a non-uniform wake field" [31].

Figure 1.10: Illustration of the operational principle of the CVP propeller. [31]

"Figure 1.10 is divided into three figures. The top figure shows the wake
field of the ship and the position of blade in the wake field. The middle figure
shows the pitch motion of a foil section of the propeller blade for both the FP
and CVP propeller. The foil section of the FP propeller blade is fixed during
one revolution of the propeller. The foil section of the CVP propeller blade
is changing with the blade’s position in the wake field. The pitch of the foil
section for the CVP propeller decreases as the blade comes closer to the wake
peak (shown in the center of the figure) and increases after having passed
the wake peak. This operation for the CVP propeller is repeated for each
revolution of the propeller. The bottom figure shows the pitch angle and the
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angle of attack for the foil sections as the propeller rotates in the wake field.
It is seen that the pitch of the FP propeller is fixed during a revolution and
that the angle of attack varies" [31]1. If the angle of attack varies significantly
then transient cavitation can occur. "For the CVP propeller it is seen that
the pitch angle changes and the angle of attack is therefore kept constant.
This eliminates the issue with transient cavitation, vibrations, etc. The pitch
trajectory for the CVP propeller, shown in Figure 1.10, is the pitch trajectory
which makes the angle of attack constant for that section of the blade. This
pitch trajectory may not be the same for all the sections of the blade and the
optimum pitch trajectory is therefore a trade-off of the performance for all
the sections of the propeller blade" [31].

With the principle of the CVP propeller accounted for and its potential to
improve the performance of the propeller, the hypothesis for this dissertation
is stated as:

Can the CVP propeller be realised to improve the performance of the propeller?

1.3 Review of Cyclical Varying Pitch Propeller Con-
cept

"The idea of a CVP propeller is not new and the idea of cyclical varying pitch
is already utilized in other applications. The cyclical varying pitch is already
utilized in helicopters, wind turbines and small automated underwater ve-
hicles/submarines (AUV) [73]. For the shipping industry no commercially
available CVP propeller has been found which is able to pitch the blades in-
dividually. However, the CVP propeller has been researched as a potential
propulsion for the shipping industry, where different designs have been pro-
posed through the years" [31]. The proposed designs are divided into four
types as:

• Thrust balanced propeller
• Swash plate propeller
• Passively controlled individual pitch propeller
• Actively controlled individual pitch propeller

"Besides the above four types of CVP propellers, there is also the flexible
blade propeller. The flexible blade propeller differs from the four above types
of CVP propellers by that the blade deforms to adapt to the local flow con-
dition, where the other CVP propellers pitches the whole blade" [31]. In
this dissertation the focus is on the CVP propeller where the whole propeller
blade pitches. The flexible blade propeller is not considered further, but for
the interested reader reviews of the propeller can be found in [1–3, 5, 7, 9].
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1.3.1 Thrust Balance Propeller

"The thrust balance (TB) propeller is a propeller with an even number of
blades and it has been proposed and/or discussed in [25, 75, 76, 80, 88]. The
designs of the TB propeller proposed in [25, 75, 76, 80, 88] are all similar to
each other. An example of the design of a four bladed TB propeller is shown
in Figure 1.11. The blades opposite each other are connected through the
hub by a shaft and the blades are designed such that the center of pressure
is placed between the blade’s spindle axes and its trailing edge. The spindle
torque of the blade should therefore always tend to decrease the pitch of the
blade" [31].

Figure 1.11: Sketch of a trust balance propeller. The propeller is seen from aft of the ship and
rotates clockwise. [31]

"Due to the local velocity variations in the wake field the thrust acting on
each blade varies with its position in the wake field. The thrust will have a
minimum in the bottom half of the wake field and will increase as the blade
moves towards the wake peak where the thrust is at a maximum" [31].

"The difference in the thrust on each blade pair results in a torque in-
equality on the blade pair assembly. This torque inequality will reduce the
pitch of the blade in the upper part of the wake field and increase the pitch
of the blade in the lower part of the wake field. This reduces the torque in-
equality of the blade pair assembly until the torque affecting each blade has
equalized" [31].

"The TB propellers in [25, 75, 80] are patents and only present the me-
chanical design of the TB propeller. Analysis and performance results are
not presented in [25, 75, 80] but they postulate on some of the performance
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improves of the TB propeller. In [25, 80] it is postulated that the TB propeller
can reduce ship vibration which includes both pressure pulses and shaft vi-
brations. No comment is given with respect to efficiency, cavitation, noise
or reliability. In [75] it is postulated that the TB propeller can increase the
propeller’s efficiency, reduce shaft vibrations, cavitation, pressure pulses and
noise. With respect to the reliability in [75] only the blade and shaft are con-
sidered. It is postulated in [75] that the blade’s thickness and shaft diameter
can be reduced due to the reduced load variations with the TB propeller. The
patent in [75] also includes a locking mechanism for the blades which adds
the possibility of controlling when the blades can make the cyclic pitching
motion" [31].

"The study in [76] is a theoretical study of the feasibility and performance
of the TB propeller. The feasibility study was made to determine whether the
blade pitch is able to adapt to the non-uniform wake field to yield a perfor-
mance improvement. The investigation is made by making a second-order
dynamical model for the blade pitch motion. The model accounts for the
moment of inertia of the blade, the variation in the centrifugal force due to
the pitch displacement and the variation in the hydrodynamics due to the
pitching motion using [81]. The friction in the blade bearing is neglected.
The second-order system is excited by the variation in the hydrodynamical
spindle torque which is based on measurements. The model is applied to a
single propeller design. For this propeller design the maximum difference
between the pitch and the hydrodynamic pitch is reduced by 38% during
a revolution when using the TB propeller instead of a FP propeller. From
these results [76] assumes that the propeller efficiency will increase. Fur-
thermore, [76] expects the TB propeller to give an improvement in cavitation
performance and that the TB propeller may improve the general vibration
level on board the ship i.e. pressure pulses and shaft vibrations. No direct
performance improvement, by using the TB propeller, is shown in [76], they
are only inferred based on the reduced maximum variation in the difference
between the pitch and the hydrodynamic pitch, i.e. the angle of attack" [31].

"In [88] the performance of the TB propeller proposed in [75] is evaluated.
The performance assessment is made with a series of piecewise linear pitch
trajectories with the same slope but different pitch offsets. The pitch trajec-
tories are made such that the pitch decreases towards the wake peak and
increases towards the bottom of the wake field. All the pitch trajectories have
the same amplitude of 6◦2. The performance of the TB propeller is compared
to the same propeller with fixed blades (i.e. a FP propeller), where one of
the pitch trajectories has the same mean pitch as the FP propeller. To evalu-
ate the performance of the TB propeller, an unsteady lifting surface program
is used. The program does not account for the cyclical pitch motion of the

2Amplitude is peak to peak difference
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blade but does account for the unsteadiness of the non-uniform wake field.
To evaluate the performance of the TB propeller a series of evaluations of the
performance for FP propellers are made. The FP propellers are all geomet-
ric similar except for their pitch, which is displaced for each FP propeller to
cover the range of the defined pitch trajectories. The performance evalua-
tion of the TB propeller is made by interpolating the results for the different
FP propellers performance using the pitch trajectories. Presentation of the re-
sults for the TB propeller mostly focuses on the pitch trajectory which has the
same mean pitch as the FP propeller. For this pitch trajectory the efficiency
is increased by 1.5%, the cavitation is slightly reduced in the wake peak, the
pressure pulses are reduced by approx. 50% and the average transverse loads
are reduced. Furthermore, the propeller thrust and torque are increased. No
direct data is given with respect to shaft vibrations, noise or reliability" [31].

1.3.2 Swash Plate Propeller

"The swash plate propeller uses the same principle utilized in many heli-
copter rotors to manoeuvre the helicopter. In helicopters a swash plate is
used to control the collective pitch and the cyclical pitch of the rotor bla-
des. The collective pitch is the mean pitch for all the blades and the cyclical
pitch is an overlying local pitch which depends on the blade’s position in
the rotor field. It is the cyclical pitch that makes the pilot able to steer the
helicopter" [31].

"In marine propellers the concept of cyclical pitch has primarily been uti-
lized in the cycloidal/Voith–Schneider propeller and for autonomous vehicle
propulsion (AUV) [73]" [31]. The cycloidal/Voith–Schneider propeller is de-
scribed in Section 1.1. "In AUVs the cyclic pitch is used to manoeuvre the
ship/vehicle because the sailing speed is low which makes use of control
surfaces such as rudders inefficient. The propeller is normally not used to
adapt the pitch to the local velocities in the wake field due to the wake field
being more uniform than for single screw ships see [36]" [31].

"Utilizing a swash plate propeller for ships is investigated in [84–86] and
is called the pinnate propeller. The pinnate propeller is shown in Figure
1.12 and it connects the opposite blade to each other through the hub to
minimise friction. To each blade pair two push-pull rods are attached which
extend out and make contact with the swash plate. The swash plate is then
angled relative to the propeller shaft in order to get the cyclical pitching of the
propeller blades. Using this swash plate principle makes the pitch trajectory
sinusoidal" [31].

"Propulsion and cavitation model tests with the pinnate propeller were
made in [84] with the sinusoidal pitch trajectory with a minimum pitch 10◦

before the 12 o’clock position due to the phase shift between the pitch change
and lift response. Depending on the amplitude (amplitude between 2◦ − 5◦
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Figure 1.12: The pinnate propeller from [31].

with 1◦ increments) of the sinusoidal pitch trajectory either a small loss or
a small gain was obtained with the pinnate propeller with respect to a FP
propeller. The difference in efficiency was −0.2%,−1%, 0.7% and 0.6% for
the different amplitudes which are within the uncertainties of the experi-
ments [84]. The cavitation tests were made with an amplitude of 4.2◦ and
under different operating conditions. For all of the operating conditions, the
cavitation performances was improved in the wake peak but for some con-
ditions the cavitation was more severe in the bottom of the wake field (6
o’clock position). During the cavitation test the pressure pulses were mea-
sured at four points on the ship hull. The pressure pulses were reduced by
30− 45% for all the points when using the pinnate propeller. The tests were
made with a modified ship hull which improved the flow conditions for the
pinnate propeller and reduced the resistance by 1%. Using the modified hull
with the pinnate propeller yielded a 3.6% increase in efficiency compared to
using the unmodified ship hull with a FP propeller" [31].

"The study in [85] includes the results from [84] and extends upon them
experimentally and documents the theoretical considerations made during
the study. The cavitation tests are extended with pitch trajectory with ampli-
tudes of 4◦, 5.4◦, 5.4◦ and 5.4◦ with a minimum pitch at 20◦, 0◦, 10◦ and 20◦
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before the 12 o’clock position, respectively. The cavitation is reduced in the
wake peak for all pitch trajectories but with more cavitation at the 6 o’clock
position and face cavitation at the 9 o’clock position. For the load analysis,
measurements of the hydrodynamical loads are used for the steady part and
the dynamical part is model by the method in [81] with compensation for the
low aspect ratio of the propeller blades" [31]1.

"The pinnate propeller was tested in full scale in [86] on a Swedish navy
patrol boat. The boat has a length of 23 meters, a normal service speed of 24
knots and is equipped with twin screws on inclined shafts. The propellers are
four bladed with a diameter of 0.88 meters. During the tests, the cavitation in
the wake peak was observed and the pressure pulses were measured at four
locations. The cavitation was generally reduced with the pinnate propeller
and the speed for thrust breakdown due to cavitation was increased by 2
knots. A small increase in efficiency was obtained at high speeds due to the
increased speed before thrust breakdown. The pressure pulses are generally
reduced by between 1− 50% when using the pinnate propeller. With respect
to reliability, the pinnate propeller had some issues during testing. After
500 hours all the seals were replaced due to defective manufacturing which
became apparent after 50 hours of testing. In one of the pinnate propellers
one of the blade connecting shafts failed due to fatigue after approx. 4 · 107

cycles. The test was continued by replacing the pinnate propeller with the
original propeller for the ship. The tests ended after the second propeller
had operated for approx. 5.5 · 107 cycles. It is postulated in [86] that it is
possible, by careful design, to make a reliable pinnate propeller" [31]1.

"A similar concept to the swash plate is proposed in the patent [63] which
is capable of both collective and cyclical pitching by using a hydraulic trans-
mission system instead of mechanical rods. The cyclical pitching is made by
having a hydraulic piston pair for each blade. One of the pistons can rotate
the blade and the other extends radially out of the propeller shaft inside the
ship where it follows an eccentric groove which matches the desired cycli-
cal pitching. Through feedback wires, valves and a collective pitch reference
piston a complete collective and cyclical pitching propeller is obtained. It is
in [63] postulated that the propeller may reduce the cavitation, shaft vibra-
tion, pressure pulses and increase efficiency, but no results are shown" [31]1.

1.3.3 Passively Controlled Individual Pitch Propeller

A passively controlled individual pitch propeller, pitches the propeller blades
individually through passive components which cannot be switched on/off.
The passively controlled individual pitch propeller has been suggested in
[14, 37, 51, 60, 80].

"The passive controlled individual pitch propellers proposed in [37,60,80]
are from patents. The concepts proposed in [37, 60] are similar and consist
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of a fixed guide ring around the propeller shaft with a groove in the guide
ring which is formed to the desired pitch trajectory, see Figure 1.13a. Pins
extend radially out of the propeller shaft. Pull-push rods inside the propeller
shaft, which rotate the blades, are connected to these radial extending pins.
The pins slide in the groove as the propeller rotates thereby making the pitch
adjusting to the local velocities in the wake field. It is postulated in [37, 60]
that the propeller can be used to improve the efficiency" [31].

"In the patent [80] a feathering system is proposed using a spring system,
as shown in Figure 1.13b, and having the blade’s center of pressure behind
the spindle axes. When the blade is in the wake peak the thrust and the
spindle torque increase which deforms the spring and decreases the pitch
of the blade until an equilibrium in the spindle torque is obtained. When
the blade has passed the wake peak, the thrust and spindle torque decrease
and the pitch increases until an equilibrium in the spindle torque is obtained.
In [80] it is postulated that the propeller can reduce ship vibrations which
includes both pressure pulses and shaft vibrations but no analysis or test are
shown which support the statement" [31].

(a) (b)

Figure 1.13: (a) Example of cam mechanism from [60]. (b) Feathering mechanism from [80].

"In [51] cavitation tests are made with a five bladed propeller, where one
of the blades is able to vary the pitch cyclically through a cam mechanism.
The propeller was tested in a wake field made by a wake screen which was
dominated by second-order harmonic variations. The pitch trajectory was
therefore a second-order sinusoidal pitch trajectory. Two cams were made
for the tests, one with a 7◦ amplitude and one with a 3.5◦ amplitude. The
cams were tested at four different operating conditions for the 7◦ amplitude
cam and for three operating conditions for the 3.5◦ amplitude cam. For the 7◦

amplitude cam the transient cavitation was almost eliminated for the pitching
blade when compared to the fixed blade for all the operating conditions. For
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the 3.5◦ amplitude cam the transient cavitation was significantly reduced for
all the operating conditions" [31].

"In [14] cavitation tests are made for a propeller with sinusoidal oscillating
blades mounted on an inclined shaft in an uniform flow field. The tests were
made in order to reduce cavitation and erosion near the root of the blade.
The tests are made for two inclinations of the shaft, amplitudes of the pitch
trajectories at 0◦ and 3◦ and phase shift of the oscillation at 0◦ and 30◦ at
different advance coefficients and cavitation numbers. The general tendency
of the results was that the oscillating blade, in some cases, could delay the
cavitation at the root of the blade, but the cavitation was increased towards
the tip" [31].

1.3.4 Actively Controlled Individual Pitch Propeller

An actively controlled individual pitch propeller pitches the propeller bla-
des individually by using active components such as an actuator system
with a controller. With the actively controlled individual pitch propeller it
is possible to change the amplitude and shape of the pitch trajectory during
the operation of the ship. This is not possible with the concepts presented
in [37, 51, 60, 63, 84–86]. The concepts in [37, 51, 60] are limited to one shape
and amplitude of the pitch trajectory. The concepts in [63, 84–86] are limited
in the shape of the pitch trajectory, but can vary the amplitude of the pitch
trajectory during operation. An actively controlled individual pitch propeller
is presented in [40, 90, 98] and one of the concepts from [98] is sketched in
Figure 1.14.

Figure 1.14: Sketch of the individual blade pitching mechanism proposed in [98]. The sketch is
from [31]

"The proposed propeller in [98] has the servo piston known from CP pro-
pellers which can make a collective pitching of the blades. Smaller servo pis-
tons are attached to the large servo piston which controls the cyclical pitch
of the individual blades. Furthermore, it is proposed that the servo pistons
can be replaced with a vane actuator or a motor. It is postulated in [98] that
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the propeller can be used to improve the efficiency of the propeller but no
results are shown for it. Similarly, the patent in [40] proposes the propeller
to increase the efficiency" [31].

"The performance of an active CVP propeller, compared to a FP propeller,
is made in [33]. The pitch trajectory is determined in order to remove the
time varying components of the axial forces, by using unsteady thin foil the-
ory [81] and compensating for the low aspect ratio of the propeller blades.
These theories are linear and by approximating the wake field and pitch tra-
jectory by Fourier series, a number of linear equations needs to be solved in
order to determine the optimum pitch trajectory. The performance evaluation
of the CVP propeller is made by using an unsteady lifting surface program
modified to include the pitching motion of the blade. The propeller used in
the evaluation is a five bladed propeller with a diameter of 6.2 meters. The
performance of the CVP propeller is compared to the performance of the
FP propeller. The performance evaluation shows a 3% increase in efficiency
for the CVP propeller compared to the FP propeller, due to an increase in
the mean thrust. The mean values of the transverse loads are reduced by
8%− 40% for the CVP propeller and the variation in propeller thrust is re-
duced. The pressure pulses up to the fourth harmonic are determined at
five points above the propeller. The pressure pulses are reduced by between
15%− 60% for the CVP propeller. The extent of the cavitation is generally
reduced with the CVP propeller. It is therefore proposed in [33] to reduce
the area ratio of the propeller to increase the efficiency while maintaining the
same cavitation performance as for the FP propeller" [31]1. The propulsion
efficiency is determined as:

ηD =
T Va

ωp Q︸ ︷︷ ︸
ηp

1− td
1− w︸ ︷︷ ︸

ηh

(1.8)

ηD is the propulsion efficiency. ηp is the propeller efficiency. ηh is the
hull efficiency. T is the propeller thrust. Va is the advance velocity. ωp is the
rotational speed of the propeller. Q is the propeller torque. td is the thrust
deduction factor. w is the wake coefficient. The thrust deduction factor is
due to the suction pressure of the propeller pulling the ship backwards. Both
w and td may be different for the CVP propeller than they are for a FP/CP
propeller [33].

The improved cavitation performance with the CVP propeller is utilized
in [66] to reduce the area ratio of the propeller and thus improve the effi-
ciency. The investigation in [66] considers modifying a CP propeller, with a
diameter of 5.4 meters, to a CVP propeller. The wake field for the ship con-
sidered in [66] is shown in Figure 1.3. Two pitch trajectories are determined
in [66] and the performance of the propeller with these pitch trajectories is
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shown in Table 1.1, where they are compared to a normal constant pitch tra-
jectory. The pitch of the blades depends on their position in the wake field as
shown in Figure 1.15. A blade position equal to 180◦ is when the blade is in
the wake peak, i.e. 12 o’clock position.

Table 1.1: Propeller performance determined in [66]. Pi is the pitch in [m]. Dp is the propeller
diameter in [m].

Trajectory Pi/Dp at Thrust per Power per ηp Area
r/rp = 0.7 blade [kN] blade [kW] ratio

Constant 0.8039 143.0 1506.6 0.5847 0.64
Variable 0.8144 143.0 1418.5 0.6396 0.50
Cosine 0.8098 143.1 1436.0 0.6222 0.57
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Figure 1.15: Pitch trajectories for the CVP propeller determined in [66].

"The investigation has been made such that the average thrust is the same
for all the pitch trajectories, using a quasi-steady lifting line to evaluate them.
The area ratio of the propeller is decreased due to the better cavitation per-
formance and small changes in the blade design were made to ensure an
optimum design [66]. From Table 1.1 it is seen that the efficiency is increased
by 9.4% for the variable pitch trajectory and by 6.4% for the cosine pitch
trajectory relative to the constant pitch trajectory" [31].

In [90] a theoretical feasibility study of the actively controlled individual
pitch propeller is presented. The work in [90] considers the propeller con-
sidered in [66] and includes the work needed to pitch the propeller blades
in the evaluation of the propulsion efficiency. With the actuator system de-
signed in [90], the propulsion efficiency is decreased when using the variable
pitch trajectory in Figure 1.15. For the cosine pitch trajectory in Figure 1.15
the propulsion efficiency is slightly increased. The actuator system presented
in [90] is similar to the concepts presented in [98] and shown in Figure 1.14.
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The system consists of a hydraulic cylinder to pitch each of the propeller bla-
des. The variable pitch trajectory in Figure 1.15 is used to design the cylinders
and the proportional valves controlling them. Because the components are
placed in the hub, it requires that the hub is extended along the propeller
shaft in order to fit the components inside the hub.

1.3.5 Summing up on Cyclical Varying Pitch Propeller Per-
formance

Studies focusing on the CVP propeller are limited as evident from the review
above. Many of the studies are concepts presented in the patents [25, 37, 40,
55,60,63,75,80,80,98]. Actual studies are restricted to [14,33,51,66,84–86,88].
Theoretical studies are made in [33, 66, 76, 88]. Model scale tests are made in
[14,51,84,85] and [86] is a full scale test. "The performance results of the CVP
propeller of these studies are summarized in Table 1.2 which only considers
the actual performance shown in the studies and not postulated/inferred
performance improvements" [31].

Table 1.2: Summarization of CVP propeller performance excluding the reliability. The reliability
is excluded since none of the studies have focused on the reliability. T is for theoretical studies,
MS is model scale testing and FS is full scale testing. TB is the thrust balance propeller, SP is the
swash plate propeller, PCIP is the passive CVP propeller and ACIP is the active CVP propeller.
*Only considers the variation in the thrust. [31]

Citation [88] [84], [85] [86] [51] [14] [33] [66]
CVP propeller concept TB SP SP PCIP PCIP ACIP ACIP
Efficiency
Cavitation
Shaft vibration * *
Pressure
pulses
Noise
Type of study T MS FS MS MS T T

Improved May improve
Not investigated
or commented

No change Worsened

"From Table 1.2 it is, in general, seen that the performance of the CVP
propeller is improved compared to a FP propeller" [31].

"However, the type of vessel could also have significant influence on the
usability of the CVP propeller. If the CVP propeller proves to improve all of
the performance parameters in Table 1.2, then the CVP propeller is suitable
for all types of vessels if the down payment for the propeller is tolerable and
the reliability is reasonable. If the CVP propeller does not yield an efficiency
improvement but only improves the cavitation performance and noise, then
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the type of vessel that the CVP propeller is appropriate for changes. Because
an efficiency improvement is not obtained, the CVP propeller is not desirable
for cargo transporting vessels. The vessels that could still benefit from using
the CVP propeller are: navy ships, research vessels, seismic vessels, cruise
ships and ferries. These types of vessels typically prioritise to some degree
having a quiet propulsion system" [31]. Navy ships desire a quiet propulsion
system in order to not be detected by the enemy, research and seismic vessels
want quiet propulsion systems such that the noise does not influence the
measuring equipment and cruise ships and ferries want quiet propulsion
systems in order to increase the comfort of the passengers.

"An obvious question is then why is the CVP propeller not on the market
yet? There are at least two reasons" [31].

"The first reason is to consider the energy loss due to the pitching mo-
tion of the blades. To assess the feasibility of a CVP propeller to increase the
propulsion efficiency, a dynamic model is necessary which accounts for the
dynamics of the pitching motion and the actuator system. This has not been
considered in any of the above studies except for in [90], which is a prelim-
inary study and the dynamic model used in [90] has to be extended to get
more accurate results. By using the dynamic model an optimal pitch trajec-
tory can be found which accounts for the needed work to turn the blades.
The dynamic model can also be used to evaluate the feasibility and require-
ments of different topological designs of the pitching system. Experimental
test are needed in order to validate the dynamic model and determine its
accuracy. The effect of the CVP propeller on the hull efficiency needs to be
investigated. This includes the CVP propeller’s effect on the thrust deduction
factor and the wake coefficient. If the hull efficiency decreases with the CVP
propeller then the CVP propeller may only be desirable due to its improved
cavitation behaviour" [31].

"The second reason is related to the cost of the CVP propeller. The down
payment is likely to be larger for the CVP propeller compared to the FP and
CP propellers due to the increased complexity of the propeller with the in-
dividual pitch mechanism. The efficiency of the propeller should therefore
be greater than the efficiency of a FP and CP propeller in order to ensure
a reasonable payback time. If this is not the case then the CVP propeller
should yield performance improvements compared to the FP and CP pro-
peller which justify the use of a CVP propeller instead of a FP or CP pro-
peller" [31].
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1.4 Challenges in Cyclical Varying Pitch Propeller

"From the above analysis the CVP propeller has the potential to improve
the propeller performance when compared to the FP and CP propeller, but
there are a number of challenges that have to be addressed before the CVP
propeller can be used commercially. The challenges in realising the CVP
propeller are" [31]:

• Blade design

– "How should the propeller blades be designed for the CVP propeller com-
pared to the design rules followed for the FP and CP propeller?" [31]
"None of the studies [14, 33, 51, 76, 84–86, 88] consider how the bla-
des for the CVP propeller should be designed. The studies con-
sider an existing blade design and use it for a CVP propeller. The
optimum blade design for the CVP propeller is likely to differ
from the optimum blade design for the FP and CP propeller" [31].
Adapting the blade design for the CVP propeller is considered
in [66]. It has to be determined if this method is suitable to use.
If it is not then a suitable method has to be determined before the
CVP propeller can be realised.

• Pitch trajectory

– "How should the pitch trajectory be for a CVP propeller to obtain the
optimum performance for the propeller?" [31]
The pitch trajectories considered in [14,51,85,86] are limited to only
include a single harmonic. In [88] the pitch trajectory is assumed to
be piece-wise linear. Limiting the pitch trajectory to these types of
pitch trajectories may not yield the optimum performance for the
CVP propeller. Considering pitch trajectories with a multitude of
harmonics may yield a better performance of the CVP propeller.
Such pitch trajectories are considered in [33, 66] where the pitch
trajectory is determined to obtain a specific performance with the
CVP propeller. It has to be validated whether the methods used
to determine the pitch trajectories in [33, 66] are appropriate. "Al-
ternatively, new methods have to be developed to determine the
optimum pitch trajectory. The optimum pitch trajectory is likely
coupled with the blade design and vice versa. The coupling be-
tween these should be investigated and included in the determi-
nation of the optimum pitch trajectory and the blade design for
the CVP propeller" [31].

• Individual blade pitching mechanism

– "Can a mechanism be designed for the CVP propeller which is able to
pitch the blades individually in a cyclic manner during one rotation?"
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[31]
"Several different mechanisms for the CVP propeller have been
proposed in [25, 37, 60, 63, 75, 76, 80, 80, 84–86, 90, 98]. Each of these
mechanisms have their own pros and cons but only the mecha-
nisms, with the limitation of the pitch trajectory to one harmonic,
have been realised [14, 51, 84–86]. The only mechanism realised in
a real application is [86] which had a couple of breakdowns. The
types of mechanisms that can be utilized for the CVP propeller are
going to depend on the required loads acting on the blade when it
pitches according to the desired pitch trajectory and the propeller
size. When having designed the individual pitch mechanism, the
propulsion efficiency can be evaluated with the power consump-
tion of the individual pitch mechanism included. Then it can be
evaluated if an efficiency improvement is obtained with the CVP
propeller when compared to a FP and CP propeller" [31].

• Reliability

– "How does the reliability of the CVP propeller change compared to the
FP and CP propeller?" [31]
"The only study that has tested the CVP propeller in a real appli-
cation is [86]. The propeller was tested for almost an year (approx.
55 million cycles) and during this year it experienced a couple of
breakdowns which required servicing of the propeller. In [86] it is
believed that a more reliable propeller could be made by reevalu-
ating the design. For commercial application of the CVP propeller,
the number of pitch cycles the propeller experiences is approx. 1.3
billion for a twenty-year lifetime with a rotational speed of the
propeller of 120 rpm. This is a large increase compared to the CP
propeller which is only exposed to approx. 10 million cycles under
similar condition. Wear and fatigue of the propeller components
are therefore going to be even more significant for the CVP pro-
peller than it is for the CP propeller. It is therefore necessary to
investigate how reliable the CVP propeller is and if something can
be done to improve the reliability of the CVP propeller. If it is
not possible to improve the reliability of the CVP propeller, then it
may have to be serviced more regularly than a CP propeller" [31].
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1.5 Main Contributions of this Dissertation

The main contributions of the research in this dissertation are:

• Reviewing the literature related to the CVP propeller and thereby iden-
tifying the challenges in realising the CVP propeller.

• Establishing a modelling approach to determine the forces and torques
acting on the CVP propeller blades.

• Establishing a series of alternative modelling approaches for the hydro-
dynamical loads. These models are suitable to determine the optimum
pitch trajectory for the CVP propeller which minimises the variation in
the hydrodynamical loads.

• Designing and fabricating a model scale propeller test setup for the
CVP propeller which is able to pitch the propeller blades cyclical whilst
measuring a selection of the unsteady loads acting on the propeller and
its blades.

• Making tank tests with the fabricated test setup for the CVP propeller
to show the efficiency improvement with the CVP propeller.

1.6 Outline of Dissertation

The outline of the dissertation is as follows:

Chapter 2: Modelling of Cyclical Varying Pitch Propeller:
Common for all the challenges is that they all require a framework which is
able to determine the loads acting on the propeller depending on the pro-
peller design and operating conditions. In this chapter a model is made
which can determine the loads acting on the CVP propeller blades during
the individual cyclical pitching of the blades. The model is applied to de-
termine the requirements for the individual pitch mechanism such as the
required pitching power and torque. The application of the model is made
with the CVP propeller in [66] where the geometry, operating conditions and
pitch trajectories are known.

Chapter 3: Pitch Trajectory for Cyclical Varying Pitch Propeller:
In Chapter 2 it is found that the pitch trajectories determined in [66] are
likely not the optimal pitch trajectories for the CVP propeller. It is therefore
required to establish a method to determine the optimum pitch trajectory
for the CVP propeller. The method considers known geometry and operat-
ing conditions. The model established in Chapter 2 is too computationally
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expensive to determine the optimum pitch trajectory using an iterative opti-
mization algorithm. Four different simplified models are established which
are less computationally expensive than the method in Chapter 2. These
models are compared with the model from Chapter 2 and the models with
the best correspondence are used to determine the optimum pitch trajectory.
The optimum pitch trajectory is defined as the trajectory which minimises the
variations in the hydrodynamical load/loads acting on the propeller blade.

Chapter 4: Experimental Testing of Cyclical Varying Pitch Propeller:
To validate the performance of the CVP propeller and the hydrodynamical
model established in Chapter 2, experimental tests of the CVP propeller were
made. Since there is no standard test bench for testing the CVP propeller,
a custom model scale CVP propeller with two blades was made which was
able to measure the propeller thrust, torque and blade spindle torque. The
CVP propeller was tested in open-water and behind hull conditions. To test
the CVP propeller in behind hull conditions, a ship hull has been designed
and fabricated for the tests. The CVP propeller tests were made with two
different blade designs for the propeller. One blade design was made for a
traditional CP propeller and the other blade design was made for the CVP
propeller. The propellers are also tested with a number of different pitch tra-
jectories. The results for the two blade design are used to establish if the CVP
propeller can yield an efficiency improvement and the results were used to
validate the hydrodynamical model in Chapter 2.

Chapter 5: Conclusion and Future Work:
This chapter summarizes the work of this dissertation and discusses the fu-
ture work needed in order to realise the CVP propeller.
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Chapter 2

Modelling of Cyclical
Varying Pitch Propeller

This chapter presents the modelling of the loads acting on the CVP propeller
blades during the cyclical pitching of the blades. The model is used to deter-
mine the propeller efficiency, the required power to make the cyclical pitching
of the propeller blades and the required loads for the cyclic pitch mechanism.
The model consists of a series of different contributing factors which are eval-
uated through the chapter as they are presented. To make these evaluations
the vessel and propeller considered in [66] are used. This is a 1,000 TEU
container vessel with a controllable pitch propeller. The operational, design
and performance parameters for the propeller are given in Table 2.1. The
propeller blade is shown in Figure 2.1a and the wake field of the container
vessel is shown in Figure 2.1b.
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Figure 2.1: (a) Projected and expanded blade view. (b) Wake field of the vessel.
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Propeller
Propeller diameter Dp 5400 [mm]
Number of blades Zb 4 [−]
Power PD 5838.8 [kW]
Hub diameter Dhub 1460 [mm]
Propeller speed 121 [rpm]

np ≈ 2.02 [rps]
ωp ≈ 12.67 [rad/s]

Blade area ratio 0.64 [−]
Shaft immersion hs 5070 [mm]

Blade
Pi/Dp at r/rp = 0.7 0.7861 [−]
Skew 40◦ [−]
Forward skew 19◦ [−]
Rake 0 [mm]

Center of mass + rCM

 117.0
−176.0
1197.6

 [mm]

Blade mass + mb 3048.77 [kg]
Blade moment of inertia + Ib

 6100.0 275.4 −450.2
275.4 5634.6 677.6
−450.2 677.6 811.6

 [kg m2]

Operating conditions
Ship speed (for
hydrodynamic design)

Vs 16.55 [knots]
≈ 8.51 [m/s]

Ship speed (for strength) Vs 18.5 [knots]
≈ 9.52 [m/s]

Water density ρ 1025.5
[

kg/m3

]
Kinematic viscosity of water υ 1.191 10−6

[
m2

/s

]
Thrust ∗ T 559.0 [kN]
Torque ∗ Q 460.8 [kNm]
Efficiency ∗ ηp 0.576 [−]

Table 2.1: Propeller data. + data is determined through a CAD program with respect to the
shaft center and includes the flange on which the blade is mounted, see Figure 2.1a. ∗ calculated
through MAN Energy Solutions internal design programs at Vs = 16.55 [knots].

Three different pitch trajectories are proposed in [66]. A constant pitch
trajectory, a cosine pitch trajectory and a variable pitch trajectory. The con-
stant pitch trajectory is the same operation as a traditional CP propeller. The
pitch trajectories are elaborated further in Section 2.2. In [66] a new blade
design is made for each of the pitch trajectories where the area ratio has been
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reduced because of the improved cavitation performance. The reduction in
the area ratio of the propeller results in a more efficient propeller.

Throughout this chapter the results from the modelling of the CVP pro-
peller are presented by applying it to the three pitch trajectories. The results
presented will not account for the change in the blade design for cosine and
variable pitch trajectory.

Before going into details with the modelling of the CVP propeller it is
necessary to present some definitions. The coordinate systems used to model
the CVP propeller are defined as well as the pitch trajectories, with their
corresponding velocities and accelerations. These definitions will be used
throughout this chapter.

2.1 Coordinate Systems

To make the modelling of the blade motion easier three coordinate systems
are defined. The three coordinate systems are shown in Figure 2.2 and are
defined as:

Figure 2.2: The three coordinate system used in the modelling of the CVP propeller.

• Ship coordinate system: Xs, Ys, Zs - blue coordinate system in Figure
2.2.

– The coordinate system is fixed to the ship and with origin in the
center of the propeller as shown in Figure 2.2. The direction of Xs
is in the ahead direction of the ship, the direction of Ys is to the
port side and the direction of Zs is upward.
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• Propeller coordinate system: Xp,i , Yp,i , Zp,i - red coordinate system in
Figure 2.2.

– The coordinate system is fixed to the propeller and with origin
in the center of the propeller as shown in Figure 2.2. The coor-
dinate system is fixed to the propeller and therefore rotates with
it. There are multiple propeller coordinate systems, one for each
blade which the subscript i indicates. Each of the propeller coor-
dinate system’s x-axis is aligned with the ship coordinate system’s
x-axis. The direction of the z-axis is aligned with the blade’s spin-
dle axis as shown in Figure 2.2.

• Blade coordinate system: Xb,i, Yb,i, Zb,i - purple coordinate system in
Figure 2.2.

– There are multiple blade coordinate systems, one for each blade
which is noted by the subscript i. The coordinate system is fixed
to the blade meaning that the coordinate system rotates with the
blades as it pitches and rotates with the propeller. This makes the
inertia matrix constant. The coordinate system has its origin in the
center of the propeller and is aligned with the propeller coordinate
system when the blade pitch is equal to the design pitch.

The displacement of the coordinate systems with respect to each other is de-
fined by the two angles θb and θp. θb is the blade position in the wake field
and is the angular displacement between the ship coordinate system and
the propeller coordinate system. θb is defined to be the angle between the
negative z-axis in the ship coordinate system and the positive z-axis in the
propeller coordinate system as shown in Figure 2.3a. θp is the pitch displace-
ment of the blade, which is relative to the design pitch (αp,d) of the blade as
shown in Figure 2.3b. The pitch displacement is the angle between the x-
axis of the propeller coordinate system and the x-axis of the blade coordinate
system. The y-axes of the propeller and blade coordinate system can also be
used to define θp.

To transform vectors from one coordinate system to another, the trans-
formation matrices, Tx,y are used. The transformation matrices are defined
with two indices in the subscript. The first index is the coordinate system
that the vector is transformed from and the second index is the coordinate
system that the vector is transformed to. The subscripts s, p and b designate
the ship, propeller and blade coordinate system, respectively. Two examples
of the transformation matrix are shown in Eq. 2.1 and Eq. 2.2.
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Figure 2.3: (a) Definition of the blade’s position in wake field θb. (b) Definition of the blade’s
pitch displacement θp.

Xp,i
Yp,i
Zp,i

 =

1 0 0
0 − cos θb,i − sin θb,i
0 sin θb,i − cos θb,i


︸ ︷︷ ︸

Ts,p(θb,i)

Xs
Ys
Zs

 (2.1)

Xb,i
Yb,i
Zb,i

 =

cos θp,i − sin θp,i 0
sin θp,i cos θp,i 0

0 0 1


︸ ︷︷ ︸

Tp,b(θp,i)

Xp,i
Yp,i
Zp,i

 (2.2)

In Eq. 2.1 the transformation matrix Ts,p transforms a vector from the ship
coordinate system to the propeller coordinate system. In Eq. 2.2 the transfor-
mation matrix T p,b transforms a vector from the propeller coordinate system
to the blade coordinate system. The transformation matrices Tp,s and Tb,p are
the inverse of the matrices Ts,p and Tp,b as:

Ts,p(θb,i)
−1 = Tp,s(θb,i) = Ts,p(−θb,i) (2.3)

Tp,b(θp,i)
−1 = Tb,p(θp,i) = Tp,b(−θp,i) (2.4)

The above defined coordinate systems and transformation matrices will be
used throughout this chapter.
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2.2 Pitch Trajectories

The pitch trajectories, determined in [66], are defined as the pitch at the non-
dimensional radius equal to 0.7 for each 10◦ in the wake field. It is desired
to define the pitch trajectories as continuous differentiable functions of the
blade position in the wake field instead of discrete points. By defining the
pitch trajectories as a continuous differentiable function, the pitch rate and
acceleration can be determined by the first and second time derivatives of
the function. The continuous differentiable function used to define the pitch
trajectories is a Fourier series of the form:

αp (θb) = a0 +
N

∑
n=1

an cos (n θb) + bn sin (n θb) (2.5)

αp (θb) is the Fourier series of the blade’s pitch angle at the 0.7 non-dimensional
radius of the propeller. a0 is the constant term in the Fourier series. n is the
harmonic of the Fourier series. N is the largest harmonic included in the
Fourier series. an is the n’th order coefficient for the n’th cosine term. bn is
the n’th order coefficient for the n’th sine term. The coefficients a0, an and bn
are determined by linear least-squares estimation as:

θ =
(
FT F

)−1
FT y (2.6)

Where,

θ =
[
a0 a1 a2 · · · aN b1 b2 · · · bN

]T (2.7)

y =
[
αp (0◦) αp (10◦) · · · αp (360◦)

]T (2.8)

F =



1 1 · · · 1
cos (0◦) cos (10◦) · · · cos (360◦)

cos (2 · 0◦) cos (2 · 10◦) · · · cos (2 · 360◦)
...

...
. . .

...
cos (N · 0◦) cos (N · 10◦) · · · cos (N · 360◦)

sin (0◦) sin (10◦) · · · sin (360◦)
sin (2 · 0◦) sin (2 · 10◦) · · · sin (2 · 360◦)

...
...

. . .
...

sin (N · 0◦) sin (N · 10◦) · · · sin (N · 360◦)



T

(2.9)
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2.2. Pitch Trajectories

The discrete point values of the pitch trajectories are shown in Figure 2.4
together with the linear least-squares estimation of the Fourier series for the
pitch trajectories.
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Figure 2.4: Pitch trajectories from [66] shown as x and the estimated Fourier series shown as the
lines.

The mean of each of the pitch trajectories in Figure 2.4 differs from each
other. This is due to the blade design being adapted to the pitch trajectory
in [66]. To make the results for the different pitch trajectories comparable,
the mean pitch has to be the same. This is done by defining the pitch trajec-
tories as relative pitch displacements to the design pitch. This was previously
defined to be θp, which is then defined as:

θp (θb) =
N

∑
n=1

an cos (n θb) + bn sin (n θb) (2.10)

The coefficients an and bn are the same as determined with the least-squares
estimation in Eq. 2.6. The pitch rate and acceleration for the pitch trajectories
are obtained by the time derivative of Eq. 2.10 as:

θ̇p (θb) =
N

∑
n=1
−n ωp an sin (n θb) + n ωp bn cos (n θb) (2.11)

θ̈p (θb) =
N

∑
n=1
−n2 ω2

p an cos (n θb)− n2 ω2
p bn sin (n θb) (2.12)

θ̇p is the pitch rate of the trajectory. θ̈p is the pitch acceleration of the trajec-
tory. ωp is the rate of revolution of the propeller. In the derivation of Eq. 2.12
it is assumed that the revolution rate of the propeller is constant. The relative
pitch displacement, pitch rate and pitch acceleration are shown in Figure 2.5,
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

Figure 2.6 and Figure 2.7, respectively, for all the pitch trajectories defined
in [66].
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Figure 2.5: Pitch displacement trajectories.
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Figure 2.6: Pitch rate trajectories.
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Figure 2.7: Pitch acceleration trajectories.
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2.3. CVP Propeller Model Overview

From the Figure 2.5, Figure 2.6 and Figure 2.7 it is seen that the variable
pitch trajectories have the largest pitch rate and acceleration. For the pitch
acceleration, the peak of the variable pitch trajectory is approximately 20
times larger than the peak pitch acceleration of the cosine pitch trajectory.
The dynamic effects should therefore be the most significant for the variable
pitch trajectory.

2.3 CVP Propeller Model Overview

To obtain an overview of the different loads acting on the individual propeller
blades, a free-body diagram is made and a sketch of this is shown in Figure
2.8.
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Figure 2.8: Sketch of the free body diagram of a propeller blade.

Figure 2.8 shows one blade of the propeller and a cut-through of its assem-
bly with the hub. The blade is attached to the hub by clamping around the
hub with the blade foot. The blade foot is divided into two parts which are
bolted together to clamp around the hub. The blade is affected by six different
loads. Each of these loads consists of forces and torques in the xyz-directions.
The forces and torques are also referred to as the loads, L = [F M]T . The six
loads acting on the blade are:

• Hydrodynamical loads, Lhydro : Due to the relative motion between the
blade and the water, a pressure difference over the blade is created and
a viscous drag acts on the blade.

• Gravitational loads, Lg : Due to gravitational acceleration.
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

• Buoyancy loads, Lb : Due to the hydrostatic pressure acting on the
blade.

• Frictional loads, L f ric : Due to the relative motion between the blade
foot and hub.

• Reactive loads, Lreac : Due to the hub bearing exerting a load on the
blade.

• Actuator loads, Lact : Due to the actuator used to control the pitch of
the blade.

Having determined the loads acting on the propeller blade, Newton’s second
law of motion can be used to make a model for the blade’s motion. In the
ship coordinate system the propeller blade has two degrees of freedom in its
motion. It rotates about the x-axis due to the propeller rotation and about the
blade’s spindle axis. The main point of interest is to model the dynamics due
to the pitching motion and not the dynamics due to a change in the propeller
rotational speed. It is therefore assumed that the propeller rotational speed
is constant. The system is therefore modelled as an one degree-of-freedom
system where the degree of freedom is the pitch of the blade. The pitching
motion of the blade is easier to model in the propeller coordinate system than
in the ship coordinate system. The propeller coordinate system is therefore
used to model the pitching motion of the blade. Applying Newton’s second
law of motion on the propeller blade gives:


∑ Fx,p

∑ Fy,p

∑ Fz,p

∑ Mx,p

∑ My,p

∑ Mz,p

 =



Fhydro,x,p + Fact,x,p + Ff ric,x,p + Freac,x,p + Fg,x,p + Fb,x,p
Fhydro,y,p + Fact,y,p + Ff ric,y,p + Freac,y,p + Fg,y,p + Fb,y,p
Fhydro,z,p + Fact,z,p + Ff ric,z,p + Freac,z,p + Fg,z,p + Fb,z,p

Mhydro,x,p + Mact,x,p + M f ric,x,p + Mreac,x,p + Mg,x,p + Mb,x,p
Mhydro,y,p + Mact,y,p + M f ric,y,p + Mreac,y,p + Mg,y,p + Mb,y,p

Mhydro,z,p + Mact,z,p + M f ric,z,p + Mg,z,p + Mb,z,p


(2.13)

∑ Fi,p and ∑ Mi,p are the sum of forces and torques along/around the xyz-axis
in the propeller coordinate system. These forces and torques are also called
the inertial forces and torques and will also be noted as Finer,i,p for the forces
and Miner,i,p for the torques. The forces and torques in Eq. 2.13 have three
indexes in the subscript, where each index is separated by a comma. The
first index indicates the load, which is either; hydrodynamical, gravitational,
buoyancy, frictional, reactive or actuator. The second index indicates the axis
which the force or torque is along or around, and this is either the x-, y- or
z-axes. The third index of the subscript indicates which coordinate system
the force or torque is defined in. These are s, p and b respectively for the
ship, propeller and blade coordinate system. The six equations in Eq. 2.13
are all the sum of six loads except for the torques about the z-axis. The sum
of torques about the z-axis does not include a reactive torque. This is because
the blade is free to rotate about the z-axis. The blade motion is locked in the
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2.4. Modelling of Inertial Loads

translating direction of the x-, y-, and z-axes and rotationally about the x- and
y-axes due to the blade bearing, shown in Figure 2.8. Because the motion is
locked about these axes, the reactive forces and torques are included in Eq.
2.13 so that equilibrium can be satisfied. The forces in Eq. 2.13 are defined to
be positive in the positive direction of the coordinate system in which they are
defined in. The positive direction of the torques in Eq. 2.13 are defined with
the right hand rule. Eq. 2.13 only applies for one of the propeller blades. To
determine the response from the propeller Eq. 2.14 is used. Eq. 2.14 adds the
response for each blade and the hub to get the response from the propeller
in the ship coordinate system.

Lprop,s(θb) = Lhub,s(θb) +
Zb−1

∑
n=0

(
Lbladei ,s

(
θb − n

2 π

Zb

))
(2.14)

Lprop,s is the propeller load in the ship coordinate system, Lhub,s is the load
contribution from the hub, Lbladei ,s is the load contribution from the i’th blade
in the ship coordinate system and Zb is the number of propeller blades. The
response of each blade has a phase shift on 360◦/Zb with respect to the previ-
ous blade. This means that the propeller response due to the propeller blades
only has oscillations for the n Zb harmonics due to the other harmonics can-
celling each other.

In the following five sections, the loads due to inertia, hydrodynamics,
gravity, buoyancy, friction and reactive loads are modelled. The loads due to
the actuator depend on the design of the individual pitching mechanism and
the other five loads. An example of how the actuator loads is determined is
given in Section 2.10.

2.4 Modelling of Inertial Loads

The inertial loads are the required sum of all the forces and torques acting on
the blade, so that the blade moves according to the desired pitch trajectory.
The inertial loads depend on the motion of the blade i.e. the kinematics
of the blade. The kinematics for the blades pitching motion are defined in
Section 2.2. The inertial forces and torques are derived by considering the
change in linear and angular momentum of the blade in the inertial frame
of reference. The inertial frame of reference is the ship coordinate system,
thereby assuming that the ship has a constant velocity vector. Furthermore it
is assumed that the blade is a rigid body.

The derivation of the inertial loads is made separately for the linear and
rotational inertial loads in the following two sections. The derivation of the
inertial loads is made such that the inertial loads are defined in the propeller
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

coordinate system. The results for the modelled inertial loads are presented
in Section 2.4.3 for the pitch trajectories defined in Section 2.2.

2.4.1 Linear Inertial Loads

The inertial forces are equal to the change in linear momentum in the ship
coordinate system and are expressed as:

F iner,s = Ġs (2.15)

F iner,s is the inertial force vector in the ship coordinate system containing the
inertial forces Finer,x,s, Finer,y,s and Finer,z,s. Ġs is the time derivative of the
linear momentum vector, Gs, in the ship coordination system. The linear
momentum vector for the propeller blade is defined as:

Gs = mb vCM,s = mb ṙCM,s (2.16)

mb is the mass of the blade, see Table 2.1. vCM,s is the velocity vector of
the center of mass of the blade which is equal to the time derivative of the
vector rCM,s. rCM,s is the vector from the shaft center to the center of mass of
the propeller blade defined in the ship coordinate system. In Table 2.1 rCM is
defined in the blade coordinate system. The vector rCM has to be transformed
to the ship coordinate system to determine the linear momentum. rCM,s is
determined using the transformation matrices as:

rCM,s = T p,sTb,p rCM (2.17)

Eq. 2.16 and Eq. 2.17 are substituted into Eq. 2.15 to determine the linear
inertial forces as:

F iner,s = Ġs

= mb r̈CM,s

= mb
d2

dt2

(
T p,sTb,p

)
rCM

= mb

(
T̈ p,s Tb,p + 2 Ṫ p,s Ṫb,p + T p,s T̈b,p

)
︸ ︷︷ ︸

TG,s

rCM

= mb TG,s rCM (2.18)

The inertial forces in the ship coordinate system are defined by using the
blade mass, the vector to center of mass and a transformation matrix. The
transformation matrix depends on the blade’s pitch displacement, pitch rate,
pitch acceleration, blade position and the rate of propeller revolutions. The
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2.4. Modelling of Inertial Loads

inertial forces are determined in the ship coordinate system but they have
to be defined in the propeller coordinate system for the modelling of the
CVP propeller. To get the inertial forces in the propeller coordinate system,
the transformation matrix from the ship coordinate system to the propeller
coordinate system is used, as:

F iner,p = Ts,p F iner,s

= mb Ts,p TG,s︸ ︷︷ ︸
TG,p

rCM

= mb TG,p rCM (2.19)

2.4.2 Rotational Inertial Loads

The inertial torques are equal to the change in angular momentum in the ship
coordinate system and are expressed as:

Miner,s = Ḣs (2.20)

Miner,s is the inertial torque vector containing the inertial torques Miner,x,s,
Miner,y,s and Miner,z,s. Ḣs is the time derivative of the angular momentum
vector, Hs, in the ship coordinate system. The angular momentum for the
propeller blade in the ship coordinate system is defined as:

Hs = Is ωs (2.21)

Is is the blade’s moment of inertia matrix in the ship coordinate system. The
moment of inertia of the blade is defined in Table 2.1 in the blade coordi-
nate system with respect to the origin of the coordinate system where it is
constant. ωs the angular velocity vector of the blade in the ship coordinate
system.

The vector for the angular velocity of the propeller blade is defined in the
three coordinate systems as:

ωp =

θ̇b
0
θ̇p

 (2.22)

ωs = Tp,s ωp =

 θ̇b
θ̇p sin (θb)
−θ̇p cos (θb)

 (2.23)

ωb = Tp,b ωp =

 θ̇b cos
(
θp
)

−θ̇b sin
(
θp
)

−θ̇p

 (2.24)
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

ωb, ωp, ωs are the angular velocity vectors in the blade, propeller and ship
coordinate systems, respectively. θ̇p is the pitch rate. θ̇b is the rotational speed
of the propeller.

To determine the moment of inertia matrix in the propeller and ship co-
ordinate system, the angular momentum in each coordinate system is deter-
mined as:

Hb = Ib ωb (2.25)

H p = Ip ωp ⇒ Tb,p Hb = Tb,p Ib ωb = Tb,p IbT p,b ωp (2.26)

Hs = Is ωs ⇒ T p,s H p = T p,sTb,p IbT p,b ωp = T p,sTb,p Ib T p,b Ts,p ωs (2.27)

The moment of inertia matrices in the propeller coordinate system (Ip) and
the ship coordinate system (Is) are:

Ip = Tb,p Ib T p,b (2.28)

Is = T p,s Tb,p Ib T p,b Ts,p (2.29)

Substituting Eq. 2.21 and Eq. 2.29 into Eq. 2.20 yields the inertial torque
vector in the ship coordinate system as:

Miner,s = Ḣs

=
d
dt

(Is ωs)

=
d
dt

(
T p,s Tb,p Ib T p,b Ts,p ωs

)

=


Ṫ p,s Tb,p Ib T p,b Ts,p

+ T p,s Ṫb,p Ib T p,b Ts,p
+ T p,s Tb,p Ib Ṫ p,b Ts,p
+ T p,s Tb,p Ib T p,b Ṫs,p


︸ ︷︷ ︸

Is,ω

ωs + T p,s Tb,p Ib T p,b Ts,p︸ ︷︷ ︸
Is,ω̇

ω̇s

= Is,ω ωs + Is,ω̇ ω̇s (2.30)

For the modelling of the CVP propeller, the loads are desired in the propeller
coordinate system. The inertial torque vector, in the propeller coordinate
system, is determined as:

Miner,p = Ts,p (Is,ω ωs + Is,ω̇ ω̇s)

= Ts,p Is,ω T p,s︸ ︷︷ ︸
Ip,ω

ωp + Ts,p Is,ω̇ T p,s︸ ︷︷ ︸
Ip,ω̇

ω̇p

= Ip,ω ωp + Ip,ω̇ ω̇p (2.31)
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2.4. Modelling of Inertial Loads

2.4.3 Inertial Loads

From Eq. 2.19 and Eq. 2.31 the inertia model in the propeller coordinate
system is: [

F iner,p
Miner,p

]
=

[
mb TG,p rCM

Ip,ω ωp + Ip,ω̇ ω̇p

]
(2.32)

Applying the inertia model in Eq. 2.32 for the three pitch trajectories defined
in Section 2.2 and the operating condition in Table 2.1 gives the inertial loads
in Figure 2.9.
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Figure 2.9: The inertial forces and torques acting on the propeller blade for the pitch trajectories
determined in Section 2.2.
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

From Figure 2.9 it is seen that the inertial loads varies the most for the
variable pitch trajectory. The constant offset in the inertial loads is due to the
rotation of the propeller and the cyclical variations are due to the pitching of
the blade. It is seen that the variation in the inertial forces in the x- and y-
direction and the inertial torque about the x-axis, has a shape which is similar
to the pitch acceleration. The other inertial loads are shaped similar to the
pitch rate, which shows the coupling between the pitch rate and acceleration
in the inertial loads.

2.5 Modelling of Hydrodynamical Loads

In this section the hydrodynamical loads acting on the CVP propeller bla-
des, when operating in a non-uniform wake field, are determined through
the use of computational fluid dynamics (CFD) simulations. The CFD sim-
ulations were made for the three pitch trajectories described in Section 2.2.
The complete description of the setup of the simulations, uncertainty study
and simulation results are given in Appendix A. This section summarizes
the methods used and the results from Appendix A. For more details see
Appendix A.

The CFD simulations were made using the program STAR-CCM+ 12.02.010.
The simulations of the CVP propeller were made as unsteady single phase
simulations assuming an incompressible fluid and using the segregated flow
solver. The turbulence is accounted for by using the SST kω RANS turbulence
model.

The domain of the simulation is shown in Figure 2.10 with the dimen-
sions; Lr = 10.5Dp, Lb = 12.7 Dp and L f = 4 Dp. The rotation of the propeller
is made using a sliding mesh interface between the stationary region and the
rotating propeller region, shown as the yellow region in Figure 2.10. The
pitching of the blades is made by morphing the mesh in the propeller region.
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2.5. Modelling of Hydrodynamical Loads

Figure 2.10: The domain used in the CFD simulations of the CVP propeller in a non-uniform
wake field.

The discretization of the domain is made using STAR-CCM+’s unstruc-
tured polyhedral mesher with prism layer cells near the walls. The prism
layer settings are such that the y+-value is ≈ 100 for the first prism layer.
Because the viscous sublayer is not resolved, STAR-CCM+’s all y+ wall func-
tion is used. The spatial discretization of the domain is made for five different
refinements from ≈ 1.5 million cells to ≈ 13.6 million cells. Four different
temporal discretizations are used in the simulations. These different dis-
cretizations are used to determine the uncertainty in the simulation results
due to discretization. To determine the discretization uncertainty of the sim-
ulations, the method in Appendix C is used for the cycle of the simulations
that has obtained periodic convergence. The method used to determine if
periodic convergence has been obtained is also described in Appendix C.

The wake field implemented into the CFD simulation is the measured
nominal wake field, scaled by using the thrust identity method of [46]. The
axial velocity components of the non-uniform wake field are imposed as a
boundary condition on the inlet. The transverse velocity components of the
non-uniform wake field are made by distributing momentum sources up-
stream of the propeller (between the inlet and the propeller). The strength of
the momentum sources is determined through an iterative process.

The hydrodynamical forces and torques acting on the propeller blade,
determined from the CFD simulation with the finest discretization, are shown
in Figure 2.11 for the three pitch trajectories.
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Chapter 2. Modelling of Cyclical Varying Pitch Propeller

Figure 2.11: The hydrodyanmical forces and torques acting on the propeller blade for the pitch
trajectories determined in Section 2.2.

From Figure 2.11 it is seen, for the constant pitch trajectory, that the loads
change significantly, around the wake peak (i.e. blade position about 180◦)
and also that the uncertainty of the CFD simulation is largest around the
wake peak. For the cosine pitch trajectory, the change in the loads is generally
reduced. This is in agreement with what is expected when using the CVP
propeller. With the variable pitch trajectory, according to [66], it is expected
that the load variations should be further reduced. This is not the case as
can be seen from Figure 2.11. The variation in the loads is largest for the
variable pitch trajectory and therefore it cannot be considered as an optimum
pitch trajectory for the CVP propeller. This may be due to the quasi-steady
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2.5. Modelling of Hydrodynamical Loads

assumption, used in [66] to determine the optimum pitch trajectory, not being
an appropriate assumption when the variations in the pitch trajectory are
large enough. It may be more appropriate to use the quasi-steady assumption
when the variations in the pitch trajectory is limited, as for the cosine pitch
trajectory. Considering the shape of the loads for the variable pitch trajectory
in Figure 2.11 then it can be seen that the forces and torques in the x- and
y-direction are similarly shaped as the pitch acceleration in Figure 2.7. The
z-components of force and torque are shaped similar to the pitch rate in
Figure 2.6. This indicates that the pitch rate and acceleration influences the
load response. The pitch rate and acceleration are not considered under the
quasi-steady assumption used in [66].

It is desired to use the CVP propeller as an efficiency improving device
for ship propulsion. It is therefore relevant to consider the efficiency of the
propeller for the different pitch trajectories even though the same propeller
blade design is used for the three pitch trajectories. For the CFD simulations
the propeller efficiency, ηp, is determined as:

ηp =
T Va

ωp Q
(2.33)

T is the propeller thrust. Va is the average advance velocity of the water into
the propeller. ωp is the rotational speed of the propeller. Q is the propeller
torque. From this the propeller efficiency is determined for each of the pitch
trajectories which are given in Table 2.2.

Table 2.2: Propeller efficiency for the different pitch trajectories based on the CFD simulations
of the CVP propeller.

Constant Cosine Variable

ηp 0.6464
±0.0150
±2.3134%

0.6460
±0.0168
±2.5941%

0.6436
±0.0211
±3.2829%

From Table 2.2 it can be seen that there is a small variation in the propeller
efficiency for each pitch trajectory. The variations are within the uncertainty
bounds of the simulations and therefore no direct conclusion can be made
from this. It should be noted that the same blade design has been used
for all the CFD simulations and therefore the same results as in [66] cannot
be expected. In [66] the blade design is changed for each pitch trajectory.
Concluding whether an efficiency gain is obtainable or not, using the CVP
propeller with adapted blade design, is therefore not currently possible.
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2.6 Modelling of Gravitational Loads

The gravitational force acts in the negative z-direction in the ship coordinate
system as:

Fg,s =

 0
0

−mb g

 (2.34)

g is the gravitational acceleration. To get the gravitational forces in the pro-
peller coordinate system, the transformation from the ship coordinate system
to the propeller coordinate system is as:

Fg,p = Ts,p Fg,s (2.35)

The torques due to the gravitational force are determined using the cross
product of the gravitational force vector and the position vector for the center
of mass. The torque due to the gravitational force is:

Mg,s = Fg,s × rCM,s (2.36)

The position vector for the center of mass is constant in the blade coordinate
system and it has to be transformed into the ship coordinate system. The
gravitational torque is therefore determined as:

Mg,s = Fg,s × T p,s Tb,p rCM (2.37)

To model the CVP propeller the torque is desired in the propeller coordinate
system. The torque is therefore transformed into the propeller coordinate
system as:

Mg,p = Ts,p Mg,s

= Ts,p

(
Fg,s × T p,s Tb,p rCM

)
(2.38)

Applying the above model for gravitational loads, with the pitch trajectories
determined in Section 2.2, gives the gravitational loads in Figure 2.12.

From Figure 2.12 it is seen that the gravitational loads acting on the blade
do not change significantly for the different pitch trajectories.
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Figure 2.12: The gravitational forces and torques acting on the propeller blade for the pitch
trajectories determined in Section 2.2.

2.7 Modelling of Buoyancy Loads

The buoyancy loads acting on the propeller blade are due to the hydrostatic
pressure acting on the blade. There are two sources for the hydrostatic pres-
sure: one is for the water surrounding the blade and the other is from the
hydrostatic pressure of the lubrication oil in the hub acting on the blade foot.
The hydrostatic pressure, phydro, from the surrounding water is determined
in the ship coordinate system as a function of the immersion of the blade, zs,
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as:

phydro(zs) = psc − ρ g zs (2.39)

ρ is the density of the water. psc is the hydrostatic pressure at the origin of
the ship coordinate system. The origin of the ship coordinate system lies in
the center of the shaft and psc is determined as:

psc = ρ g hs (2.40)

hs is the immersion of the shaft center relative to the water line and is given
in Table 2.1. The force acting on the blade due to the hydrostatic pressure
acts normal to the surface of the blade. The surface of the blade is a com-
plex geometry and is difficult to describe in a closed-form expression. The
forces and torques due to the hydrostatic pressure are therefore determined
numerically. To determine the forces and torques numerically the finest sur-
face mesh of the blade, used to model the hydrodynamic forces and torques
in Section 2.5 and Appendix A, is used. The surface mesh of the blade is
shown in Figure 2.13.

Figure 2.13: Surface mesh of the propeller blade.
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The position, rA, and area, A, vectors for each face of the blade surface
are used to determine the forces and torques due to the hydrostatic pressure
from the surrounding water as:

Fb,p = Ts,p

N f aces

∑
i=1

phydro,i(T p,s Tb,p rA,z,i) T p,s Tb,p Ai (2.41)

Mb,p = Ts,p

N f aces

∑
i=1

phydro,i(T p,s Tb,p rA,z,i) T p,s Tb,p Ai × T p,s Tb,p rA,i (2.42)

In Eq. 2.41 and Eq. 2.42 the vectors rA and A are defined in the blade
coordinate system and therefore they have to be transformed into the ship
coordinate system. In the ship coordinate system the hydrostatic pressure
is calculated using Eq. 2.40. From the hydrostatic pressure, the forces and
torque are determined and transformed to the propeller coordinate system.
rA,z,i denotes the z-component of the i’th position vector.

Using this numerical approach to determine the forces and torques acting
on the propeller blade does not include the pressure inside the hub. The area
under the blade foot inside the hub is filled with lubrication oil which is used
to lubricate the blade bearing. The lubrication oil is typically pressurized
by elevating the tank with the lubrication oil a couple of meters above the
waterline. In the propeller coordinate system this gives a force contribution
in the z-direction which is determined as:

Fb,p =

 0
0

phub Ab f

+ Ts,p

N f aces

∑
i=1

phydro,i(T p,s Tb,p rA,z,i) T p,s Tb,p Ai (2.43)

Where,

phub = ρoil g ((hs + htank) + hhb cos (θb)) (2.44)

phub is the pressure of the lubrication oil inside the hub acting on the bottom
of the blade foot. Ab f is the area of the bottom of the blade foot. ρoil is the
density of the lubrication oil. htank is the evaluation of the lubrication tank
above waterline. hhb is the distance from the hub center to the bottom of the
blade foot. Using Eq. 2.42 and Eq. 2.43 for the three pitch trajectories gives
the forces and torques due to the hydrostatic pressure shown in Figure 2.14
for both the water and lubrication oil, individually and collected.
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Figure 2.14: The buoyancy forces and torques acting on the propeller blade for the pitch trajec-
tories determined in Section 2.2.

From Figure 2.14 it is seen that the variation in the buoyancy loads for the
different pitch trajectories is small. The model used for the hydrodynamics
of the CVP propeller in Section 2.5 already includes the hydrostatic pressure
from the water acting on the propeller blades. The only pressure acting on
the blade that is not accounted for is the pressure of the lubrication oil in the
hub. This gives a force in the positive z-direction on ≈ 33[kN]. Some of the
models in Chapter 3 for the hydrodynamics have to determine the buoyancy
load separately. This is why there is a longer derivation of the buoyancy
loads in this section.
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2.8 Modelling of Frictional Loads

The friction is due to the relative motion between the contact surfaces of the
blade foot and the hub in the blade bearing. The blade bearing for a CP
propeller is illustrated in Figure 2.15. For the modelling of the friction it is
assumed that the same blade bearing principle is used for the CVP propeller.

Blade
Blade Foot
Hub
Hub Center
Spindle axis

Figure 2.15: Cut view sketch of the blade bearing for a CP propeller. The blade foot is axisym-
metric around the spindle axis.

Most experimental data on the friction in CP propeller is based on mea-
suring the pressure difference over the servo piston during pitch changes as
in [76, 97]. The friction contribution in these measurements is not only due
to the friction in the blade bearing but also due to the friction in the crank-
slot/pin-slot mechanism and the bearings supporting the oil pipes to and
from the piston chambers.

Modelling of the friction in the blade bearing for CP propellers is pre-
sented in [13, 34, 35, 69, 89]. In [13, 69] the modelling is formulated to analyse
the dynamic behaviour of CP propellers and [96] uses it for active pitch con-
trol to improve performance. In [34, 35, 89] the friction in the blade bearing
is modelled to predict the oscillating motion of the blade which can cause
fretting wear. Wear due to fretting can result in a failure of the system.

The friction models considered in [13, 35] are both static and dynamic
friction models. The main reason for using the dynamic friction model is
due to the potential numerical issues when using the static friction model to
solve for the motion of the blade. In this section a static friction model is
used, since there should not be any issues with numerical stability because
the pitch motion of the blade is known. The classical static friction model is a
function of the velocity as shown in Figure 2.16 and the normal loading [74].

55



Chapter 2. Modelling of Cyclical Varying Pitch Propeller

0

Velocity

-Fs

-Fc

0

Fc

Fs

F
ric

tio
n

Coulomb
Coulomb + Viscous
Coulomb + Viscous +
Stick
Coulomb + Viscous +
Stick + Stribeck

Figure 2.16: Static friction models as a function of the velocity.

In Figure 2.16 there are four different friction components. These com-
ponents are; Coulomb, viscous, stiction and Stribeck. The simplest friction
model has only the contribution from the Coulomb friction, which is discon-
tinuous at zero velocity. At zero velocity the frictional force is equal to the
force exciting the motion, if this force is smaller than the Coulomb friction.
The friction due to Coulomb is determined as [74]:

Ff ric =


µc FN︸ ︷︷ ︸

Fc

sign (v) if v 6= 0

Fe if v = 0 and Fe < Fc

Fc sign (Fe) otherwise

(2.45)

Ff ric is the friction force. µc is the Coulomb friction coefficient. FN is the
normal force i.e. the force each body exerts on each other on the bodies
contact surfaces. Fc is the Coulomb frictional force. Fe is the force exciting the
motion of the body. v is the relative velocity between the two bodies.

The second friction model includes a viscous contribution due to the fluid
in the gap between the two bodies. In Figure 2.16 the viscous friction is shown
as a linear function of the velocity. The order of the viscous friction may vary
depending on the application [74]. The third friction model adds the contri-
bution due to stiction. The stiction is caused by the frictional force required
to initialize the motion is larger than the Coulomb friction. The stiction fric-
tion is therefore only present when the velocity is zero. The stiction friction
force Fs is determined in the same manner as the Coulomb frictional force
but instead of using the Coulomb friction coefficient µc, the stiction friction
coefficient µs is used. The last contribution is the Stribeck friction which is
the gradual transition from the stiction friction to the Coulomb and viscous
friction as shown in Figure 2.16. The friction model including the four com-
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ponents is [74]:

Ff ric =


(

Fc + (Fs − Fc) e−|
v
vs |

2
)

sign (v) + Fv if v 6= 0

Fe if v = 0 and Fe < Fs

Fs sign (Fe) otherwise

(2.46)

vs is the Stribeck velocity. Fv is the viscous frictional force. In order to use
the friction model in Eq. 2.46, a number of parameters have to be determined
for the application. These parameters are: the Coulomb friction coefficient,
stiction friction coefficient, Stribeck velocity and the viscous frictional force.
The most comprehensive study made for these parameters, with respect to
CP propellers, is [35]. In [35] the parameters are fitted to experimental data
obtained on a small test bench. The parameters are estimated as µc ≈ 0.1 and
µs ≈ 0.11.

The aim of the model, presented in this chapter, is to determine the loads
acting on the propeller blades and to determine the requirements for the
individual pitch mechanism. It is therefore better to overestimate the friction
and thereby the requirements for the actuation system than to underestimate
the friction. This is especially the case since knowledge about the modelling
of the friction and the friction coefficients is still sparse for CP propellers and
requires further research. The friction model used is therefore chosen to be
the Coulomb friction model with a Coulomb friction coefficient of 0.15 to
account for stiction and to be conservative. This friction model may not be
conservative enough if the viscous effect is significant. The friction model in
Eq. 2.46 is therefore reduced to:

Ff ric =


Fc sign (v) if v 6= 0
Fe if v = 0 and Fe < Fc

Fc sign (Fe) otherwise

(2.47)

Having decided on the friction model used in the modelling of the CVP
propeller, the remaining factor to be determined is the normal force FN . The
load the hub exerts on the blade and vice-versa are the reactive loads. To
model the reactive loads, a new blade bearing coordinate system is defined as
shown in Figure 2.17a. The notation used for the dimensional of the bearing
are shown in Figure 2.17b. The dimensions of the blade bearing considered
are given in Table 2.3.
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Figure 2.17: (a) The blade bearing coordinate system relative to the propeller coordinate system.
(b) Notation and definitions used for the blade bearing.

Blade bearing dimensions
Outer radius of blade bearing Rbb 412.5 [mm]
Inner radius of blade bearing rbb 325 [mm]
Height of blade bearing hbb 115 [mm]
Translation length ht 527.5 [mm]

Table 2.3: Blade bearing parameter for the case considered.

The new blade bearing coordinate system (Xbb,Ybb,Zbb) is a translation of
the propeller coordinate system along the spindle axis. The translation is such
that the origin of the blade bearing coordinate system is located in the middle
of the bearing as shown in Figure 2.17a. It is assumed that the origin of the
blade bearing coordinate system lies in the blade bearing’s center of stiffness.
The center of stiffness is the center at which the blade will tilt around due
to the torques about the x- and y-axis. To use the blade bearing coordinate
system, the forces and torques in the propeller coordinate system have to
be transformed to the blade bearing coordinate system. The forces in the
blade bearing coordinate system are the same as the forces in the propeller
coordinate system. The torque vector in the blade bearing coordinate system
(Mbb) is determined as:

Mbb = Mp − rt × F p (2.48)

Mp is the torque vector in the propeller coordinate system. rt is the transla-
tion vector from the propeller coordinate system to the blade bearing coordi-
nate system. In this case the translation vector rt = [0 0 ht]T . F p is the force
vector in the propeller coordinate system.
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There are three contact surfaces in the blade bearing, as shown in Figure
2.17b. These surfaces are the upper and lower axial surfaces and the radial
surface. The reactive loads can, in principle, act on any of the surfaces. The
friction varies depending on which surface the reactive loads act upon. To
model the reactive loads some assumptions are made about which surfaces
the reactive loads act upon and these assumptions are;

• The reactive forces Freac,x,bb and Freac,y,bb are assumed to act upon the
radial surface of the blade bearing.

• The reactive force Freac,z,bb is assumed to act upon the axial surfaces of
the blade bearing.

The reactive torques Mreac,x,bb and Mreac,y,bb can, in principle, act upon either
the radial or the axial surfaces depending on the clearance in the blade bear-
ing, if the blade bearing is assumed to be rigid. In reality the blade bearing
is not rigid and it is elastic deformed when loaded. If the elastic deformation
is considered then the reactive torques Mreac,x,bb and Mreac,y,bb can act upon
all the surfaces at the same time. To determine the influence of which sur-
face the reactive torque acts upon, different loading models are investigated.
These models are not limited to which surface the reactive torques act upon
but also include different assumptions with respect to the load distribution
on these surfaces. Due to the elastic deformation of the blade bearing under
loading, the reactive loads may not act at a single point. Instead, the load-
ing may be distributed over an area of the blade bearing surfaces. In total
seven different models are investigated. These models are shown in Figure
2.18. The different models in Figure 2.18 will be referred to by their subfigure
notation, such as Figure 2.18a is model A, Figure 2.18b is model B, etc.

The models in Figure 2.18 can be divided into two types, one where the
resulting reactive torque Mreac,xy,bb acts upon the axial surface (model A-D)
and the others where the resulting reactive torque Mreac,xy,bb acts upon the ra-
dial surface (model E-G). For the models where the resulting reactive torque
Mreac,xy,bb acts upon the axial surface, it is assumed that the surfaces can be
viewed as a disc in the xy-plane of the blade bearing coordinate system.

The force and torque vectors Fxy and Mxy in Figure 2.18 are the force and
torque due to the resulting reactive force and torque Freac,xy,bb and Mreac,xy,bb,
respectively. The red shaded areas are the assumed shape of the load dis-
tribution, q, for the model. In the models without the red shaded areas the
loads are considered to act at points.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.18: Different models for the load distribution of the resulting torque Mreac,xy,bb in the
blade bearing.
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The derivation of the Coulomb friction for the different load distribution
models in Figure 2.18 is presented in Appendix B. The derivation of the Cou-
lomb friction in Appendix B results in 13 different models for the Coulomb
friction. The increase in models is because additional submodels are used for
each model in Figure 2.18. For the models A-D, two assumptions about the
load distribution in the radial bearing surface can be made. These two load
distribution models are shown in Figure 2.19.

(a) (b)

Figure 2.19: (a) Point load on the radial surface. (b) Elliptical load distribution on the radial
surface.

In Figure 2.19a the load acts at a point and in Figure 2.19b the load has
an elliptical distribution over the surface according to Hertzian contact me-
chanics. The models using the point load assumption are indicated with a
subscript "p" as in model Bp and the models using the Hertzian contact as-
sumption are indicated with a subscript "h" as in model Bh. Model Ah is
not investigated since the model A assumes point loads which is violated if
model Ah is used.

Similar considerations are made for the axial surfaces when the resulting
reactive torque Mreac,xy,bb is assumed to act on the radial surface only i.e.
model E-G. The two cases considered are shown in Figure 2.20.

In Figure 2.20a it is assumed that the reactive force, Freac,z is distributed
circumferentially at a fixed radius. This submodel is noted with the subscript
"c". In Figure 2.20b it is assumed that the reactive force, Freac,z is distributed
uniformly over the whole axial surface. This submodel is noted with the
subscript "s".
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(a) (b)

Figure 2.20: (a) Circumferential load distribution over the axial surface. (b) Radially and circum-
ferential load distribution over the axial surface.

The friction model implemented into the computation of the friction dif-
fers from the one in Eq. 2.47. The friction model implemented is:

Ff ric =

{
Fc sign (v) if v 6= 0
κ Fc sign (Fe) if v = 0

(2.49)

Where,

κ = min
(∣∣∣∣ Fe

Fc

∣∣∣∣ , 1
)

(2.50)

For the case considered, the motion is not excited by a force but by a torque
about the z-axis. The excitation torque is determined as:

Mext,z,bb = Mhydro,z,bb + Mact,z,bb + Mg,z,bb + Mb,z,bb (2.51)

The friction model for the pitching motion of the blade is then:

[
F f ric,bb
M f ric,bb

]
=



[
Fc,bb

Mc,bb

]
sign

(
θ̇p
)

if θ̇p 6= 0

κ

[
Fc,bb

Mc,bb

]
sign (Mext,z,bb) if θ̇p = 0

(2.52)

Where,

κ = min
(∣∣∣∣Mext,z,bb

Mc,z,bb

∣∣∣∣ , 1
)

(2.53)

Fc,bb and Mc,bb are the Coulomb friction vector determined in Appendix B.
The different friction models are compared to each other for each pitch tra-
jectory with respect to the friction about the spindle axis (M f ric,z,bb) in Figure
2.21. The friction is evaluated using the method described in Section 2.9. The
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models which are based on assuming a radius where the load acts on the
axial surfaces are shown in Figure 2.21 with a shaded area.

Figure 2.21: Frictional torque about the z-axis for the different friction models. The left column
shows the frictional torque using the load distribution models A-D and the right column shows
the frictional torque using the load distribution models E-G. The top row plots are for the con-
stant pitch trajectory. The middle row plots are for the cosine pitch trajectory. The bottom row
plots are for the variable pitch trajectory.

From Figure 2.21 it is seen that there is little difference between the differ-
ent submodels for the models B-D. This is because the loading of the radial
surface is not large enough for the Hertzian contact modelling to become sig-
nificant. The same difference is not seen between models F and G where the
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difference are approximately a factor of 1.3, which is close to the maximum
difference between using Hertzian contact mechanics and a point load.

The models including the Hertzian contact also depend on the clearance
between the hub and the blade foot. The smaller the clearance, the larger the
friction. The results shown in Figure 2.21 are based on using the maximum
allowable clearance due to tolerances. If the smallest allowable clearance is
used instead, the frictional torque would increase by a maximum of 162 Nm
for the models Bh-Dh. For model G the maximum increase in the frictional
torque is 5.5 kNm.

The largest differences between the models is seen between models A-
D and the models E-G. These differences are between a factor 2-11. This is
a large difference in the friction which depends on the assumptions made
for the load distribution in the blade bearing. The models are based on the
reactive torque, Mreac,xy,bb, either acting on the axial or the radial surfaces of
the blade bearing. In reality, the reactive torque, Mreac,xy,bb, more than likely
acts partly on both surfaces with a load distribution which differs from the
ones investigated here. To investigate this further, it is necessary to make
numerical simulations of the elastic deformation of the blade bearing under
loading. Such simulations have not been conducted during this work and are
left for future work.

The effect of distributing the torque, Mreac,xy,bb, to both the radial and
axial surfaces is investigated with the models presented. This is done by
using the axial friction from the models A-D and the radial friction from the
models E-G and adding the frictions together. The reactive torque used in
the axial friction model is DR Mreac,xy,bb and the reactive torque used in the
radial friction model is (1− DR) Mreac,xy,bb. DR is the distribution ratio of
the reactive torque, Mreac,xy,bb. The results from using this approach should
be bounded by the results shown in Figure 2.21.

The modelling of the friction in the blade bearing is made using the model
D for the axial friction and model G for the radial friction. Model D is chosen
to be conservative in the determination of the axial friction without having
to assume a radius that the load acts upon such as that for model C. For the
same reason of being conservative in the determination of the friction, model
G is chosen to determine the radial friction. It is assumed that most of the
reactive torque acts on the axial surface. The distribution ratio is determined
as a function of the geometrical shape of the bearing as:

DR =
2 Rbb − hbb

2 Rbb
→ DR = 0.86 (2.54)

The results for the frictional torque, M f ric,z,bb, using model D and G are
shown in Figure 2.22 for various distribution ratios for the three pitch tra-
jectories.
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Figure 2.22: Frictional torque about the z-axis by using the model D and G with different load
distributions ratios, DR. The top plot is for the constant pitch trajectory. The middle plot is for
the cosine pitch trajectory. The bottom plot is for the variable pitch trajectory.

From Figure 2.22 it is seen that at DR = 1, the friction is the same as when
using model D. For DR = 0 the friction is the same as when using model G.
A distribution ratio of 0.86 is used for the friction modelling.
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2.9 Modelling of Reactive Loads

The reactive loads are the loads that the hub exerts on the blade such that the
blade stays in the blade bearing. These loads are determined such that the
system of equations in Eq. 2.13, based on Newton’s second law of motion,
are satisfied. For convenience Eq. 2.13 is shown again in Eq. 2.55.

Finer,x,p
Finer,y,p
Finer,z,p

Miner,x,p
Miner,y,p
Miner,z,p


=



Fhydro,x,p + Fact,x,p + Ff ric,x,p + Freac,x,p + Fg,x,p + Fb,x,p
Fhydro,y,p + Fact,y,p + Ff ric,y,p + Freac,y,p + Fg,y,p + Fb,y,p
Fhydro,z,p + Fact,z,p + Ff ric,z,p + Freac,z,p + Fg,z,p + Fb,z,p

Mhydro,x,p + Mact,x,p + M f ric,x,p + Mreac,x,p + Mg,x,p + Mb,x,p
Mhydro,y,p + Mact,y,p + M f ric,y,p + Mreac,y,p + Mg,y,p + Mb,y,p

Mhydro,z,p + Mact,z,p + M f ric,z,p + Mg,z,p + Mb,z,p


(2.55)

The previous sections have shown how the hydrodynamical, inertial, gravita-
tional, buoyancy and frictional loads are determined. The hydrodynamical,
inertial, gravitational and buoyancy loads are determined as functions of the
pitch trajectory, the operating condition of the propeller and the design of
the propeller blades. The frictional loads depend on the reactive loads and
the pitch trajectory. The reactive loads are the loads that the hub exerts on
the blade such that the blade stays in the blade bearing and Eq. 2.55 is satis-
fied. Because the frictional loads depend on the reactive loads, the system of
equations in Eq. 2.55 is solved iteratively for each blade position in the wake
field. The iterative solving procedure is:

Algorithm 1 Determine the reactive, frictional and actuator loads acting on
the CVP propeller blades.

for θb = 0 . . . 2 π do
Compute:

Fhydro,p, Mhydro,p, F iner,p, Miner,p, Fg,p, Mg,p, Fb,p, Mb,p

Minimise:
e(Freac,x,p, Freac,y,p, Freac,z,p, Mreac,x,p, Mreac,y,p, Mact,z,p)

Where,

e =

∥∥∥∥∥∥∥∥∥∥∥∥∥



Finer,x,p − Fhydro,x,p − Fact,x,p − Ff ric,x,p − Freac,x,p − Fg,x,p − Fb,x,p
Finer,y,p − Fhydro,y,p − Fact,y,p − Ff ric,y,p − Freac,y,p − Fg,y,p − Fb,y,p
Finer,z,p − Fhydro,z,p − Fact,z,p − Ff ric,z,p − Ff ric,z,p − Fg,z,p − Fb,z,p

Miner,x,p −Mhydro,x,p −Mact,x,p −M f ric,x,p −Mreac,x,p −Mg,x,p −Mb,x,p
Miner,y,p −Mhydro,y,p −Mact,y,p −M f ric,y,p − Freac,y,p −Mg,y,p −Mb,y,p

Miner,z,p −Mhydro,z,p −Mact,z,p −M f ric,z,p −Mg,z,p −Mb,z,p



∥∥∥∥∥∥∥∥∥∥∥∥∥
L2

end for
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The above algorithm computes the hydrodynamical, inertial, gravitational
and buoyancy loads using the methods described in the previous sections for
each blade position. The reactive loads and the actuation spindle torque
Mact,z,p are determined through minimising the L2-norm of the error of the
system of equations in Eq. 2.55. In the evaluation of the error the friction is
determined as in Section 2.8 using the current values of the reactive loads.
The five actuator components, Fact,x,p, Fact,y,p, Fact,z,p, Mact,x,p, and Mact,y,p are
determined using an actuator model which has not been presented yet. The
actuator model depends on the topological design of the pitch mechanism.
Since the topological design of the pitch mechanism is not known, the most
simple actuator model is used. This is where the five actuator components,
Fact,x,p, Fact,y,p, Fact,z,p, Mact,x,p, and Mact,y,p are equal to zero. This is the case
if the actuator is a motor which only contributes with a torque about the z-
axis to pitch the blades. It is furthermore assumed that there is no friction in
the actuator.

Using the above algorithm to determine reactive loads for the different
pitch trajectories gives the reactive loads shown in Figure 2.23. The disconti-
nuities in the forces along the x- and y-axes are due to the discontinuities in
the friction.
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Figure 2.23: The reactive forces and torques acting on the propeller blades for the pitch trajec-
tories determined in Section 2.2.

2.10 Applications of Cyclical Varying Pitch Model

The model for the CVP propeller blades has been derived in the previous
sections. The model can be used to determine the required actuator torque
to pitch the blade according to the desired pitch trajectory determined in
Section 2.2. The actuator torque determined is shown in Figure 2.24 for each
pitch trajectory together with the other torques about the z-axis. The actuator
model used is the same as the one used in Section 2.9, which is an actuator
that only contributes with a torque about the z-axis.
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Figure 2.24: Required actuator torque to pitch the blade according to the desired pitch trajectory
and the torque constituting the actuator torque.

The top, middle and bottom plots in Figure 2.24 show the torques acting
on the propeller blade for it to follow the constant, cosine and variable pitch
trajectories, respectively.

For the constant pitch trajectory, the actuator is used to hold the blade.
The actuator torque for the cosine pitch trajectory is about the same order
of magnitude as for the constant pitch trajectory. This indicates that the
dynamics of the cosine pitch trajectory do not increase the magnitude of
the actuator torque significantly. The actuator torque for the variable pitch
trajectory is larger than the actuator torque for either the constant or the
cosine pitch trajectories. The dynamics of the pitch trajectory therefore has
a significant effect on the actuator torque. The requirements for the actuator
are therefore significantly stricter if it is desired to use the variable pitch
trajectory for the CVP propeller.

Another aspect to consider is the required power to make the cyclical
pitching of the propeller blades. If the power consumption is larger than the
power savings obtained with the CVP propeller then an overall power saving

69



Chapter 2. Modelling of Cyclical Varying Pitch Propeller

is not obtained. The CVP propeller may thereby only be desirable due to
the improvement in the cavitation performance, as described in Section 1.3.5.
The power, Pp, to pitch the blade is determined as:

Pp (θb) = Mact,z,p (θb) θ̇p (θb) (2.56)

Using the actuator torques in Figure 2.24 and the corresponding pitch trajec-
tories gives the varying and average required pitching power in Figure 2.25.
The average, maximum and minimum required pitching powers are given in
Table 2.4 for each of the pitch trajectories.
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Figure 2.25: Required power to pitch the blade according to the desired pitch trajectory.

Table 2.4: Required average, maximum and minimum pitching powers to pitch the propeller
blade.

Constant Cosine Variable
Average Pitching Power 0.0 [kW] 16.7 [kW] 63.7 [kW]

Maximum Pitching Power 0.0 [kW] 41.3 [kW] 392.3 [kW]
Minimum Pitching Power 0.0 [kW] 0.0 [kW] −113.5 [kW]

From Figure 2.25 and Table 2.4 it is seen that the average required pitching
power for the variable pitch trajectory is 3.8 times the required power for the
cosine pitch trajectory. The variation in the required pitching power is also
significantly larger for the variable pitch trajectory than for the cosine pitch
trajectory. But for the variable pitch trajectory it is possible to regenerate
some power just before the wake peak which is included when determining
the average pitching power. If the power is not regenerated and the average
of the absolute pitching power is used instead, the average pitching power is
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71.2 [kW]. Otherwise if the negative power is set to zero, the average pitching
power is 67.4 [kW].

The required pitching power is not equal to the required actuation power.
This is because there are losses in the actuator system e.g. due to friction. To
get an idea of the required efficiency of the actuation system the power sav-
ings determined in [66] for the CVP propeller are considered. These power
savings are also presented in Section 1.3.4. In [66] the power delivered to
each propeller blade is determined for each pitch trajectory and correspond-
ing blade design. Using these calculated powers and the required pitching
power, the minimum allowable efficiency, ηact, of the actuator system is de-
termined as:

ηact =
Pp

Pconst − Ptraj
(2.57)

Pconst is the delivered power to the propeller blade for the constant pitch
trajectory. Ptraj is the delivered power to the propeller blade for the cosine
or the variable pitch trajectory. The delivered power to the propeller blade,
pitching power and minimum required actuator efficiency are given in Ta-
ble 2.5. Note that the pitching power, Pp, is determined using the derived
model in this chapter with the blade design for the constant pitch trajec-
tory in [66]. The delivered powers, determined in [66], are based on using a
unique blade design for each pitch trajectory. One should therefore be care-
ful not to make any strong conclusions on these minimum required actuator
efficiencies in Table 2.5. But, it is expected that the pitching power is reduced
if the power was determined using the blade geometry determined for the
different pitch trajectories. This is because in [66] the area ratio of the pro-
peller is reduced for the cosine and variable pitch trajectories. If the required
pitching power is reduced by using the adapted blade geometries, then the
minimum required actuator efficiency is also reduced compared to the values
determined in Table 2.5. One should still be careful in drawing any strong
conclusions since the delivered blade power from [66] is used. Because it was
determined in Section 2.5 that the variable pitch trajectory is not an optimum
pitch trajectory, then the method used to determine the performance of the
CVP propeller in [66] may not be adequate.
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Table 2.5: Minimum required actuator efficiency. Pitching power determined as; ∗ average of
the pitching power in Figure 2.25, + average of the absolute pitching power in Figure 2.25 and x

average of the pitching power in Figure 2.25 where the negative power is set to zero.

Pitch Power per Pitching Minimum Actuator
Trajectory blade [kW] Power [kW] Efficiency [-]
Constant 1506.6 0 -
Cosine 1436.0 16.7 0.2359
Variable∗ 1418.5 63.7 0.7225
Variable+ 1418.5 71.2 0.8080
Variablex 1418.5 67.4 0.7652

From Table 2.5 it is seen that the minimum required efficiency of the
actuator system is relatively high for the variable pitch trajectory. If the CVP
propeller is to be used as an efficiency improving device, then the efficiency
of the actuator system has to be larger than those given in Table 2.5. The
minimum required efficiency for the actuation system for the cosine pitch
trajectory is relatively low. It should be possible to design an actuation system
which has an efficiency of 0.24 or better. Therefore, the cosine pitch trajectory
seems the most promising to use to make the CVP propeller an efficiency
improving device. The variable pitch trajectory may still be desirable for the
CVP propeller if it improves the cavitation performance, assuming that that
is the feature sought by the owner of the vessel.

The presented results for the frictional loads in Section 2.8, the reactive
loads in Section 2.9 and this section (Section 2.10) have not taken the uncer-
tainties of the hydrodynamical loads into account. These uncertainties are
defined with an upper and lower limit. To assess the influence of this un-
certainty, the model is evaluated for all of the 64 (26) combinations of the
uncertainties. The resulting uncertainties in the determined actuator torque
and power are shown in Figure 2.26. The solid lines in Figure 2.26 are the
actuator torque and power previously presented and the shaded areas are the
uncertainties. The average, minimum and maximum values for the actuator
torque and power are given in Table 2.6 for the three pitch trajectories.
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Figure 2.26: Actuator torque and power with their uncertainties due to the uncertainties in the
hydrodynamical loads for each of the three pitch trajectories.

Table 2.6: Average, maximum and minimum actuator torque and power with their uncertainties
due to the uncertainties in the hydrodynamical loads for each of the pitch trajectories

Constant Cosine Variable
Average Actuator
Torque [kNm]

97.6
+5.6
−7.7

36.6
+5.8
−7.4

63.9
+7.3
−10.0

Maximum Actuator
Torque [kNm]

113.9
+4.6
−4.7

139.4
+8.7
−6.6

276.5
+10.8
−6.4

Minimum Actuator
Torque [kNm]

51.2
+17.5
−27.8

-76.5
+13.8
−21.1

-254.5
+23.3
−24.7

Average Power [kW] 0.0
+0.0
−0.0

16.7
+1.1
−1.4

63.7
+7.4
−6.2

Maximum Power [kW] 0.0
+0.0
−0.0

41.3
+2.0
−2.2

392.3
+48.7
−23.2

Minimum Power [kW] 0.0
+0.0
−0.0

0.0
+0.0
−0.0

-113.5
+24.6
−28.1

From Figure 2.26 and Table 2.6 it is seen that the uncertainties in the actua-
tor torque and power are the largest around the wake peak. This corresponds
with the uncertainty of the hydrodynamical loads. The uncertainties in the
actuator torque and power have to be accounted for when designing the ac-
tuation mechanism for the CVP propeller. A consequence of this uncertainty
can lead to overdimensioning the actuator mechanism which can reduce the
efficiency of the actuation mechanism at smaller loads.
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2.11 Partial Conclusion, Discussion and Future Work

In this chapter a framework has been established which is used to evaluate
the loads acting on the CVP propeller blades. The framework established re-
quires the propeller geometry, the pitch trajectory and operating conditions
of the propeller to be known in order to evaluate the loads. The loads eval-
uated are the inertial, hydrodynamical, actuator, frictional, reactive, gravita-
tional and buoyancy loads, and they have been determined for one propeller
blade design for each of the three pitch trajectories from [66]. The framework
established is used to determine the requirements for the individual pitch
mechanism at one operating condition with respect to the actuator torque
and power, which is the primary contribution from this chapter. The require-
ments should be determined for all the operating conditions of the propeller
and be included in a sensitivity study for all the parameters which are not
strictly known.

The evaluation of hydrodynamical loads acting on the CVP propeller and
its blades, have been studied in [33, 88]. In [88] the hydrodynamical loads
acting on the CVP propeller blades are modelled using an unsteady lifting
surface program. This program accounts for unsteadiness due to the non-
uniform wake field but neglects the unsteadiness due to the pitching mo-
tion. The hydrodynamical loads due to the cyclical pitching are determined
through interpolation of a series of FP propellers with different pitch set-
tings. The model is therefore quasi-steady with respect to the pitch motion.
In [33] the hydrodynamical loads acting on the CVP propeller are determined
through an unsteady lifting surface program. This program is modified to ac-
count for the unsteadiness due to the pitching motion of the CVP propeller
blades. The proposed method to determine the hydrodynamical loads in this
chapter was to use URANS CFD simulation. The benefits of using a CFD
simulation is the capability to account for flows with complex vortex struc-
tures and/or viscous effects [2] and the method is therefore not limited by
the inviscid flow assumptions used in the lifting surface method. The present
method used to determine the hydrodynamical loads can, in the future, be
extended to also determine the propeller performance with respect to the
cavitation, pressure pulses and noise. This is likely to require additional
computational resources. It could also be investigated if other methods are
more appropriate to use for the analysis of the CVP propeller with respect to
the accuracy and the required computational resources.

The framework established in this chapter is the most comprehensive one
to establish the requirements for the individual pitch mechanism of the active
controlled CVP propeller. These requirements can be used to determine if the
CVP propeller is feasible, in the future especially, when more knowledge has
been established with respect to how to design the optimum propeller blades
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and pitch trajectory for a CVP propeller. Other feasibility studies were made
in [76,90]. The feasibility study in [76] is for the thrust balance propeller and
the study in [90] is for the active controlled individual pitch propeller. None
of these studies are as comprehensive as the established framework in this
dissertation.

The established framework in this chapter is based on inverse rigid body
dynamics whereas most previous studies are based on rigid body dynamics
when modelling the pitching motion of the blades. These studies are [76] for
the CVP propeller and [13, 34, 35, 69, 89] for the CP propeller. The studies of
the CP propeller all include the loads due to hydrodynamics, centrifugal and
friction, where the centrifugal load is equivalent to the inertial load used in
this framework. The method used to determine the hydrodynamical loads
differs for each of the studies [13, 34, 35, 69, 89]. The frictional loads are ge-
nerally determined using the method from [34, 35]. This friction model is
equivalent to the derived friction model Ch. In this chapter it is shown that
there are a multitude of methods and assumptions that can be used to model
the friction which yields vastly different results. Further research has to show
which method is the most appropriate one to use to model the friction in the
blade bearing. The modelling could also be extended by modelling the elas-
tic deformation of the blade bearing to assess the load distribution in the
bearing, including the fluid film in the bearing and by determining the ap-
propriate friction coefficients. Furthermore, the whole framework should be
validated through experiments. The established framework can furthermore
be adapted to rigid body dynamics by replacing the actuator torque with the
pitch acceleration in the solver algorithm. This requires either that the model
is coupled with the CFD simulation or that another method is used to evalu-
ate the hydrodynamical loads due to pitch motion, which preferably requires
fewer computational resources than the CFD approach presented.
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Chapter 3

Pitch Trajectory for Cyclical
Varying Pitch Propeller

In Chapter 2 it was found that the variable pitch trajectory determined in [66]
is not the optimum pitch trajectory for the CVP propeller. This is because the
variable pitch trajectory does not reduce the variations in the hydrodynamical
loads which are expected according to [66]. The variations in the hydrody-
namical loads are increased significantly instead.A reason for this may be due
to the quasi-steady assumption made in [66] is not an appropriate assump-
tion when analysing the CVP propeller. It may also therefore be that the
quasi-steady assumption is not appropriate to determine the optimum pitch
trajectory for the CVP propeller. To determine the optimum pitch trajectory
it is necessary to define what the optimum pitch trajectory is.

The optimum pitch trajectory for the CVP propeller is defined as the pitch
trajectory that gives the best performance of the CVP propeller. In Chapter 1
the performance parameters are defined and with respect to these parameters
the desired performance with the optimum pitch trajectory are:

• Thrust

– The mean of the cyclical thrust should equal the desired thrust
according to the specified operating conditions.

• Efficiency

– Maximise the efficiency of the CVP propeller by minimising the
required power delivered to the propeller to produce the desired
thrust and minimise the required power for the actuator system to
pitch the blades individually.

• Shaft vibrations

– Minimise the variation in the loads acting on the propeller.
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• Cavitation

– Minimise the cavitation over the propeller blades.

• Pressure pulses

– Minimise the amplitudes of the pressure pulses acting on the ship
hull.

• Noise

– Reduce the noise created by the propeller. Generally done by min-
imising shaft vibrations, cavitation and pressure pulses.

• Reliability

– Minimise the load variation on the propeller blade to reduce fa-
tigue stresses. The reliability is not limited to the blade’s fatigue
stresses but could also include other relevant components.

There are multiple performance parameters for the CVP propeller which have
to be considered when determining the optimum pitch trajectory. It is there-
fore a multi-objective optimization problem that has to be solved. The opti-
mization problem can be defined with five objectives, for the efficiency, shaft
vibrations, cavitation, pressure pulses and reliability, as defined above. The
thrust is made as an equality constraint and the noise is implied to be in-
cluded by the shaft vibrations, cavitation and pressure pulses. The design
parameters or variables for the optimization problem are the variables used
to define the propeller geometry, pitch trajectory and actuator mechanism.
These design variables also have their own constraints which should be in-
cluded in the optimization. Solving this multi-objected optimization problem
globally would yield the optimum propeller geometry, pitch trajectory and
actuator system for the CVP propeller. Considering the established frame-
work in Chapter 2 then it is not possible to determine the objectives related
to cavitation and pressure pulses. These objectives are, to some degree, cou-
pled with the other objectives, such as the shaft and blade vibrations, and
minimising these will most likely also minimise the cavitation and pressure
pulses. The framework can be used to determine the blade and shaft vibra-
tions, the propeller efficiency and the required minimum actuator power.

Furthermore, in the determination of the optimum pitch trajectory the de-
sign variables for the propeller geometry are not included. This is due to the
large design space of the propeller geometry and the associated high compu-
tational costs. Because the blade geometry is not included, the actuator power
cannot be included. This is because when considering the actuator power it
has to be considered relative to the optimal solution for the CP propeller, i.e.
when the blade’s pitch does not vary cyclically, and since the propeller effi-
ciency does not change significantly when the blade geometry is fixed it does
not make sense to consider the actuator power when the blade geometry is
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not considered. This means that only the shaft and blade vibrations are used
to determine the optimum pitch trajectory for the CVP propeller. The mod-
elling of the hydrodynamical loads does not, therefore, need to determine the
steady components of the hydrodynamical loads but instead the model only
has to be able to determine the unsteady components.

The downside of the framework is that it is computationally expensive
due to the method used to evaluate the hydrodynamics and therefore it might
not be efficient to use it in an optimization if a solution is desired within a
restricted time limit. Therefore, it is desirable to find a less computationally
expensive method to determine the hydrodynamical loads acting on the CVP
propeller and its blades. Four alternative models, to determine the hydrody-
namical loads, are described in Section 3.1 where they are also compared to
the hydrodynamical loads determined in Chapter 2.

The optimum pitch trajectory is determined in Section 3.2 for the pro-
peller considered in Chapter 2. The actuator requirements are determined in
Section 3.3 when the CVP propeller pitches according to the optimum pitch
trajectory. In Section 3.4 the results from this chapter are summarized and
discussed together with some of the other aspects for the future work.

3.1 Alternative Hydrodynamic Models

The model used to evaluate the hydrodynamical loads in Chapter 2 is com-
putationally expensive. To determine the optimum pitch trajectory for the
CVP propeller it is desired to have a model which is less computationally
expensive. Four alternative models for the hydrodynamical loads were in-
vestigated. These models are:

• Hydrodynamic modelling of the CVP propeller using the open-water
curves for the equivalent CP propeller. Described in Appendix D.

• Hydrodynamic modelling of the CVP propeller using unsteady foil the-
ory. Described in Appendix E.

• Hydrodyanmic modelling of the CVP propeller using empirical transfer
function estimation. Described in Appendix F.

• Hydrodynamic modelling of the CVP propeller using a reduced model.
Described in Appendix G.

A short summary of the four modelling methods is presented in the following
four sections, followed by a section presenting the results for each of the
modelling approaches. The details of the four modelling methods are given
in appendices D-G.
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3.1.1 Hydrodynamic Modelling of CVP Propeller using Open-
Water Curves for the CP Propeller

The modelling of the hydrodynamical loads acting on the CVP propeller bla-
des using the open-water curves of the CP propeller is presented in Appendix
D. The open-water curves are determined using the equivalent CP propeller
i.e. constant pitch trajectory to correspond with traditional open-water tests.
The open-water curves are made for a series of pitch settings which cover the
span of the pitch trajectory. Furthermore, for modelling the CVP propeller
it is required that all six loads acting on the propeller blade are determined.
Such measurements have been made in [16, 50]. In Appendix D the open-
water curves are determined using quasi-steady RANS CFD simulations of
the full scale propeller.

The hydrodynamical loads acting on the CVP propeller blades are deter-
mined by interpolating the open-water CFD simulation results depending on
the blade’s pitch and the local advance coefficient. These vary with the po-
sition of the propeller blade in the wake field. The local advance coefficient
is a measure of the local flow condition of the propeller blade and is used to
account for the non-uniform wake field. Four different methods are used to
determine the local advance coefficient in Appendix D. These methods use
the average axial velocity over the blade spindle axis, blade area, skew line
and leading edge.

The hydrodynamic modelling of the CVP propeller using open-water cur-
ves for the CP propeller, determines the loads quasi-statically and does there-
fore not account for any dynamic effects. The modelling approach is used to
determine both the steady and unsteady hydrodynamical load components.

3.1.2 Hydrodynamic Modelling of the CVP propeller using
Unsteady Foil Theory

The modelling of the hydrodynamical loads acting on the CVP propeller us-
ing unsteady foil theory is presented in Appendix E. The unsteady foil theory
is based on the assumption of potential flow whereby different flow solutions
can be superimposed onto each other to achieve the solution for more com-
plex flow problems. The modelling is based on decomposing the flow into a
steady flow problem, an unsteady problem due to the pitch motion and an
unsteady flow problem due to the perpendicular gust. Only the solutions to
the two unsteady problems are presented in Appendix E. The two unsteady
solutions are used strip-wise for each radial section of the blade from which
the response for the blade is determined by integrating over the whole blade.

The two unsteady solutions are determined in the frequency domain
which is advantageous to use when the unsteady pitch motion and unsteady
gust are known. The unsteadiness due to the pitch motion is determined
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using Theodorsen’s method [15, 62] where the lift response is divided into
a circulative and non-circulative term. The circulative term is determined
using the pitch displacement and pitch rate times a gain and Theodorsen’s
function. Theodorsen’s function is a complex function giving phase to the
response and it depends on the reduced frequency. The reduced frequency
depends on the flow condition and geometry of the foil. The non-circulative
term is determined using the pitch rate and the pitch acceleration times a
gain. The unsteadiness due to the perpendicular gust is determined using
Sears’s method [15, 62] where the lift response only depends on the circula-
tive effects. The lift due to the gust is determined as a gain times the gust
velocity times Sears’s function which describes the dynamics of the response.

The strip-wise application of the unsteady solutions does not account for
the finite aspect ratio of the propeller blades. Two different approaches are
used to account for the effect of the finite aspect ratio of the propeller blades.
One method is to scale the lift response by assuming an elliptically loaded
propeller blade. The other method also adapts Theodorsen’s and Sears’s
functions.

3.1.3 Hydrodynamic Modelling of the CVP propeller using
Empirical Transfer Function

The modelling of the hydrodynamical loads acting on the CVP propeller us-
ing the empirical transfer function is presented in Appendix F. The empirical
transfer function is the transfer function of the system determined as the ra-
tio between the frequency components of the output and input signals. The
input to the system is the pitch trajectory and the output of the system are the
hydrodynamical loads. The input and output used to determine the empi-
rical transfer function are the simulation results from URANS CFD with the
variable pitch trajectory in Appendix A. The empirical transfer function for
the system is therefore limited to the first seven frequency harmonics since
this is the highest harmonic included in the variable pitch trajectory. The
frequency components are determined through a least-squares estimation of
a Fourier series to the input and output signals.

This model can only be used to determine the unsteady hydrodynamical
loads due to the pitching motion. The unsteadiness due to the non-uniform
wake field is not determined through the empirical transfer function. These
unsteady hydrodynamical loads were determined using the URANS CFD
simulation with the constant pitch trajectory.
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3.1.4 Hydrodynamic Modelling of the CVP propeller using a
Reduced Model

The modelling of the hydrodynamical loads acting on the CVP propeller us-
ing the reduced model is presented in Appendix G. The reduced model only
models the unsteady hydrodynamical load due to the pitching motion. The
formulation of the reduced model is inspired by the modelling of the pitching
motion using unsteady foil theory presented in Appendix E. The circulative
effects are determined by using a regression model which depends on the
effective pitch displacement and effective pitch rate. The regression model
is determined through a series of quasi-steady CFD simulations. The CFD
simulations each have a unique setting of the pitch displacement and pitch
rate, according to a 2k factorial design with a central composite design for the
second-order effects. The regression model is based on the results from 75
quasi-steady CFD simulations. The effective pitch displacement and effective
pitch rate are determined by using the convolution integral with the dynam-
ics of the circulative build-up, the pitch displacement and the pitch rate of the
blades. The dynamic build-up of the circulative effect is determined through
a URANS CFD simulation where one blade makes a step change in the pitch
displacement. The two non-circulative gains for the pitch rate and pitch ac-
celeration are determined through a minimisation of the least-squares error
between the reduced model and the unsteadiness due to the pitch motion
from the CFD simulation of the CVP propeller in Appendix A with the vari-
able pitch trajectory.

3.1.5 Hydrodyanmic Model Comparision for the CVP Pro-
peller

The four models described above to determine the hydrodynamical loads
acting on the CVP propeller blades for a new pitch trajectory, are all compu-
tationally inexpensive. This reduced computational cost is based on a com-
parison of making a new URANS CFD simulation of the CVP propeller. The
computational costs of making the models differ since some use CFD simu-
lations to a greater or lesser extent and others do not use CFD simulations
to make the model. The loads that can be determined with the models also
differ. These properties are summarized in Table 3.1 for each of the models.
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Table 3.1: Comparision of the properties of the different models to determine the hydrodynam-
ical loads acting on the CVP propeller blades. ∗ OW stands for open-water. x Analytical is the
model which is based on the unsteady foil theory.+ TF stands for transfer function.

Model
URANS

CFD
OW∗ Analyticalx TF+ Reduced

Appendix A D E F G

H
yd

ro
dy

na
m

ic
al

Lo
ad

Steady Yes Yes No No No
Unsteadiness
due to non-
uniform
wake field

Yes Yes Yes No No

Unsteadiness
due to pitch
motion

Yes Yes Yes Yes Yes

Computational
cost for setup

Low Moderate None High High

Computational
cost for new pitch
trajectory

High Low Low Low Low

From Table 3.1 it is seen that only one of the models with reduced com-
putational cost is able to determine the steady component of the hydrody-
namical loads. Furthermore, two of the models are not able to determine the
unsteady hydrodynamical loads due to the non-uniform wake field. These
two models therefore require one of the other models to determine these
unsteady load components. For this the URANS CFD simulations with the
constant pitch trajectory are used. All of the models are able to determine
the unsteady hydrodynamical loads due to the pitch motion of the propeller
blades.

By "computational cost for the setup" in Table 3.1 is meant the required
computations before the computations with the desired pitch trajectory can
be made. For the URANS CFD simulation of the CVP propeller it is neces-
sary to determine the effective wake field beforehand. For the OW model
it is necessary to make several quasi-steady open-water simulations to get
the open-water curves for different pitch settings. For the analytical model
the unsteady hydrodynamical loads are expressed in an explicit form and
no prior computations are necessary. The empirical transfer function model
requires two evaluations using the URANS CFD model, one with the blades
fixed and one with a pitch trajectory with a satisfactory number of harmon-
ics included. The reduced model requires at least 75 quasi-steady simula-
tions and two or more URANS CFD simulations, depending on how the
non-circulative terms are determined.
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To evaluate the usability of the different models, they are compared to
each other on their ability to determine the unsteady hydrodynamical loads
due to the pitch motion. For the other components refer to the correspond-
ing appendix for the models. In each of these appendices the models are
compared to the URANS CFD simulations of the CVP propeller.

The unsteady hydrodynamical loads, due to the cosine and variable pitch
trajectories, are shown in Figure 3.1 and Figure 3.2, respectively, for each of
the models. The hydrodynamical loads shown in Figure 3.1 and Figure 3.2 do
not include the uncertainty of the models in order to make the figures more
clear. The hydrodynamical loads, with their uncertainties, can be found in the
appendices. For the open-water models, only one of the models is included
in Figure 3.1 and Figure 3.2. For the analytical models all three are included.
The open-water model used is the one using the local advance coefficient
determined over the blade area.

From Figure 3.1 and Figure 3.2 it can be seen that the unsteady hydrody-
namical loads due to the pitch motion are best determined using the empiri-
cal transfer function model. This model matches almost exactly the URANS
CFD simulation. The reduced model is the model that matches the URANS
CFD simulation, second best. These two models have that in common that
they are fitted to the URANS CFD simulation to a greater or lesser extent. It
is therefore not surprising that these models match the URANS CFD simula-
tion best. The benefit of the reduced model relative to the empirical transfer
function model is that the reduced model can be used for any arbitrary pitch
trajectory, whereas the empirical transfer function model can only be used
for the frequency harmonics included in the input, which in this case it is up
to the 7th harmonic.

For the cosine pitch trajectory in Figure 3.1 the open-water model matches
the amplitude of the loads reasonably well but there is some phase difference.
The analytical model either overestimates or underestimates the URANS
CFD simulation. The phase differences between the analytical models and
the URANS CFD simulation generally tend to be smallest for the analytical
model noted as 2D. This model uses just the strip-wise application of the un-
steady foil theory without any compensation for the finite aspect ratio of the
propeller blade. The same is the case when considering the variable pitch tra-
jectory in Figure 3.2. The analytical models capture the general trends of the
variable pitch trajectory, except for the z-force. The open-water model does
not catch the general trends for the variable pitch trajectory and it underesti-
mates the amplitudes. The application of the open-water model to determine
the unsteady hydrodynamical loads, due to the pitch motion, is therefore
limited to where the pitch rate and acceleration are not as prominent. Under
these conditions the system is closer to the quasi-steady assumption that the
open-water model is based upon.
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Figure 3.1: Comparision of models for the unsteady hydrodynamical loads due to the pitch
motion with the cosine pitch trajectory.

To determine the optimum pitch trajectory for the CVP propeller, based
on the minimisation of the load variations, the analytical, empirical transfer
function and the reduced model will be considered in the work. The analyt-
ical model is probably best suited for determining an initial optimum pitch
trajectory. This pitch trajectory can then be used in the URANS CFD simula-
tion of the CVP propeller from which the empirical transfer function can be
determined. If the performance of the CVP propeller, with the optimum pitch
trajectory using the analytical model, is not satisfactory, then the empirical
transfer function can be used to determine a new optimum pitch trajectory.
This pitch trajectory should yield a better performance because the empirical
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transfer function is better at determining the unsteady hydrodynamical loads
of the CVP propeller due to the pitch motion.

Using the open-water model to determine the optimum pitch trajectory
has been used in [30] and the method will not be presented further here.
In [30] two optimum pitch trajectories are determined, one that maximises the
efficiency and one that also maintains the required thrust whihch is similar
shaped as the variable pitch trajectory.

Figure 3.2: Comparision of models for the unsteady hydrodynamical loads due to the pitch
motion with the variable pitch trajectory.
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3.2 Determination of Optimum Pitch Trajectory

For the optimum pitch trajectory for the CVP propeller, it is desired to com-
pensate the unsteadiness in the hydrodynamical loads, due to the non-uniform
wake field with the unsteadiness due to the pitch motion. The sum of the un-
steady loads should therefore be equal to zero for the pitch trajectory to be
an optimum pitch trajectory. This optimization problem is stated as:

Minimise, e =
6

∑
i

2 π

∑
θb=0

(
L̃i,wake(θb) + L̃i,pitch(θb)

)2
(3.1)

e is the error which is to be minimised. θb is the blade position in the wake
field. L̃i,wake is the i’th unsteady hydrodynamical load due to non-uniform
wake field. L̃i,pitch is the i’th unsteady hydrodynamical load due to the pitch-
ing of the propeller blade. One of the problems that can occur with the
optimization problem in Eq. 3.1, is that some loads will be weighted more
than others because of the differences in the load amplitudes. An alternative
approach to the optimization problem in Eq. 3.1 is to optimize the pitch tra-
jectory with respect to the variation in one of the hydrodynamical loads. The
optimization problem therefore becomes:

Minimise, ei =
2 π

∑
θb=0

(
L̃i,wake(θb) + L̃i,pitch(θb)

)2
(3.2)

Approaches similar to Eq. 3.2 are used in [33, 66, 85] to determine the opti-
mum pitch trajectory. These studies only consider the variation in the blade
thrust. Both options in Eq. 3.1 and Eq. 3.2 are considered for the optimum
pitch trajectory. The resulting optimum pitch trajectories, using these seven
approaches, are shown in Figure 3.3 using the analytical model, empirical
transfer function model and the reduced model. The unsteadiness due to
the non-uniform wake field is for the analytical models determined using the
corresponding gust models in Appendix E. The empirical transfer function
model and the reduced model use the hydrodynamical loads determined
from the URANS CFD simulation of the CVP propeller with the constant
pitch trajectory in Appendix A. In Figure 3.3 the title of each plot indicates
which load/loads are used to determine the optimum pitch trajectories. The
cosine and variable pitch trajectory, that have been considered so far, are also
shown in Figure 3.3 for ease of comparison.

87



Chapter 3. Pitch Trajectory for Cyclical Varying Pitch Propeller

0 45 90 135 180 225 270 315 360

-4

-2

0

2

P
itc

h 
[d

eg
]

X-Force

0 45 90 135 180 225 270 315 360

-4

-2

0

2

P
itc

h 
[d

eg
]

X-Torque

0 45 90 135 180 225 270 315 360

-4

-2

0

2

P
itc

h 
[d

eg
]

Y-Force

0 45 90 135 180 225 270 315 360

-4

-2

0

2

P
itc

h 
[d

eg
]

Y-Torque

0 45 90 135 180 225 270 315 360

Blade Position [deg]

-4

-2

0

2

P
itc

h 
[d

eg
]

Z-Force

0 45 90 135 180 225 270 315 360

Blade Position [deg]

-4

-2

0

2

P
itc

h 
[d

eg
]

Z-Torque

0 45 90 135 180 225 270 315 360
Blade Position [deg]

-4

-2

0

2

P
itc

h 
[d

eg
]

All Loads

Analytical 2D

Analytical 2D AR

Analytical 3D

TF

Reduced

Cosine

Variable

Figure 3.3: Comparision of optimum pitch trajectories using the analytical model, empirical
transfer function model, reduced model and the pitch trajectories from Chapter 2.

In Figure 3.3 35 candidates for the optimum pitch trajectory are shown.
The optimum pitch trajectories determined using the analytical models are
almost identical for all the loads, except when optimised with respect to the
z-torque and all the loads together. This is not surprising since all these loads
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are determined from the unsteady lift. Minimising the unsteady lift thereby
minimises the x and y unsteady loads. The optimum pitch trajectory, deter-
mined for all the loads, has a slightly reduced amplitude, and the optimum
pitch trajectory determined for the z-torque has a significant phase shift and
reduced amplitude.

The optimum pitch trajectory determined using the empirical transfer
function model and the reduced model are very similar but with slight dif-
ferences in the amplitudes. This corresponds well with the model’s ability
to determine the unsteady hydrodynamical loads due to the pitch motion as
shown in Figure 3.1 and Figure 3.2. For the empirical transfer function model
and the reduced model there are variations in the optimum pitch trajectory
depending on the load used for the optimisation.

Determining the optimum pitch trajectory using the 2D analytical model
tends to have the same phase as the optimum pitch trajectory using the em-
pirical transfer function model and the reduced model. Generally, the ampli-
tude is slightly overestimated. The 3D analytical model tends to get a better
prediction of the amplitude, but at the cost of worse correspondence in the
phase. Therefore, it seems reasonable to use the 2D analytical model to de-
termine an initial optimum pitch trajectory. This trajectory can then be used
in a CFD simulation of the CVP propeller from which the empirical trans-
fer function model can be determined and used to determine a new better
optimum pitch trajectory.

To validate whether the pitch trajectories in Figure 3.3 are indeed opti-
mum pitch trajectories requires that an URANS CFD simulations of the CVP
propeller, as that in Appendix A, is made with the optimum pitch trajectories.
This is left as future work for the project.
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3.3 Actuator Requirements for the CVP Propeller
with an Optimum Pitch Trajectory

Having established a series of candidates for the optimum pitch trajectory
that minimise the propeller and blade load variations, the requirements for
the actuation system are determined as in Section 2.10. The optimum pitch
trajectories determined through the use of the analytical model are not con-
sidered further. This is because the analytical model overestimates the un-
steady hydrodynamical loads significantly and this will lead to a significant
overestimation of the requirements for the actuator system. The optimum
pitch trajectories, and corresponding hydrodynamical loads considered, are
therefore the ones using the empirical transfer function model and the re-
duced model. This means that only 14 optimum pitch trajectories are consid-
ered henceforth. The empirical transfer function model and reduced model
only determine the unsteady hydrodynamical loads due to the pitch motion.
These hydrodynamical loads are therefore superimposed onto the hydrody-
namical loads for the propeller, with a constant pitch trajectory determined
in Appendix A. The hydrodynamical loads, for each of the optimum pitch
trajectories using the empirical transfer function model, are shown in Fig-
ure 3.4 where they are compared to the hydrodynamical loads for the pitch
trajectories used in Appendix A. The hydrodynamical loads for each of the
optimum pitch trajectories using the reduced model are not shown in Figure
3.4 in order to not add confusion to the figure. The hydrodynamical loads for
the reduced model are similar to the loads shown in Figure 3.4, having the
same tendencies but with some differences in the amplitudes. The symbols
Fx, Mx, Fy etc. in the legend shows which hydrodynamical load is used to
determine the optimum pitch trajectory.
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Figure 3.4: Hydrodynamical loads when using the optimum pitch trajectories determined using
the empirical transfer function model.

From Figure 3.4 it is seen that all the pitch trajectories optimised for a sin-
gle load result in the load being constant. The pitch trajectory optimised for
all the loads tends to be closely correlated to the optimum pitch trajectories
determined for the loads Fx, Fy, Mx, My, which are also correlated to each
other. The pitch trajectories, optimised with respect to the loads Fz and Mz,
yield unique hydrodynamical loads, which result in large variations in the
non-corresponding hydrodynamical loads.

With the hydrodynamical loads determined for each of the optimum pitch
trajectories, the required actuator torque and power are determined as in
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Section 2.10. The required actuator torque and power are determined using
the combined friction model DG with a distribution ration (DR) of 0.86. The
actuator torque and power determined are shown in Figure 3.5 for all the
optimum pitch trajectories and the three pitch trajectories used in Chapter 2.
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Figure 3.5: Required actuator torque and power for the blade to follow the optimum pitch
trajectories.

The actuator torque in Figure 3.5 for the pitch trajectories optimised with
respect to the loads Fx, Fy, Mx, My and all for both models correlates well
with the actuator torque for the cosine pitch trajectory. For these pitch tra-
jectories the power is more symmetric about the blade position of 180◦ than
the power for the cosine pitch trajectory. The required peak actuator power is
seen to be largest for the pitch trajectories optimised for the loads Fz and Mz.
In general, all the optimised pitch trajectories require less power for the ac-
tuator than for the variable pitch trajectory. This is positive since this makes
it more likely that an actuator system can be designed for the CVP propeller
by which an increase in the propulsion efficiency can be obtained when also
accounting for the actuators power consumption. The peak actuator torques
for the optimum pitch trajectories are also smaller than the peak torque for
the variable pitch trajectory. This means that a smaller actuator can be used
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which is easier to fit inside the propeller hub. It should also be easier to
obtain a higher efficiency for the actuator system. The average, maximum
and minimum actuator torque and power for each of the pitch trajectories
are given in Table 3.2.

Table 3.2: Average, maximum and minimum actuator torque and power for each of the pitch
trajectories.
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Constant 97.6 113.9 51.2 0.0 0.0 0.0
Cosine 36.6 139.4 -76.5 16.7 41.3 0.0

Variable 63.9 276.5 -254.5 63.7 392.3 -113.5

TF Fx 45.9 148.7 -87.9 22.4 54.7 0.1
TF Mx 50.2 135.7 -95.2 16.3 42.5 0.0
TF Fy 50.1 130.0 -98.7 14.6 39.5 0.0
TF My 44.4 148.7 -105.7 23.0 55.9 -0.3
TF Fz 42.0 176.1 -76.6 36.4 123.7 -1.5
TF Mz 30.8 134.6 -52.5 16.6 85.9 -0.1
TF All 44.3 144.1 -89.5 19.6 46.6 0.0

Reduced Fx 53.5 136.6 -84.4 17.8 43.6 0.1
Reduced Mx 54.8 129.0 -89.1 14.0 37.5 0.0
Reduced Fy 54.8 122.8 -92.7 12.2 34.2 0.1
Reduced My 51.5 138.6 -99.5 17.3 46.5 -0.0
Reduced Fz 46.4 169.7 -74.6 35.3 127.1 -3.2
Reduced Mz 41.5 123.7 -52.5 17.6 68.9 -0.7
Reduced All 53.1 133.5 -85.6 16.0 38.7 0.0

From Table 3.2 it is seen that the average actuator power for the optimised
pitch trajectories is about the same as for the cosine pitch trajectory. The
exception to this is the pitch trajectory optimised with respect to the load Fz,
where the actuator power required is more than double the power required
for the cosine pitch trajectory. Furthermore, it is seen that the minimum
required actuator power for most of the pitch trajectories does not become
negative at any point which means that it is not possible to make energy
recovery as is possible with the variable pitch trajectory.
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3.4 Partial Conclusion, Discussion and Future Work

In Chapter 2 it was determined that the variable pitch trajectory is not an
optimum pitch trajectory for the CVP propeller because it increases the un-
steadiness of the hydrodynamical loads. It is therefore necessary to deter-
mine the optimum pitch trajectory using another method. The optimum
pitch trajectory is determined by minimising the hydrodynamical load vari-
ation of the CVP propeller blades in the non-uniform wake field. The other
propeller performance parameters, such as cavitation, pressure pulses, noise
and efficiency, are not included. This is because the framework established
in Chapter 2 is not able to evaluate the cavitation, pressure pulses and noise.
The efficiency is not included because it only changes significantly when the
propeller blade design is changed. Only the design parameters for the pitch
trajectory are included in the minimisation due to the large computational
costs of including the propeller blade geometry.

Previous studies vary in their approach as to how the pitch trajectory
is determined. One study assumes a piece-wise linear pitch trajectory [88].
Other studies are limited to pitch trajectories with only one harmonic [14,51,
84–86]. In [51] the amplitude of pitch trajectory is determined as the ampli-
tude of the variation in the advance angle at r/rp = 0.7. In [14, 84, 86] no
details are given as to how the amplitude and phase of the pitch trajectories
are determined. In [85] a pitch trajectory, to minimise the transient cavitation,
is determined by reducing the first harmonic variations in the angle of attack
at the leading edge for each radial section of the blade. For the propeller
blade design to be appropriate, the pitch trajectory should not change with
the span of the blade. The pitch trajectory to minimise the blade lift varia-
tion in [85] is determined using unsteady foil theory similar to the analytical
model presented in this chapter. The pitch trajectory used in [85] is a trade-off
between using the pitch trajectories from the two methods presented in [85].
In [33, 66] the pitch trajectory is determined as the one which minimises the
variation in the blade thrust. The method used in [33], to determine the
thrust variation, is based on unsteady foil theory similar to the analytical
model used in this chapter. The thrust variation in [66] is determined using
a quasi-steady lifting line.

The contribution from this chapter is the development and application of
novel modelling approaches to model the unsteady hydrodynamical loads
due to the pitch motion of the propeller blades. These models have dif-
ferent degrees of accuracy and require a different amount of computational
resources to set up and evaluate. Determining the optimum pitch trajectory
by using the method presented in Chapter 2, using an iterative approach,
requires a large amount of computational resources, because of the CFD si-
mulation of the CVP propeller that has to be made for each evaluation. To
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reduce the required computational resources to determine the optimum pitch
trajectory, four different models are presented to determine the unsteady hy-
drodynamical loads due to the pitch motion. Of these four models two of
them are especially of interest, being the analytical model and the empiri-
cal transfer function model. The analytical model is derived from unsteady
foil theory and the empirical transfer function model estimates the system
dynamics from the URANS CFD simulation of the CVP propeller. The ana-
lytical model is not as accurate as the empirical transfer function model, but
it requires fewer computational resources to evaluate and furthermore the
optimum pitch trajectory determined is close to the optimum pitch trajec-
tories determined using the empirical transfer function model. The analytical
model is therefore suitable to determine an initial optimum pitch trajectory
for the URANS CFD simulation, from which the empirical transfer function
model can be made. The empirical transfer function model is then used to de-
termine a new optimum pitch trajectory which should be suitable for the CVP
propeller. It has not been validated if this is the case and this remains to be
shown in the future. The actuator requirements for the determined optimum
pitch trajectories are, in general, slightly larger than the requirements deter-
mined for the cosine pitch trajectory in Chapter 2 but significantly smaller
than the requirements for the variable pitch trajectory.

In future developments regarding the calculation of the optimum pitch
trajectory, the other propeller performance parameters should be included
in the objective function for the optimisation, such as cavitation, pressure
pulses, noise and efficiency. This requires that the method used to evaluate
the hydrodynamics of the propeller have to be adapted or changed. Fur-
thermore, the design variables for the optimization problem should also be
extended to include the propeller blade design and actuator design. Also
the optimisation should consider the whole range of operating conditions of
the propeller and not just limited to a single point as was considered in this
chapter.
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Chapter 4

Experimental Testing of CVP
Propeller

The experimental testing of the CVP propeller serves two purposes. The
first is to validate the increase in propulsion efficiency when utilizing the
CVP propeller compared to a CP propeller. The second purpose is to get
experimental data which can be used to validate the model for determining
the hydrodynamical loads. The experiments are made by using a scaled-
down model of the ship and propulsion system to reduce the costs of the
experiments. The use of scaled-down models for testing is a well-known and
common practice in the maritime industry.

The traditional tests made to evaluate the propulsion efficiency are; ship
hull resistance test, ship hull wake field measurement, propeller open-water
test and self-propulsion test. A short description of the contents of these tests
is given in the following four sections.

Ship Hull Resistance Test:
The ship hull resistance test is usually made by towing a scaled down model
of the ship hull through the water in a towing tank. While towing the ship
hull through the tank, the speed, the horizontal drag force (i.e. towing force)
and the heave of the fore and the aft part of the ship are measured as shown
in Figure 4.1. The ship hull is towed through the tank at an equal Froude
number for both the ship hull model and the full scale ship hull. The equal
Froude number condition is in order to ensure that the wave pattern is the
same for the ship hull model and full scale ship hull [20]. From the measured
towing resistance and towing speed, the full scale towing resistance for the
ship hull can be extrapolated according to [47].
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Figure 4.1: Sketch of resistance test in a towing tank.

Ship Hull Wake Field Measurement:
The wake field of the ship hull at the propeller’s location is measured using
pitot tubes at appropriate positions. The measurements are typically made at
one of the ship speeds used for the resistance test. The wake field measure-
ments are used to determine both the nominal wake field coefficient and the
velocity distribution in the wake field.

Propeller Open-Water Test:
The propeller open-water test is made using a scaled model of the propeller,
where the flow into the propeller is uniformly disturbed. The test is made
using an open-water dynamometer as shown in Figure 4.2 and is either made
in a towing tank or in a cavitation tunnel. In both cases the measurements
made during a open-water test are the carriage speed, the rate of propeller
revolution, the propeller thrust and torque as described in [44].

Figure 4.2: Sketch of open-water test in a towing tank.
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Self-Propulsion Test:
The self-propulsion test uses the same setup as the resistance test but has the
propeller installed in the ship as shown in Figure 4.3. The propeller is driven
by a motor through a dynamometer such that the propeller thrust and torque
can be measured. In the self-propulsion test the ship hull model is towed
through the water at a constant speed and the towing force, heave positions,
propeller thrust and torque are measured at different rates of revolutions of
the propeller, as described in [43]. The range of the rate of revolutions of the
propeller should be such that the point where the towing force equals the
skin friction correctional force, is included in the measurements. Ideally, this
point is measured but it is also possible to use regression to determine the
rate of revolutions of the propeller at the self-propulsion point.

Figure 4.3: Sketch of self-propulsion test in a towing tank.

Additionally, to the above tests it is also common to make cavitation tests
in a cavitation tunnel. It has been decided to not make cavitation tests of
the CVP propeller in this project. This is both due to the additional costs of
cavitation tests but also because results from cavitation tests with the CVP
propeller have been presented in other studies see Section 1.3.5.

To validate the improvement in the propulsion efficiency with the CVP
propeller, the propeller has to be tested in a self-propulsion test and com-
pared to the performance of a CP propeller in the self-propulsion test. It is
therefore necessary to design and make two sets of propeller blades for the
tests. One set of propeller blades is designed for a CP propeller and the other
set is designed for a CVP propeller. To design appropriate propeller blades,
it is necessary to consider a specific case i.e. a specific ship hull model and
its operating conditions. A ship hull is therefore designed, constructed and
tested through a ship hull resistance test and the wake field is measured, be-
fore the propeller blades are designed. Furthermore, before the open-water
tests and self-propulsion tests are made, it is necessary to have a test setup
which is able to make the cyclical pitching of the propeller blades and mea-
sure the required forces and torques etc. This test setup is made in this
project, since no known test system exists which is able to satisfy these re-
quirements. The design, construction and testing is financed by "Den Dansk
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Maritime Fond" through the grants "2016-048, Prøveopstilling af medstrøm-
stilpassende propel" and "2017-094, Medstrømstilpassende skibspropel". The
tests are made in the towing tank at FORCE Technology in Kgs. Lyngby,
Denmark.

Experimental tests with the CVP propeller are presented in [14,51,84–86].
The studies [14, 51] only concern the cavitation test of the CVP propeller but
the cavitation performance of the CVP propeller is also considered in [84–86]
amongst other performance measurements. These studies generally show
reduced cavitation with the CVP propeller. Model scale open-water and self-
propulsion tests are presented in [84, 85] and full scale tests are presented
in [86]. Common for all these experiments is that the pitch trajectory for
the CVP propeller is limited so as to only contain one harmonic and the
test concerns the performance of the propeller with and without the cyclical
pitching of the blades. None of the studies concern the study of the CVP
propeller with multiple harmonics in the pitch trajectory and adapting the
propeller blade design for the CVP propeller. This is included in this study
and is thereby the novelty of this study.

The second purpose of the experimental tests is to get experimental data
to be able to validate the model for the hydrodynamical loads acting on the
CVP propeller, i.e. both steady and unsteady components. This validation
can be made by using both the experimental results for both the open-water
tests and the self-propulsion tests. In a traditional tank test only the steady
propeller thrust and torque are measured. To be able to validate the unsteady
components of the hydrodynamical loads it is necessary to have a sufficiently
high resolution of the measurements during a single propeller revolution.
Furthermore, for the CVP propeller it is especially of interest to be able to
validate the hydrodynamical loads acting on the propeller blades and not
just the whole propeller. Concerning the propeller blade loads, the blades
spindle torque about the blades spindle axis i.e. the torque about the z-axis
in the propeller coordinate system is especially of interest, because it is one
of the main components which determines the requirements for the actuator
system.

Measuring the propeller blade loads is not part of the standard tank
test. Nonetheless, in previous studies such measurements have been made.
In [18,23,32] open-water tests were made where the blade spindle torque, the
propeller thrust and torque are measured. The spindle torque is also mea-
sured in [59] among four other blade loads under ventilating condition for
an azipull thruster. In [76] the steady spindle torque is measured for a series
of different blades in behind conditions and under different cavitation con-
ditions. Dynamic measurements of the blade spindle torque, thrust and side
force are made in [49] under cavitating conditions for a propeller with an in-
clined shaft supported by struts. In [17, 52] the unsteady propeller loads are
measured for different propellers in wake fields with different dominating
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harmonics. The novelty of the experiments, described in this chapter, is that
the measured hydrodynamical loads are measured during cyclical pitching
of propeller blades.

This chapter is divided into six sections, which are:

• Section 4.1 describes the final design and construction of the test system
for the CVP propeller.

• Section 4.2 describes the test conditions for the open-water and self-
propulsion tests.

• Section 4.4 presents and discusses the results for the open-water tests.
• Section 4.5 presents and discusses the results for the self-propulsion

tests.
• Section 4.6 summarizes the chapter contents and discusses the results.

4.1 Test Bench

The design and construction of the test system used to test the CVP propeller
has been an iterative process. Only the final version of the test system is
presented in this section. The test setup consists of a number of components,
which are:

• Ship hull model (described in Section 4.1.1)
• Propeller blades (described in Section 4.1.2)
• Open-water and self-propulsion dynamometer (described in Section

4.1.3)
• Carriage for open-water dynamometer (described in Section 4.1.4)
• Sensors and data acquisition equipment (described in Section 4.1.5)

4.1.1 Ship Hull Model

The ship hull used in this project is designed and built by FORCE Technology
in Kongens Lyngby, Denmark. The design and the choice of vessel type have
been made in cooperation with MAN Energy Solutions in Frederikshavn,
Denmark.

When choosing the vessel type it is desired to choose a vessel type, which
gives favourable operating conditions for the CVP propeller and where there
could be a market for the CVP propeller. The vessel chosen for this project is
a single screw container feeder which was chosen because the variation in the
wake field is larger than for a twin or more screw vessel. The container feeder
vessel type is chosen because it is a vessel where a CP propeller is commonly
used today. This type of vessel could therefore have a significant benefit from
the potential efficiency improvement obtained with the CVP propeller.
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Chapter 4. Experimental Testing of CVP Propeller

The ship hull designed by FORCE Technology is shown in Figure 4.4. The
designed hull is shown in Figure 4.4a with a close up of the stern in Figure
4.4b and of the bow in Figure 4.4c. The hull model built is shown in Figure
4.4d. It is estimated that the cargo capacity of the vessel is about 1500 TEU.
The data for the ship hull is given in Table 4.1 for both full scale and model
scale. A scale factor of 1:20 has been used.

(a)

(b) (c)

(d)

Figure 4.4: (a) Side view of the ship hull as a CAD drawing. (b) Side view of the stern as a CAD
drawing. (c) Side view of the bow as a CAD drawing. (d) The build ship hull model.
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Table 4.1: Ship hull data for designed container feeder hull in full scale and model scale.

Full Scale Model Scale 1:20

Length overall 170 [m] 8.5 [m]
Length between perpendiculars 160 [m] 8 [m]
Length on waterline 160.47 [m] 8.02 [m]
Beam moulded 27.20 [m] 1.36 [m]
Draught Forward 10 [m] 0.5 [m]
Draught Aft 10 [m] 0.5 [m]
Wetted Surface 5804.30 [m2] ≈ 14.51 [m2]
Displacement 28266.19 [m3] ≈ 3.52 [m3]
Shaft immersion 6 [m] 0.3 [m]
Propeller diameter 8 [m] 0.4 [m]

Using a scale factor of only 1:20 results in a relatively large ship hull
model. The reason for using this scale factor is to get a reasonable ratio
between the hub and propeller diameter. Since the hub size is constrained
by the requirements to fit the sensors and the pitch mechanism, its diameter
could not be reduced further and therefore a smaller scale factor could not
be used. It may, in the future, be possible through optimization to design a
smaller hub and thereby make it possible to use a smaller model.

Resistance tests were made in FORCE Technology’s towing tank using the
fabricated hull model. The resistance tests include the ship hull model and
a hub dummy, as shown in Figure 4.4b. The results from the resistance tests
are shown in Figure 4.5a for the model and in Figure 4.5b for the calculated
full scale values, according to the ITTC-57 friction line with a form factor of
1 + k = 1.15. The calculations were made by FORCE Technology. The results
from the resistance tests are used in the design of the propeller blades in
Section 4.1.2.
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Figure 4.5: (a) Results from the resistance test with the ship hull model. (b)Resistance force and
power for the ship hull in full scale determine by FORCE Technology.
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The wake field of the ship hull model were measured by FORCE Technol-
ogy. The axial, radial and tangential velocity components of the wake field
were measured. The measurements were made for one half of the wake field
due to the assumed symmetry in the wake field for a single screw ship. The
measurements were made for each 5◦ and at five radial distances. The wake
field measured is shown in Figure 4.6a and Figure 4.6b shows the full wake
field. The wake field is shown as the velocity ratio. The wake field measure-
ments were made at a model speed of ≈ 2.07 [m/s] equivalent to a ship speed
of 18 [knots] in full scale.
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Figure 4.6: (a) Measured three wake velocity fractions of half the wake field. (b) The full wake
field’s wake velocity fractions of hull model assuming symmetry.

The measured wake field, shown in Figure 4.6, is seen to have a large
change in the velocity ratio over a relatively short span. It may have been
more favourable for the CVP propeller if the change in the velocity ratio was
spread over a larger area. This may result in a pitch trajectory with quick
changes in the pitch, which requires more power for the pitching motion.
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4.1.2 Propeller Blades

Two sets of propeller blades were designed and fabricated for the tests. One
set of blades was designed for a CP propeller and the other set for a CVP pro-
peller. The blade designs and the pitch trajectory were made by the propeller
design engineer Ege Lundgren at MAN Energy Solutions, Frederikshavn.
The blade design and the performance of the propellers are presented in this
section.

The first decision for the design of the propeller blades was how many
blades the propeller should have. It was decided to design the propeller as
a two bladed propeller due to the space constraints in the hub for the sen-
sors and the pitch mechanism. A two bladed propeller is an unconventional
propeller to use on merchant ships such as a container feeder. But it was still
chosen for the experiments since it allows for more space in the hub to fit
sensors, pitch mechanism etc.

The blades for the CP propeller were designed such that propeller power
equals the ship power determined from the resistance test with a 10% motor
margin and 15% sea margin. To determine the propeller power from the
resistance test, the quasi-propulsive coefficient (QPC) was used. The QPC is
defined as [20, 21]:

QPC = ηh ηo ηr =
1− td
1− w︸ ︷︷ ︸

ηh

Jo

2 π

KT,o

KQ,o︸ ︷︷ ︸
ηo

KQ,o

KQ,sp︸ ︷︷ ︸
ηr

(4.1)

ηh, ηo and ηr are the hull, open-water and relative rotative efficiency. td is the
thrust deduction factor. w is the effective wake coefficient. Jo is the advance
coefficient. KT,o and KQ,o are the open-water thrust and torque coefficients
respectively and KQ,sp is the torque coefficient from the self-propulsion test.

The thrust deduction factor, effective wake coefficient and rotative effi-
ciency were determined by using a similar ship hull in MAN Energy Solu-
tions’ database. The open-water efficiency and the rotational speed of the
propeller were determined through MAN Energy Solutions’ in-house pro-
gram. The blade design for the CVP propeller was designed such that it has
the same thrust as the CP propeller at the same ship speed. This was chosen,
in order to make a fair relative comparison of the two propellers’ efficiencies.

The pitch trajectory used to design the CVP propeller blades was based
on the measured wake field and the skew line of the blade. The skew line
was kept equal for the two blade sets. The pitch trajectory was determined
as:

αp(θb) = atan
(

Pi/Dp

π r/rp

)
+ β(θb)− β̄ + αT (4.2)
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Where,

β(θb) = atan
(

Vs (1− wa(θb))

2 π ωp r−Vs wt(θ)

)
(4.3)

αp is the pitch angle as a function of the blade’s position in the wake field (θb).
Pi/Dp is the non-dimensional pitch at the non-dimensional radial section
r/rp. The radial section considered is at r/rp = 0.75. β is the advance angle
of the incoming fluid with β̄ being the circumferential mean value both at
the radial section r/rp. αT is a offset angle adjusted to ensure equal thrust
for the two blade sets. Vs is the ship speed. wa is the average axial wake
velocity coefficient over the skew line and corrected with the effective wake
coefficient, defined using the Tayler method. ωp is the rotational speed of
the propeller. wt is the tangential wake velocity coefficient defined using the
ratio method. Using Eq. 4.2 for the measured wake field and the blade design
gives the pitch trajectory shown in Figure 4.7 which is determined for each
10◦ in the wake field.
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Figure 4.7: Pitch trajectory used in the design process for the CVP propeller blades.

The two sets of propeller blades were designed using MAN Energy Solu-
tions’ in-house propeller design program. The design program is based on a
quasi-steady lifting line. Furthermore, the propeller was designed to satisfy
the classification requirements from Lloyd’s register. The propeller blades
designed and their main parameters are given in Table 4.2 for their geometric
shape and in Table 4.3 for their average performance values. The appropriate
engine for this ship and propeller would be a 12 MW two-stoke MAN B&W
G50M 7 cylinder engine.
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Table 4.2: Main dimensions and operating condition for the two designed blade sets.

Propeller
CP CVP

Propeller diameter Dp 8000 8000 [mm]
Number of blades Z 2 2 [−]
Hub diameter Dhub 2020 2020 [mm]
Blade area ratio 0.411 0.300 [−]
Shaft immersion hs 6000 6000 [mm]

Blade
Pi/Dp at r/rp = 0.7 0.8486 0.8696 [−]
Skew 25◦ 25◦ [deg]
Rake 0 0 [mm]
Blade mass mb 7231 6245 [kg]

Operating conditions
Ship speed Vs 18.75 18.75 [knots]

≈ 9.65 ≈ 9.65 [m/s]
Shaft speed 87.3 86.7 [rpm]

np ≈ 1.46 ≈ 1.45 [rps]
ωp ≈ 9.14 ≈ 9.07 [rad/s]

Blade Outline
CP CVP

Projected Expanded
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Table 4.3: Propeller performances for the two designed blade sets with and without individual
pitching of the blades. The individual pitching of the blades is indicated in the table with
"Moving Blade" and "Fixed Blade" indicates that the blades are fixed.

Power [kW] CP CVP

Fixed Blade 9823 9565
Moving Blade 9754 9511

Thrust [kN]
Fixed Blade 931 933
Moving Blade 931 931

Efficiency [-]
Fixed Blade 0.6513 0.6786
Moving Blade 0.6753 0.6926

Relative Efficiency
Increase [%]
Fixed Blade - 4.19%
Moving Blade 3.68% 6.34%

The performance data in Table 4.3 are the average values over one pro-
peller revolution. It is seen that the efficiency of the CVP propeller is in-
creased by 6.34% relative to the CP propeller design. The CP propeller de-
sign obtains a 3.68% relative increase in efficiency by changing from a fixed
blade to a cyclically varying pitch. The unsteady performance of the blade
sets, with respect to the thrust, power and efficiency is shown in Figure 4.8
for both the fixed and moving blades.
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Figure 4.8: Unsteady performance of the design blade sets.

From Figure 4.8 it is clearly seen that the propellers have two blades due
to the unsteadiness being dominated by a second-order harmonic. The pro-
pellers with fixed blades have larger variations in the performance param-
eters than the propellers with moving/pitching blades. The reduced thrust
variation for the CVP propeller means that the variation in the pressure dif-
ference over the blades is reduced. This should give a better cavitation per-
formance for the propeller with moving/pitching blades. The cavitation per-
formance of the CP propeller blades is shown in Table 4.4 for both the fixed
and moving blade and in Table 4.5 for the CVP propeller blades. The wake
peak in Table 4.4 and Table 4.5 is at θb = 180◦. The green areas in the images
in Table 4.4 and Table 4.5 are where there is sheet cavitation. The cavitation
extent was determined through MAN Energy Solutions’ in-house program.

109



Chapter 4. Experimental Testing of CVP Propeller

Table 4.4: Sheet cavitation in the wake peak for the CP propeller blades with fixed and moving
blades.

θb Fixed Blade Moving Blade θb Fixed Blade Moving Blade

80◦ 180◦

90◦ 190◦

100◦ 200◦

110◦ 210◦

120◦ 220◦

130◦ 230◦

140◦ 240◦

150◦ 250◦

160◦ 260◦

170◦ 270◦
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Table 4.5: Sheet cavitation in the wake peak for the CVP propeller blades with fixed and moving
blades.

θb Fixed Blade Moving Blade θb Fixed Blade Moving Blade

80◦ 180◦

90◦ 190◦

100◦ 200◦

110◦ 210◦

120◦ 220◦

130◦ 230◦

140◦ 240◦

150◦ 250◦

160◦ 260◦

170◦ 270◦
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From Table 4.4 and Table 4.5 it is seen that the sheet cavitation for the
moving blade is almost eliminated for both the CP and CVP propeller bla-
des. The reduction in the sheet cavitation is the reason for allowing a re-
duction in the area ratio of the CVP propeller blades compared to the CP
propeller blades. Reducing the area ratio means that the pitch or camber for
the CVP propeller blade has to be increased compared to the CP propeller
blade design, to achieve the same thrust from the propeller. The increase in
the pitch/camber for the CVP propeller blade design increases the cavitation
when the blade is not moving/pitching as shown in Table 4.5.

4.1.3 Open-Water and Self-Propulsion Dynamometer

The dynamometer should be able to measure the propeller thrust, torque and
blade spindle torque dynamically to enable a validation of a model for the
hydrodynamical loads for the CVP propeller. Also, the dynamometer should
contain a mechanism that can pitch the propeller blades individually accord-
ing to the desired pitch trajectory. To reduce the financial costs in association
with the experimental work it was chosen to design a single dynamometer
which could be used for both the open-water and self-propulsion tests.

The development of the test setup can be divided into three phases, over
a period from 2016 to 2019. The first phase consisted of a topology study
of the cyclical pitch mechanism and sensors and the construction of a proto-
type for concept validation. This prototype was used to validate the cyclical
pitch mechanism concept in air. At the end of the first phase a satisfactory
performance was obtained for the concept and it was used in the further de-
velopment. The second phase consisted of the further development of the
cyclical pitch mechanism and sensor from phase one and the manufacturing
of it. Furthermore, the second phase also included the development and con-
struction of the open-water carriage and installation of the dynamometer in
the ship model. During the second phase the test setup was tested in air and
in water to ensure the functionality of the test setup before making the tests
at FORCE Technology. The test in water were made at the Aalborg University
Department of Civil Engineering in their wave basin and wave flume. At the
end of the second phase, in the Summer of 2018, the test setup was trans-
ported to FORCE Technology to make the open-water and self-propulsion
tests. During these tests a number of problems occurred with the test setup
which made it impossible to make the tests during this period. Amongst the
problems that occurred were: problems with seals which resulted in water
leaking into the test system and causing problems with the data acquisition,
long setup time to ensure the correct pitch setting of the propeller blades and
reliability of the test system since wires broke off the blade sensor due to fa-
tigue. The third phase consisted of redesigning the problematic components
and remaking the tests. The redesigned components consisted of all the pro-
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peller components at the end of the shaft except for the propeller blades and
the cyclical pitch mechanism. The final design of the dynamometer which
was used for the testing is shown in Figure 4.9.

Figure 4.9: Dynamometer for the open-water and self-propulsion tests.

The dynamometer and propeller was driven by a three-phase AC motor
through a belt and a pair of trim wheels with a gear ratio on one. The motor
was controlled by a Danfoss FC-302 7.5 kW motor controller. The dynamo-
meter was mounted on a mounting plate which was installed either in the
open-water carriage or in the ship model, depending on the test. Two bear-
ings were mounted on the mounting plate which supported the propeller
shaft. On the outer radial surface of the shaft a magnetic encoder, trim wheel
and a slip ring were mounted. The encoder was used to determine the posi-
tion of the propeller in the wake field and the slip ring was used to transfer
the data signals from the rotating shaft to the data acquisition setup. At the
end of the propeller shaft, the propeller is mounted and at the other end the
cyclical pitch mechanism. The cyclical pitch mechanism was made using a
cam mechanism which is shown in Figure 4.10.
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Figure 4.10: The cyclical pitch mechanism.

The cam surface is shaped according to the desired pitch trajectory and
its center is aligned with the propeller shaft’s center by mounting the cam on
the cam holder. On each side of the cam surface is a pair of follower wheels (a
pair for each propeller blade), which follow the surface of the cam. Each pair
of wheels is mounted on a wheel holder which ensures that the wheels clamp
around the cam by tightening the wheel holder bolts. The front wheel holder
was mounted onto the push/pull rod by the two follower nuts. The follower
nuts were used to adjust the length of the push/pull rods individually thus
determining the propeller blades pitch. The shim between the cam and the
cam holder is used to change the pitch of both propeller blades. The wheel
holders were kept from rotating about the push/pull rod by using a holder
lock made of nylon. Depending on how the cam surface was shaped, the
follower wheels, holders and push/pull rods are pushed/pulled back and
forth as the shaft rotates. The push/pull rods extend through the hollow shaft
into the propeller hub, as shown in Figure 4.11. The whole cam mechanism
was enclosed in an oil chamber, as shown in Figure 4.9 and Figure 4.11. This
enclosure was partially filled with lubrication oil for the cam and the oil whip
bolt’s function is to spread the oil in the enclosure to lubricate the cam.
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Figure 4.11: Cut-through view of the dynamomemeter.

Through the propeller shaft there are five supports for the push/pull rods
which each support the push/pull rods radially through a Teflon sliding
bearing. The support for the push/pull rods was made in order to reduce
buckling and to ensure the correct alignment of the rods. Through the pro-
peller shaft there are two pipes to keep two cables in place. The cables go
from the slip ring to the sensors in the propeller. A cut-view of the propeller
is shown in Figure 4.12.

Figure 4.12: Cut-through view of the propeller assembly.
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At the end of the push/pull rods, in the propeller, a pin holder is mounted.
The pin holder holds a pin which extends from the pin holder into a groove
in the blade disc. The blade disc is mounted to the blade sensor through a
bolt and two pins, and the blade is mounted on the blade sensor through six
bolts. When the push/pull rods move, the motion results in a change of the
blade pitch.

The hub assembly consists of four parts, two flanges (front and back), the
hub and the hub cap. The back flange has four radially threaded holes for
four flat point screws to lock the flange from rotating. The front flange is
screwed onto the shaft to transfer the axial thrust and ensure that the flanges
are aligned correctly. The whole hub assembly was assembled with twelve
bolts.

The measurements of the forces and the torques were made by using
strain gauges in a full bridge configuration. The strain gauges were placed
on the blade sensors and the sensing part of the shaft. The strain gauges on
one of the blade sensors was set up to measure the forces along the x- and
y-axes in the propeller coordinate system, i.e. the thrust and the side force
which are perpendicular to the thrust. The other blade sensor was set up to
measure the blade spindle torque. On the shaft, the strain gauges are set up
to measure the shaft torque. All of the strain gauges and soldering points are
coated with polyurethane lacquer and silicone rubber to protect them from
the water. To acquire the signals from the blade sensors, the cables from
the blade sensors are wired through a cable gland to ensure that water does
not enter the propeller. To keep water out of the propeller a number of o-
rings are used at all the assembly joints of the propeller, and the nylon disc
was used for the same purpose. It is important to keep water out from the
propeller such that the electronics in the hub cap are not exposed to it. Also,
if the propeller is flooded, the water can flow through the hollow propeller
shaft and cause trouble for the rest of the dynamometer. In the hub cap a
printed circuit board was located which distributed the signals for the data
acquisition.

4.1.4 Open-Water Carriage

For the open-water tests the dynamometer was enclosed in the open-water
carriage such that the dynamometer was not flooded during the test. The
open-water carriage is shown in Figure 4.13.

The main components of the open-water carriage are the carriage house,
tower and holder. The carriage house is the cylinder enclosing the dyna-
mometer. The carriage tower is welded onto the carriage house and forms
the open-water carriage enclosure. The cross section of the carriage tower
is formed as foil to streamline the tower. The open-water carriage enclosure
was mounted on the towing tank carriage through the carriage holder and
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some clamps. The motor was mounted on the carriage holder. The motor
holder was used to adjust the height of the motor above the carriage holder
and thereby tightening or loosening the belt driving the propeller. The inter-
nal details of the carriage and the mounting of the propeller dynamometer
are shown in Figure 4.14.

Figure 4.13: The open-water carriage containing the dynamometer for the open-water tests.
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Figure 4.14: The insides of the open-water carriage housing.

Figure 4.15: The build open-water carriage and propeller dynamometer.
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The propeller dynamometer was mounted through a set of bolts onto
the dynamometer rails which were welded onto the carriage housing. The
propeller shaft goes through a lip seal gasket to ensure that no water comes
into the carriage housing. The cylinder carriage housing was sealed at each
end by a plate which is mounted on the flanges of the carriage housing with
a flat gasket seal in-between. The open-water carriage with the dynamometer
installed is shown in Figure 4.15.

For the self-propulsion test, the propeller dynamometer was mounted in
the ship hull as shown in Figure 4.16. This mounting re-uses the top part of
the carriage holder with some adapter pieces on the sides to make it wide
enough to be mounted on the ship. The dynamometer shaft extends through
the ship hull through a stern tube with a sliding bearing inside. No seals were
used at the stern tube other than the sliding bearing. A pump was therefore
required to pump the water out of the ship during the self-propulsion tests.

Figure 4.16: Mounting of the propeller dynamometer in the ship hull for the self-propulsion
tests.
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4.1.5 Sensors and Data Acquisition

To make the tests and be able to make some conclusion from them, it was
necessary to be able to log the signals from the different sensors. The signals
logged during the tests were:

- Blade thrust sensor signal - Propeller encoder signals
- Blade side force sensor signal - Carriage speed signal
- Blade spindle torque sensor signal - Towing force signal
- Propeller shaft torque sensor signal - Heave fore and aft signals

The four sensors; blade thrust, blade side force, blade spindle torque and
propeller shaft torque were all custom built sensors using strain gauges. The
strain gauges for the blade thrust and blade side force were mounted on
the same blade sensor. The strain gauges for the blade spindle torque were
mounted on the other blade sensor. The strain gauges for the propeller shaft
torque were mounted on the inner side of the sensor part of the propeller
shaft shown in Figure 4.12.

To evaluate the unsteady loads acting on the propeller and its blades,
it was necessary to know the positions of the blades in the wake field. A
radial magnetic encoder was therefore mounted on the propeller shaft. The
radial mounted encoder was used since an axial mounted encoder could not
be mounted at the end of the propeller shaft since the cam mechanism was
placed here. The magnetic encoder was a HEIDENHAIN AR-ERM-2480-
900 encoder which contained 900 pole pairs, giving a high resolution of the
blade’s position.

The pitch of the blades was measured during the test setup. The pitch
sensor was made by using two displacement sensors of the type OMEGA
LD630-100 with a ball tip. The two sensors were mounted onto the hub
through a sensor holder as shown in Figure 4.17. The location of the pitch
sensors was such that the sensors measured at the same radial section of the
blade at two points where the surface of the blade crosses the chord line, as
shown in Figure 4.18. The difference in the two signals was then used to
determine the pitch of the blade as in Eq. 4.4. The pitch sensor was mounted
onto the propeller such that it rotated with the propeller and measured the
pitch trajectory over a complete propeller revolution.
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4.1. Test Bench

Figure 4.17: Setup for measuring the blade pitch.
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Figure 4.18: Principle for measuring the pitch of the blade.

αp = atan
(

∆h
Lw

)
(4.4)

For the carriage speed, towing force and heave measurements, the sensors on
the towing tank at FORCE Technology, Lyngby, were used. The signals were
not logged with the data acquisition equipment on the towing tank due to
the custom sensors used in the test setup. The test setup had its own data
acquisition equipment which logged the strain gauge signals, carriage speed,
towing force and heave in order to have all the signals synchronised.

The data acquisition was made using LabVIEW2018 together with a NI-
cRIO9068 with I/O modules. The I/O modules used for the data acquisition
were the NI9237 for logging the signals from the strain gauges and the NI9215
for logging the rest of the analog signals.
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Chapter 4. Experimental Testing of CVP Propeller

The data acquisition was made with different logging frequencies for the
signals. The strain gauge signals were logged with a frequency of 2 kHz and
were filtered by an integrated filter in the NI9237 module with a break fre-
quency of about half the sampling frequency to prevent aliasing. The signals
from the encoder were sampled at 66.6 kHz. The high sampling frequency
for the encoder was necessary to resolve the signal because it consisted of 900
sine pulses during one rotation. This gives about 8-9 measurement points per
sine wave of the encoder at a propeller speed of 500 rpm. The signals from
the carriage were sampled at 5 kHz. In retrospect, this sampling rate could be
reduced because the dynamics of these signals was significantly lower than
those of the strain gauges.

4.2 Pitch Trajectories

Three different pitch trajectories were used for the CVP propeller tests. One
of the pitch trajectories was the variable pitch trajectory used in the blade de-
sign in Section 4.1.2. Another pitch trajectory was where the blades are fixed.
The last pitch trajectory was a cosine varying pitch trajectory. These pitch
trajectories are shown in Figure 4.19. Due to the time constraints, only the
CP propeller was tested with the constant pitch trajectory (i.e. fixed blades)
in the self-propulsion test. In the open-water test, the constant, cosine and
variable pitch trajectories were used for both propellers.
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Figure 4.19: Pitch trajectories used in the CP and CVP propeller tests.

The variable pitch trajectory shown in Figure 4.19 is a Fourier series ap-
proximation of the non-smooth point defined pitch trajectory in Section 4.1.2.
For all the pitch trajectories it is necessary to define them in a continuous dif-
ferentiable manner such that the jerk is finite and reduces the possibility of
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an unexpected breakdown. A Fourier series satisfies this requirement. Fur-
thermore, it is seen that the pitch trajectories for the CP propeller are offset
relative to the CVP propeller. This offset was to ensure equivalent thrust for
the CP and CVP propeller which was used as a requirement during the blade
design.

4.3 Sensor Calibration and Data Treatment Proce-
dure

The test setup had three different types of sensors which had to be calibrated.
These sensors were:

• Strain gauge sensors

– The measurements of the forces and torques were made by us-
ing strain gauges in a full bridge configuration. Over each of the
bridges there was a voltage difference which was proportional to
the loading of the sensor. To determine the relation between the
measured voltage and the load, the strain gauge sensors were cal-
ibrated by applying known loads to them.

• Encoder index location

– Due to slack in the hub assembly, the relative position between the
encoder’s index position and the propeller blade’s position could
differ for each assembly of the propeller. The index position was
therefore measured for each assembly of the propeller.

• Pitch sensor

– For each assembly of the pitch measuring sensor there could be a
difference in how the displacement sensors were placed relative to
the mounting plate. The displacement sensors therefore had to be
calibrated to determine the new offset for the sensors.

To determine the offset and proportional gain for the strain gauge sensors,
the sensors were calibrated by applying known loads on the sensors and
measuring the voltage difference. From these measurements a regression
model was made for each of the sensors. This regression model was used
to determine, the loads acting on the sensors from the measured voltages
during the experiments, and the uncertainty of the sensor.

From the calibration it was found that the offset of the strain gauges
drifted over time. This was compensated for during the experiments. The re-
gression model for the blade loads included the coupling between the loads.
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Chapter 4. Experimental Testing of CVP Propeller

The regression models used for the blade loads and the shaft torques were:ux
uy
uz

 =

axx axy axz
ayx ayy ayz
azx azy azz

  Fx
Fy
Mz

+

u0,x
u0,y
u0,z

→ u = AF + u0 (4.5)

up =ap Mx + u0,p (4.6)

ux, uy, uz and up are the voltages measured for the strain gauge sensors for
the blade thrust, blade side force, blade spindle torque and propeller shaft
torque, respectively. ax is the gain coefficients for the regression model. Fx,
Fy, Mz and Mx are the blade thrust, blade side force, blade spindle torque
and propeller shaft torque, respectively. u0,x, u0,y, u0,z and u0,p are the offset
voltage for the strain gauge sensor. The uncertainty of the regression models
was two times the standard deviation of the regression model. The standard
deviations for ux, uy, uz and up were σx, σy, σz and σp, respectively. Further-
more, there was also the uncertainty of the analog to digital convertion in the
strain gauge modules which is noted as uv. The loads and their uncertainties
were determined using the regression model as:

F = A−1 u∓ A−1


√

4 σ2
x + u2

v√
4 σ2

y + u2
v√

4 σ2
z + u2

v

 (4.7)

Mx =
1
ap

up ∓
1
ap

√
4 σ2

p + u2
v (4.8)

In Eq. 4.7 and Eq. 4.8 the offset voltage was not included because the off-
set was compensated for during the test. The collected uncertainties were
determined under the assumption that the uncertainties for the regression
model and analog to digital conversion are independent of each other. The
uncertainties for each of the sensors are listed in Table 4.6.

Table 4.6: Uncertainty of the strain gauge sensors. ∗ SP = self-propulsion test. + OW = open-
water test.

Sensor Uncertainty

Blade Thrust Sensor 26.979 mN
Blade Side Force Sensor 28.599 mN
Blade Spindle Torque Sensor 0.325 mNm
Propeller Shaft Torque (SP∗) 0.297 Nm
Propeller Shaft Torque (OW+) 0.573 Nm
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4.3. Sensor Calibration and Data Treatment Procedure

From Table 4.6 it is seen that there are two uncertainties for the propeller
shaft torque. One for the self-propulsion test and one for the open-water
test. The reason for this is because the characteristics of the sensor change
depended on how much the flat point screws holding the hub flange were
tightened. Since the hub was dismounted from the shaft when changing from
the open-water test to the self-propulsion test it was necessary to recalibrate
the sensor. The recalibration of the sensor may change its uncertainty because
the flat point screws were tightened differently.

The offset of the strain gauge signals and the possible drift in it over time
was compensated for by adapting the test procedures. This test procedure
consisted of making a reference measurement with the propeller before each
tow through the tank. The reference measurement was made by rotating the
propeller at 5 rpm with the tank carriage at rest. The strain gauge signal was
determined as:

ux(θb) = utest(θb)− ure f (θb) (4.9)

ux is the strain gauge signal used to determine the load. utest is the measured
strain gauge signal during the test. ure f is the measured strain gauge signal
during the reference measurement. It was assumed that the strain gauge
offset did not drift over the time period from the reference measurement to
the end of the test measurement at the end of the tank. This was a time
period of about ten minutes. Both of the signals utest and ure f contain the
offset which, by subtracting the signals from each other, is cancelled. This
also canceled the load due to gravity and buoyancy.

The signals subtracted from each other in Eq. 4.9 were done at their
corresponding blade positions. This was done by making a Fourier series ap-
proximation of the signals as a function of the blade’s position. The number
of harmonics used in the Fourier series approximation was the same num-
ber used to estimate the pitch trajectory from the pitch measurements. The
standard deviation of the Fourier series was included in the uncertainty by
assuming that it was independent of the other uncertainty sources. The mea-
surement uncertainty thereby becomes:

U =

UFx
UFy
UMz

 = A−1


√

4 σ2
x + u2

v + 4 σ2
F,Fx + 4 σ2

0,Fx√
4 σ2

y + u2
v + 4 σ2

F,Fy + 4 σ2
0,Fy√

4 σ2
z + u2

v + 4 σ2
F,Mz + 4 σ2

0,Mz

 (4.10)

UMx =
1
ap

√
4 σ2

p + u2
v + 4 σ2

F,Mx + 4 σ2
0,Mx (4.11)

UFx, UFy, UMz and UMx are the uncertainties of the measurements for the
blade thrust, side force, spindle torque and propeller shaft torque, respec-
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tively. σF,Fx, σF,Fy, σF,Mz and σF,Mx are the standard deviations of the Fourier
series approximation of the voltage signals measured during the test for the
blade thrust, side force, spindle torque and propeller shaft torque, respec-
tively. σ0,Fx, σ0,Fy, σ0,Mz and σ0,Mx are the standard deviations of the Fourier
series approximation of the voltage signal during the reference measurement
for the blade thrust, side force, spindle torque and propeller shaft torque,
respectively. The results presented for the open-water tests and the self-
propulsion tests present some of the results for the 0th harmonic. In this
case the standard deviation for the 0th harmonic coefficient was used instead
of the standard deviations of the Fourier series approximation of the mea-
surement and reference signal.

4.4 Open-Water Test

The open-water tests were made with the dynamometer mounted in the
open-water carriage which was mounted onto the towing tank carriage, as
shown in Figure 4.20.

Figure 4.20: open-water carriage mounted on the towing tank carriage.

Before each open-water test, the pitch of the propeller blades was set. The
pitch was set by adjusting the shimming of the cam and adjusting the cam
follower nuts. When adjusting the pitch it was the mean measured pitch
that was used to adjust the pitch. After the open-water tests was made, it
was found that this resulted in an error in the pitch for the open-water test.
This was because the shaft did not rotate with a constant speed during the
pitch measurement. The 0th harmonic of a Fourier series approximation of
the measured pitch should be used instead. This was corrected for in the
self-propulsion tests. The measured pitch, desired pitch and the pitch error
for the open-water tests are shown in Table 4.7.
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4.4. Open-Water Test

Table 4.7: The measured pitch and the error with respect to the desired pitch for each propeller
configuration used in the open-water tests.

Propeller Configuration Desired Measured Error

CP - Constant
at r/rp = 0.825

Thrust
Blade Sensor

17.74◦ 17.73◦ 0.01◦±0.02◦

Spindle Torque
Blade Sensor

17.74◦ 17.73◦ 0.01◦±0.02◦

CP - Cosine
at r/rp = 0.825

Thrust
Blade Sensor

17.75◦ 17.58◦ 0.17◦±0.06◦

Spindle Torque
Blade Sensor

17.75◦ 17.91◦ -0.16◦±0.04◦

CP - Variable
at r/rp = 0.825

Thrust
Blade Sensor

17.68◦ 17.39◦ 0.29◦±0.06◦

Spindle Torque
Blade Sensor

17.68◦ 17.53◦ 0.15◦±0.05◦

CVP - Constant
at r/rp = 0.9

Thrust
Blade Sensor

16.30◦ 16.31◦ -0.01◦±0.02◦

Spindle Torque
Blade Sensor

16.30◦ 16.36◦ -0.06◦±0.01◦

CVP - Cosine
at r/rp = 0.9

Thrust
Blade Sensor

16.31◦ 16.41◦ -0.10◦±0.06◦

Spindle Torque
Blade Sensor

16.31◦ 16.38◦ -0.07◦±0.04◦

CVP - Variable
at r/rp = 0.9

Thrust
Blade Sensor

16.64◦ 16.54◦ 0.10◦±0.05◦

Spindle Torque
Blade Sensor

16.64◦ 16.60◦ 0.04◦±0.06◦

When setting the blade pitch it was desired to get a pitch within ±0.1°

of the desired pitch. From Table 4.7 it is seen that this was not successful
for all the setups. This was due to the error of using the mean value instead
of the 0th harmonic of the Fourier series. The measured pitch displacement
trajectories are shown in Figure 4.21 and Figure 4.22 for the CP and CVP
propeller blades, respectively. The measured pitch displacement was used
instead of the measured pitch because of the error in the 0th harmonic of the
pitch. Furthermore, the measured pitch displacement is shown for both of
the blades using the same colour.

127



Chapter 4. Experimental Testing of CVP Propeller

0 45 90 135 180 225 270 315 360
Blade Position [deg]

-8

-6

-4

-2

0

2

4
P

itc
h 

A
ng

le
 D

is
pl

ac
em

en
t [

de
g]

CP - Constant, Desired
CP - Constant, Measured
CP - Variable, Desired
CP - Variable, Measured
CP - Cosine, Desired
CP - Cosine, Measured

Figure 4.21: Measured pitch displacement for the test setup with the CP propeller for the open-
water tests.

0 45 90 135 180 225 270 315 360
Blade Position [deg]

-8

-6

-4

-2

0

2

4

P
itc

h 
A

ng
le

 D
is

pl
ac

em
en

t [
de

g]

CVP - Constant, Desired
CVP - Constant, Measured
CVP - Cosine, Desired
CVP - Cosine, Measured
CVP - Variable, Desired
CVP - Variable, Measured

Figure 4.22: Measured pitch displacement for the test setup with the CVP propeller for the
open-water tests.

From Figure 4.21 and Figure 4.22 it is seen that the pitch trajectory has,
in general, the desired shape. But the amplitudes of the pitch trajectories are
smaller than the desired amplitudes and there are some phase differences.
This may either be due to the cams not being fabricated as specified or the
cams have been designed incorrectly. The fabricated cams can be verified by
measuring the cam surface and comparing it to the designed surface. This
was not done and is left as further work with the test setup. Furthermore,
for the CP propeller blades there is some difference in the variable pitch
trajectory. It is thought that this difference may be due to either the follower
nuts or the wheel holder bolts not being tightened sufficiently. This could
have resulted in the push/pull rods not following the cam as desired. Other
measurements of the variable pitch displacement for the CP propeller blades
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4.4. Open-Water Test

have been made where the shape of the pitch displacement for the two blades
corresponds to the shape of the variable pitch displacement trajectory for the
CVP propeller blades shown in Figure 4.22.

The test procedure for the open-water test was:

• If no runs through the tank had been made for 30 minutes, a dummy
run was made with constant speed of the ship and propeller. If it had
been more than 60 minutes then two dummy runs were made.

• Drive the tank carriage into the starting position in the towing tank.
• Make reference measurement where the propeller rotates with 5 rpm

and the tank carriage is fixed. The data logging was made over 60
seconds.

• Accelerate the carriage and propeller up to the desired speed and log
the data for 10 seconds. Repeat this until the end of the tank was
reached. The propeller speed used for the open-water tests was 250
rpm.

• Stop the carriage and the propeller.
• Drive the carriage back to the starting position in the towing tank.
• Wait 15 minutes between the start of each run.

The open-water curves were determined using the 0th harmonic of the Fourier
series approximations of the measurements. The open-water curves as their
measured loads are shown in Figure 4.23 for each of the two propellers’ three
pitch trajectories. The results for quasi-steady RANS CFD simulations of the
propellers with fixed pitch are shown for comparison in Figure 4.23. The CFD
simulations were made similarly as in Appendix D but with the propeller in
model scale and with the viscous sub-layer fully resolved.

From Figure 4.23 it is seen that the measured blade thrust was always
smaller than the one determined with the CFD simulation. This difference
becomes smaller as the advance coefficient increases. It is seen in the bollard
pull tests that two times the blade thrust is not equal to or greater than the
propulsion force acting on the ship resistance transducer. It was therefore
likely that the measured blade thrust for the open-water tests was smaller
than the actual blade thrust. It has to be investigated in the further work
why the measured blade thrust was smaller than the actual blade thrust.
It is thought that it may be due to the difference between the calibration
procedure for the blade thrust sensor and the procedure used for the other
strain gauge sensors. The blade thrust sensor was calibrated by using a screw
to apply a load to the sensor. A transducer was mounted on the screw so that
the load applied with the screw was known. If the screw was not aligned
properly during the calibration then this would lead to a smaller load being
applied to the sensor than what was measured with the transducer. This lead
to the slope for the calibration being smaller than it should be, which would
give a smaller measured load. This coincides with the observation from the
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experiments. Furthermore, it is seen that the tendencies of the blade thrust
do not exhibit any large oscillation in the results and the uncertainty of the
measurements is generally small.

0 0.2 0.4 0.6 0.8 1

Advance Coefficient [-]

-20

0

20

40

60

L
o

a
d

 [
N

/N
m

]

CP - Variable

0 0.2 0.4 0.6 0.8 1

-20

0

20

40

60

80

L
o

a
d

 [
N

/N
m

]

CP - Cosine

0 0.2 0.4 0.6 0.8 1

-20

0

20

40

60

L
o

a
d

 [
N

/N
m

]

CP - Constant

0 0.2 0.4 0.6 0.8 1

Advance Coefficient [-]

-20

0

20

40

60

L
o

a
d

 [
N

/N
m

]

CVP - Variable

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

L
o

a
d

 [
N

/N
m

]

CVP - Cosine

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

L
o

a
d

 [
N

/N
m

]

CVP - Constant

Exp. Blade Thrust 10 Exp. Shaft Torque 10 Exp. Spindle Torque

CFD Blade Thrust 10 CFD Shaft Torque 10 CFD Spindle Torque

Figure 4.23: open-water loads curves determined as the 0th harmonic of the Fourier series
approximation of the measurements.

From Figure 4.23 it is seen that the measurements of the propeller shaft
torque is less consistent than the blade thrust. For example, for all the mea-
surements, except for the CP propeller with the cosine pitch trajectories, there
is a step change in the propeller shaft torque at about an advance coefficient
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4.4. Open-Water Test

of 0.7. This was about where the first tow through the tank was stopped and
the secondary tow was made to get the remainder of the measurements. This
may have introduced a shift in the offset. This offset change should be com-
pensated for by the reference run, but it is possible that the offset changed
during the experiments. This could have been checked by making a reference
measurement at the end of the tank. If the two reference measurements at
the start and at the end of the tank do not match, then the measurement is
invalid and a new one should have been made. This was not done for ei-
ther the open-water tests or the self-propulsion tests. Instead for some of the
propeller configurations the tests were repeated multiple times and it is the
most consistent results that are presented in Figure 4.23. The exception to
this is for the CP propeller with the constant pitch trajectory for which the
measurements are not as consistent as the other measurements. In general,
it can be concluded that the propeller torque sensor was not reliable and im-
proving it should be done in the future. One reason for this is that the sensor
was relatively insensitive because the sensor was relatively stiff for the mag-
nitude of the propeller torques measured. This means that the sensor was
more sensitive to small changes in the offset than the other sensors.

From Figure 4.23 it is seen that the measured blade spindle torque gene-
rally fits the simulated blade spindle torque well. The exception to this is
for the CP propeller with the constant pitch trajectory. The correspondence
between the CFD simulations and the measurements are the worst for the CP
propeller and the best for the CVP propeller. The correspondence is not good
enough for any of these to validate the CFD simulation within the uncertainty
of the experiments and the simulations.
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4.5 Self-Propulsion Test

The self-propulsion tests were made with the dynamometer mounted in the
ship hull model and the ship hull model was mounted onto the towing tank
carriage as shown in Figure 4.24.

Figure 4.24: Setup for the self-propulsion tests.

The self-propulsion tests were made at four different ship speeds given
in Table 4.8 in model and full scale. For the self-propulsion test it is the self-
propulsion point that is of interest, which is the point where the measured
towing force equals the skin friction correctional force. The skin friction cor-
rectional force is given in Table 4.8 for the different ship speeds. The skin
friction correctional force is used in order to ensure the correct loading of the
propeller [43] by accounting for the difference between the skin friction of the
model and full scale ship.

Table 4.8: Test conditions used for the self-propulsion tests.

Ship Speed 14 knots 16 knots 18 knots 20 knots
Model Speed 1.590 m/s 1.818 m/s 2.045 m/s 2.271 m/s
Skin Friction
Correction Force

23.34 N 29.31 N 35.84 N 42.90 N
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4.5. Self-Propulsion Test

The self-propulsion tests were not made for all the configurations used
in the open-water tests. This was due to the time available in the tank was
limited and because more time had been used for testing the test bench and
making the open-water tests, than was planned. It was therefore only pos-
sible to test the CP propeller blade design with the constant pitch trajectory
and the CVP propeller blade design with the variable, cosine and constant
pitch trajectories. It was prioritised to make the self-propulsion test for dif-
ferent pitch trajectories with the CVP propeller, than for the CP propeller.
This was because the CP propeller mainly serves as a reference for the possi-
ble improvements that could be obtained with the CVP propeller. Note that
the pitch setting of the propeller blades for all the CVP propeller trajectory
was measured one time when the ship was out of the water. During these
measurements the combination of shims for the cams was determined for the
three pitch trajectories. Therefore, the cams could easily be changed during
the self-propulsion tests without having to take the ship out of the water.
This saved a considerable amount of time. The measured pitch of the blades
for each self-propulsion test is shown in Figure 4.25 relative to the desired
pitch trajectory. From Figure 4.25 it is seen that the amplitudes of the cosine
and variable pitch trajectories are not as large as desired which is also the
case for the open-water tests.
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Figure 4.25: Desired and measured pitch trajectories used in the self-propulsion tests for all the
propeller configurations.

The pitch of the blades was set such that the 0th harmonic of the measured
pitch was within ±0.1◦ of the desired 0th harmonic pitch. The error between
the desired and measured 0th harmonic pitch is listed in Table 4.9 for each
propeller configuration.
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Table 4.9: The measured pitch and the error with respect to the desired pitch for each propeller
configuration used in the self-propulsion tests.

Propeller Configuration Desired Measured Error

CP - Constant
at r/rp = 0.825

Thrust
Blade Sensor

17.74◦ 17.75◦ -0.01◦±0.02◦

Spindle Torque
Blade Sensor

17.74◦ 17.75◦ -0.01◦±0.02◦

CVP - Constant
at r/rp = 0.9

Thrust
Blade Sensor

16.30◦ 16.28◦ 0.02◦±0.03◦

Spindle Torque
Blade Sensor

16.30◦ 16.31◦ -0.01◦±0.02◦

CVP - Cosine
at r/rp = 0.9

Thrust
Blade Sensor

16.31◦ 16.28◦ 0.03◦±0.05◦

Spindle Torque
Blade Sensor

16.31◦ 16.33◦ -0.01◦±0.06◦

CVP - Variable
at r/rp = 0.9

Thrust
Blade Sensor

16.64◦ 16.60◦ 0.04◦±0.06◦

Spindle Torque
Blade Sensor

16.64◦ 16.67◦ -0.03◦±0.11◦

The test procedure for the self-propulsion test was:

• If no runs through the tank had been made for 45 minutes, a dummy
run was made with constant speed of the ship and propeller. If it had
been more than 60 minutes, two dummy runs were made.

• Drive the tank carriage into the starting position in the towing tank.
• Make reference measurement where the propeller rotates with 5 rpm

and the tank carriage is fixed. The data logging was made over 60
seconds.

• (Optional) Make bollard pull with the rate of revolution for the first
measurement point for the self-propulsion test of the tow.

• Accelerate the carriage and propeller up to the desired speed and log
the data for 10 seconds.

• Accelerate the propeller speed for the second measurement point and
log the data for 10 seconds.

• Stop the carriage and propeller.
• Drive the carriage back to the starting position in the towing tank.
• Wait 20 minutes between the start of each tow.

The towing force as a function of the propeller rate of revolution is shown
in Figure 4.26 for all of the self-propulsion tests. Four propeller speeds are
used for each ship speed and propeller configuration. In Table 4.10, the rate

134



4.5. Self-Propulsion Test

of revolution of the propeller at the self-propulsion point is given. The point
is determined using a linear regression model of the data in Figure 4.26.
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Figure 4.26: The towing force as a function of the propeller revolution for the different propeller
configurations and ship speeds. The dashed black line is the skin friction correctional force for
the different ship speeds.

Table 4.10: Propeller speed at the self-propulsion point for each ship speed and propeller con-
figuration.

Ship Speed, Vs 14 knots 16 knots 18 knots 20 knots
CP - Constant 301.5 rpm 342.2 rpm 388.1 rpm 442.0 rpm
CVP - Constant 287.7 rpm 327.4 rpm 370.9 rpm 424.3 rpm
CVP - Cosine 286.7 rpm 325.5 rpm 369.2 rpm 422.5 rpm
CVP - Variable 288.3 rpm 326.7 rpm 370.8 rpm 412.3 rpm

From Figure 4.26 and Table 4.10 it is seen that fewer rpms were required
for the CVP propeller to obtain the same thrust as the CP propeller. This may
have been due to the higher set pitch of the CVP propeller. The required rpms
for the CVP propeller was generally the same for all the pitch trajectories
except for the variable pitch trajectory at a ship speed of 20 knots. It is
thought that this may be due to some non-linear effect of the propeller or an
interaction effect between the propeller and ship hull.

During the self-propulsion tests the propeller shaft torque, blade thrust,
blade side force and blade spindle torque were measured. Unfortunately,
technical problems occurred during the self-propulsion test which could not
be fixed during the test without having to further compromise the test pro-
gram. For some of the tests the blade thrust, blade side force and blade
spindle torque were unavailable. The blade thrust was not measured for al-
most all of the tests with the CVP propeller. Even though the blade thrust was
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missing for most of the measurements with the CVP propeller, the propulsion
power could still be determined and compared for the CP and CVP propeller
because the propeller shaft torque was available. The propeller shaft torque,
Mx, measured during the self-propulsion tests is shown in Figure 4.27a and
the propulsion power is shown in Figure 4.27b with their uncertainties. The
propulsion power was determined as:

Pprop = Mx ωp (4.12)

ωp is the propeller speed in [rad/s]. The propeller shaft torque shown in Fig-
ure 4.27a and the propeller power shown in Figure 4.27b are the 0th harmonic
coefficient of the Fourier series approximation of the measurement.
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Figure 4.27: (a) Propeller shaft torque and its uncertainty as a function of the rotational speed of
the propeller for the different propeller configurations and ship speeds. (b) Propeller power and
its uncertainty as a function of the rotational speed of the propeller for the different propeller
configurations and ship speeds.

From Figure 4.27a and Figure 4.27b it is seen that there was some jitter in
the measurements, most significantly for the two highest rates of revolution
for the CP propeller at 18 knots. These points were therefore neglected for
the further data treatment. The uncertainty of the measurements makes it
difficult to distinguish between the different propeller configurations with a
high degree of confidence. The propeller power at the self-propulsion point
for each of the propeller configuration is given in Table 4.11 and shown in
Figure 4.28. The power was determined using a linear regression model for
the available data points which followed the general tendency of the mea-
surements. The power uncertainties in Table 4.11 and Figure 4.28 include the
uncertainty of the measurement and the uncertainty from the linear regres-
sion of the propeller shaft power.
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Table 4.11: Propeller power for the different propeller configurations and ship speeds at self-
propulsion point.

Ship Speed 14 knots 16 knots 18 knots 20 knots
CP - Constant 77.4± 9.5 W 104.4± 13.0 W 146.1± In f W 254.8± 14.9 W
CVP - Constant 58.1± 9.0 W 90.8± 10.3 W 137.2± 13.3 W 201.5± 14.0 W
CVP - Cosine 57.3± 8.9 W 89.9± 12.0 W 138.0± 12.3 W 213.6± 17.4 W
CVP - Variable 64.0± 9.1 W 99.8± 10.4 W 146.8± 12.7 W 187.6± 13.9 W
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Figure 4.28: Propeller power for the different propeller configurations and ship speeds at self-
propulsion point.

From Table 4.11 and Figure 4.28 it is seen that the general tendency is
that the CVP propeller uses less power than the CP propeller, but due to
the uncertainties in the measurements it is only at some conditions that this
is certain. This is at a ship speed of 20 knots for all the pitch trajectories
and at a ship speed of 14 knots for the constant and cosine pitch trajectories.
At the other conditions the uncertainties overlap each other and therefore it
cannot be concluded, with certainty, that a power saving was obtained. If a
clearer conclusion is sought, then it requires a new method to determine the
propeller shaft torque which has smaller uncertainty bounds.

Having determined the propulsion power, the propulsion efficiency, ηD,
for the tests was determined as:

ηD =
FD Vm

Mx ωp
(4.13)

FD is the skin friction correctional force. Vm is the model ship speed. The
propulsion efficiency and its uncertainty is given in Table 4.12 and the rel-
ative gain in propulsion efficiency for the CVP propeller relative to the CP
propeller is given in Table 4.13.
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Table 4.12: Propulsion efficiency for the different propeller configurations and ship speeds at
self-propulsion point.

Ship Speed 14 knots 16 knots 18 knots 20 knots
CP - Constant 0.49± 0.06 0.52± 0.06 0.51±∞ 0.39± 0.02
CVP - Constant 0.65± 0.10 0.59± 0.07 0.54± 0.05 0.49± 0.03
CVP - Cosine 0.66± 0.10 0.60± 0.08 0.54± 0.05 0.46± 0.04
CVP - Variable 0.59± 0.08 0.54± 0.06 0.51± 0.04 0.53± 0.04

Table 4.13: Relative gain in propulsion efficiency for the different CVP propeller configurations
and ship speeds at the self-propulsion point. Note that the uncertainty used in the table is the
absolute uncertainty of the relative gain in efficiency and not relative.

Ship Speed 14 knots 16 knots 18 knots 20 knots
CP - Constant - - - -
CVP - Constant 33± 37% 15± 27% 6±∞% 26± 16%
CVP - Cosine 35± 38% 16± 30% 6±∞% 19± 17%
CVP - Variable 21± 32% 5± 24% −1±∞% 36± 18%

The results in Table 4.12 and Table 4.13 show that it is only at a ship speed
of 20 knots that it is certain that an efficiency improvement was obtained.

The above results from the self-propulsion tests do not describe the sub-
components of the propeller performance such as; the effective wake coef-
ficient, rotational efficiency and thrust deduction factor. The effective wake
coefficient and rotational efficiency are determined through the thrust iden-
tity method described in Appendix ?? and [46]. The thrust deduction factor
can be determined as described in [46] from the self-propulsion tests or as
in [43] from the bollard pull tests. The results from the bollard pull tests are
shown in Figure 4.29, which shows the measured blade thrust times two and
the measured towing force.

From Figure 4.29 it is seen that the measured thrust was always signifi-
cantly lower than the measured towing force. This is odd, since the thrust
should be larger than the towing force in bollard pull due to the thrust de-
duction factor. It has to be investigated in the future what is wrong with the
thrust sensor which is discussed in Section 4.4.

Due to the thrust not being accurate and that there is almost no thrust
measurements for the CVP propeller, the performances of the CP and CVP
propeller are not compared for the thrust deduction, effective wake and ro-
tational efficiency.
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Figure 4.29: Bollard pull test results.

The last results from the self-propulsion test used to compare the perfor-
mance of the CP propeller and the CVP propeller are the variations in the
forces and torques. The CVP propeller with a pitch trajectory should reduce
the variations in the forces and torques acting on the propeller and its bla-
des. The difference between the maximum and minimum loads during a
revolution is shown in Figure 4.30.
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Figure 4.30: Difference between the maximum and minimum of loads during a propeller revo-
lution during the self-propulsion tests.
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From Figure 4.30 it is generally seen that the CVP propeller with the con-
stant and cosine pitch trajectory reduces the load variation or it is approxi-
mately the same as the CP propeller. For the variable pitch trajectory with
the CVP propeller it is seen that the load variation is always larger than the
load variations for the CP propeller. This corresponds to the analysis made
in Chapter 2, but in the analysis used for the blade design this is not the case.

4.6 Partial Conclusion, Discussion and Future Work

Making experimental tests with the CVP propeller serves two purposes. One
is to validate the gain in propulsion efficiency by using the CVP propeller
instead of the CP propeller. The second purpose was to get experimental
data to be able to validate the model for the hydrodynamical loads acting on
the CVP propeller and its blades. To fulfil both of these purposes, both open-
water and self-propulsion tests were made with the CVP and CP propellers.
One challenge with these tests was that a commonly available test setup did
not exist to make these tests with the CVP propeller. A CVP propeller test
system was therefore designed and constructed. The test setup was able to
pitch the blades cyclically through a cam mechanism and it could measure
the three load components, thrust, side force and spindle torque acting on the
propeller blade and the propeller shaft torque. The data acquisition was fast
enough to capture the unsteadiness of the loads such that these components
could be validated. Furthermore, the test setup was made for a two bladed
propeller for which two sets of propeller blades were designed for the tests.
One set of propeller blades was designed for a CP propeller whilst the other
set was designed for a CVP propeller. The blade designs were made for a
ship hull model of a container feeder made for the project.

The open-water tests were carried out with three different pitch trajec-
tories for each of the two sets of propeller blades. The pitch of the blades was
set before each test according to the desired mean pitch of the pitch trajec-
tory. The pitch measuring procedure used resulted in a small error in the set
pitch because the pitch should have been set according to the 0th harmonic
Fourier series approximation of the measured pitch trajectory. Furthermore,
the measured pitch trajectory did not match the design pitch trajectory. It is
unclear if it is because the cams were not fabricated according to the spec-
ification, or if the design procedure for the cam surface was wrong, which
should be investigated in the future. The quality of the results for the open-
water tests is questionable. From the open-water tests and the self-propulsion
tests it is seen that the measured blade thrust is smaller than the actual blade
thrust. This may be caused by a misalignment during the calibration but the
exact cause has to be investigated in further work with the test setup. For
the open-water test, the propeller shaft torque was not reliable. The mea-
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sured propeller shaft torque at high advance coefficients generally matched
the propeller shaft torque determined using quasi-steady open-water CFD
simulations of the propellers. At lower advance coefficients, the agreement is
generally poorer. Generally, there is a shift in the measured propeller shaft
torque at an advance coefficient of about 0.7. This shift may be caused by
drift in the offset of the strain gauges. It is typically at about an advance
coefficient of 0.7 that the carriage reaches the end of the tank and has to be
reset to make the remaining tests. Furthermore, the propeller shaft torque
was relatively insensitive in the measurement range and a small shift in the
offset could therefore result in a large change in the measured torque. The
assembly method used to attach the propeller to the propeller shaft may also
be a cause for the shift in the offset. This is because the assembly may not
have been the best method to transfer the torque due to lash in the assem-
bly. A better method would perhaps be to use pins in the assembly instead,
which should transfer the torque better with reduced lash in the assembly.
It is therefore necessary in the future to reconsider how the propeller shaft
torque sensor can be improved. The blade spindle torque measured generally
corresponds well with the CFD simulations but the difference is larger than
the uncertainty in the measurements and the simulations, whereby it cannot
be valid at this level.

The self-propulsion tests was made at four ship speeds with the CP pro-
peller blades fixed and with the CVP propeller blades for three different
pitch trajectories. For each test the propeller power was determined at the
self-propulsion point for each ship speed and propeller configuration. These
results generally show that the propulsion efficiency was improved with the
CVP propeller, relative to the CP propeller. But the uncertainty of the mea-
surements is generally too large to make this conclusion with certainty. The
exception to this is for the highest ship speed test where, with confidence, it
can be concluded that an efficiency improvement was obtained.

To make explicit conclusions with respect to the efficiency improvement
with the CVP propeller and to get accurate experimental data for model val-
idation, the test setup should be modified. The accuracy and precision of the
sensors was not good enough to make a precise conclusion. This is especially
the case for the propeller shaft torque sensor. An alternative method is to use
the existing shaft as a pipe/support and to place the drive shaft inside the
shaft, which can have a significantly smaller diameter and thereby increase
the sensitivity of the sensor. This solution may result in the encoder having to
be moved closer to the propeller due to the twist of the shaft becoming more
prominent. Furthermore, it is also desirable to get the propeller thrust mea-
surement instead of just the blade thrust. This may be possible by placing
strain gauges on the propeller shaft and the push/pull rods. Alternatively,
the cam can be moved closer to the propeller, as in [51], and then measure
the thrust on the shaft between the cam and the carriage housing. The thrust
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is thereby not influenced by the push/pull rods but the cyclical pitch mech-
anism will instead influence the propeller shaft torque. Alternatively, the
cyclical pitch mechanism should be changed to be an actuator in the pro-
peller hub, whereby the propeller thrust and shaft torque can be measured
on the drive shaft. The challenges with this are to design a system which can
pitch the blades fast, accurately and reliably enough.

For the further work the URANS CFD simulation of the CVP propeller
should be made with the blades making the cyclic pitching motion accord-
ing to the pitch trajectories tested. The agreement between the variations in
the hydrodynamical loads from the experiments and the variations in the hy-
drodynamical loads for the simulations can thereby be investigated and the
simulation may be validated.
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Conclusion and Future Work

Through a review of the state of the art literature associated with the CVP
propeller, four challenges in realising the CVP propeller were identified.
These challenges were: design of an optimum propeller blade for the CVP
propeller, determination of the optimum pitch trajectory for the CVP pro-
peller, design of an individual cyclical pitching mechanism for the propeller
blades and the reliability of the CVP propeller. The main contributions of this
dissertation are associated with these challenges, but none of the challenges
have been fully resolved through the work presented in this dissertation.

One of the contributions, from this dissertation, is the development of a
modelling approach which is able to determine the loads (i.e. forces and
torques) acting on the CVP propeller blades during the cyclical pitching of
the propeller blades. The loads accounted for are: inertia, hydrodynamic,
gravitation, buoyancy, friction, reactive and the actuator loads. This model
can be used to determine the requirements for the actuator system that makes
the cyclical pitching of the propeller blades. These requirements are with
respect to the required power and torque to make the cyclical pitching of the
propeller blade. The model established requires that the propeller geometry,
operating conditions and pitch trajectory for the CVP propeller are known.
Being able to evaluate the requirements for the actuator system is a necessity
before a feasibility study can be made for different topological designs of the
individual pitch mechanism for the CVP propeller.

Another contribution from this dissertation is the investigation of alter-
native models to determine the hydrodynamic loads acting on the CVP pro-
peller blades. Common for these alternative models is that they require fewer
computational resources to evaluate the hydrodynamic loads for a new pitch
trajectory, than an unsteady CFD simulation of the CVP propeller. These
models may therefore be more suitable to determine the optimum pitch tra-
jectory for the CVP propeller, than using unsteady CFD simulations. This is
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because it may be necessary to make several evaluations to determine the op-
timum pitch trajectory for the CVP propeller if it is determined in an iterative
manner. A series of optimum pitch trajectory candidates are determined for
the CVP propeller which minimise the variation in the hydrodynamic loads.
The validation of these pitch trajectories is part of the future work for the
CVP propeller.

The last contribution from this dissertation is the design and construc-
tion of a model scale test setup for the CVP propeller. The test setup was
fabricated for the project, and was used to make tank tests with the CVP
propeller together with a ship hull model design. To determine if the CVP
propeller can be used to improve the propulsion efficiency, the tank tests were
made using two different sets of propeller blades. One set designed for a CP
propeller and the other set designed for a CVP propeller whereby a relative
comparison could be made. The results showed that the CVP propeller has
a tendency to improve the propulsion efficiency but the uncertainties are ge-
nerally too large to make conclusions with certainty. The exception to this is
for the highest ship speed tested where there is an efficiency improvement
greater than the uncertainty of the measurements. This does not account for
the required power to pitch the propeller blades cyclically. In order to make
more accurate conclusions about the efficiency improvement with the CVP
propeller, the design of the test setup should be reconsidered as part of fu-
ture work. Furthermore, the test setup was made such that it was able to
measure some of the blade loads which, in the future, can be used to validate
the models for the CVP propeller.

5.1 Future work

None of the identified challenges in realising the CVP propeller have been
fully resolved in this dissertation. Resolving these challenges is therefore
part of future work. The future work can also be related more specifically to
the contribution of this dissertation as:

• The adaptation of the propeller blade design from the CP propeller to
the CVP propeller has, in this dissertation, been determined through
a quasi-steady approach. It has, in this dissertation, been shown that
the quasi-steady approach is not suitable to determine the pitch trajec-
tory for the CVP propeller. It is therefore likely that the quasi-steady
approach is not appropriate to determine the adapted propeller blade
geometry for the CVP propeller. It has to be investigated, in the future,
if it is an appropriate approach to use for the design of the CVP pro-
peller blades. If it is not, then an approach has to be found which is
more appropriate to design the propeller blade for the CVP propeller.
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• The design of the propeller blades for the CVP propeller should also
be considered as part of an optimisation scheme for the design of the
complete CVP propeller system. The optimisation scheme should also
consider the pitch trajectory and the individual pitch mechanism as de-
sign variables. The objective of the optimisation scheme should include
the performance of the propeller such as: thrust, efficiency, shaft vibra-
tions, cavitation, pressure pulses, noise and reliability over the range
of operation of the vessel. Using such an optimisation scheme would
ensure an optimum design for the CVP propeller. It is part of the future
work to make such an optimisation scheme.

• The modelling approach developed to determine the loads acting on
the CVP propeller blades is based on a number of assumptions. Future
work should investigate whether these assumptions are appropriate.
One of the assumptions is the load distribution in the blade bearing
which is used to determine the frictional loads. Different assumptions
have been made for these load distributions which yield significant dif-
ferences in the frictional loads. Therefore, it should be investigated
which approach is best suited or conservative enough to model the fric-
tional loads. This can be investigated through experiments and elastic
simulations of the blade bearing.

• To determine the topological design of the individual cyclic pitch mech-
anism of the CVP propeller, a morphological analysis should be made.
The morphological analysis considers a number of different topologi-
cal designs for the individual cyclical pitch mechanism and evaluates
if these designs can satisfy the requirements for the mechanism. These
requirements are determined by using the approach presented in this
dissertation for the range of operating conditions for the vessel.
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Appendix A

Hydrodynamic Modelling of
CVP Propeller Through
URANS CFD Simulations

This appendix presents an approach to performing an URANS (Unsteady
Reynolds-Averaged Navier-Stokes) CFD simulation of the CP and CVP pro-
pellers in a non-uniform wake field incorporating all three velocity compo-
nents. The purpose of the URANS CFD simulation is to determine the forces
and torques acting on the propeller and its blades for the CP and CVP pro-
pellers when they operate in a non-uniform wake field. An efficiency com-
parison between the CP and CVP propeller can therefore be made. The non-
uniform wake field is implemented into the simulation without including the
ship hull. This is done because the ship hull design is not always available
to the propeller designer and excluding the ship hull from the simulation
saves computational resources. The URANS CFD simulations are made for
the case presented in Chapter 2, which is a single screw CP propeller for a
1,000 TEU container vessel.

This appendix is divided into five sections, which are:

• Section A.1 contains a discussion regarding the uncertainties in using
the measured wake field from a scaled ship hull in the simulation of a
full scale propeller operating in the wake of the ship. The section dis-
cusses different existing methods to compensate for these uncertainties
in the measured wake field. One of these methods is selected and is
used to incorporate the wake field into the CFD simulation of the full
scale propeller
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• Section A.2 presents how the wake field is incorporated into the CFD
simulation by using an iterative approach to achieve the best correspon-
dence between the simulated wake field and the desired wake field.

• Section A.3 presents the method used to simulate the CP propeller in
a non-uniform wake field using URANS CFD. Furthermore, the sec-
tion also presents the simulation results when it has achieved periodic
convergence. The results are presented with their uncertainty bounds
determined using the method described in Appendix C.

• Section A.4 presents the method used to simulate the individual pitch-
ing of the CVP propeller blades in the URANS CFD simulation and
the results of the simulations. The results presented are for the two
pitch trajectories for the CVP propeller, determined in Section 2.2, after
a periodic convergence has been achieved and with their uncertainty
bounds.

• Section A.5 compares and discusses the simulation results for the CP
and CVP propeller with respect to their efficiency and the dynamics of
the forces and torques acting on the propeller and its blades.

A.1 Uncertainty and Compensation of Measured
Wake Field

In this section the uncertainties arising from the use of the wake field mea-
sured on a scaled ship hull model to determine the performance of the full
scale propeller, are discussed. Different methods to compensate for the un-
certainties are presented and one is selected and used for the case considered.
The better, the wake field for the full scale ship hull is predicted, the better,
the performance of the propeller can be determined. It is therefore necessary
to consider the uncertainties of the measured wake field relative to the wake
field of the full scale ship hull. Model scale tests are used instead of full scale
tests due to the high costs associated with full scale tests.

The main contributors to the uncertainties of the measured wake field
relative to the full scale wake field are; the disparity in the flow condition for
model scale and full scale flow around the ship hull and the intrusiveness of
the wake field measuring sensor on the wake field.

This disparity in the flow around the model scale and full scale ship hull
is due to inequalities in the non-dimensional flow quantities. The wake field
is commonly measured using a scaled model of the ship hull, typically in a
towing tank. The ship hull is towed through the towing tank such that the
Froude number is equal for the model scale ship hull and the full scale ship
hull. Having the same Froude number ensures the same wave pattern over
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the ship hull for the model scale ship hull and the full scale ship hull [20].
The Froude condition equality is described as:

Frm = Frs → Vm√
g lm

=
Vs√
g ls

(A.1)

Frm and Frs are the Froude numbers for the model scale and the full scale
ship hull, respectively. Vm and Vs are the ship speeds in model and full scale,
respectively. lm and ls are the lengths of the water lines in the model and
full scale, respectively. g is the gravitational acceleration constant. The scaled
model of the ship hull is generally made by scaling all the dimensions of the
ship hull with the factor λ according to lm = ls/λ. To satisfy the Froude
number equality, the velocity ratio becomes:

Vm

Vs
=

√
g lm√
g ls

=

√
ls
lm

=
1√
λ

(A.2)

Satisfying the Froude number equality makes the Reynolds number between
the model and full scale differ. If the model is to have the same Reynolds
number as the full scale ship hull, then the velocity ratio becomes (note it is
assumed that the viscosity, υ, of the fluid is the same in model and full scale):

Rem = Res → Vm lm
υ

=
Vs ls

υ
→ Vm

Vs
=

ls
lm

= λ (A.3)

It is seen that the velocity ratios cannot be satisfied for both the equal Froude
number and the equal Reynolds number condition in Eq. A.2 and Eq. A.3,
respectively. When measuring the wake field in model scale the Reynolds
number is not the same as it is in full scale. The Reynolds number influences
the viscous boundary layer over the ship hull. For the scaled ship hull model
the boundary layer becomes larger relative to the hull than the boundary
layer for the full scale ship hull would be. This means that the velocity dis-
tribution of the measured wake field on the scaled model is not the same, as
the velocity distribution of the wake field in full scale.

The other uncertainty source is due to the intrusiveness of the pitot tube
used to measure the velocities in the wake field. When measuring the fluid
velocities, pitot tubes are placed in the position where the propeller would
be placed. The measurement of the velocity distribution in the wake field
therefore does not account for the presence of the propeller operating behind
the ship hull. The acceleration of the water into the propeller and the inter-
action between the propeller and the ship hull is therefore not accounted for
in wake field measurements.

The measured wake field without the presence of the propeller is called
the nominal wake field [6,21]. The wake field which accounts for the acceler-
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ation of the water into the propeller is called the effective wake field [21] and
this is of interest for a propeller designer [6, 21] and also the one desired to
be implemented into the CFD simulation as a substitute for the ship hull.

The effective wake field is obtained from the nominal wake field through
the thrust identity method which uses the results from the self-propulsion
test and the open-water curves. The difference between the wake field for
the model scale and the full scale is due to the viscous boundary and can
be accounted for by wake scaling. Wake scaling is done on the measured
nominal wake field from which a nominal wake field for the full scale ship
hull is obtained.

The International Towing Tank Conference (ITTC) has, over the recent
couple of conferences, had a special committee on wake fields [4, 6] and a
special committee in hydrodynamics including wake fields [8]. The focus
of these committees has been to review and make guidelines for measuring,
scaling and predicting the wake field in both model and full scale.

In [6] three scaling methods are reviewed to determine the full scale wake
field. One method uses a single scaling factor on all the measuring points
for the nominal wake field to obtain the effective wake field. This scaling
factor is typically found by using the thrust identity method. This method
does not account for the smaller wake peak in full scale due to the smaller
boundary layer in full scale. Another method is to make a contraction of
the wake peak using some boundary layer considerations. Several of these
contraction methods exist but [6] recommends the use Sasajima-Tanaka after
having compared a number of these different methods. It should be noted
that the accuracy of the Sasajima-Tanaka method depends on the type of
ship hull considered. To use the Sasajima-Tanaka method it is necessary to
determine the potential wake field which is found by towing the ship hull
astern. Since these tests have not been made for the case considered the
Sasajima-Tanaka method is not considered for further use. Another method
is to determine the nominal wake field in full scale through CFD simulations.
To validate the CFD simulation, the measured nominal wake field should be
compared by a CFD simulation of the nominal wake field in model scale. If
the CFD simulation of the wake field in model scale corresponds with the
measured wake field, then the CFD simulation can be used to determine
the wake field in full scale. For the case considered the geometry of the
ship hull is not available. CFD simulations of the ship hull, to determine the
wake field, cannot therefore be used and are therefore not considered further.
That leaves only the thrust identity method to scale the nominal wake field
to the effective wake field. The thrust identity method does not include a
contraction of the wake peak when determining the effective wake field for
full scale.

For the case considered the wake field is measured using the measuring
grid shown in Figure A.1a which assumes that the wake field is symmetric.
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The measured velocity ratio distribution is shown in Figure A.1b which gives
the velocity distribution in Figure A.1c. The wake fields in Figure A.1 are
viewed from behind the ship hull.
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Figure A.1: (a) Wake field measuring grid. (b) Measured nominal wake field as velocity ratio
(va/Vs). (c) Measured nominal wake field at the ship speed Vs = 18.5 [knots] ≈ 9.52 [m/s].

The nominal wake coefficient, wnom, is determined as a non-dimensional
coefficient for the average fluid velocity through the propeller and is calcu-
lated as:

wnom = 1− 2

π
(

r2
p − r2

h

) ∫ rp

rh

∫ π

0
va(θb, r)dθb r dr

︸ ︷︷ ︸
Va

1
Vs

= 1− Va

Vs
(A.4)

rp and rh are the propeller and hub radius respectively. va is the local mea-
sured axial velocity in the wake field which varies with the circumferential
and the radial position. θb is the angular position in the wake field with re-
spect to the 6 o’clock position and increasing in the clockwise direction when
viewing the wake field from behind. Va is the average advance velocity of
the water into the propeller. Vs is the ship speed. To evaluate the integrals in
Eq. A.4, the lower limit for the radius is the smallest radius used in the mea-
suring grid and the velocity value at the propeller radius is found through
linear interpolation. The resulting nominal wake coefficient is wnom = 0.278.

Using the thrust identity as described in [46] and the results from the
open-water curve of the stock propeller and the self-propulsion test with the
stock propeller from [68], the effective wake coefficient, we f f , is determined
to be ≈ 0.266 at a ship speed of 16.55 [knots] and ≈ 0.264 at a ship speed
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of 18.5 [knots]. The effective wake field is obtained by scaling the nominal
wake field by, λw, the ratio between the effective wake coefficient we f f and
the nominal wake coefficient wnom as:

Va,e f f (θb, r) =
we f f

wnom︸ ︷︷ ︸
λw

Va,nom (θb, r) (A.5)

λw ≈ 0.9554 at Vs = 16.55 [knots] and ≈ 0.9584 at Vs = 18.5 [knots]. Apply-
ing the scaling to the nominal wake field in Figure A.2a yields the effective
wake fields in Figure A.2b and Figure A.2c. This scaling is in correspondence
with the scaling made in [68]. The transverse velocities are the same for the
nominal and effective wake field.
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Figure A.2: (a) Measured nominal wake field at the ship speed Vs = 18.5 [knots] ≈ 9.52 [m/s].
(b) Effective wake field at the ship speed Vs = 18.5 [knots] ≈ 9.52 [m/s]. (c) Effective wake field
at the ship speed Vs = 16.55 [knots] Vs ≈ 8.51 [m/s].
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A.2 Implementation of Wake Field in CFD Simu-
lation

The effective wake field is only defined for a small area covering the propeller.
In the CFD simulations of the CP and CVP propellers a region significantly
larger than the one defined by the effective wake field is used. This is to
ensure that the boundary conditions do not affect the simulation results. It is
therefore necessary to extrapolate the effective wake field to cover the entire
region of the CFD simulation. Furthermore, the transverse velocities can-
not be imposed on the boundaries of the CFD simulation and are therefore
implemented using momentum sources. This section describes how the ef-
fective wake field is implemented into the CFD simulation of the CP and CVP
propellers and the required extrapolation of the effective wake field.

To simulate a propeller operating in a non-uniform wake field the whole
propeller has to be included in the simulation. The domain therefore becomes
a cylinder with the propeller in the center, as shown in Figure A.3.

Figure A.3: The domain used in the CFD simulation of the propeller in a non-uniform wake
field.

Including the ship’s non-uniform wake field into a CFD simulation has
previously been made by applying the measured axial velocity to the inlet of
the simulation [53, 57, 79, 94]. This approach does not include the transverse
velocity components.
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A method to account for the transverse velocity in the CFD simulation is
to apply momentum sources between the inlet and the propeller to accelerate
the water in order to obtain the desired velocity distribution at the propeller
plane. This has been used in [83] for an unstructured mesh and in [70, 82]
for structured meshes. The same principle of using momentum sources to
achieve the transverse velocities is applied to these simulations.

The measured wake field only covers a small part of the domain used
in the CFD simulation. It is therefore necessary to extrapolate the wake field
velocities to cover the entire domain. The extrapolation of the wake field con-
sists of two parts. One part is to extrapolate the velocities from the outermost
radial wake field measurement to the radius of the domain. The second part
is to extrapolate the velocities from the innermost radial wake field measure-
ment to the shaft radius.

The radial outward extrapolation of the axial velocity is limited to the
ship speed. The extrapolation from the outermost radial measurement to the
radial boundary is made for each angular position using a linear function.
The slope of the linear function is the same as the slope of the outermost
radial measurements. The extrapolation is made for each angular position
starting from the 12 o’clock position and made in the anticlockwise direction
towards the 6 o’clock position. The slope of the linear function used for the
extrapolation can only increase from the 12 o’clock position towards the 6
o’clock position.

The extrapolation from the innermost radial section of the measured wake
field, towards the shaft is linear. The linear extrapolation is made by assum-
ing the velocity to be zero at the shaft due to the non-slip condition. The ex-
trapolation of the effective wake field is shown in Figure A.4 at a ship speed
of 16.55 [knots] ≈ 8.51 [m/s] for the angular positions used when measuring
the nominal wake field.
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Figure A.4: Extrapolation of the axial velocity of the wake field.
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The transverse velocities will be zero far away from the ship hull. The
extrapolation of the transverse velocities is made with an exponentially de-
caying function. The decay function is made such that it has decayed ≈96%
at the radius equal to two times the propeller diameter. The extrapolated
wake field is shown in Figure A.5a and Figure A.5b.

(a) (b)

Figure A.5: (a) Extrapolated effective wake field for Vs = 16.55 [knots]. (b) Close-up of the
extrapolated effective wake field for Vs = 16.55 [knots].

The dashed lines in Figure A.5a and Figure A.5b are the outline of the
propeller radius. To obtain the whole wake field, the wake field in Figure
A.5a is mirrored about the vertical plane. The axial velocity component of
this wake field is applied at the inlet of the CFD simulation. To obtain the
transverse velocities at the propeller, momentum sources are defined in a
region between the inlet and the propeller. To determine the momentum
source strength for the unstructured mesh, an iterative approach is used, as in
[83]. The CFD software package used uses the Cartesian coordinate system.
The velocities therefore have to be defined in the Cartesian coordinate system
instead of the cylindrical coordinate system used until now. The Cartesian
coordinate system is shown in Figure A.6a and the cylindrical coordinate
system is shown in Figure A.6b.
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(a) (b)

Figure A.6: (a) Effective wake field with the Cartesian coordinate system. (b) Effective wake
field with the cylindrical coordinate system.

The transverse velocities are reformulated as velocities in the Cartesian
coordinate system as functions of the y- and z-coordinates as:

Vy = −Vr(θb, r) sin θb −Vt(θb, r) cos θb

Vz = −Vr(θb, r) cos θb + Vt(θb, r) sin θb

y = −r sin θb

z = −r cos θb (A.6)

The momentum sources (S) are found through a linear relationship with the
velocities Vy and Vz as:

Sx(y, z) = 0

Sy(y, z) = ms f Vy(y, z)

Sz(y, z) = ms f Vz(y, z) (A.7)

ms f is the momentum strength factor which is a constant to be determined.
The momentum sources are applied to a volume upstream of the propeller
as shown in Figure A.7. Figure A.7 shows the momentum source strength in
the z-direction with ms f = 550 [kg s/m3].
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Figure A.7: The momentum source Sz applied to a volume of the CFD simulation with a ms f =
550.

To determine the momentum strength factor (ms f ), a series of steady CFD
simulations are made without the propeller blades included in the simula-
tion. The domain is therefore a cylinder containing the shaft and the hub
only. A series of CFD simulations were made for various lengths between the
propeller plane and the inlet and for various sizes of the momentum strength
factors. For each of these simulations a least-squares cumulative wake veloc-
ity error was determined as in Eq. A.8. The least-squares cumulative wake
velocity error is the square of the sum of the three normalized velocity error
components in the wake field. The grid points used to evaluate the error are
the same as the ones used to measure the wake field shown in Figure A.1a
on page 157.

ew =

√√√√√ ∑
i=x,y,z

( 1
N

N

∑
n=1

∣∣∣∣vi(n)− vi,CFD(n)
vi(n)

∣∣∣∣
)2
 (A.8)

ew is the least-squares cumulative wake velocity error. i is the subscript index
for the velocity components in the x-, y- and z-directions. n is the measure-
ment index where N is the total number of measurement points. vi is the
measured velocity component for the effective wake field. vi,CFD is the veloc-
ity component from the CFD simulation. The least-squares cumulative wake
velocity error for the CFD simulations is shown in Figure A.8. The CFD sim-
ulations were made using the domain size defined in Section A.3 and the
finest grid settings.
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Figure A.8: The least-squares cumulative wake velocity error for varies momentum strength
factors and distances between the inlet and the propeller plane L f .

The choice of wake field and the resulting momentum strength factor and
length between the inlet and the propeller plane are made partly based on
Figure A.8. Many of the simulated wake fields are close to the minimum er-
ror. The five simulated wake fields with the lowest error are shown in Figure
A.9 together with the measured wake field. The five simulated wake fields
in Figure A.9 are compared and an engineering judgement is made with re-
spect to which wake field is the most appropriate one to use. The transverse
velocities for the two simulated wake fields with the smallest error (Figure
A.9b and Figure A.9c) do not match the measured transverse velocities in
Figure A.9a well. The simulated wake field with the third smallest error is
used instead because the transverse velocities match the measured velocities
better. This results in a momentum strength factor of 550 and the distance
between the inlet and the propeller plane is L f = 4 Dp = 21.6 [m]. General
for all the simulated wake fields are that they do not obtain the same low
velocity in the wake peak as the measured wake field. This is due to the
viscosity of the fluid which makes it difficult to have large velocity gradients
in the fluid without the fluid interacting with a wall, such as the ship hull.
The velocity error in the simulated wake field, with respect to the measured
wake field, is shown in Figure A.10 for all three velocity components.
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Figure A.9: (a) Measured effective wake field. (b-f) Simulated wake fields. (b)
Smallest error. (c) Second smallest error. (d) Third smallest error. (e) Fourth smallest
error. (f) Fifth smallest error.
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A.3 CFD Simulation of CP Propeller

This section describes the setup and results of the URANS CFD simulation of
the CP propeller in a non-uniform wake field. The non-uniform wake field
was implemented in the CFD simulation in the previous section.

The commercial CFD package STAR-CCM+ 12.02.010 was used for the
mesh generating and solving the fluid problem. The physics solver used for
the simulations is the unsteady, single phase, incompressible flow solver with
gravity included. The turbulence is modelled using the SST kω turbulence
model without a transition model. The flow is solved using the segregated
flow solver by second-order discretization in both space and time.

The spatial discretization of the domain is made using STAR-CCM+’s
unstructured polyhedral mesher generator with prism layer cells near the
walls to refine the mesh in the boundary layer. The prism layer settings are
such that the y+-value is ≈ 100 for the first prism layer. The y+-value of 100
is chosen such that the first cell is in the log-law region and thereby avoiding
it being in the buffer layer region. This also means that the viscous sub-
layer is not resolved which is an active choice since the viscous sub-layer is
relatively thin compared to the overall geometry due to the high Reynolds
number. Resolving the viscous sublayer would entail a large computational
cost. Because the viscous sublayer is not resolved, STAR-CCM+’s all y+ wall
function is used.

The domain for the URANS CFD simulations of the CP propeller in a
non-uniform wake field is shown in Figure A.3. The simulation consists of
two regions, a large outer region defining the boundaries of the simulation
and a cylindrical region enclosing the propeller, shown as the yellow region
in Figure A.3. The rotation of the propeller is made using a sliding mesh
between the stationary region and the rotating propeller region. The length
from the propeller plane to the inlet is determined in Appendix A.2 to be
L f = 4Dp = 21.6 [m]. The radius of the domain LR and the distance from
the propeller plane to the outlet Lb are determined in Appendix G.2. These
domain parameters are LR = 10.5Dp = 56.7 [m] and Lb = 12.7Dp = 68.6 [m].

The URANS CFD simulation is discretized in both time and space. Both
of these discretizations contribute to the uncertainty of the simulation. To
determine the discretization uncertainty of the simulation a number of differ-
ent simulations are made with different spatial and temporal discretizations.
From these simulations the discretization uncertainty is determined for the
simulations using the method described in Section C.3. The simulations are
made with five different spatial discretizations and four different temporal
discretizations. The number of cells and the time step sizes used for each
simulation are given in Table A.1. A total of eight simulations with different
discretizations are made to determine the uncertainty.
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Table A.1: Discretizations of the URANS CFD simulations made for the CP propeller in a non-
uniform wake field. [MC] is million cells. The X in the table marks the discretizations used
for the CFD simulations. The "-" in the table marks the discretizations not used in the CFD
simulations.

Temporal Spatial
discretization discretization

n = 0 n = 1 n = 2 n = 3 n = 4
dθb dt 13.6 [MC] 6.5 [MC] 3.7 [MC] 2.3 [MC] 1.5 [MC]
1◦ ≈ 1.4 [ms] X X X X X
2◦ ≈ 2.8 [ms] X - - - -
4◦ ≈ 5.5 [ms] X - - - -
8◦ ≈ 11 [ms] X - - - -

The meshes for the spatial discretization of the domain are defined rela-
tive to a base size. This base size varies for each mesh with the factor

√
2

n

where n is equal to 0, 1, 2, 3 and 4 for each of the five meshes. The notation
of n = x is therefore used to indicate the spatial discretization henceforth.

The results that are used for each simulation are the last complete rev-
olution of the propeller when the simulation has obtained a periodic con-
verged solution. Periodic converged solution means that the solution does
not change significantly for each rotation of the propeller. To evaluate if a
periodic converged solution has been obtained, the method described in Sec-
tion C.4 is used, which is based on [22]. The method is based on calculating
a fuzzy convergence level for each period of the simulation. This fuzzy con-
vergence level should be larger than 0.95 for at least two evaluation points.
Each evaluation considers the solution for two rotations of the propeller to
calculate the fuzzy convergence level. The fuzzy convergence level considers;
the mean of the signal, the phases and the amplitudes of the signals dis-
crete Fourier transform, the signals cross-correlation and the power spectral
density for each of the forces and torques acting on the propeller blades. A
total of 24 signals (six forces and torques for each of the four blades) for each
revolution is considered when determining the fuzzy convergence level.
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Figure A.11: The fuzzy convergence level of the URANS CFD simulation of the CP propeller in
a non-uniform wake field at different temporal and spatial discretizations.

The fuzzy convergence level for each of the simulations is shown in Figure
A.11. The legend in Figure A.11 shows which signal and convergence param-
eter that sets the lowest limit for the fuzzy convergence level for each evalu-
ation. The dashed line shows the limit for having obtained periodic conver-
gence. The notation in the legend before the dash indicates the force/torque
and blade number which sets the minimum limit for the fuzzy convergence
level. The blade number is determined from the blade’s initial position in the
wake field at the start of the simulation. The blade, which at the start of the
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simulation is in the wake peak i.e. 12 o’clock position, has the blade number
1. The following blade numbers are assigned following the clockwise direc-
tion and counting upwards. The blade initially towards the starboard side is
blade number 2, the blade initially in the bottom of the wake field is blade
number 3 and the blade towards the port side is blade number 4. The notation
after the dash, indicates the convergence parameter that sets the minimum
convergence levels. fA is the fuzzy convergence set of the amplitude of the
n’th harmonic of the discrete Fourier transform. fM is the fuzzy convergence
set of the mean value of the signal. fP is the fuzzy convergence set of the
power spectrum density. For all the simulations made these are the ones set-
ting the minimum level of the fuzzy convergence level. The limit is not seen
in the phases of the discrete Fourier transform or in the cross-correlation of
the signal.

From Figure A.11 it is seen that all the simulations obtain periodic con-
vergence. The periodic convergence of the simulations are obtained between
the seventh to the thirteenth rotations of the propeller. Some computational
resource could have been saved if the periodic convergence study was made
online during the simulations. The number of propeller revolutions, before
periodic convergence is obtained for each of the discretizations, is given in
Table A.2.

Table A.2: Number of propeller revolutions in the URANS CFD simulation before periodic
convergence is obtained.

dθb n = 0 n = 1 n = 2 n = 3 n = 4
1◦ 13 7 9 11 12
2◦ 7 - - - -
4◦ 7 - - - -
8◦ 10 - - - -

The results for the forces and torques acting on the third propeller blade
are shown in Figure A.12. Figure A.12 shows the results for the last rotation
of the propeller, for all the different discretizations of the simulation. The
forces and torques are defined in the propeller coordinate system, see Section
2.1 on page 33.
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Figure A.12: The forces and torques acting on the third propeller blade when periodic conver-
gence has been obtained for all the diferent used discretizations. The 12 o’clock position in the
wake field is equal to a blade position on 180◦.

From Figure A.12 it is seen that as the spatial discretization coarsens the
amplitude of the variation tends to be reduced. For the coarser spatial dis-
cretizations the solution tends to have small fluctuations. The coarsening
of the temporal discretization tends to reduce the amplitude of the variation
and introduces some phase-shift. All the simulations show the same expected
tendency that the load increases when the blade is in the wake peak at blade
position 180◦. In Figure A.12 the simulation with the temporal discretization
dθb = 8◦ does not have the same tendency as the other simulations. The si-
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mulation with the temporal discretization on dθb = 8◦ is therefore presumed
to not be in the asymptotic range and is therefore not included in the numer-
ical uncertainty study.

The numerical uncertainty due to the discretization of the simulation is
determined using the method described in Section C.3. The method is based
on making a least-squares fit of the dataset to the truncated power series ex-
pansion. The least-squares fit is made for each time instance of the simulation
with the largest time step. These time instances are used because the solu-
tions for the simulations with smaller time steps are also evaluated at these
instances. The simulation results and uncertainty of the simulation with the
finest discretization are shown in Figure A.13 for the three forces and torques
acting on the propeller blades and the propeller. The forces and torques in
Figure A.13 are plotted as a function of the third blade’s position in the wake
field. The propeller forces and torques are determined from the forces and
torques acting on the blades and the forces and torques acting on the hub
and shaft in the rotating region. The forces and torques acting on the pro-
peller are defined with respect to the ship coordinate system, see Section 2.1
on page 33.
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Figure A.13: The forces and torques acting on the CP propeller and its blades for the finest
discretization with the discretization uncertainty shown as the shaded areas.

It is seen in Figure A.13 that the uncertainties of the blade forces and
torques are generally the greatest in the wake peak. It is in the wake peak
that the simulation results differ the most between the different discretization
settings, as seen from Figure A.12. The average, minimum and maximum
forces and torques and their uncertainties are shown in Table A.3 for all the
propeller blades and the propeller as a whole.
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Table A.3: Average, minimum and maximum forces and torques and their absolute and relative
uncertainties for the propeller blades and the propeller for the URANS CFD simulation of the
CP propeller in a non-uniform wake field.

Blade 1 Blade 2 Blade 3 Blade 4 Propeller

Avg. 129.1
±2.3
±1.8%

129.5
±2.2
±1.7%

129.2
±2.3
±1.8%

129.3
±2.3
±1.8%

562.0
±7.3
±1.3%

Fx
[kN]

Min. 100.9
±2.0
±1.9%

101.2
±1.3
±1.3%

100.7
±1.9
±1.9%

101.0
±3.6
±3.5%

552.1
±10.6
±1.9%

Max. 195.9
±6.4
±3.3%

196.0
±10.0
±5.1%

196.0
±11.7
±6.0%

196.0
±6.5
±3.3%

573.6
±23.0
±4.0%

Avg. −98.4
±1.7
±1.7%

−98.5
±1.8
±1.8%

−98.4
±1.6
±1.7%

−98.5
±1.6
±1.7%

−394.5
±4.0
±1.0%

Mx
[kNm]

Min. −133.0
±2.4
±1.8%

−133.0
±7.4
±5.6%

−133.0
±2.7
±2.0%

−133.1
±5.5
±4.1%

−400.1
±4.3
±1.1%

Max. −79.5
±2.3
±3.0%

−79.5
±1.9
±2.4%

−79.4
±1.8
±2.3%

−79.6
±1.2
±1.5%

−390.1
±8.5
±2.2%

Avg. 53.3
±1.0
±1.8%

53.4
±1.0
±1.9%

53.3
±0.9
±1.7%

53.4
±0.9
±1.7%

25.6
±2.2
±8.7%

Fy
[kN]

Min. 43.2
±2.5
±5.7%

43.3
±1.0
±2.4%

43.3
±0.9
±2.1%

43.4
±0.8
±1.8%

19.2
±5.2
±27.1%

Max. 68.5
±1.2
±1.8%

68.5
±2.3
±3.3%

68.5
±3.3
±4.8%

68.5
±3.6
±5.3%

32.3
±9.0
±28.0%

Avg. 233.5
±3.8
±1.6%

233.9
±3.5
±1.5%

233.6
±3.4
±1.4%

233.7
±3.8
±1.6%

13.8
±9.2
±66.5%

My
[kNm]

Min. 186.0
±3.9
±2.1%

186.2
±2.5
±1.3%

185.7
±4.1
±2.2%

186.0
±3.1
±1.7%

−2.9
±11.3
±391.2%

Max. 344.9
±11.6
±3.4%

345.3
±9.0
±2.6%

345.0
±9.1
±2.6%

345.2
±8.0
±2.3%

31.1
±32.2
±103.5%

Avg. −6.5
±0.9
±13.2%

−6.5
±0.8
±11.6%

−6.5
±0.8
±12.8%

−6.5
±0.8
±12.9%

97.1
±1.8
±1.8%

Fz
[kN]

Min. −18.8
±0.6
±3.3%

−18.9
±0.8
±4.5%

−18.9
±0.7
±3.7%

−18.7
±1.2
±6.6%

90.3
±3.2
±3.5%

Max. 15.2
±2.5
±16.7%

15.3
±2.6
±17.3%

15.2
±2.3
±15.5%

15.1
±2.2
±14.8%

103.4
±3.5
±3.3%

Avg. 10.7
±3.4
±31.4%

10.8
±3.2
±29.9%

10.8
±3.1
±29.2%

10.8
±3.1
±28.9%

33.6
±3.6
±10.7%

Mz
[kNm]

Min. −7.2
±3.0
±41.8%

−7.2
±2.8
±39.3%

−7.3
±2.7
±36.9%

−7.1
±2.7
±38.0%

23.2
±6.4
±27.4%

Max. 68.7
±10.5
±15.3%

68.6
±10.9
±15.8%

68.8
±10.0
±14.5%

68.9
±10.0
±14.6%

42.9
±6.8
±15.7%

From Table A.3 it is seen that there are small variations in the results
between the blades. These variations are relatively small and are within the
determined uncertainty bounds of each other. The variations in the results
between the blades are therefore acceptable.

The propeller efficiency for the simulation is determined as:

ηp =
Va Fx,p

ωp Mx,p
= 0.6464

±0.0150
±2.3134%

(A.9)
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Fx and Mx are the average propeller thrust and torque, respectively. ωp is
the rotational speed of the propeller. Va is the average velocity through the
propeller disc which is determined from the wake field simulations in Section
A.2.

A.4 CFD Simulation of CVP Propeller

This section describes how the URANS CFD simulation of the CP propeller is
changed to simulate the CVP propeller instead. The simulations of the CVP
propeller are made using the pitch trajectories determined in Section 2.2 on
page 36.

The setup of the URANS CFD simulation of the CVP propeller in a non-
uniform wake field is the same as for the CP propeller in a non-uniform
wake field, with one exception. This exception is that the grid in the rota-
tional region is updated for each time step, to simulate the pitching motion
of the blades. In STAR-CCM+ 12.02.010 there are four methods which can be
utilized to simulate the motion of the propeller blades, which are:

• Sliding mesh

– The sliding mesh is the principle used to simulate the rotation of
the propeller. Using the sliding mesh to simulate the individual
pitching motion of the propeller blades requires that an axisym-
metric domain around the blades spindle axis can be made for
each individual blade. These domains must not overlap each other.
For the case considered it is not possible to define an axisymmetric
domain for each blade that does not overlap with another domain.
This is due to the large skew and area of each blade.

• Remeshing

– The remeshing strategy is to change the underlying geometry, used
to make the mesh for the simulation, between each time step and
then make a new mesh. Remeshing is computationally expensive
and another solution is therefore desired. The remeshing strategy
has also shown to be unstable with respect to the solution of the
pressure.

• Overset meshing

– In the overset mesh strategy, a domain is made for each part in the
simulation and the remaining stationary domain. Each domain is
meshed independently and independent rigid motion can be made
for each of the domains. For each time step a hole is cut out in the
stationary domain where the individual domains fit. The domains
are thereafter assembled into one mesh which can be used for the
simulations of the CVP propeller.
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• Morphing meshing

– The morphing mesh strategy is made by displacing the cell vertices
at the blade surface. The remaining cell vertices in the domain of
the mesh are then displaced to accommodate the displacement of
the cell vertices at the blade surface. The CVP propeller can be
simulated with the morphing mesh by using the setup in Section
A.3 and define the displacement of the cell vertices of the blades in
the propeller region for each time instance. The remaining volume
mesh of the propeller region will then deform to accompany this
displacement of the blades.

Of the four methods described above to simulate the motion of the CVP
propeller, only the overset and morphing meshing strategies are considered
for use. Both the overset and morphing meshing strategy have been imple-
mented in STAR-CCM 12.02.010. The morphing meshing strategy has been
the most successful implementation for simulating the CVP propeller. The
experience when using the overset mesh strategy has been associated with
difficulties in obtaining convergence at the surfaces where the blades have
contact with the hub. The URANS CFD simulation of the CVP propeller
is therefore made using the morphing meshing strategy to model the indi-
vidual pitching motion of the propeller blades. A disadvantage by using the
morphing meshing instead of the overset meshing is that the morphing of the
mesh degrades the quality of the mesh. If the quality of the mesh degrades
too much it can influence the results and in the worst case it can result in the
simulation diverging or terminating abruptly. The amount of degradation of
the mesh quality is closely related to the amount of deformation of the mesh
relative to the mesh size. The quality of a fine mesh will degrade faster than a
coarse mesh given the same deformation. For a specific pitch trajectory there
is a limit on how fine the mesh can be without the mesh quality degrading
too much during the simulation.

When using the morphing mesh strategy for a region in the CFD simu-
lation it is necessary to define all the surface meshes’ morphing properties.
There are four morphing properties that can be set for the surfaces of the
region and they are:

• Fixed

– The cell vertices are fixed and can therefore not be displaced.

• Floating

– The cell vertices can freely move in order to accompany the motion
of the surfaces that move.

• Displacement
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– The cell vertices can be displaced according to some predeter-
mined motion or be displaced according to a fluid-structure in-
teraction.

• Constraint

– The cell vertices can be displaced as with the displacement surface
property. The constraint property allows the user to make con-
strains on the displacement of the cell vertices, thereby ensuring
the cell vertices stay within a desired space.

For the simulation of the CVP propeller the two surface properties, floating
and displacement are used. These surface properties are only used for the
rotating region which encloses the propeller. The sliding mesh interface is
therefore still used to simulate the rotation of the propeller. The morphing
properties of the surfaces of the propeller are shown in Figure A.14.

Figure A.14: Morphing surface properties for the propeller.

In Figure A.14 two different surface displacements are defined: the dis-
placement for the blades and the displacement for the shaft and hub. The
displacement for the blade makes the blade rotate about the shaft center and
about the blade’s spindle axis according to the desired pitch trajectory. The
propeller displacement makes the surface rotate around the shaft center only.
The outer surface of the rotating region is not shown in Figure A.14 but its
morphing surface property is also the displacement for the propeller. The
blade foot surfaces are set as the floating surface property in order to ac-
company the relative motion between the blade and the hub. An example of
how the mesh morphs for the blade foot surface is shown in Figure A.15 for
different positions of the blade in the wake field.
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The floating surface property for the blade foot is chosen to not over-
constrain the morphing of the mesh for larger deformations. If the morphing
property of the blade foot was set to either the blade or propeller displace-
ment, then the simulation would quickly terminate, due to the cells collaps-
ing in on themselves.

(a) θb = 90◦ and n = 0 (b) θb = 135◦ and n = 0

(c) θb = 180◦ and n = 0 (d) θb = 225◦ and n = 0

Figure A.15: Example on the deformation of the surface mesh of the blade foot at the leading
edge of the blade. The example is for the CVP simulation using the variable pitch trajectory
in [66] and the finest mesh (n = 0). The example is for blade 1 in the simulation which is the
blade that is initialized in the wake peak i.e. 12 o’clock position. The initial mesh is therefore
made with the blade in its low pitch position in the wake field. The deformation of the mesh is
therefore the largest outside the wake peak.

The URANS CFD simulation of the CVP propeller is made using the co-
sine and variable pitch trajectory determined in Section 2.2 on page 36. These
pitch trajectories are shown in Figure A.16.
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Figure A.16: Pitch displacement trajectories for the CVP propeller determined in Section 2.2.

The simulations are made for different spatial and temporal discretiza-
tions. The spatial and temporal discretization used were the same as those
used for the CP propeller simulations (see Table A.1 on page 167), except for
the coarsest spatial and temporal discretizations. These discretizations are ex-
cluded for the CVP simulations to save computational resources. The coarsest
temporal discretization is excluded because it was not included in the uncer-
tainty study for the CP propeller simulations. The simulations are initially
set to make 14 propeller rotations, since this is the largest number of rotations
that the CP propeller simulations require to obtain periodic convergence. If
the CVP propeller simulations have not obtained periodic convergence af-
ter 14 propeller rotations, the simulation is continued to make additional
propeller rotations until periodic convergence is achieved. Some of the sim-
ulations are stopped early because periodic convergence has been achieved.
The periodic convergence is determined using the same procedure as used
for the CP propeller simulations given in Appendix C.4. The minimum fuzzy
convergence level for each propeller revolution is shown in Figure A.17 and
Figure A.18 for the cosine and variable pitch trajectories, respectively.
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Figure A.17: The fuzzy convergence level of URANS simulation of the CVP propeller in a non-
uniform wake field with the cosine pitch trajectory.
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Figure A.18: The fuzzy convergence level of URANS simulation of the CVP propeller in a non-
uniform wake field with the variable pitch trajectory.

From Figure A.18, it is seen that the minimum convergence level crosses
the lower limit after approximately six rotations of the propeller for most of
the simulations. From Figure A.17 it is seen that all the simulations of the
CVP propeller obtain periodic convergence.

With all the simulations having obtained period convergence, the results
can be used to determine the discretization uncertainty. The forces and
torques acting on the CVP propeller and its blades are shown in Figure A.19
and Figure A.20 for the cosine and the variable pitch trajectory, respectively.
The forces and torques in Figure A.19 and Figure A.20 are for the simulation
with the finest discretization (n = 0 and dθb = 1◦) and their corresponding
uncertainties. The uncertainties are determined using the method described
in Appendix C.3. The simulation results are summarized for the average,
minimum and maximum forces and torques and their uncertainties in Table
A.4 and Table A.5 for the cosine and variable pitch trajectory, respectively.
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Figure A.19: The forces and torques acting on the CVP propeller and its blades with the cosine
pitch trajectory for the finest discretization with the discretization uncertainty shown as the
shaded areas.
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Table A.4: Average, minimum and maximum forces and torques and their absolute and rela-
tive uncertainties for the propeller and its blades for the URANS CFD simulation of the CVP
propeller with the cosine pitch trajectory in a non-uniform wake field.

Blade 1 Blade 2 Blade 3 Blade 4 Propeller

Avg. 130.6
±3.2
±2.5%

130.4
±3.5
±2.7%

130.7
±3.7
±2.8%

131.1
±2.9
±2.2%

567.9
±8.2
±1.4%

Fx
[kN]

Min. 103.3
±2.9
±2.9%

102.9
±1.6
±1.5%

103.5
±2.6
±2.6%

103.5
±3.0
±2.9%

555.8
±13.3
±2.4%

Max. 161.8
±8.2
±5.1%

161.0
±18.7
±11.6%

162.1
±24.4
±15.1%

161.7
±8.7
±5.4%

580.2
±20.3
±3.5%

Avg. −99.5
±2.1
±2.1%

−99.3
±2.0
±2.1%

−99.5
±2.2
±2.2%

−99.8
±2.1
±2.1%

−398.9
±4.6
±1.2%

Mx
[kNm]

Min. −115.7
±3.2
±2.7%

−115.5
±2.0
±1.7%

−115.6
±4.2
±3.7%

−116.3
±3.1
±2.7%

−404.9
±5.4
±1.3%

Max. −77.3
±2.3
±2.9%

−76.9
±1.5
±2.0%

−77.4
±1.9
±2.4%

−77.3
±2.3
±3.0%

−393.1
±8.8
±2.2%

Avg. 53.9
±1.5
±2.9%

53.9
±1.4
±2.7%

54.0
±1.6
±2.9%

54.2
±1.5
±2.7%

−0.6
±4.6
±735.6%

Fy
[kN]

Min. 40.4
±1.4
±3.6%

40.1
±1.9
±4.8%

40.4
±1.4
±3.5%

40.3
±1.7
±4.3%

−9.2
±5.3
±57.4%

Max. 64.7
±2.5
±3.9%

65.0
±1.4
±2.2%

65.6
±5.0
±7.7%

65.2
±2.2
±3.4%

6.7
±10.4
±156.2%

Avg. 235.9
±4.0
±1.7%

235.4
±4.7
±2.0%

235.9
±5.2
±2.2%

236.6
±4.0
±1.7%

−73.4
±9.7
±13.3%

My
[kNm]

Min. 178.9
±3.1
±1.8%

178.4
±3.8
±2.1%

179.2
±3.2
±1.8%

179.5
±3.6
±2.0%

−93.5
±9.5
±10.2%

Max. 287.0
±9.6
±3.4%

285.9
±14.1
±4.9%

287.9
±26.5
±9.2%

286.8
±9.8
±3.4%

−53.8
±25.3
±47.1%

Avg. −6.3
±1.1
±17.6%

−6.4
±1.3
±20.5%

−6.3
±1.2
±19.7%

−6.2
±1.1
±17.4%

92.0
±3.6
±3.9%

Fz
[kN]

Min. −12.5
±1.4
±11.0%

−12.8
±2.6
±20.4%

−12.5
±1.9
±14.9%

−11.8
±1.1
±8.9%

85.5
±5.3
±6.2%

Max. 6.7
±2.3
±34.2%

6.8
±3.3
±49.4%

6.8
±2.9
±42.6%

7.1
±5.1
±71.3%

99.0
±5.3
±5.4%

Avg. 12.4
±3.3
±26.4%

12.1
±3.3
±27.1%

12.3
±3.6
±29.2%

12.6
±2.8
±22.2%

48.0
±6.1
±12.7%

Mz
[kNm]

Min. −19.2
±4.2
±21.6%

−19.4
±5.2
±26.6%

−19.4
±4.3
±22.2%

−19.1
±4.5
±23.8%

35.6
±8.4
±23.6%

Max. 54.7
±8.1
±14.7%

54.6
±16.7
±30.5%

54.5
±19.8
±36.3%

54.3
±8.6
±15.7%

59.4
±7.8
±13.2%
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Figure A.20: The forces and torques acting on the propeller and its blades with the variable pitch
trajectory for the finest discretization with the discretization uncertainty shown as the shaded
areas.
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Table A.5: Average, minimum and maximum forces and torques and their absolute and rela-
tive uncertainties for the propeller and its blades for the URANS CFD simulation of the CVP
propeller with the variable pitch trajectory in a non-uniform wake field.

Blade 1 Blade 2 Blade 3 Blade 4 Propeller

Avg. 131.9
±4.1
±3.1%

132.7
±4.2
±3.2%

132.7
±3.7
±2.8%

133.4
±3.9
±2.9%

575.8
±10.9
±1.9%

Fx
[kN]

Min. −47.4
±9.4
±19.9%

−47.7
±9.8
±20.6%

−46.5
±12.6
±27.1%

−45.1
±11.6
±25.8%

431.7
±10.5
±2.4%

Max. 202.3
±2.7
±1.3%

203.3
±4.9
±2.4%

201.9
±1.9
±1.0%

202.4
±7.0
±3.5%

716.7
±13.1
±1.8%

Avg. −100.8
±2.5
±2.5%

−101.3
±2.9
±2.9%

−101.3
±2.5
±2.5%

−101.8
±2.8
±2.8%

−406.0
±5.6
±1.4%

Mx
[kNm]

Min. −134.6
±1.7
±1.2%

−134.6
±5.0
±3.7%

−135.2
±3.7
±2.7%

−135.8
±5.7
±4.2%

−488.2
±10.0
±2.0%

Max. 20.6
±4.2
±20.5%

19.2
±7.2
±37.5%

18.3
±2.7
±14.9%

19.4
±5.8
±30.0%

−329.8
±3.4
±1.0%

Avg. 54.8
±1.8
±3.4%

55.1
±2.1
±3.8%

55.2
±1.8
±3.2%

55.4
±1.7
±3.1%

−12.7
±6.2
±48.4%

Fy
[kN]

Min. −18.8
±4.2
±22.5%

−18.2
±2.5
±13.7%

−17.0
±7.8
±45.5%

−18.5
±2.0
±10.9%

−80.5
±7.9
±9.9%

Max. 76.5
±2.5
±3.3%

76.5
±6.5
±8.5%

76.2
±3.1
±4.0%

77.1
±2.5
±3.2%

48.1
±7.6
±15.7%

Avg. 238.2
±5.7
±2.4%

239.2
±6.2
±2.6%

239.3
±5.4
±2.2%

240.3
±5.2
±2.2%

−127.8
±16.0
±12.5%

My
[kNm]

Min. −84.9
±14.6
±17.2%

−81.9
±14.2
±17.3%

−79.0
±17.7
±22.4%

−77.7
±13.7
±17.6%

−414.4
±14.5
±3.5%

Max. 389.1
±3.6
±0.9%

392.8
±7.3
±1.8%

389.0
±3.8
±1.0%

390.5
±8.9
±2.3%

110.6
±15.1
±13.6%

Avg. −6.2
±1.4
±22.2%

−6.0
±1.3
±21.4%

−5.9
±1.4
±23.4%

−5.9
±1.2
±20.5%

78.9
±4.9
±6.2%

Fz
[kN]

Min. −27.9
±2.7
±9.6%

−27.4
±1.0
±3.8%

−27.4
±2.5
±9.1%

−27.6
±3.2
±11.7%

36.2
±11.9
±32.9%

Max. 21.0
±0.6
±2.8%

21.3
±1.0
±4.5%

21.6
±1.2
±5.6%

21.4
±0.7
±3.1%

124.2
±7.1
±5.7%

Avg. 12.9
±3.8
±29.3%

13.2
±3.0
±22.8%

13.3
±3.2
±23.7%

13.7
±2.8
±20.5%

20.2
±6.7
±33.1%

Mz
[kNm]

Min. −111.1
±9.2
±8.3%

−110.3
±9.7
±8.8%

−112.4
±5.5
±4.9%

−109.4
±2.3
±2.1%

−144.1
±10.7
±7.4%

Max. 139.5
±14.2
±10.2%

141.0
±7.1
±5.1%

140.3
±8.9
±6.3%

141.3
±6.8
±4.8%

190.6
±10.7
±5.6%

The simulations for the CVP propeller have some variation in the results
between the blades, and these are acceptable since the variation is relatively
small and the variations are within the uncertainty bounds. The variations in
the results between the propeller blades are therefore considered as accept-
able.
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The efficiency of the CVP propeller is calculated using Eq. A.9. The
efficiency of the CVP propeller for the cosine pitch trajectory is given in Eq.
A.10 and for the variable pitch trajectory in Eq. A.11.

ηp = 0.6460
±0.0168
±2.5941%

(A.10)

ηp = 0.6436
±0.0211
±3.2829%

(A.11)

A.5 Comparision of CP and CVP Propeller Simu-
lations

Having simulated the CP and CVP propeller in a non-uniform wake field,
a comparison of the performances of the two propellers can be made. The
comparison is made for the whole propeller and the individual blades.

The propeller efficiency is calculated for each of the simulations by using
Eq. A.9 and is summarized in Table A.6.

Table A.6: The propeller efficiency for the CP and CVP propeller simulations.

CP Propeller
CVP Propeller

Cosine Pitch Trajectory
CVP Propeller

Variable Pitch Trajectory

ηp 0.6464
±0.0150
±2.3134%

0.6460
±0.0168
±2.5941%

0.6436
±0.0211
±3.2829%

From Table A.6 it is seen that there are only small differences in the pro-
peller efficiency between the CP and the CVP propeller, and these are well
within the uncertainty bounds. The results shown in Table A.6 do not coin-
cide with the results in [66] where the pitch trajectories are determined. The
likely cause for this is that the same blade design is used for all the simu-
lations. In [66] the blade design is changed for each of the pitch trajectories
to obtain the best trade-off between the cavitation performance and the effi-
ciency. This change in blade design results in the area ratio of the propeller
changing from 0.64 for the CP propeller to 0.57 for the CVP propeller with
the cosine pitch trajectory and 0.5 for the variable pitch trajectory. This re-
duction in the area ratio is obtained because a better cavitation performance
is obtained with the CVP propeller and the loading of the blade can therefore
be increased. With the decreased area ratio for the CVP propeller, the viscous
effects should be reduced and thereby increase the efficiency of the propeller.
The results for the comparison of the propeller efficiency between the CP and
CVP propeller correspond well with previous research such as in [84, 85].
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The other aspect with respect to the propeller performance, that is ob-
tained from the simulations, is the variation in the forces and torques acting
on the propeller, i.e. shaft vibrations, and are shown in Figure A.21 and the
average and the difference between the minimum and maximum are given in
Table A.7.

Table A.7: Comparison of the average propeller forces and torques for the CP and CVP propeller
simulations. ∆̂ is the maximum variation in the forces or torques during one revolution of the
propeller.

CP Propeller
CVP Propeller

Cosine Pitch Trajectory
CVP Propeller

Variable Pitch Trajectory

Fx
[kN]

Avg. 562.0
±7.3
±1.3%

567.9
±8.2
±1.4%

575.8
±10.9
±1.9%

∆̂ 21.5
±33.6
±156.1%

24.4
±33.5
±137.4%

285.0
±23.6
±8.3%

Mx
[kNm]

Avg. −394.5
±4.0
±1.0%

−398.9
±4.6
±1.2%

−406.0
±5.6
±1.4%

∆̂ 9.9
±12.9
±129.7%

11.8
±14.2
±119.9%

158.4
±13.4
±8.4%

Fy
[kN]

Avg. 25.6
±2.2
±8.7%

−0.6
±4.6
±735.6%

−12.7
±6.2
±48.4%

∆̂ 13.1
±14.2
±108.7%

15.9
±15.7
±99.0%

128.6
±15.5
±12.1%

My
[kNm]

Avg. 13.8
±9.2
±66.5%

−73.4
±9.7
±13.3%

−127.8
±16.0
±12.5%

∆̂ 34.0
±43.5
±127.9%

39.8
±34.8
±87.6%

525.0
±29.6
±5.6%

Fz
[kN]

Avg. 97.1
±1.8
±1.8%

92.0
±3.6
±3.9%

78.9
±4.9
±6.2%

∆̂ 13.1
±6.6
±50.4%

13.5
±10.6
±78.8%

88.0
±19.0
±21.6%

Mz
[kNm]

Avg. 33.6
±3.6
±10.7%

48.0
±6.1
±12.7%

20.2
±6.7
±33.1%

∆̂ 19.7
±13.1
±66.6%

23.8
±16.2
±68.1%

334.7
±21.3
±6.4%
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Figure A.21: Comparison of the forces and torques acting on the propeller during one revolution
for the CP and CVP simulations for the finest discretization. The uncertainty is shown as the
shaded areas.

From Table A.7 and Figure A.21 it is seen that the variation in the forces
and torques is the most severe for the CVP propeller with the variable pitch
trajectory. The variations in the forces and torques for the CP propeller and
CVP propeller with the cosine pitch trajectory are almost identical and the
differences in the variation are within the uncertainty bounds. The reason for
this is that the CVP propeller with the cosine pitch trajectory does not have
a fourth harmonic component. Only the zeroth, fourth, eighth, sixteenth etc.
harmonics of the blade forces and torques influence the forces and torques
acting on the whole propeller. This is because the other harmonics for the
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blades cancel each other and only the harmonics equal to the number of
blades on the propeller times an integer influences the propeller’s response.

If the CVP propeller is to reduce the vibration level of the propeller then
the pitch trajectory should include the n Z harmonics. The CVP propeller
with the variable pitch trajectory has a fourth-order harmonic component
since it is defined using a seventh-order harmonics Fourier series. This is
seen in the variation in the forces and torques for the CVP propeller with
the variable pitch trajectory. These variations are significantly larger than the
variation in the forces and torques for the CP propeller. This shows that the
fourth-order harmonic for the variable pitch trajectory is not the appropriate
choice, to minimise the shaft vibrations. It can therefore be concluded that
the variable pitch trajectory determined in [66] is not the optimum pitch
trajectory to minimise the vibration level of the propeller. That the variable
pitch trajectory is not the optimum pitch trajectory is also seen from the
forces and torques acting on the individual blades of the propeller, and these
are shown in Figure A.22 as a function of its position in the wake field. The
figure is the average response for the four blades. The average and maximum
difference for each of the forces and torques are given in Table A.8.
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Figure A.22: Comparison of the forces and torques acting on the propeller blade during one
revolution for the CP and CVP simulations for the finest discretization. The uncertainty is
shown as the shaded areas.
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Table A.8: Comparison of the average and maximum variation blade forces and torques for the
CP and CVP propeller simulations. ∆̂ is the maximum variation in the forces or torques during
one revolution of the propeller.

CP Propeller
CVP Propeller

Cosine Pitch Trajectory
CVP Propeller

Variable Pitch Trajectory

Fx
[kN]

Avg. 129.3
±2.3
±1.8%

130.7
±3.3
±2.5%

132.7
±4.0
±3.0%

∆̂ 95.2
±10.8
±11.4%

58.3
±17.5
±30.0%

249.1
±15.0
±6.0%

Mx
[kNm]

Avg. −98.4
±1.7
±− 1.7%

−99.5
±2.1
±− 2.1%

−101.3
±2.7
±− 2.7%

∆̂ 53.6
±6.3
±11.8%

38.6
±5.1
±13.3%

154.6
±9.0
±5.8%

Fy
[kN]

Avg. 53.4
±1.0
±1.8%

54.0
±1.5
±2.8%

55.1
±1.9
±3.4%

∆̂ 25.3
±3.9
±15.4%

24.8
±4.4
±17.9%

95.2
±7.7
±8.1%

My
[kNm]

Avg. 233.7
±3.6
±1.5%

236.0
±4.5
±1.9%

239.2
±5.6
±2.4%

∆̂ 159.4
±12.8
±8.0%

108.0
±18.4
±17.1%

473.6
±20.9
±4.4%

Fz
[kN]

Avg. −6.5
±0.8

±− 12.6%
−6.3

±1.2
±− 18.8%

−6.0
±1.3

±− 21.9%

∆̂ 34.1
±3.3
±9.7%

19.2
±5.1
±26.7%

49.0
±3.2
±6.6%

Mz
[kNm]

Avg. 10.8
±3.2
±29.8%

12.4
±3.2
±26.2%

13.3
±3.2
±24.0%

∆̂ 76.0
±13.1
±17.3%

73.8
±17.8
±24.1%

252.9
±15.9
±6.3%

From Figure A.22 and Table A.8 it is seen that the variations in the forces
and torques are generally smallest for the CVP propeller with the cosine
pitch trajectory. The variations in the forces and torques are largest for the
CVP propeller with the variable pitch trajectory. The forces and torques
along/around the x- and y-axis have a shape similar to the pitch accelera-
tion of the trajectory. This shows that the response of the CVP propeller with
the variable pitch trajectory strongly depends on the dynamics and a quasi-
steady analysis would be a poor method to use. The variable pitch trajectory
is determined using a quasi-steady analysis method in [66] and this explains
why the variable pitch trajectory is not an optimum pitch trajectory for the
CVP propeller. The response along/around the z-axis for the CVP propeller
with the variable pitch trajectory has a shape similar to the pitch rate of the
pitch trajectory. This means that the response along/around the z-axis also
strongly depends on the pitch dynamics. The same strong dependency on the
pitch dynamics cannot be seen from the response for the CVP propeller with
the cosine pitch trajectory. The change in the response for the CVP propeller
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with the cosine pitch trajectory compared to the CP propeller matches well
by adding a cosine signal to the response. The exception to this may be for
the torque about the z-axis. A quasi-steady analysis method may only be ap-
propriate to analyse the CVP propeller if the variations in the pitch trajectory
are limited.

191



Appendix A. Hydrodynamic Modelling of CVP Propeller Through URANS CFD
Simulations

192



Appendix B

Modelling of Coulomb
Friction in Blade Bearing

This appendix concerns the derivation of the Coulomb friction in the blade
bearing for the different load models presented in Section 2.8. The loads
models are shown again in Figure B.1 for convenience.

(a) (b)

(c) (d)
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(e) (f)

(g)

Figure B.1: The different load distributions assumed for the blade bearing.

The force and torque vectors Fxy and Mxy in Figure B.1 are the force and
torque due to the resulting reactive force Freac,xy,bb and torque Mreac,xy,bb. The
red shaded areas are the assumed shapes of the load distribution, q, for the
model. The models without the red shaded areas consider the loads acting
in points.

The models in Figure B.1 can be divided into two types, one where the
resulting reactive torque Mreac,xy,bb acts upon the axial surface (models A-D)
and the others where the resulting reactive torque Mreac,xy,bb acts upon the
radial surface (models E-G). For the models A-D, it is assumed that the sur-
faces can be viewed as a disc in the xy-plane of the blade bearing coordinate
system.

In the following two sections the Coulomb friction is derived for the mod-
els A-D in Section B.1 and for the models E-G in Section B.2. The derived
Coulomb frictional loads are Fc,x,bb, Fc,y,bb and Mc,z,bb and the other loads
Fc,z,bb, Mc,x,bb and Mc,y,bb are zero. The Coulomb friction models are derived
such that the friction is correctly aligned when the pitch rate is positive. The
derived Coulomb friction models are used in Section 2.8 to determine the
frictional loads.
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B.1 Axial Coulomb Friction Models

In the axial Coulomb friction models the reactive torques Mreac,x and Mreac,y
act upon the axial surfaces of the blade bearing. Four different models (mod-
els A-D) are proposed for modelling the Coulomb friction in the axial part
of the blade bearing. These models only consider the axial part of the bear-
ing but the Coulomb friction in the radial part of the bearing still has to be
included in the model. Before describing the models (models A-D), the mod-
elling of the Coulomb friction in the radial part of the bearing is considered.

B.1.1 Radial Coulomb Friction Models

Two options are considered for modelling the Coulomb friction in the radial
bearing for the models A-D. The two options are shown in Figure B.2a and
Figure B.2b. In Figure B.2a the reactive force Freac,xy,bb is considered to act
in a point. In Figure B.2b it is assumed that the reactive load in the blade
bearing is distributed over a part of the bearing according to Hertzian contact
mechanics. The assumption that the reactive load is distributed over a part
of the bearing is made to account for the elastic deformation of the materials
under loading and the clearance between the bodies.

(a) (b)

Figure B.2: (a) Radial bearing with point load. (b) Radial bearing with distributed load.

For both of the models in Figure B.2a and Figure B.2b the parameters
Freac,xy,bb and θFxy are determined as:

Freac,xy,bb =
√

F2
reac,x,bb + F2

reac,y,bb (B.1)

θFxy = atan2
(

Freac,y,bb , Freac,x,bb

)
(B.2)
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For the point load model, the friction is determined as: Fc,x,bb
Fc,y,bb
Mc,z,bb

 =

 −µc Freac,y,bb
µc Freac,x,bb

−µc Freac,xy,bb rbb

 (B.3)

The results for the Coulomb friction modelling are not shown here, since the
model has to be combined with one of the models for the Coulomb friction
in the axial blade bearing.

The load distribution in Figure B.2b is assumed to be a Hertzian contact
between the two cylindrical bodies. For Hertzian contact the load distribution
is elliptical as shown in Figure B.3.

Figure B.3: Radial bearing with Hertzian contact.

The elliptical load distribution, defined in Eq. B.4 [39] is rewritten to use
the angle, αh instead, as shown in Eq. B.5.

q(xh) = q0

√
1−

x2
h

a2
h

(B.4)

As, ah = r′bb sin αh and x = r′bb sin θh

q(θ) = q0

√√√√1−
(
r′bb sin θh

)2(
r′bb sin αh

)2 = q0

√√√√1− sin (θh)
2

sin (αh)
2 (B.5)

For Eq. B.5 there are two unknown parameters, q0 and αh. q0 is the peak
load of the elliptical load distribution. αh is half of the contact angle, the
load distribution spans over. These two parameters depend on the elastic
properties of the materials, the loading and the geometry. The parameters
are determined as [39]:
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q0 =

√
Freac,xy,bb

hbb

E∗

π r∗
(B.6)

2ah = 4

√
Freac,xy,bb

hbb

r∗

π E∗
(B.7)

αh = arcsin
(

ah
r′bb

)
= arcsin

 2
r′bb

√
Freac,xy,bb

hbb

r∗

π E∗

 (B.8)

Where,

E∗ =
1

1− υ2
1

E1
+

1− υ2
2

E2

, r∗ =
1

1
rbb

+
1
−r′bb

(B.9)

E∗ is the effective modulus of elasticity. E1 and E2 are the modulus of elas-
ticity of two bearing materials. υ1 and υ2 are the Poisson ratios of the two
bearing materials. r∗ is the effective radius of curvature. For the elliptical
loading of the bearing, the friction model is determined as:

 Fc,x,bb
Fc,y,bb
Mc,z,bb

 =


−µc Freac,y,bb
µc Freac,x,bb

−µc rbb hbb

∫ α

−α
q(θ) r′bb dθ

 (B.10)

The evaluation of the integration of the elliptical load distribution is made
numerically. The results for the friction modelling are not shown here, since
the model has to be combined with one of the models for the friction in the
axial blade bearing.

B.1.2 Model A - Point Loads

In the Coulomb friction model A, it is assumed that the reactive loads act in
points as shown in Figure B.4. This model uses the point load model for the
radial bearing since using the load distributed model would contradict the
assumption of the point load model.

197



Appendix B. Modelling of Coulomb Friction in Blade Bearing

Figure B.4: Axial bearing with loads acting in points.

The reactive torque Mreac,xy,bb and angle θMxy are determined as:

Mreac,xy,bb =
√

M2
reac,x,bb + M2

reac,y,bb (B.11)

θMxy = atan2
(

Mreac,y,bb , Mreac,x,bb

)
(B.12)

The torque Mreac,xy,bb is assumed to act as a force Fm in two points perpen-
dicular to the vector Mreac,xy,bb at a radius ra which is rbb ≤ ra ≤ Rbb. The
forces Fm1 and Fm2 are determined as:

Fm,1 = −
Mreac,xy,bb

2 ra
, Fm,2 =

Mreac,xy,bb

2 ra
(B.13)

The reactive force Freac,z,bb is assumed to act equally in each of these two
points with the forces Freac,z,bb/2. The Coulomb friction model therefore be-
comes:

Fc,x,bb = µc


−Freac,y,bb

−
∣∣∣Fm,1 +

Freac,z,bb
2

∣∣∣ cos
(
θMxy

)
+
∣∣∣Fm,2 +

Freac,z,bb
2

∣∣∣ cos
(
θMxy

)
 (B.14)

Fc,y,bb = µc


Freac,x,bb

−
∣∣∣Fm,1 +

Freac,z,bb
2

∣∣∣ sin
(
θMxy

)
+
∣∣∣Fm,2 +

Freac,z,bb
2

∣∣∣ sin
(
θMxy

)
 (B.15)

Mc,z,bb = −µc


Freac,xy,bb rbb

+
∣∣∣Fm,1 +

Fz
2

∣∣∣ ra

+
∣∣∣Fm,2 +

Fz
2

∣∣∣ ra

 (B.16)
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B.1.3 Model B - Radially Varying Load

In the Coulomb friction model B, it is assumed that the reactive loads are
distributed radially on a line perpendicular on the vector Mreac,xy,bb as shown
in Figure B.5.

Figure B.5: Axial bearing with radial varying load distribution.

The load distribution q(r) is assumed to be a linear function as:

q(r) = a r + b (B.17)

The load distribution has two unknown parameters that have to be deter-
mined. The load distribution can, in principle, be any function consisting of
two parameters but it has to satisfy the following two conditions:

Freac,z,bb =
∫ Rbb

rbb

q(r) dr +
∫ −rbb

−Rbb

q(r) dr (B.18)

Mreac,xy,bb =
∫ Rbb

rbb

q(r) r dr +
∫ −rbb

−Rbb

q(r) r dr (B.19)

From these conditions the unknown parameters in the load distribution are
determined as:

a =
3 Mreac,xy,bb

2
(

R3
bb − r3

bb
) , b =

Freac,z,bb

2 (Rbb − rbb)
(B.20)
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Using this load distribution the Coulomb friction model is determined as:

Fc,x,bb = µc


∫ Rbb

rbb

|q(r)| cos
(
θMxy

)
dr

−
∫ −rbb

−Rbb

|q(r)| cos
(
θMxy

)
dr

 (B.21)

Fc,y,bb = µc


∫ Rbb

rbb

|q(r)| sin
(
θMxy

)
dr

−
∫ −rbb

−Rbb

|q(r)| sin
(
θMxy

)
dr

 (B.22)

Mc,z,bb = −µc

(∫ Rbb

rbb

|q(r)| |r| dr +
∫ −rbb

−Rbb

|q(r)| |r| dr
)

(B.23)

The above model does not include the Coulomb friction contribution from
the radial part of the bearing. Both models for the radial bearing can be used
together with this model.

B.1.4 Model C - Circumferentially Varying Load

In the Coulomb friction model C, it is assumed that the reactive loads are
circumferentially distributed over the disc at the radius ra, as shown in Figure
B.6.

Figure B.6: Axial bearing with circumferentially varying load distribution.

The load distribution is assumed to be a sine function as:

q(θm) = a sin (θm) + b (B.24)

The load distribution has two unknown parameters that have to be deter-
mined. The load distribution can, in principle, be any function consisting of
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two parameters but it has to satisfy the following two conditions:

Freac,z,bb =
∫ 2 π

0
q(θm) dθm (B.25)

Mreac,xy,bb =
∫ 2 π

0
q(θm) ra sin (θm) dθm (B.26)

From these conditions the unknown parameters in the load distribution are
determined as:

a =
Mreac,xy,bb

π ra
, b =

Freac,z,bb

2 π
(B.27)

Using this load distribution the Coulomb friction model is determined as:

Fc,x,bb = µ
∫ 2 π

0
|q(θm)| sin

(
θMxy + θm

)
dθm (B.28)

Fc,y,bb = −µ
∫ 2 π

0
|q(θm)| cos

(
θMxy + θm

)
dθm (B.29)

Mc,z,bb = −µ
∫ 2 π

0
|q(θm)| ra dθm (B.30)

The above model does not include the Coulomb friction contribution from
the radial part of the bearing. Both models for the radial bearing can be used
together with this model.

B.1.5 Model D - Radially and Circumferentially Varying Load

In the Coulomb friction model D, it is assumed that the reactive loads are
distributed radially and circumferentially over the whole disc as shown in
Figure B.7.

Figure B.7: Axial bearing with radial and circumferentially varying load distribution.
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The load distribution q(r, θm) is assumed to be a combined linear and sine
function as:

q(r, θm) = a r sin (θm) + b (B.31)

The load distribution has two unknown parameters that have to be deter-
mined. The load distribution can, in principle, be any function consisting of
two parameters but it has to satisfy the following two conditions:

Freac,z,bb =
∫ 2 π

0

∫ Rbb

rbb

q(r, θm) dr dθm (B.32)

Mreac,xy,bb =
∫ 2 π

0

∫ Rbb

rbb

q(r, θm) r sin (θm) dr dθm (B.33)

From these conditions the unknown parameters in the load distribution are
determined as:

a =
3 Mreac,xy,bb

π
(

R3
bb − r3

bb
) , b =

Freac,z,bb

2 π (Rbb − rbb)
(B.34)

Using this load distribution the Coulomb friction model is determined as:

Fc,x,bb = µ
∫ 2 π

0

∫ Rbb

rbb

|q(r, θm)| sin
(
θMxy + θm

)
dr dθm (B.35)

Fc,y,bb = −µ
∫ 2 π

0

∫ Rbb

rbb

|q(r, θm)| cos
(
θMxy + θm

)
dr dθm (B.36)

Mc,z,bb = −µ
∫ 2 π

0

∫ Rbb

rbb

|q(r, θm)| r dr dθm (B.37)

The above model does not include the Coulomb friction contribution from
the radial part of the bearing. Both models for the radial bearing can be used
together with this model.

B.2 Radial Coulomb Friction Models

In the radial Coulomb friction models the reactive torques Mreac,x and Mreac,y
are assumed to act upon the radial surface of the blade bearing. Three differ-
ent models (models E-G) are proposed for modelling the Coulomb friction in
the radial part of the blade bearing. These models only consider the radial
part of the bearing but the Coulomb friction in the axial part of the bearing
still has to be included in the model. Before describing the models (models
E-G), the modelling of the Coulomb friction in the radial part of the bearing
is considered.
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B.2.1 Axial Coulomb Friction Models

Two options are considered for modelling the Coulomb friction in the axial
bearing. The two options are shown in Figure B.8a and Figure B.8b. In Figure
B.8a the load is uniformly distributed circumferentially at the radius ra. In
Figure B.8b the load is uniformly distributed over the whole disc.

(a) (b)

Figure B.8: (a) Axial bearing with circumferential load distribution. (b) Axial bearing with the
load distribution over the whole disc.

The load distributions for Figure B.8a and Figure B.8b are respectively:

q(θm) = a , q(r, θm) = a (B.38)

The two load distributions have to satisfy the following respective conditions:

Freac,z,bb =
∫ 2 π

0
q(θm) dθm (B.39)

Freac,z,bb =
∫ 2 π

0

∫ Rbb

rbb

q(r, θm) dr dθm (B.40)

The uniform load distribution amplitude, a, becomes:

a =
Freac,z,bb

2 π
, a =

Freac,z,bb

2 π (Rbb − rbb)
(B.41)

Due to the axis symmetry in the load distribution around the z-axis, there
are no Coulomb friction components along the x- and y-axis. There is only a
Coulomb friction contribution to the torque about the z-axis. This contribu-
tion is determined as:
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Mc,z,bb = −µc

∫ 2 π

0
|q(θm)| ra dθm

= −µc
∣∣Freac,z,bb

∣∣ ra (B.42)

Mc,z,bb = −µc

∫ 2 π

0

∫ Rbb

rbb

|q(r, θm)| r dr dθm

= −µc
∣∣Freac,z,bb

∣∣ Rbb + rbb
2

(B.43)

The two Coulomb friction models are equal if ra is taken as the average radius
of the axial bearing. The Coulomb friction torque for the circumferential
loading will be larger than the surface loaded model, if ra is assumed to
be larger than the average radius of the axial bearing, and smaller if ra is
assumed to be smaller than the average radius of the axial blade bearing.
The results for the friction modelling are not shown here, since the model
has to be combined with one of the models for the friction in the radial part
of the bearing.

B.2.2 Model E - Point Load

In the Coulomb friction model E, it is assumed that the reactive loads act in
points on the radial part of the blade bearing as shown in Figure B.4.

Figure B.9: Radial bearing with loads acting in points.

To derive the Coulomb friction it is assumed that the reactive torque
Mreac,xy,bb can be split into the two forces Fm1 and Fm2 as shown in Figure
B.9. Each of these forces has an amplitude of Mreac,xy,bb/hbb where hbb is
the height of the bearing. From Figure B.9, the Coulomb friction model is
determined as:
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Fc,x,bb = µc Freac,y,bb (B.44)

Fc,y,bb = −µc Freac,x,bb (B.45)

Mc,z,bb = −µc

(
Freac,xy,bb + 2

Mreac,xy

hbb

)
rbb (B.46)

B.2.3 Model F - Height Varying Load

In the Coulomb friction model F, it is assumed that the reactive loads vary
along the height of the radial bearing as shown in Figure B.10.

Figure B.10: Radial bearing with a height varying load distribution.

In Figure B.10 it is seen that the load distribution from the reactive force
and torque may not be aligned. It is therefore necessary to define two load
distributions, each with one unknown parameter. The two load distributions
are defined as:

qF(zbb) = b (B.47)

qM(zbb) = a zbb (B.48)

The two conditions used to determine the unknown parameters in the load
distributions are:

Freac,xy,bb =
∫ hbb

2

− hbb
2

qF(zbb) dzbb (B.49)

Mreac,xy,bb =
∫ hbb

2

− hbb
2

qM(zbb) zbb dzbb (B.50)
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Using the above conditions the parameters for the load distribution are de-
termined as:

a =
12 Mreac,xy,bb

h3
bb

, b =
Freac,xy,bb

hbb
(B.51)

The two load distributions are combined into a single load distribution (as
shown in Figure A.15d) as:

qFM(zbb) =
√
(qF,x + qM,x)

2 +
(
qF,y + qM,y

)2 (B.52)

θFM(zbb) = atan2
(
qF,y + qM,y , qF,x + qM,x

)
(B.53)

Where,

qF,x(zbb) = qF cos θFxy , qF,y(zbb) = qF sin θFxy (B.54)

qM,x(zbb) = qM sin θMxy , qM,y(zbb) = −qM cos θMxy (B.55)

Figure B.11: Radial bearing with a height varying load distribution.

The friction model is determined as:

Fc,x,bb = µc

∫ hbb
2

− hbb
2

qFM(zbb) sin (θFM(zbb)) dzbb (B.56)

Fc,y,bb = −µc

∫ hbb
2

− hbb
2

qFM(zbb) cos (θFM(zbb)) dzbb (B.57)

Mc,z,bb = −µc rbb

∫ hbb
2

− hbb
2

qFM(zbb) dzbb (B.58)
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B.2.4 Model G - Height and Circumferential Varying Load

In the Coulomb friction model H, it is assumed that the reactive loads are
distributed over the whole surface of the radial part of the blade bearing as
shown in Figure B.12.

Figure B.12: Radial bearing with height and circumferential varying load distribution.

The load distribution in Figure B.12 is an extension of model F by includ-
ing a circumferential load distribution based on Hertzian contact. The load
distribution is determined as:

q(θh, zbb) = q0(zbb)

√√√√1− sin (θh)
2

sin (αh(zbb))
2 (B.59)

Where,

q0(zbb) =

√
qFM(zbb) E∗

π r∗
(B.60)

αh(zbb) = arcsin

(
2

r′bb

√
qFM(zbb) r∗

π E∗

)
(B.61)

Using this load distribution the friction is determined as:

Fc,x,bb = µc

∫ hbb
2

− hbb
2

∫ αh

−αh

q(θh, zbb) sin (θFM(zbb) + θh) r′bb dθh dzbb (B.62)

Fc,y,bb = −µc

∫ hbb
2

− hbb
2

∫ αh

−αh

q(θh, zbb) cos (θFM(zbb) + θh) r′bb dθh dzbb (B.63)

Mc,z,bb = −µc rbb

∫ hbb
2

− hbb
2

∫ αh

−αh

q(θh, zbb) r′bb dθh dzbb (B.64)
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Appendix C

Uncertainty and Periodic
Convergence of CFD
Simulations

CFD simulations are used to compute the physical behaviour of fluids and
their interaction with solid bodies. In this project CFD simulations are used
to compute the flow around marine propellers and determine the forces and
torques the fluid exerts on the propeller under different flow conditions. In
CFD it is the Navier-Stokes momentum equations and the continuity equa-
tion that are solved. The Navier-Stokes equations are solved iteratively by
discretization of the equations. The discretization and the iterative solver
give an approximated solution to the Navier-Stokes equations and the conti-
nuity equation. Due to the solution being an approximation, there typically
is a simulation error (es) which is the difference between the simulated value
and the true physical value. The simulation error is typically decomposed
into a numerical error (en) and a modelling error (em) [45] as in Eq. C.1.

es = en + em = simulated value− true value (C.1)

The decomposition of the simulation error into a numerical error and a mod-
elling error is related to the concept of verification and validation respectively.

Verification is the process of determining the numerical error or if that
is not possible, then to determine the numerical uncertainty. The numerical
error is due to the discretization, iterative solver and the round-off error due
to the finite number of bits used to represent a number in the computer.
Validation is the process of determining if the right model has been solved.
This is with respect to the assumptions and approximations used in the mod-
elling such as; the domain size for external flows, choice of turbulence model,
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Appendix C. Uncertainty and Periodic Convergence of CFD Simulations

boundary conditions, unsteady or steady flow solver etc. To make the vali-
dation assessment of a CFD simulation, the simulation results must be com-
pared with experimental results for the same application.

When the numerical error has been determined, one can choose to correct
the simulation results with the error. The uncertainty for the error estimate
is then the numerical uncertainty for the simulation. In some cases it is not
possible to determine the numerical error. In these cases only the numerical
uncertainty is determined. The numerical uncertainty defines a 95 % confi-
dence band for the simulation results by which the true/exact value (φexcact)
is within as:

φi −Unum ≤ φexcact ≤ φi + Unum (C.2)

φi is the simulated value. Unum is the numerical uncertainty.
The focus of this appendix is on how to determine the numerical uncer-

tainty of the CFD simulations made in this dissertation. This is with respect
to the discretization and the iterative solver. The round-off error is consid-
ered as negligible. For the time varying CFD simulations of the propeller in
Appendix A the periodic convergence of the simulation is also considered.
With periodic convergence it is meant that the solutions for the two latest rev-
olutions of the propeller are the same, or that the difference in the solutions
is insignificant.

The iterative error and uncertainty are considered in Section C.1. The
spatial discretization error and uncertainty are considered in Section C.2. The
temporal discretization error and uncertainty are considered in Section C.3
and the periodic convergence is considered in Section C.4.

C.1 Iterative Convergence Error and Uncertainty

The iterative convergence error and uncertainty are due to the iterative solver
being stopped before the solution has converged to the machine accuracy of
the computer. The iterative solver may not get to converge to the machine
accuracy due to limited computational resources and that an acceptable level
of error and uncertainty is obtained before the machine accuracy is obtained.
It is also possible that the solution may not be able to reach the level of
machine accuracy for example due to complex turbulent flows [27].

The determination of the iterative error and uncertainty is made accord-
ing to [87]. The convergence of the iterative solver is divided into four
cases. These four cases are; asymptotic convergent, oscillatory, mixed os-
cillatory/asymptotic and diverging. Examples of the four cases are shown in
Figure C.1. Figure C.1 is made considering a steady simulation but the same
applies for each time step of an unsteady simulation. In unsteady simulation

210



C.1. Iterative Convergence Error and Uncertainty

the iterative error and uncertainty are determined for each time step, but the
number of iterations used for one time step is about 5-30 iterations instead
of a thousand or more iterations used in a steady simulation. Because of the
lower number of iterations it can be difficult to determine which case each
time step belongs to, but typically it belongs to the asymptotic convergent
case.

0 200 400 600 800 1000
Iterations

V
al

ue

Convergent
Oscillatory
Mixed
Diverging
Simulated Value

Figure C.1: Example of the four categories/types of classifying the iterative convergence.

The iterative error (eI) and uncertainty (UI) for the four cases are given in
Table C.1.

Table C.1: Iterative error and uncertainty depending on the convergence case.

Case Error, eI Uncertainty, UI

Convergent φi − φ∞ |φi − φi,∞|
Oscillatory - 1

2 |φi,U − φi,L|
Mixed - 1

2 |φi,U − φi,L|
Diverging ∞ ∞

φi is the simulated value at the last iteration for the CFD simulation for
the asymptotic convergent case. For the oscillatory and mixed case φi is
found as an average over the last X iterations. The number of iterations
used to determine φi varies from simulation to simulation. φi,∞ are the value
at infinite iterations when making a curve fit using an exponential function
to the simulation data. φi,U and φi,L are the upper and lower simulation
values, respectively. The upper and lower limits are taken over an appropriate
interval for the last iteration and X iterations back. For the example shown
in Figure C.1 the interval would likely be from iteration number 700-800 to
1000. The error terms for the oscillatory and mixed are not defined. For the
diverging case the error and uncertainty are infinite because the simulation
results are unusable.
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Appendix C. Uncertainty and Periodic Convergence of CFD Simulations

The general procedure that is used to determine the iterative uncertainty
is the oscillatory, and the iterative error is therefore not determined. The
oscillatory convergence is used for all the steady simulations because most
of the simulations exhibit oscillation in their results. An example of this is
shown in Figure C.2, which is the iterative solution for the blade thrust for
the open-water simulation in Appendix D at the finest mesh at J = 0.6.
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Figure C.2: The iterative solution of the blade thrust for the open-water CFD simulation in
Appendix D at the finest mesh at J = 0.6. A close up of the last 500 iteration is shown in the
box.

In Figure C.2 it is seen that the thrust has converged to an approximately
constant value. A close-up of the approximate constant value is shown in
the box. It is seen that the solution oscillates. This is for a case that is close
to the design point of the propeller. For off-design conditions the amplitude
of the oscillation usually becomes larger. Because of these oscillations the
general procedure used to determine the iterative uncertainty is the one for
oscillatory convergence.

All steady simulation results are considered individually, to determine
the appropriate iterative interval to determine whether the general oscillatory
procedure is appropriate to use or if the converging procedure is to be used.
If nothing else is stated then the oscillatory procedure has been applied to
determine the iterative uncertainty for the steady simulations.

C.2 Spatial Discretization Error and Uncertainty

The spatial discretization error and uncertainty are due to the finite cell size
used for the mesh in the CFD simulations. The spatial discretization error
and uncertainty are determined by making the simulation using different
refinements of the mesh. It is typical to assume that the discretization er-
ror is described by a truncated power series. The truncated power series
neglects the higher orders. It is therefore assumed that the discretization er-
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C.2. Spatial Discretization Error and Uncertainty

ror is in the asymptotic range. The order of the power series depends on
the discretization scheme used. The spatial discretization scheme used in
this project is second-order unless otherwise specified. The theoretical order
of convergence for the spatial discretization error should therefore also be
second-order in the asymptotic range. In practice this second-order conver-
gence of the spatial discretization error may not be observed. This is due to
complex problems, such as complex geometries and turbulent flow. There
may even be scatter/noise in the results relative to the truncated power se-
ries. The scatter may be due to flux limiters, damping functions, switching
or a lack in geometric similarity between the meshes for example due to us-
ing unstructured meshing [29]. Scatter has been observed for the simulations
made and the method proposed in [29] is used to account for the scatter and
determine the discretization error and uncertainty. The discretization error is
approximated with the truncated power series as:

εφi ≈ δx = φi − φ0 = αx hpx
i (C.3)

εφi is the spatial discretization error for the i’th simulation. ρx is the approx-
imation of the discretization error. φi is the i’th simulation value of interest
which can be a point value or an integrated value. In this project φi is usually
either a force or torque. φ0 is the estimate of the true value of the value of
interest with an infinitely fine mesh. αx is the error term gain. hi is the mesh
metric which is a metric for the cell size of the i’th mesh. px is the observed
order of convergence. The mesh metric hi is determined relative to the finest
mesh, where h1 = 1. The other mesh metrics are determined as [58]:

hi
h1

=
3

√
N1

Ni
(C.4)

Ni is the number of cells in the i’th mesh. In [29] the coefficients φ0, αx
and px in Eq. C.3 are estimated through a least-squares fit of the simulation
results for the different meshes. The least-squares fit of the three coefficients
requires simulation results for at least four different meshes [29] to also get
an estimate on the scatter/noise.

The observed order of convergence estimated by the least-squares fit may
be unrealistic. An unrealistic observed order of convergence is if the observed
order of convergence is larger than the theoretical order of convergence or
if it is significantly lower than the theoretical order of convergence. If the
observed order of convergence is larger than the theoretical order of conver-
gence, then the spatial discretization error will tend to be underestimated. If
the observed order of convergence is too small, then the spatial discretization
error tends to be overestimated. To deal with this problem [29] suggests some
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alternative approximations for the spatial discretization error, which are:

εφi ≈ δ1 = φi − φ0 = αx hi (C.5)

εφi ≈ δ2 = φi − φ0 = αx h2
i (C.6)

εφi ≈ δ12 = φi − φ0 = αx,1 hi + αx,2 h2
i (C.7)

Common for the three alternative formulation of the spatial discretization
error is that the observed order of convergence is fixed. The alternative for-
mulation of the spatial discretization error are only used if the observed order
of convergence from the least-squares fit of Eq. C.3 is unrealistic. The alter-
native formulation of the spatial discretization error in Eq. C.7 is for when
the simulation results are not in the asymptotic range. The assumption of
truncated the power series is therefore not appropriate for the spatial dis-
cretization error.

All the coefficients in the alternative formulations of the spatial discretiza-
tion error are approximated by a least-squares fit. The least-squares estimates
are made with and without weighting of the simulation results. The weight-
ing is made such that the simulation results for the finer meshes are weighted
more than the simulation results for the coarser meshes. The estimates of the
discretization error with weights are noted with an additional subscript w as;
δx,w, δ1,w, δ2,w and δ12,w. The selection of which discretization error to use is
determined as:
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εφi ≈



δx if ( 0.5 ≤ p̃x ≤ 2 ∧ σx ≤ σx,w )
∨ ( 0.5 ≤ p̃x ≤ 2 ∧ ( p̃x,w < 0.5 ∨ p̃x,w > 2) )

δx,w if ( 0.5 ≤ p̃x,w ≤ 2 ∧ σx,w ≤ σx )
∨ ( 0.5 ≤ p̃x,w ≤ 2 ∧ ( p̃x < 0.5 ∨ p̃x > 2) )

δ1 if ( p̃x,σ̌ > 2 ∧ min Ω1 = σ1 )
∨ ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ1 )

δ1,w if ( p̃x,σ̌ > 2 ∧ min Ω1 = σ1,w )
∨ ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ1,w )

δ2 if ( p̃x,σ̌ > 2 ∧ min Ω1 = σ2 )
∨ ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ2 )

δ2,w if ( p̃x,σ̌ > 2 ∧ min Ω1 = σ2,w )
∨ ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ2,w )

δ12 if ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ12 )

δ12,w if ( p̃x,σ̌ < 0.5 ∧ min Ω2 = σ12,w )

(C.8)

Where,

Ω1 =
[
σ1 σ1,w σ2 σ2,w

]
Ω2 =

[
σ1 σ1,w σ2 σ2,w σ12 σ12,w

]
p̃x and p̃x,w are the observed order of convergence for the non-weighted and
weighted least-squares fits of Eq. C.3. σ is the standard deviation of the least-
squares fit. p̃x,σ̌ is the observed order of convergence for the discretization
error with the lowest standard deviation of δx and δx,w.

The discretization uncertainty is determined using the discretization error.
In [58] the discretization uncertainty for the i’th simulation is determined as:

Udisc (φi) =

1.25 εφi + σ +
∣∣∣φi − φ f it

∣∣∣ for σ < ∆φ

3 σ
∆φ

(
εφ + σ +

∣∣∣φi − φ f it

∣∣∣) for σ ≥ ∆φ

(C.9)
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Where,

φ f it = φ0 + εφi

∆φ =
max (φi)−min (φi)

ng − 1

Udisc is the spatial discretization uncertainty. φ f it is the value of the least-
squares fit evaluated at hi. ∆φ is the data range of φi. ng is the number
of meshes used to determine the discretization uncertainty. If there is no
scatter/noise in the mesh independency study, then the uncertainty deter-
mined Eq. C.9 becomes the same as the well-known Grid Convergence Index
procedure also known as the GCI procedure proposed by Roache [58]. Two
different expressions are used to determine the spatial discretization uncer-
tainty depending on the ratio between the standard deviation and the data
range and this is to separate the fits into good and bad fits. The good fits use
a low safety factor of 1.25 and the bad fits uses a high safety factor of 3. It can
be discussed if this is an appropriate method to judge whether a fit is good
or bad but this approach will nonetheless be used.
The inclusion of the standard deviation (σ) and value difference with the fit-
ted values

(∣∣∣φi − φ f it

∣∣∣) in Eq. C.9 are to account for the uncertainty due to
scatter in the discretization study. Instead of using these two terms to ac-
count for the scatter, it is proposed to use 2 σ instead. The 2 σ is equivalent to
a 95.4 % confidence interval under the assumption that the scatter is normally
distributed. This corresponds well with the desire for the spatial discretiza-
tion uncertainty to be the 95 % confidence interval. The modified expression
for the discretization uncertainty becomes:

Udisc (φi) =

{
1.25

∣∣εφi

∣∣+ 2 σ for σ < ∆φ

3 σ
∆φ

(∣∣εφi

∣∣+ 2 σ
)

for σ ≥ ∆φ
(C.10)

The number of meshes that must be used to determine the discretization un-
certainty is a trade-off between the amount of information and the amount of
computational resources required. The minimum required number of meshes
used is four when using the above described approach. In this project four
or five meshes are used to determine the spatial discretization uncertainty.

If the data point for the coarsest mesh does not follow the trend then it can
be omitted. This practice follows the one used in [58]. The application of this
procedure is shown in Figure C.3a and Figure C.3b. The examples shown
in Figure C.3a and Figure C.3b are both from the steady state simulations
presented in Appendix G.
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Figure C.3: (a,b) Example for where it is assessed that the coarsest mesh point are not within
the asymptotic range.

From both Figure C.3a and Figure C.3b it can be seen that the error estima-
tor is improved and the standard deviation for the least-squares estimation
is reduced. The improvement is more significant for the example in Figure
C.3b than the example in Figure C.3a. Common for both of the two examples,
shown in Figure C.3, is that the standard deviation of the least-squares error
estimation is reduced. It has been found that when the ratio between the
standard deviation using the five meshes and the standard deviation using
four meshes is greater than two, then it should be considered if the coarsest
mesh should be removed from the error estimation.

C.3 Temporal Discretization Error and Uncertainty

The procedure described above is used to determine the spatial discretiza-
tion uncertainty for steady CFD simulations. For unsteady CFD simulations
the uncertainty due to the temporal discretization also has to be considered.
According to [28] the discretization error for an unsteady problem is defined
as in Eq. C.11, where it is assumed that the discretization error due to spatial
discretization and temporal discretization are independent of each other.

εφi ≈ δxt = φi − φ0 = αx hpx
i + αt τ

pt
i (C.11)

px and pt are the observed order of convergence for the spatial and temporal
part, respectively. αx and αt are the error term gains for the spatial and
temporal part, respectively. τi is the metric for the relative time step used in
the i’th simulation and is calculated as:

τi
τ1

=
∆ti
∆t1

(C.12)
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∆ti is the time step for the i’th simulation where ∆t1 is the time step used in
the simulation with the smallest time step. As for the mesh metric h1, τ1 is
equal to unity.

The temporal discretization error in Eq. C.11 is defined as the spatial
discretization error with a truncated power series. The parameters φ0, px, pt,
αx and αt are determined using the same least-squares fit method as used for
the spatial discretization error for the steady CFD simulations. To determine
the five parameters explicitly at least five simulations are required with three
different meshes and three different time steps. If the parameters are to
be determined using the least-squares method at least six simulations are
required with different spatial and temporal discretizations.

The discretization uncertainty is determined for each time instance where
a solution exists for all the simulations with different time steps. This is illus-
trated in Figure C.4, which shows how a solution could differ when different
time steps are used for the simulation.
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6 with t = 6

7 with t = 7

Figure C.4: Example on how the solution could be when using different time steps.

The different time steps used in the simulations should have a common
integer denominator relative to the smallest time step used. For example from
Figure C.4 it can be seen that if the simulations have been made with the time
step on 1, 2 and 4 then the discretization uncertainty can be determined for
each time instance of the simulation with a time step of 4. On the other
hand, if the simulation had been made with the time step of 1, 3 and 7 then
the discretization uncertainty can only be determined for each 21st time step
for the simulation with a time step of 1 and for each 7th time step for the
simulation with a time step of 3 and for each 3rd time step for the simulation
with a time step of 7. One should therefore be careful when choosing the
different time steps used to determine the discretization uncertainty. Another
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consideration that should be made for the time step for the simulations with
a periodic solution is that the ratio between the time period and the time step
should be an integer. The solution is thereby obtained at the same instance of
the period for each period of the simulation. This makes the data treatment
easier and more consistent since the same number of samples is obtained for
each period.

For the simulations with a periodic solution only the converged periodic
solution is used to determine the discretization uncertainty. Appendix C.4
presents the method used to determine if a periodic converged solution has
been obtained. This requires that the time step has been chosen so that the
ratio between the period time and the time step is an integer. Otherwise it
is not certain that time instances for each periodic solution will match with
each other.

The least-squares fit of Eq. C.11 to the simulation data may yield unreal-
istic observed order of convergence for both the spatial and temporal part of
the discretization error. If the observed order of convergence is unrealistic, an
alternative discretization error estimator is used as done for the spatial dis-
cretization error in Section C.2. The alternative discretization error estimators
that are used are given as [26]:

εφi ≈



δxt = φi − φ0 = αx hpx
i + αt τ

pt
i

δx2 = φi − φ0 = αx hpx
i + αt τ2

i
δ2t = φi − φ0 = αx h2

i + αt τ
pt
i

δ22 = φi − φ0 = αx h2
i + αt τ2

i
δx1 = φi − φ0 = αx hpx

i + αt τi

δ1t = φi − φ0 = αx hi + αt τ
pt
i

δ21 = φi − φ0 = αx h2
i + αt τi

δ12 = φi − φ0 = αx hi + αt τ2
i

δ11 = φi − φ0 = αx hi + αt τi

(C.13)
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The selection of which formulation of the discretization error to use is deter-
mined as:

εφi =



δ
argmin(Ω0)
0 if

(
p̃x ∈ [0.5, 2] ∧
p̃t ∈ [0.5, 2]

)
∧

(
p̃x,w ∈ [0.5, 2] ∧
p̃t,w ∈ [0.5, 2]

)
δxt else if

(
p̃x ∈ [0.5, 2] ∧
p̃t ∈ [0.5, 2]

)
∧

(
p̃x,w /∈ [0.5, 2] ∨
p̃t,w /∈ [0.5, 2]

)
δxt,w else if

(
p̃x,w ∈ [0.5, 2] ∧
p̃t,w ∈ [0.5, 2]

)
∧

(
p̃x /∈ [0.5, 2] ∨
p̃t /∈ [0.5, 2]

)
δ

argmin(Ω1)
1 else if

(
p̃x,σ̌ < 0.5 ∧
p̃t,σ̌ ≥ 0.5

)
δ

argmin(Ω2)
2 else if

(
p̃x,σ̌ ≥ 0.5 ∧
p̃t,σ̌ < 0.5

)
δ

argmin(Ω3)
3 else if

(
p̃x,σ̌ < 0.5 ∧
p̃t,σ̌ < 0.5

)
δ

argmin(Ω4)
4 else if

(
p̃x,σ̌ > 2 ∧

p̃t,σ̌ ∈ [0.5, 2]

)
∨

(
p̃t,σ̌ > 2 ∧

p̃x,σ̌ ∈ [0.5, 2]

)

(C.14)

Where,

δ0 =

[
δxt

δxt,w

]
, δ1 =



δ2t
δ2t,w
δ1t

δ1t,w
δx2

δx2,w
δ22

δ22,w
δ12

δ12,w


, δ2 =



δ2t
δ2t,w
δx2

δx2,w
δx1

δx1,w
δ22

δ22,w
δ21

δ21,w


, δ3 =



δ2t
δ2t,w
δ1t

δ1t,w
δx2

δx2,w
δx1

δx1,w
δ22

δ22,w
δ21

δ21,w
δ12

δ12,w
δ11

δ11,w



, δ4 =



δ2t
δ2t,w
δx2

δx2,w
δ22

δ22,w
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Ω0 =

[
σxt

σxt,w

]
, Ω1 =



σ2t
σ2t,w
σ1t

σ1t,w
σx2

σx2,w
σ22

σ22,w
σ12

σ12,w


, Ω2 =



σ2t
σ2t,w
σx2

σx2,w
σx1

σx1,w
σ22

σ22,w
σ21

σ21,w


, Ω3 =



σ2t
σ2t,w
σ1t

σ1t,w
σx2

σx2,w
σx1

σx1,w
σ22

σ22,w
σ21

σ21,w
σ12

σ12,w
σ11

σ11,w



, Ω4 =



σ2t
σ2t,w
σx2

σx2,w
σ22

σ22,w



δx are the vectors containing different approximations of the discretization
error. Ωx are the vectors containing the corresponding standard deviation
of the discretization error estimation. The subscript w for the discretization
errors is when the discretization error is approximated by weighting the ob-
servations. The i’th observation is weighted with the weight factor w(i) as:

wi =

1(
hi

max (h)

)2
+

(
τ(i)

max (τ)

)2

itot

∑
i=1

 1(
hi

max (h)

)2
+

(
τi

max (τ)

)2


(C.15)

p̃x,σ̌ and p̃t,σ̌ are the observed order of spatial and temporal convergence
respectively with the lowest standard deviation of the approximation of the
discretization errors δxt and δxt,w. δ

argmin(Ωx)
x is the discretization error at the

same vector index as where the minimum value is indexed in the vector Ωx.
For example if p̃x,σ̌ and p̃t,σ̌ are less than 0.5, then the approximations for the
discretization errors in the vector δ3 are considered for use to determine the
discretization uncertainty. The index of the vector δ3 to be used is the same
index that the minimum of vector Ω3 has. If σ22 is the minimum of Ω3, then
the discretization error δ22 of δ3 are used for determining the discretization
uncertainty. The discretization uncertainty is determined using Eq. C.10.
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C.4 Periodic Convergence

To evaluate if periodic convergence has been obtained for an unsteady CFD
simulation the method proposed in [22] is used. In [22] five metrics are used
to access if a periodic solution is obtained. The five metrics are calculated for
each period/revolution of the propeller as:

• Mean value of the signal: The mean value of the signal, Φi, for one
period from which the solution oscillates/fluctuates about is given as:

φi =
1
N

N−1

∑
n=0

Φi (n) (C.16)

• Discrete Fourier transform of the signal: Used to determine the am-
plitude and phase of each fundamental frequency of the signal. The
discrete Fourier transform (φi,DFT) for the signal φi is determined using
Eq. C.17 which gives a complex number for each fundamental fre-
quency. From the discrete Fourier transform the amplitude, ||φi||2, and
the phase, φi, for each fundamental frequency are determined using
Eq. C.18 and Eq. C.19, respectively. φi is the detrended signal deter-
mined in Eq. C.20.

φi,DFT (n) =
1
N

N−1

∑
n=0

φi (n) e−i n ω t(n) (C.17)

||φi,DFT (n)||2 =
√

Re (φi,DFT (n))2 + Im (φi,DFT (n))2 (C.18)

φi,DFT (n) = atan
(

Im (φi,DFT (n))
Re (φi,DFT (n))

)
(C.19)

φi = Φi − φi (C.20)

• Cross-correlations between the signals: The cross-correlation is used
to evaluate how well the shapes of the signals for two following periods
correspond with each other. The cross-correlation (CC) is determined
using Eq. C.21. The expression for the cross-correlation in Eq. C.21
is a normalised cross-correlation which results in a cross-correlation
of unity at zero lag when the signals for two following periods are
equal. This implies that the signals are equal and that the solution has
converged.
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CC(nL) =

N−1

∑
n=0

φi (n + nL) φi (n + N)√√√√N−1

∑
n=0

φi (n)
2

N−1

∑
n=0

φi (n + N)2

(C.21)

• Power Spectral Density of the signal: The power spectral density
(PSD) is determined using Eq. C.22 and is used to determine the power
at each fundamental frequency of the discrete Fourier transform of the
signal. The superscript ∗ in Eq. C.22 is the complex conjugate of the
discrete Fourier transform.

PSD(n) = φi,DFT (n)∗ φi,DFT (n) (C.22)

Φi is the time varying signal of interest which in this case are the forces and
torques acting on each of the propeller blades. φi is the mean value the signal
over one period. n is the sample number, starting from zero. N is the number
of samples during one revolution of the propeller. ω is the rotational speed
of the propeller. t(n) is the time at sample n. Re and Im are the real and
imaginary parts of the complex number, respectively. nL is the number of
lagged samples in the cross-correlation.

For each of the five convergence metrics a fuzzy set is defined as [22]:

fM = 1−
∣∣∣∣1− φi,N

φi

∣∣∣∣ (C.23)

fA
(
nexp

)
= 1−

∣∣∣∣∣1−
∣∣∣∣φi,DFT,N

(
nexp

)∣∣∣∣
2∣∣∣∣φi,DFT

(
nexp

)∣∣∣∣
2

∣∣∣∣∣ (C.24)

fφ

(
nexp

)
= 1−

∣∣∣∣∣∣∣
φi,DFT,N

(
nexp

)
− φi,DFT

(
nexp

)
π

∣∣∣∣∣∣∣ (C.25)

fS = |CC (0)| (C.26)

fP =

∑
nexp

PSD
(
nexp

)
N−1

∑
n=0

PSD (n)

(C.27)

fx are the fuzzy sets. The subscript N is for the signal at the latest pe-
riod, where the missing subscript N is the previous period. nexp are the
expected fundamental frequencies of interest. For the propeller blade forces
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Appendix C. Uncertainty and Periodic Convergence of CFD Simulations

and torques the expected fundamental frequencies of interest are nexp =
[1, 2, ..., Nexp], where Nexp is the maximum expected fundamental frequency
of interest. If it is the propeller performance that is of interest, then the ex-
pected fundamental frequencies of interest is an integer value of the number
of blades for the propeller such that nexp = Z[1, 2, ..., Nexp], where Z is the
number of blades for the propeller. The fuzzy set for the power spectrum
density (Eq. C.27) is used to evaluate if a sufficient number of frequencies
has been included in the convergence evaluation. If the fuzzy set is not close
to one, then there are probably some unexpected unsteadiness at a frequency
that has not been considered. This also keeps one from just using one fun-
damental frequency in order to more easily obtaining convergence for the
amplitude and phase for the discrete Fourier transform.

To evaluate if the CFD simulation has converged to a periodic solution, a
single fuzzy set is used. This fuzzy set is defined in [22] as:

fC = min
(

fM, fA
(
nexp

)
, fφ

(
nexp

)
, fS, fP

)
(C.28)

In [22] it is stated that periodic convergence is obtained if fC ≥ 0.95 for two
following periods for the signals of interest. In this project the signals of in-
terest are the forces and torques acting on the blades. For the four bladed
propeller this gives a total of 24 signals that has to converge before a periodic
solution has been obtained. Instead of considering each signal individually
a common fuzzy set is defined as the minimum of all the signals fuzzy con-
vergences set. If this collected fuzzy convergences set are ≥ 0.95 then the
simulation has converged.

The concept of the above procedure is shown through an example. The
example considered is from Appendix A which is an unsteady simulation of
a CP propeller in a non-uniform wake field. In Figure C.5a and Figure C.5b
the time signals and the five metrics are shown. Figure C.5a shows the torque
about the z-axis for the 3rd and 4th revolution of the propeller. Figure C.5b
shows the torque for the 13th and 14th revolution of the propeller. Figure
C.5a is taken for some of the first revolutions of the propeller where periodic
convergence has not been obtained and Figure C.5b is for the revolutions
where periodic convergence has been obtained.

224



C.4. Periodic Convergence

1 1.2 1.4 1.6 1.8

Time [s]

0

20

40

60

Z
-T

o
rq

u
e

 [
k
N

m
]

Rotation 3

Rotation 4

Mean 3

Mean 4

0 2 4 6 8 10

Fundamental Frequency

0

10

20

A
m

p
lit

u
d

e
 [

k
N

m
]

Rotation 3

Rotation 4

0 2 4 6 8 10

Fundamental Frequency

-200

0

200

P
h

a
s
e

 [
d

e
g

]

Rotation 3

Rotation 4

0 50 100 150 200 250 300 350

Lags

0

0.5

1

C
C

0 2 4 6 8 10

Fundamental Frequency

10
5

10
10

P
S

D

Rotation 3

Rotation 4

(a)

6 6.2 6.4 6.6 6.8

Time [s]

0

20

40

60

Z
-T

o
rq

u
e

 [
k
N

m
]

Rotation 13

Rotation 14

Mean 13

Mean 14

0 2 4 6 8 10

Fundamental Frequency

0

10

20

A
m

p
lit

u
d

e
 [

k
N

m
]

Rotation 13

Rotation 14

0 2 4 6 8 10

Fundamental Frequency

-200

0

200

P
h

a
s
e

 [
d

e
g

]

Rotation 13

Rotation 14

0 50 100 150 200 250 300 350

Lags

0

0.5

1
C

C

0 2 4 6 8 10

Fundamental Frequency

10
5

10
10

P
S

D

Rotation 13

Rotation 14

(b)

Figure C.5: (a) Time series signal and convergence metric for 3th and 4th revolution of the
propeller. (b) Time series signal and convergence metric for 13th and 14th revolution of the
propeller.

From Figure C.5a it is seen that the mean value and the amplitude at
low frequencies are different for each period which are the most important
frequencies because they contain most of the power. The shape of the signal
for the two periods in Figure C.5a does not change significantly which is
seen from the cross-correlation (CC). From Figure C.5b it is seen that the
metrics for the two periods have a better correspondence to each other than
for the periods in Figure C.5a. This is also observed in fuzzy convergence sets
which are shown in Figure C.6a and in Figure C.6b for the collected fuzzy
convergence set which includes all the convergence metrics for all the signals
of interest.
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Figure C.6: (a) The fuzzy convergence level for the Z-torque on blade number 4 over the different
revolutions of the propeller. (b) The minimum fuzzy convergence level over all the signals in the
CFD simulations over the different revolutions of the propeller.

From Figure C.6a it is seen that it is the mean value of the signal that sets
the limit for convergence for the first 10 cycles. The unsteadiness from the
discrete Fourier transform converges after a few cycles and the number of
frequencies considered is sufficient as seen from the power spectral density.
The shape of the signal does not change much as seen from the high conver-
gence level for the cross-correlation. That the mean value sets the lower limit
for the convergence level is not always the case, as seen in Figure C.6b. In
Figure C.6b the lowest convergence level for all the signal convergence met-
rics is shown for each propeller revolution. It is seen generally that it is the
amplitude of the discrete Fourier transform or the mean value that sets the
lower limit for the convergence. A stable convergence level above the limit
is obtained at the 12th revolution and forward. For further work/data treat-
ment of the simulation results the latest revolution with periodic convergence
is used. For the case shown in Figure C.6b this means that the solution of the
18th revolution is used.
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Appendix D

Hydrodynamic Modelling of
CVP Propeller Through
Open-Water CFD
Simulations

It is typical to describe a propeller’s characteristics by its open-water diagram.
The open-water diagram for the propeller is made with uniform flow into
the propeller. The diagram is usually determined through an open-water
test where a scaled model of the propeller is towed through a towing tank.
Normally, the open-water diagram includes the thrust coefficient KT , torque
coefficient KQ, open-water efficiency ηo and sometimes the spindle torque
coefficient Ksh as a function of the advance coefficient J. These coefficients
are non-dimensional and are determined from the propeller thrust, torque,
blade spindle torque, carriage velocity and rotational speed of the propeller
as:

KT =
T

ρ n2 D4
p

(D.1) KQ =
Q

ρ n2 D5
p

(D.2)

Ksh =
Mz

ρ n2 D5
p

(D.3) J =
V

n Dp
(D.4)

ηo =
KT
KQ

J
2 π

(D.5)

T and Q are the propeller thrust and torque, respectively. ρ is the density
of the water. n is the rate of propeller revolution in [rps]. Dp is the propeller
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diameter. Mz is the blade spindle torque. V is the speed of the water flowing
into the propeller or the speed at which the propeller is towed through the
tank.

To model the CVP propeller all the hydrodynamical forces and torques
affecting the propeller blades must be determined. Normally, the blade loads
are not determined in an open-water test, but by modifying the test setup it is
possible to determine these experimentally. Measurements of the blade loads
are made in [16, 50], amongst others, under different operating conditions.
For the present case the loads are determined through CFD RANS simulation
of the propeller in open-water conditions, as in [30]1. The simulations are
made using the full scale propeller and not the model scale propeller which
is usually used to make open-water tests. By doing so, the need to scale the
results from model scale to full scale, is removed.

To model the CVP propeller by using open-water CFD simulations the
open-water characteristics are determined for a series of pitch settings of the
propeller blades, as in [30]1. The different pitch settings should enclose the
desired pitch trajectories used to evaluate the hydrodynamicals loads for the
CVP propeller. The simulation results are collected in a table for each of
the hydrodynamical loads which depend on the blade pitch and the advance
coefficient. The hydrodynamical loads are then determined by interpolating
the data in the look-up table depending on the blade pitch and the local
advance coefficient [30]1. The local advance coefficient is determined for each
blade position in the wake field to account for the propeller operating in the
non-uniform wake field of the ship.

This appendix is divided into three sections:

• Section D.1 presents how the open-water CFD simulations are made
and the results of these simulations with their uncertainties. The CFD
simulations are made using the propeller and the operating conditions
used in Chapter 2. These simulation results are also used in [30]1.

• Section D.2 presents four different methods to determine the local ad-
vance coefficient for the blade in the non-uniform wake field. The wake
field used is the one used in Appendix A.

• Section D.3 presents the results for applying the derived model for the
hydrodynamics of the CVP propeller for the three pitch trajectories con-
sidered in Chapter 2.

D.1 Open-Water CFD Simulation

The same setup, as used in Appendix A, is used for the open-water CFD
simulations. The commercial CFD package STAR-CCM+ 12.02.010 is used

1Paper [30] was produced by the author as part of the research made for this dissertation.
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for the mesh generating and solving the fluid problem. The physics used
for the simulations are steady, single phase and incompressible flow. The
turbulence is modelled using the SST kω turbulence model without a transi-
tion model because the simulations are made using the full scale propeller.
The flow is solved using the segregated flow solver by second-order spatial
discretization. The domain for the open-water CFD simulation is shown in
Figure D.1.

Figure D.1: Domain for open-water CFD simulation.

The domain includes one blade of the propeller and has periodic bound-
aries conditions on the sides to account for the effect of the other propeller
blades. The inlet is located 25 [m] or ≈ 4.6Dp upstream of the propeller (L f ),
the outlet is located 75 [m] or ≈ 13.9Dp downstream of the propeller (Lb)
and the radial boundary is located 30 [m] or ≈ 5.6Dp from the center of the
domain (Lr). The radial boundary condition is a wall with slip. The domain
is divided into two regions a stationary region and a propeller region. The
propeller region encloses the propeller and is surrounded by the stationary
region. The propeller motion is modelled using a moving reference frame
applied to the propeller domain. This reference frame rotates about the pro-
peller shaft axis at the same rate as the propeller.

The open-water simulations of the propeller are made for a series of dif-
ferent pitch settings. To evaluate this model, for the pitch trajectories used in
Chapter 2, the pitch settings have to cover the span of these pitch trajectories.
The pitch displacement trajectories are shown in Figure D.2. The displace-
ment is relative to the design pitch of the propeller blade given in Chapter
2.
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Figure D.2: Pitch displacement trajectories used in Chapter 2.

From Figure D.2 it is seen that the pitch displacement spans from −5◦

to 2◦. The open-water CFD simulations are made covering this span with
an increment of 1◦. This results in a total of eight open-water characteristics
that needs to be made. Each of these open-water characteristics includes 10
different advance coefficients in the interval 0.1 ≤ J ≤ 0.85. The simula-
tion results for the open-water simulations are shown in Figure D.3 for the
hydrodynamical loads acting on the propeller blades as a function of the
relative pitch displacement and advance coefficient. Furthermore, the open-
water efficiency is also included in Figure D.3 which is determined from the
simulated hydrodynamical loads according to Eq. D.5. The CFD simulation
results shown in Figure D.3 are made using the finest mesh used to determine
the spatial uncertainty in the following section.
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Figure D.3: Open-water CFD simulation results for the hydrodynamical loads and open-water
efficiency.
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D.1.1 Uncertainty of Open-Water CFD Simulations

The uncertainty of the steady open-water CFD simulations are determined
using the approach described in Appendix C. The considered uncertainty
sources are the iterative, discretization and domain uncertainties. Deter-
mining the discretization and domain uncertainty for each of the evalua-
tion points of the open-water CFD simulations is computationally expensive.
Therefore, some assumptions and simplifications are made in order to reduce
the computational costs. The iterative uncertainty is determined for each in-
dividual simulation. The cause of the iterative uncertainty is due to iterative
process having to stop before it has converged to machine accuracy or that
the assumption of steady state is not appropriate because the solution is ac-
tually unsteady. An example on the iterative uncertainty of an open-water
characteristic is shown in Figure D.4 for all the hydrodynamical loads acting
on the propeller blades. The iterative uncertainties shown in Figure D.4 are
for the zero pitch displacement of the blade and using the finest mesh for the
CFD simulation.
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Figure D.4: Iterative uncertainties for the open-water simulation with zero pitch displacement
and using the finest mesh for the simulation.

From Figure D.4 it is seen that the iterative uncertainty is the largest at
low advance coefficients. This is because inherent unsteady flow is more
likely to occur at low advance coefficients, for example, due to periodic flow
separations. The steady flow assumption is therefore less appropriate under
these operating conditions.

Domain Uncertainty

For external flow the distance from the objective of interest to the boundaries
of the domain should be large enough. This is in order to ensure that the
boundary conditions do not influence the solution. To assess if appropriate
domain dimensions have been chosen, the uncertainty due to the chosen
domain dimensions is determined at an advance coefficient of 0.6 and at
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zero pitch displacement. The domain uncertainty is determined using the
finest mesh used to determine the spatial discretization uncertainty. Three
parameters are used to define the domain of the simulations. These three
parameters are: the distance from the propeller plane to the inlet (L f ), the
distance from the propeller plane to the outlet (Lb) and the radius of the
domain (Lr). To determine the domain uncertainty the simulation is made
for different domain sizes. The domain parameters are varied one at a time.
The other domain parameters are set to the previously mentioned domain
sizes. The different domain parameters are varied as:

Lx = Dp
[
2 3 4 5 5.5 6 8 10 12 14 16 20 25 30

]
(D.6)

Dp is the propeller diameter which is 5.4 [m] for the case considered. Lx
is the vector containing the dimension lengths used to determine the domain
uncertainty. In order to determine the domain uncertainty in a similar man-
ner as the uncertainties determined in Appendix C, a domain error is defined
as:

εφi ≈ δd = φi − φ0 = α e−p(Lx−βd) (D.7)

εφi is the domain error of the i’th simulation. δd is the approximation of
the domain error. φi is the i’th simulated value of interest where φ0 is its
true/exact value. α is the error gain. p is the domain convergence rate. Lx
is the size of the domain parameter considered which can be either L f , Lb
or Lr. βd is an exponential offset coefficient. The coefficients φ0, α, p and
β are determined by a least-squares fit of the exponential function to the
simulation data. This least-squares fit is made with and without weighting
of the simulation data. The weight vector is made such that simulations with
the larger dimensions are weighted more. The weight vector is determined
as:

w =
Lx

∑ Lx
(D.8)

w is the weight vector. The least-squares fit with the lowest standard devia-
tion is used to approximate the domain error. The approximated domain er-
ror for the three domain parameters for the hydrodynamical loads are shown
in Figure D.5.
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Figure D.5: Domain error approximation for the hydrodynamical loads. The x-axis is defined in
relation to Dp as the vector in Eq. D.6. In the legend the simulation values φi and approximated
δ + φ0 are shown for each domain variation L f , Lb and Lr given in the brackets.

From Figure D.5 it is seen that the distance, between the inlet and the
propeller plane and the radius of the domain, has the largest influence on the
solution at small distances. The distance between the propeller plane and the
outlet does not seem to change the results significantly and the changes in
the results are due to scatter in the data.

The domain uncertainty due to each of the domain parameters is deter-
mined as:

Udom =
∣∣εφi

∣∣+ 2 σi (D.9)
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Udom is the domain uncertainty and is determined for each of the domain pa-
rameters as Udom,L f

, Udom,Lb
and Udom,Lr . σ is the standard deviation from the

least-squares fit for the corresponding domain parameter. The total domain
uncertainty, UDom, is determined, using Eq. D.10, under the assumption that
the uncertainties are independent.

UDom =

√√√√L f ,Lb ,Lr

∑
j

U2
dom,j (D.10)

Evaluating the total domain uncertainty for the domain used in the open-
water simulations gives the uncertainties in Table D.1. The total domain
uncertainties in Table D.1 are reasonable, but the relative uncertainty of the
torque about the z-axis is large because this torque is close to zero.

Table D.1: Total domain uncertainty for the used domain in the open-water CFD simulations.

Fx Fy Fz Mx My Mz
Uncertainty 248 N 219 N 146 N 441 Nm 123 Nm 386 Nm
Relative 0.22 % 0.25 % 0.30 % 0.21 % 0.68 % 15.00 %

Spatial Discretization Uncertainty

The spatial discretization uncertainty is determined for the open-water simu-
lation with zero pitch displacement. The uncertainty is determined according
to the procedure described in Appendix C using five different meshes. Each
of the meshes are defined relative to a base size which is coarsened with

√
2

n
,

where n is an integer value between 0 to 4. The value of n is used to note the
spatial discretization. The number of cells in each mesh is given in Table D.2
and a section of the different meshes is shown in Figure D.6. The open-water
simulation results are shown in Figure D.7 for all the hydrodynamical loads
and for all the meshes.

Table D.2: Number of cells in each of the meshes shown in Figure D.6 [30].

n Number of cells
0 ≈ 2.355.000
1 ≈ 1.350.000
2 ≈ 910.000
3 ≈ 645.000
4 ≈ 475.000
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(a) (b)

(c) (d)

(e)

Figure D.6: Mesh at suction side of the propeller. (a) n = 4. (b) n = 3. (c) n = 2. (d) n = 1. (e)
n = 0.
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Figure D.7: The open-water hydrodynamical loads acting on the propeller blades at zero pitch
displacement for the five different spatial discretizations.

From Figure D.7 it is seen that the hydrodynamical loads acting on the
propeller blade do not vary significantly for the different meshes. There is,
however, one exception to this, and that is the force along the z-axis. This
force deviates for the different meshes as the advance coefficient decreases.
Applying the method described in Appendix C.2 to determine the spatial
discretization uncertainty for the data in Figure D.7 gives the uncertainty
shown in Figure D.8
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Figure D.8: Spatial discretization uncertainties for the open-water simulations with zero pitch
displacement.

From Figure D.8 it is seen that the uncertainty due to spatial discretiza-
tion is larger than the iterative uncertainty in Figure D.4 and the domain
uncertainty. The iterative uncertainty and the spatial discretization uncer-
tainty increases as the advance coefficient decreases. This is probably due to
the flow becoming more complex due to, for example, flow separation at the
lower advance coefficients.

Total Uncertainty

The iterative uncertainty is determined for each simulation individually. The
domain and spatial discretization uncertainty are determined for a limited
range of the simulations as described above. This is to reduce the com-
putational costs when determining the uncertainty of the open-water CFD
simulations. It is therefore necessary to extrapolate the domain and spatial
uncertainty to cover all pitch settings and advance coefficients of the other
simulations. The domain and spatial discretization uncertainty are added
together, under the assumption that they are independent of each other, as:

UDom,spa(J) =
√

U2
Dom + Uspa(J)2 (D.11)

UDom,spa is the summed domain and spatial discretization uncertainty. Uspa
is the spatial discretization uncertainty. Both of these are defined at zero
pitch displacement as a function of the advance coefficient. For the extrap-
olation, the domain and spatial discretization uncertainties are redefined to
the relative uncertainty uDom,spa(J) by normalising with the simulated value.
The relative uncertainty is used to avoid unrealistic large or small absolute
uncertainties with respect to the exact/true value.
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To make the extrapolation, a relative change angle βc is determined as
[30]:

βc = atan
(

J
0.7 π

)
+ ∆Prad (D.12)

∆Prad is the pitch displacement in radians. To make the extrapolation it is
assumed that the relative uncertainty only varies with the relative change an-
gle. The relative uncertainty for the simulations at other pitch displacements
can thereby be determined by calculating the relative change angle and us-
ing linear interpolation to determine the relative uncertainty. If the relative
change angle is outside the span determined, then the nearest value is used
instead.

The total relative uncertainty is determined by adding the extrapolated
relative uncertainty and the relative iterative uncertainty by assuming they
are independent and using the L2-norm. For the open-water CFD simula-
tions this gives the uncertainties in Figure D.9. The uncertainty of any of the
hydrodynamical loads is determined by interpolating the data in Figure D.9
depending on the blade’s pitch displacement and the local advance coeffi-
cient.
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Figure D.9: Uncertainty of the open-water CFD simulations.
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D.2 Model for the Local Advance Coefficient

The local advance coefficient is used to interpolate in the open-water simula-
tion results to determine the hydrodynamical loads for the CVP propeller. To
determine the local advance coefficient, a local advance velocity for the blade
is used. This local advance velocity varies with the blade’s position in the
wake field, θb. Using this local advance velocity the local advance coefficient
is determined as [30]:

Jloc(θb) =
Vloc(θb)

n Dp
(D.13)

Jloc is the local advance coefficient. Vloc is the local advance velocity. To
determine the local advance velocity, the effective wake field is used which is
determined in Section ?? and is shown in Figure D.10.
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Figure D.10: Effective wake field.

The wake field in Figure D.10 contains the three velocity components but
to determine the local advance velocity only the axial velocity component
is used. The tangential and radial velocity components are neglected. Four
different methods are used to determine the local advance velocity. Later
in this report an evaluation is made to determine which one is the most
appropriate one to use. The four methods are:
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• Average velocity over the blade’s spindle axis, Vloc,spin. Determined
as [30]:

Vloc,spin(θb) =
1

Rp − rp

∫ Rp

rp
va(θb, r) dr (D.14)

• Average velocity over the blade’s area, Vloc,area. Determined as [30]:

Vloc,avg(θb) =

∫ Rp

rp

∫ θLE(r)

θTE(r)
va(θb + θ, r) r dθ dr∫ Rp

rp

∫ θLE(r)

θTE(r)
r dθ dr

(D.15)

• Average velocity over the blade’s leading edge, Vloc,LE. Determined as:

Vloc,LE(θb) =
1

Rp − rp

∫ Rp

rp
va(θb + θLE(r), r) dr (D.16)

• Average velocity over the blade’s skew line, Vloc,skew. Determined as:

Vloc,skew(θb) =
1

Rp − rp

∫ Rp

rp
va(θb + θskew(r), r) dr (D.17)

Rp and rp are the outer and inner most radius of the propeller blade. va(θb, r)
is the local axial velocity of the effective wake field shown in Figure D.10.
r is the radius. θLE(r) and θTE(r) are the radial varying angle between the
spindle axis and the leading and trailing edge, respectively. θskew(r) is the
radially varying angle between the spindle axis and the skew line.

The above four methods for determining the local advance coefficient are
used in Eq. D.13 to determine the local advance coefficient. The resulting lo-
cal advance coefficient is shown in Figure D.11. The local advance coefficient
is determined using a radially varying Fourier series of the effective wake
field.

Three of the four methods depend on the pitch of the blade. These are the
blade area, leading edge line and skew line methods. The local advance coef-
ficient shown in Figure D.11 is for the blade at zero pitch displacement, and
the variation in the local advance coefficient due to the pitch displacement of
the blade is shown as shaded areas. The maximum relative difference in the
local advance coefficient due to the pitch displacement is 2.5% for the leading
edge model at the blade position equal to 180◦. For the blade area and skew
line the maximum relative difference is below 1%.
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Figure D.11: The local advance coefficient for the blade depending on its position in the wake
field.

D.3 Application and Comparison of CVP Propeller
Model

The hydrodynamical loads are determined by interpolating the open-water
CFD simulation results in Figure D.3 and its uncertainties in Figure D.9 as a
function of the blade’s pitch displacement in Figure D.2 and the local advance
coefficient in Figure D.11. Both the blade pitch displacement and the local
advance coefficient depend on the blade’s position in the wake field.

To evaluate the performance of using the open-water CFD simulations
to model the hydrodynamical loads acting on the CVP propeller blades, the
loads are compared to the hydrodynamical loads determined in Appendix
A. The comparison is made for each of the three pitch trajectories shown
in Figure D.2 and for each of the four local advance coefficient models in
Figure D.11. When evaluating the local advance coefficient, the variation
due to the blade pitch displacement is included. The hydrodynamical loads
for the constant, cosine and variable pitch trajectories are shown in Figure
D.12, Figure D.13 and Figure D.14, respectively, for the four local advance
coefficient models and the URANS CFD simulations from Appendix A. Note
that the open-water CFD simulations do not include the buoyancy load. The
buoyancy load from the water determined in Chapter 2 is therefore added to
the results presented for the hydrodynamical loads.
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Figure D.12: Comparison of the hydrodynamical loads between the open-water models and the
URANS CFD simulation for the constant pitch trajectory. The uncertainty is shown as the shaded
areas.
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Figure D.13: Comparison of the hydrodynamical loads between the open-water models and the
URANS CFD simulation for the cosine pitch trajectory. The uncertainty is shown as the shaded
areas.
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Figure D.14: Comparison of the hydrodynamical loads between the open-water models and the
URANS CFD simulation for the variable pitch trajectory. The uncertainty is shown as the shaded
areas.

Considering the comparison made for the URANS CFD simulation of the
CVP propeller and the open-water models of the CVP propeller in Figure
D.12, Figure D.13 and Figure D.14, it is seen that the best correspondence is
found for the constant pitch trajectory, followed by the cosine pitch trajectory
and then the variable pitch trajectory. This is properly due to the inherent
quasi-steady assumption ensuing from the use of the open-water simulation
to determine the hydrodynamical loads for the CVP propeller. This assump-
tion does not account for the dynamics due to the pitch trajectory. As the
problem becomes more dynamic, with the inclusion of the pitch trajectories,
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the correspondence between the open-water models and the URANS CFD
simulations decreases.

Another aspect of the poor correspondence could be that different wake
fields are used in the two investigations. The modelling of the CVP propeller
using the open-water CFD simulations is based on using the measured effec-
tive wake field. It is not possible to implement this exact wake field in the
URANS CFD simulation of the CVP propeller due to viscous effects. This
results in an error in the wake field, as shown in Section A.2. To determine if
this is the case, the open-water models of the CVP propeller are carried out
again, but where the local advance coefficient is determined using the wake
field used in the URANS CFD simulation of the CVP propeller in Appendix
A. To compare these different model results the root-mean-square error, e, is
determined for each load for the open-water models with respect to the load
from the URANS CFD simulation as:

ei =

√√√√ 2 π

∑
θb=0

(
Li,hydro,OW(θb)− Li,hydro,CFD(θb)

)2
(D.18)

Li,hydro,OW is the hydrodynamical load determined using one of the open-
water models for the i’th load. Li,hydro,CFD is the corresponding hydrody-
namical load determined in the URANS CFD simulation of the CVP pro-
peller. The root-mean-square error determined for each of the open-water
models, using the measured and simulated wake field, is shown in Figure
D.15 for each of the three pitch trajectories.

From Figure D.15 the general tendency is that the open-water models
using the simulated wake field gives a lower root-mean-square error than the
open-water models using the measured wake field. This is not surprising
since all the open-water models tend to overestimate the variation in the
hydrodynamical loads for the constant and cosine pitch trajectory seen in
Figure D.12 and Figure D.13. This is also seen from the open-water model
that tends to give the lowest root-mean-square error for the constant and
cosine pitch trajectory. This is the open-water model that determines the
local advance coefficient using the average advance velocity over the whole
blade i.e. its area. The exception for this is for the torque about the z-axis
where the leading edge model is the best.

For the variable pitch trajectory, the spindle and area open-water models
are similar to each other for the loads Fx, Mx, Fy and My. But the open-water
model using the spindle line generally gives the lowest root-mean-square
error except for the loads Fz and Mz where the leading edge model gives the
lowest root-mean-square error.

If one open-water model should be chosen to determine the performance
of the CVP propeller, then the open-water model that uses the blade area

247



Appendix D. Hydrodynamic Modelling of CVP Propeller Through Open-Water CFD
Simulations

average advance velocity is the best, especially with respect to predicting the
thrust and torque for the propeller and thereby also the efficiency. If the
model is to be used to determine the torque about the z-axis then the open-
water model using the leading edge is better. It is also possible to use both
models to determine the hydrodynamical loads as accurately as possible.
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Figure D.15: Root-mean-square error of the different open-water models for each of the hy-
drodynamical loads and for each pitch trajectory using the measured and CFD simulated wake
field.

Considering the predicted hydrodynamical loads of the CVP propeller
using the open-water model it is generally seen that the variations in the
loads are reduced for the CVP propeller. The mean value and the maximum
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variation in the hydrodynamical loads are shown in Table D.3 when the local
advance coefficient is determined using the blade area average open-water
model for the simulated wake field.

Table D.3: Comparison of the average and maximum variation blade forces and torques for
the different pitch trajectories. ∆̂ is the maximum variation in the forces or torques during one
revolution of the propeller.

Constant Cosine Variable

Fx
[kN]

Avg. 134.9
±0.8
±0.6%

134.6
±0.7
±0.5%

134.7
±0.6
±0.5%

∆̂ 106.9
±2.3
±2.1%

70.0
±1.4
±2.0%

50.9
±1.2
±2.4%

Mx
[kNm]

Avg. −101.5
±0.6
±0.6%

−101.3
±0.6
±0.6%

−102.3
±0.6
±0.6%

∆̂ 59.9
±1.3
±2.2%

35.2
±1.0
±2.7%

58.6
±1.2
±2.0%

Fy
[kN]

Avg. 54.2
±0.6
±1.0%

54.2
±0.6
±1.0%

54.8
±0.6
±1.0%

∆̂ 29.3
±0.9
±3.1%

15.3
±0.9
±5.7%

26.4
±0.9
±3.2%

My
[kNm]

Avg. 248.8
±16.1
±6.5%

247.8
±14.7
±5.9%

247.6
±13.8
±5.6%

∆̂ 185.8
±38.1
±20.5%

120.0
±31.8
±26.5%

91.7
±25.6
±27.9%

Fz
[kN]

Avg. −4.3
±0.2
±4.1%

−4.6
±0.1
±2.5%

−4.5
±0.1
±2.1%

∆̂ 35.3
±0.3
±0.9%

20.9
±0.1
±0.4%

17.5
±0.1
±0.8%

Mz
[kNm]

Avg. 11.1
±0.1
±0.7%

11.6
±2.0
±17.3%

12.1
±2.5
±20.8%

∆̂ 60.4
±0.1
±0.2%

40.3
±1.5
±3.6%

32.2
±1.7
±5.2%

From Table D.3 it is seen that the cosine and variable pitch trajectory re-
duce the amplitude in the load variations when compared to the constant
pitch trajectory. This is one of the benefits of using a CVP propeller. The av-
erage loads are generally the same for all the pitch trajectories. The efficiency
of the propeller should therefore not change significantly for the different
pitch trajectories. The efficiency of the propeller blades using the open-water
models is determined as:

ηp =
Tb Dp

Qb

Jloc,avg

2 π
(D.19)
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Tb is the average blade thrust. Qb is the average blade torque about the x-axis.
Jloc,avg is the average local advance coefficient. Using the values in Table D.3
gives the efficiencies in Table D.4 for each pitch trajectory.

Table D.4: The propeller efficiency for different pitch trajectories using the open-water model
for the CVP propeller

Constant Cosine Variable

ηp 0.6303
±0.0070
±1.12%

0.6300
±0.0065
±1.03%

0.6248
±0.0065
±1.04%

From Table D.4 it is seen that the change in efficiency is within the un-
certainty bounds. But the efficiency for the variable pitch trajectory is lower
than the efficiency for the other pitch trajectories. The relationship between
the efficiency for the different pitch trajectories is similar to those found in
Appendix A.

In conclusion, it is doubtful how applicable these open-water models are
to determine the hydrodynamical loads for the CVP propeller. This is gene-
rally due to the inherent quasi-steady nature of the models, and this results
in overestimating the load variation for the constant pitch trajectory where
the dynamics due to the flow change are not accounted for. For the cosine
and variable pitch trajectories this becomes even more prominent where the
shape of the hydrodynamical loads diverges even more from the URANS
CFD simulation. This is due to the quasi-steady nature of the open-water
model which do not account for the pitch motion.
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Appendix E

Hydrodynamic Modelling of
CVP Propeller Through
Unsteady Foil Theory

Instead of using the computationally costly CFD simulation, to determine
the hydrodynamical loads acting on the CVP propeller blades, it is desired to
make a more computationally efficient model. A number of different meth-
ods exist to compute a propeller’s quasi-steady performance and unsteady
performance in a non-uniform wake field, which has been the primary con-
sideration in propeller analysis so far. In the analysis of the CVP propeller
performance it is also necessary to consider the unsteadiness due to the pitch
motion of the propeller blades. Many of the existing methods to analyse the
propeller performance assume potential flow and may compensate for the
viscosity. Potential flow satisfies Laplace’s equation, which is a linear partial
differential equation and this means that the different solutions can be added
together to solve more complex flow problems. This is shown in Figure E.1
for a foil inclined to a flow. The inclined foil can under the assumption of po-
tential flow be decomposed into a thickness, inclined flat plate and a chamber
flow problem as shown in Figure E.1 [19].
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Figure E.1: Decomposition of the potential flow around an inclined foil in a steady flow field.

The same principle can be utilized for an unsteady moving foil operating
in a varying flow field. The unsteady foil and the decomposition of the
problem is shown in Figure E.2.
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Figure E.2: Decomposition of the potential flow around a foil in unsteady operation.

Figure E.2 shows two sources of unsteadiness. The unsteadiness due to
the pitching motion and the unsteadiness due to a varying flow component
perpendicular to the free stream velocity, also called a gust. The unsteady re-
sponse of the foil due to an unsteady pitch motion and unsteady perpendicu-
lar gust have been solved analytically by Theodore Theodorsen and William
R. Sears in the frequency domain and by Herbert A. Wagner and Hans G.
Küssner in the time domain The methods are described in [15, 38, 62, 92],
amongst others. For the application of these theories to the CVP propeller,
the frequency domain solution is convenient to use when the pitch trajectory
and gust are known. It is therefore well suited for the inverse rigid body
dynamic modelling made in Chapter 2. The time domain solution is instead
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more suited if the system should be modelled using traditional rigid body
dynamics.

In the modelling of the hydrodynamical loads acting on the CVP propeller
blades in this appendix only the unsteady modelling will be considered. The
steady solution is not considered but could be determined by using a lifting
line, amongst others. Using a lifting line method would include the induced
velocities which are therefore not included in this analysis.

This appendix is divided into three sections:

• Section E.1 presents how the wake field is decomposed into its steady
and unsteady components such that the decomposition of the problem
can be made, as shown in Figure E.2.

• Section E.2 presents a number of different models to determine the
unsteady hydrodynamical loads acting on the CVP propeller blades.
Firstly, a model is presented which determines the unsteady loads based
on theories assuming an infinite aspect ratio for the propeller blades.
Secondly, this model is adapted to compensate for the finite aspect ra-
tio of the propeller blades.

• Section E.3 applies the different derived models in Section E.2 on the
case considered in Chapter 2. The hydrodynamical response of the
different models is presented for the three pitch trajectories considered
in Chapter 2 and it is concluded which model is the most appropriate
one to model the hydrodynamicals of the CVP propeller blades.

E.1 Decompositions of Wake Field Velocities

To determine the hydrodynamical loads using unsteady foil theory it is nec-
essary to split the wake field velocities into their steady and unsteady com-
ponents. It is thereby possible to decompose the flow into a steady and
unsteady flow as shown in Figure E.2. The decomposition of the wake field
velocities is shown in Figure E.3. The radial velocity component is neglected
because the unsteady foil theories, applied later, do not account for it.

p
 r

Figure E.3: Decomposition of the wake field velocity components for the flow around the foil.
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In Figure E.3 the steady velocity triangle consists of the steady axial veloc-
ity component, Va, and the steady velocity component due to the propeller
rotation ωp r. The resulting steady free stream velocity, Vf ree, formed by these
two velocities is inclined at the steady advance angle β to the propeller plane.
The unsteady wake field velocity components consist of the unsteady axial
velocity, Ṽa, and the tangential velocity component, Vt. For the wake field
of a ship, the steady velocity components only vary with the radius whereas
the unsteady velocity components also vary with the position in the wake
field, θb. To determine these velocity components, the wake field velocities
are described with a Fourier series as:

va(r, θb) = aa(r, 0)︸ ︷︷ ︸
Va(r)

+
N

∑
n=1

aa(r, n) cos (n θb)︸ ︷︷ ︸
Ṽa(r,θb)

(E.1)

vt(r, θb) =
N

∑
n=1

bt(r, n) sin (n θb) (E.2)

va(r, θb) is the axial velocity distribution in the wake field. aa(r, n) is the even
Fourier series coefficients for the approximation of the axial velocity distri-
bution. The even Fourier series is used because the wake field considered is
assumed to be symmetric for a single screw vessel. vt(r, θb) is the tangential
velocity distribution in the wake field. bt(r, n) is the odd Fourier series coeffi-
cients for the approximation of the tangential velocity distribution. The odd
Fourier series is used because the wake field is assumed to be symmetric. The
tangential velocity component is therefore zero at θb = 0 and π. The Fourier
series coefficients are determined by least-squares approximation to the wake
field velocities. The wake field used is the effective wake field determined in
Section ?? under the operating conditions of the propeller specified in Chap-
ter 2. The resulting decomposition of the wake field velocity components is
shown in Figure E.4. The effective wake field used is shown in Figure E.4a.
The steady axial velocity is shown in Figure E.4b. The unsteady axial and
tangential velocities are shown in Figure E.4c and Figure E.4d, respectively.
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Figure E.4: Decomposition of wake field. (a) Effective measured wake field. (b) Steady axial
wake field velocity, Va(r). (c) Unsteady axial wake field velocity, Ṽa(r, θb). (d) Unsteady tangen-
tail wake field velocity, vt(r, θb).

The unsteady velocities determined from the decomposition of the wake
field must be reformulated before they can be used in the models presented
later. As shown in Figure E.2 the unsteady velocity must be defined as a per-
pendicular gust velocity, wg, with respect to the free stream velocity. This is
shown for the velocity decomposition considered in Figure E.5. From Figure
E.5 it is seen that this results in another parallel gust velocity, vg, with respect
to the free stream velocity.
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p
 r

Figure E.5: Unsteady gust velocities parallel and perpendicular to the free stream velocity.

The free stream velocity, perpendicular gust velocity and the parallel gust
velocity are determined as:

Vf ree(r) =
√(

ωp r
)2

+ Va(r)2 (E.3)

wg(r, θb) = Ṽa(r, θb) cos (β(r))− vt(r, θb) sin (β(r)) (E.4)

vg(r, θb) = Ṽa(r, θb) sin (β(r)) + vt(r, θb) cos (β(r)) (E.5)

Where,

β(r) = arctan
(

Va(r)
ωp r

)
(E.6)

The gust velocities can also be represented as a Fourier series by inserting Eq.
E.1 and Eq. E.2 into Eq. E.4 and Eq. E.5 as:

wg(r, θb) = Ṽa(r, θb) cos (β(r))− vt(r, θb) sin (β(r))

= cos (β(r))
N

∑
n=1

(aa(r, n) cos (n θb))

− sin (β(r))
N

∑
n=1

(bt(r, n) sin (n θb))

=
N

∑
n=1

aa(r, n) cos (β(r))︸ ︷︷ ︸
aw(r,n)

cos (n θb) + (− sin (β(r)) bt(r, n))︸ ︷︷ ︸
bw(r,n)

sin (n θb)

=
N

∑
n=1

aw(r, n) cos (n θb) + bw(r, n) sin (n θb) (E.7)
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vg(r, θb) = Ṽa(r, θb) sin (β(r)) + vt(r, θb) cos (β(r))

= sin (β(r))
N

∑
n=1

(aa(r, n) cos (n θb))

+ cos (β(r))
N

∑
n=1

(bt(r, n) sin (n θb))

=
N

∑
n=1

aa(r, n) sin (β(r))︸ ︷︷ ︸
av(r,n)

cos (n θb) + (cos (β(r)) bt(r, n))︸ ︷︷ ︸
bv(r,n)

sin (n θb)

=
N

∑
n=1

av(r, n) cos (n θb) + bv(r, n) sin (n θb) (E.8)

The resulting decompositions of the wake field into the free stream, perpen-
dicular gust and parallel gust velocities are shown in Figure E.6.

(a)

-3 -2 -1 0
Perpendicular Gust Velocity [m/s]

(b)

-1 -0.5 0 0.5 1
Parallel Gust Velocity [m/s]

(c)

Figure E.6: (a) Free stream velocity. (b) Perpendicular gust velocity. (c) Parallel gust velocity.

From Figure E.6b and Figure E.6c it is seen that the unsteady gust veloci-
ties are not symmetric about the vertical plane. This is because the tangential
velocity component has opposite signs on each side of the vertical plane.

E.2 Dynamic Modelling of the CVP Propeller Us-
ing Unsteady Foil Theory

A number of models are presented in this section which are used to deter-
mine the unsteady hydrodynamical loads acting on the CVP propeller blades.
The section is divided into four subsections:
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• Section E.2.1 describes the modelling of the CVP propeller blades un-
steady hydrodynamical loads due to the pitch motion of the blade. The
model presented is in the frequency domain and is most appropriately
used when the pitch motion is known, as the case considered in Chap-
ter 2.

• Section E.2.2 describes the modelling of the CVP propeller blades un-
steady hydrodynamical loads due to the perpendicular gust. The model
presented is in the frequency domain and is most appropriately used
when the gust variation is known.

• Section E.2.3 presents how the models in Section E.2.1 and Section E.2.2
are adapted to account for the finite aspect ratio of the propeller blades.
The models presented in Section E.2.1 and Section E.2.2 are based on
the blade having an infinitely large aspect ratio such that the effects due
to the third dimension can be neglected. In the adaption of the models
the time domain solution is considered because this is what has been
considered in most previous literature. The time domain solution is
more appropriately used for traditional rigid body dynamic modelling.

• Section E.2.4 discusses the problem with including the parallel gust in
the modelling of the CVP propeller blade’s hydrodynamical response.

E.2.1 Unsteadiness due to Pitching Motion

The unsteadiness of a moving foil was solved by Theodorsen and Wagner for
the frequency and time domain, respectively. For now, only the solution by
Theodorsen is considered. The theories assume inviscid, incompressible, two
dimensional flow, subjected to small perturbations in the angle of attack and
a planar shedded wake extending downstream towards infinity convected at
the free stream velocity as shown in Figure E.7.

b

w

p
V

free

Figure E.7: Principle of Theodorsen and Wagner’s assumption for the solution of moving foil in
a constant stream. The figure is based on [62].

Theodorsen also includes the response due to a plunging motion of the
foil. For the CVP propeller there is no plunge motion of the foil and it is there-
fore neglected. The frequency solution by Theodorsen gives the lift force, FL,
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and pitch torque about the pitch axis, Mp, per unit span as [15, 62]:

FL =π ρ b2
(

Vf ree α̇− b a α̈
)

︸ ︷︷ ︸
Non-circulative

+ 2 π ρ Vf ree b
(

Vf ree α + b
(

1
2
− a
)

α̇

)
C(k)︸ ︷︷ ︸

Circulative

(E.9)

Mp =π ρ b3
((

a− 1
2

)
Vf ree α̇− b

(
1
8
+ a2

)
α̈

)
︸ ︷︷ ︸

Non-circulative

+ 2 π ρ Vf ree b2
(

1
2
+ a
) (

Vf ree α + b
(

1
2
− a
)

α̇

)
C(k)︸ ︷︷ ︸

Circulative

(E.10)

ρ is the density of the fluid. b is the half chord (b = c/2 where c is the foil
chord length). α is the change in angle of attack which for the CVP propeller
is equal to the pitch displacement. α̇ and α̈ are the rate and acceleration
respectively for the angle of attack which for the CVP propeller is equal to
the pitch rate and acceleration, respectively. a is the relative position of the
pitch axis relative to the mid chord point defined as:

a = 0 pitch axis is at the mid chord point

0 <a < 1 pitch axis between the mid chord point and the TE

0 >a > −1 pitch axis between the mid chord point and the LE

Where,

a =
θs r
b

=
lskew

b
(E.11)

θs is the skew angle. r is the radial position of the foil section. lskew is the
length of the skew along the chord line.

C(k) is Theodorsen’s function. Theodorsen’s function accounts for the
historical effect of the shedded circulation into the wake of the foil as shown
in Figure E.7 and is determined as [62]:

C(k) = F(k) + iG(k) (E.12)
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Where,

F(k) =
J1(k) (J1(k) + Y0) + Y1 (Y1(k)− J0(k))

(J1(k) + Y0(k))
2 + (J0(k)−Y1(k))

2 (E.13)

G(k) = − Y1(k) Y0(k) + J1(k) J0(k)

(J1(k) + Y0(k))
2 + (J0(k)−Y1(k))

2 (E.14)

F(k) is the real part of Theodorsen’s function. G(k) is the magnitude of
the imaginary part of Theodorsen’ s function. Jx(k) and Yx(k) are Bessel
functions of the first and second kind, respectively. k is the reduced frequency
of the periodic motion and is determined as [62]:

k =
ωosc c
2 Vf ree

=
n ωp c
2 Vf ree

(E.15)

ωosc is the frequency of pitch oscillation in [rad/s]. If the motion is described
by a Fourier series with the fundamental frequency ωp, then the oscillation
frequency for the n’th harmonic is determined as ωosc = n ωp. The reduced
frequency depends on both the geometry of the foil and the flow conditions
around it. The reduced frequency is shown in Figure E.8 as a function of the
blade radius for each of the harmonics.
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Figure E.8: Reduced frequency of the propeller blade.

The Nyquist and Bode plot of Theodorsen’s function are shown in Figure
E.9.
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Figure E.9: (a) Nyquist diagram of Theodorsen’s function. (b) Bode diagram of Theodorsen’s
function.

From Figure E.9 it is seen that the magnitude of Theodorsen’s function
decreases as the reduced frequency increases. The magnitude goes toward
an asymptote at -6 dB or 0.5 as the reduced frequency goes towards infinity.
The phase of Theordorsen’s function starts to lag as the reduced frequency
increases until it reaches a minimum from which the lag goes towards zero
as the reduced frequency goes towards infinite. Considering the reduced
frequencies in Figure E.8, which are between 0.5 to 4.5, then it is seen that
the gain of Theodorsen’s function is between 0.5 to 0.6. This means that the
unsteady lift is about 0.5 to 0.6 of the quasi-steady lift.

The expressions for the lift and the pitch torque in Eq. E.9 and Eq. E.10
are divided into two terms, a circulative and a non-circulative term. The
circulative term is the one associated with the circulation around the foil and
the circulation in the wake. The non-circulative terms are due to the time
varying flow creating pressure forces not related to the circulation.

Determining the lift force and pitch torque using Theodorsen’s method is
only applicable for two-dimensional foils or for infinitely long wings. In the
modelling of the CVP propeller Theodorsen’s method is applied strip-wise to
each radial section of the propeller blade. The parameters that vary radially
are the chord length, the skew length and the free stream velocity. The re-
sulting forces and torques acting on the blade are determined by integrating
the responses over the whole blade. When integrating the response over all
the sections, the forces and torques also needs to be projected to the desired
coordinate system. The desired coordinate system is the propeller coordinate
system for the blade as described in Section 2.1. The unsteady hydrodynam-
ical forces and torques due to the pitching motion of the propeller blades are
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determined as:

Fx,p =
∫ rp

rh

FL(r) cos (β(r)) dr , Mx,p = −
∫ rp

rh

FL(r) sin (β(r)) r dr

Fy,p =
∫ rp

rh

FL(r) sin (β(r)) dr , My,p =
∫ rp

rh

FL(r) cos (β(r)) r dr

Fz,p = 0 , Mz,p =
∫ rp

rh

Mp(r) dr (E.16)

The torque about the z-axis determined with Eq. E.16 will overestimate the
torque because the equation does not account for the projection of the foil on
to the concentric surfaces of the propeller as described in Chapter 1.1.

E.2.2 Unsteadiness due to Perpendicular Gusts

The unsteadiness due to a gust perpendicular to the free stream velocity act-
ing on a flat plate has been solved by Sears and Küssner. Sears and Küssner
solved the problem in the frequency and the time domain, respectively. For
Sears’ solution this means that the perpendicular gust is periodically varying,
as shown in Figure E.10. For Küssner the perpendicular gust is a sharp edged
gust similar to a step input. Both Sears and Küssner make the same assump-
tion as Theodorson and Wagner made for the solution of the unsteadiness
due to a moving flat plate. The assumptions are that the flow is inviscid, in-
compressible and exposed to small gust disturbances with a planar shedded
wake convected at the free stream velocity. The flow problem considered by
Sears is sketched in Figure E.10.

w
g

b

w

V
free

Figure E.10: Principle of the flat plate exposed to a perpendicular oscillating gust considered by
Sears. The figure is based on [62].

The lift force and pitch torque per unit span are according to Sears given
as [15]:

FL = −2 π ρ b Vf ree wg S(kg) (E.17)

Mp = FL

(
1
2
+ a
)

b

= −2 π ρ b2 Vf ree wg

(
1
2
+ a
)

S(kg) (E.18)
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wg is the perpendicular oscillating gust velocity. S(kg) is Sears’ function
accounting for the time history due to the shedded circulation into the wake.
kg is the reduced frequency of the gust and is calculated using Eq. E.15. For
the CVP propeller kg is the same as the reduced frequency k used for the
oscillating flat plate in Section E.2.1. Sears’ function is given as [15, 62]:

S(kg) =
(

J0(kg)− i J1(kg)
)

C(kg) + i J1(kg) (E.19)

C(kg) is Theodorsen’s function evaluated at the reduced frequency of the
gust. Jx is the Bessel function of the first kind. Sears’ function is applicable
when the gust is defined relative to the mid-chord point of the foil. For
the propeller the gust is defined relative to the spindle axis instead of the
mid-chord line (i.e. skew line). This gives some phase to Sears’ function. The
phase shifted Sears’ functions (Ss(kg)) real and imaginary parts are determine
as [62]:

<
(
Ss(kg)

)
= <

(
S(kg)

)
cos (ks) +=

(
S(kg)

)
sin (ks) (E.20)

=
(
Ss(kg)

)
= −<

(
S(kg)

)
sin (ks) +=

(
S(kg)

)
cos (ks) (E.21)

< (Ss) is the real part of the phase shifted Sears’ function. = (Ss) is the imagi-
nary part of the phase shifted Sears’ function. Ss is the shifted Sears’ function
which substitutes S(kg) in Eq. E.17 and Eq. E.18. ks is the reduced shift fre-
quency and is determined as:

ks =
ωosc a b

Vf ree
=

n ωp lskew

Vf ree
(E.22)

The Nyquist and Bode plot of Sears’ function are shown in Figure E.11a and
Figure E.11b, respectively. The plots also include the phase shifted Sears’
function, when it is shifted to the leading edge (LE) and the trailing edge
(TE).
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Figure E.11: (a) Nyquist plot of Sears’ function for different phase shifts of the function. (b)
Bode plot of Sears’ function for different phase shifts of the function.
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Theodorsen’s function and Sears’ function both lie on the real axis at
one when the reduced frequency is zero as the reduced frequency increases,
Theodorsen’s function goes toward 0.5 on the real axis whilst Sears’ function
goes toward zero.

Eq. E.17 and Eq. E.18 are the lift and pitch torque for a unit span foil.
To get the unsteady forces and torques acting on the whole blade, the lift
and torque have to be projected onto the axis of the coordinate system and
integrated over the whole span of the blade using Eq. E.16.

E.2.3 Compensation for Three-Dimensional Effects

The response due to the unsteadiness described in the above two sections
assumes that the aspect ratio of the blade is infinitely large. This assump-
tion is not appropriate for the propeller blades where the aspect ratio is sig-
nificantly smaller. For the case considered, the aspect ratio of the blade is
approximately 1.06 when the aspect ratio, AR, is determined as:

AR =
span2

wing area
=

(
rp − rh

)2∫ rp
rh

c(r) dr
(E.23)

For elliptically loaded wings, the lift coefficient for the wing, CL,wing, is typi-
cally compensated for by its aspect ratio as [15]:

CL,wing = 2 π α︸ ︷︷ ︸
CL

AR
AR + 2

(E.24)

CL is the lift coefficient for a foil section when only considering two-dimensional
flow. This compensation is due to the altered circulation about the wing due
to it being finite. If the propeller blade is assumed to be elliptically loaded,
then the circulative lift should be compensated for by a gain of 0.347. For the
unsteady response of the foil described in the above two sections, the finite
aspect ratio of the blade influences both the amplitude and the phase of the
circulative terms. The finite aspect ratio compensation for unsteady response
has primarily been made for the time domain solution by [54] which is also
described in [15, 92]. The time domain equivalent for the circulative terms to
Theodorsen and Sears is solved by Wagner and Küssner, respectively. Wag-
ner’s and Küssner’s solutions are the solution to a step change in the angle of
attack and a sharp edged gust, respectively. The dynamics of the circulative
terms in the frequency domain in Theodorsen (α C(k) and α̇ C(k)) and Sears
(wg S(k)) can be replaced by an effective angle of attack (αe(t)), effective rate
of angle of attack (α̇e(t)) and effective gust (wg,e(t)) in the time domain. These
effective terms are determined by the convolution integral typically used to
evaluate the response of a dynamic system. By using the convolution inte-
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gral to evaluate the response, the lift and pitch torque can be determined for
any arbitrary input of the angle of attacks and gusts. The effective terms are
determined as:

αe(s) = α(0) φ(s) +
∫ s

0

dα(s̃)
dt

φ(s− s̃) ds̃ (E.25)

α̇e(s) = α̇(0) φ(s) +
∫ s

0

dα̇(s̃)
dt

φ(s− s̃) ds̃ (E.26)

wg,e(s) = wg(0) ψ(s) +
∫ s

0

dwg(s̃)
dt

ψ(s− s̃) ds̃ (E.27)

φ and ψ are Wagner’s and Küssner’s functions, respectively. s̃ is a dummy
variable for time integration. s is the reduced time determined as:

s =
2 Vf ree t

c
(E.28)

Wagner’s and Küssner’s functions can be determined explicitly from Theodorsen’s
and Sears’ functions as [24]:

φ(s) = 1 +
1

2 π i

∫ ∞

−∞

C(k)− 1
k

ei k sdk for s > 0 (E.29)

ψ(s) = 1 +
1

2 π i

∫ ∞

−∞

S(k)− 1
k

ei k sdk for s > 0 (E.30)

In practice Wagner’s and Küssner’s functions are typically approximated by
an exponential function or a fraction function as [62]:

φ(s) ≈ 1− 0.165 e−0.041 s − 0.335 e−0.32 s (E.31)

φ(s) ≈ s + 2
s + 4

(E.32)

ψ(s) ≈ 1− 0.5 e−0.13 s − 0.5 e−1 s (E.33)

ψ(s) ≈ s2 + s
s2 + 2.82 s + 0.8

(E.34)

Wagner’s and Küssner’s exponential approximations are shown in Figure
E.12.
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Figure E.12: Wagner’s and Küssner’s exponential approximations.

From Figure E.12 it is seen that Wagner’s function starts initially at 0.5
and then goes towards 1 at infinite reduced time. Küssner’s function starts
at 0 and goes towards 1 at infinite reduced time. For Wagner’s function this
means that half the quasi-steady lift and pitch torque are obtained instantly
for a step change in the angle of attack which is also seen from the Bode plot
of Theodorsen’s function in Figure E.9. If the lift and pitch torque response
are evaluated for a step change in the angle of attack, then the initial lift and
torque will be infinite at the time of the step change due to the non-circulative
effects.

The exponential approximation of Wagner’s and Küssner’s functions are
used in [54, 92] to account for the finite aspect ratio. The general expression
used for the Wagner’s and Küssner’s functions are [92]:

φ(s)

ψ(s)

}
= b0 − b1 e−β1 s − b2 e−β2 s − b3 e−β3 s (E.35)

The coefficients bx and βx depend on the aspect ratio of the blade and are
given in Table E.1.

Table E.1: Coefficient values for Wagner’s and Küssner’s functions for different aspect ratios
according to [92].

Function
Aspect
Ratio

b0 b1 b2 b3 β1 β2 β3

φ
3 0.6 0.17 0 0 0.54 - -
6 0.74 0.267 0 0 0.381 - -
∞ 1 0.165 0.335 0 0.0455 0.3 -

ψ
3 0.6 0.407 0.136 0 0.558 3.2 -
6 0.75 0.336 0.204 0.145 0.290 0.725 3
∞ 1 0.236 0.513 0.171 0.058 0.364 2.42
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Wagner’s and Küssner’s functions are shown in Figure E.13 for different
aspect ratios using Eq. E.35 and the coefficients in Table E.1.
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Figure E.13: Wagner’s and Küssner’s functions compensated for different aspect ratios.

From Table E.1 and Figure E.13 it is seen that the value towards an in-
finite reduced time for both Wagner’s and Küssner’s function matches with
AR/(AR + 2). In [24] Wagner’s and Küssner’s functions are defined nor-
malised by AR/(AR + 2) such that the functions vary from zero to one. The
normalized Wagner’s and Küssner’s functions are defined for a blade with
an aspect ratio of zero in [24] as:

φ(s) =

{
1 for s > 0
0 otherwise

(E.36)

ψ(s) =


s (2− s) for 0 ≤ s ≤ 1
1 for s > 1
0 otherwise

(E.37)

The normalised Wagner’s and Küssner’s functions are shown in Figure E.14.
It is seen that Wagner’s function is a step function and Küssner’s function is
seen to have some transition due to the gust having to travel over the whole
length of the foil before being fully developed.
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Figure E.14: Normalized Wagner’s and Küssner’s functions for different aspect ratios.

Wagner’s and Küssner’s functions for the aspect ratio of the propeller
blade are determined through a spline function interpolated from the curves
shown in Figure E.14. This interpolated curve is scaled by AR/(AR + 2)
and fitted to the exponential function in Eq. E.35. The exponential function
is determined such that its coefficients are positive. The resulting Wagner’s
and Küssner’s functions for the aspect ratio of the propeller blade are shown
in Figure E.15.
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Figure E.15: Wagner’s and Küssner’s functions for the propeller blade’s aspect ratio.

The exponential fitted function of Wagner’s and Küssner’s functions are
re-written into the frequency domain. The same solver can thereby be used to
evaluate the unsteady hydrodynamical loads as in Section E.2.1 and Section
E.2.2. To determine the frequency representation of Wagner’s and Küssner’s
functions, the method in [24] is used as:

CAR(k) = 1 + i k
∫ ∞

0
(φ(s̃)− 1) e−i k s̃ ds̃ (E.38)

SAR(k) = 1 + i k
∫ ∞

0
(ψ(s̃)− 1) e−i k s̃ ds̃ (E.39)
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Because Wagner’s and Küssner’s functions are defined with an exponential
function, the frequency domain solution for both Theodorsen’s and Sears’
functions can be written as:

CAR(k)

SAR(k)

}
= b0 −

b1 k i
β1 + k i

− b2 k i
β2 + k i

− b3 k i
β3 + k i

(E.40)

The Sears’ function determined from Eq. E.39 is with respect to the leading
edge of the blade. To get the Sears’ function with respect to the mid-chord
point, as it is defined in Section E.2.2, it has to be rewritten by using Eq. E.20
and Eq. E.21 with the reduced shift frequency equal to −k. The Nyquist plot
of the resulting Theodorsen’s and Sears’ functions compensated for the finite
aspect ratio of the blade is shown in Figure E.16.
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Figure E.16: Nyquist plot of Theodorsen’s and Sears’ functions for the propeller blade’s aspect
ratio.

From Figure E.16 it is seen that the variation in Thedorsen’s function is
reduced significantly. The maximum phase lag is less than 4◦ and amplitude
varies between 0.3 to 0.35. Depending on the required accuracy of the func-
tion it could be assumed to be a simple gain. For Sears’ function the phase
becomes larger faster than for the original Sears’ function and the gain is also
reduced.

The compensation for the finite aspect ratio so far has only been made
with respect to the circulative effects and not the non-circulative effects. This
is because the finite aspect ratio of the blade only influences the circulation
shedded into the wake and since the non-circulative terms are not affected
by the wake, they are not affected by the finite aspect ratio. This is based on
a theory for wings of moderate to large aspect ratios and has been shown to
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agree well for wings with aspect ratio of two [15, 92]. It may be that this is
not the case for the low aspect ratio of the propeller blade.

E.2.4 Response for unsteadiness due to parallel gust

The parallel gust is problematic to incorporate into the models presented in
the above sections. This is because the parallel gust violates the assumption
made with the shedded vorticity in the wake being conducted at the constant
rate of the free stream velocity. The parallel gust results in the shedded
vorticity being convected at a varying velocity in the wake. In [62] a review
of different methods to account for the parallel gust is made. Common for
these methods is that they represent a fore-aft motion of the foil instead of the
parallel gust. For helicopter rotors this is an appropriate approximation [62].
This may not be the case for a ship propeller. The parallel gust is therefore
not included. This may lead to a difference in the hydrodynamical loads
determined with this model but it is expected to be relativelyy small, and
this is because the parallel gust is relatively small compared to the free stream
velocity, as shown in Figure E.6.

E.3 Application and Comparison of CVP Propeller
Model

The above models for the unsteady hydrodynamical loads are applied on the
propeller case considered in Chapter 2. Different variations of the models
have been derived and the results from these different models are presented
in this section. The model results are compared with the hydrodynamical
loads determined in Appendix A to assess the models accuracy. To make this
comparison, the simulated wake field used in the CFD simulation determined
in Section A.2 is used. The mean of the hydrodynamical loads of the CFD
simulations are subtracted from the CFD results such that it is only the un-
steady components that are compared. Furthermore, the contribution from
the hydrostatic pressure determined in Section 2.7 is added to the unsteady
hydrodynamical loads determined using the models presented to make the
comparison fair.

For the constant pitch trajectory the modelling of the unsteady hydrody-
namical loads are made using Sears’ gust models. There is no contribution
from Theodorsen’s model because the propeller blade is fixed. Three dif-
ferent variations of the gust model are used for the comparison with the
hydrodynamical loads of the CFD simulation of the CVP propeller. These
three variations are:
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• Using Sears’ model as presented in Section E.2.2 and thereby not ac-
count for the finite aspect ratio of the blade. This model is noted in the
presented results as Sears2D.

• Using Sears’ model as presented in Section E.2.2 but scaling the lift
and torque by AR/(AR + 2) to compensate for the change in slope of
the lift coefficient and under the assumption of an elliptically loaded
blade. The change in the dynamics of Sears’ function is therefore not
accounted for. This model is noted in the presented results as Sears2D-
AR.

• Using Sears’ model compensated for the finite aspect ratio of the blade
as presented in Section E.2.3 and thereby accounting for the change in
Sears’ function. This model is noted in the presented results as Sears3D.

The results for using these three variations of gust model are presented in
Figure E.17 together with the unsteady hydrodynamical loads from the CFD
simulation of the propeller with a constant pitch trajectory.

From Figure E.17 it is seen that the shape of the forces and torques along
and about the x- and y-axes fit well with the CFD simulation, but with the
amplitude diverging. The variation in the force along the z-axis is due to the
hydrostatic pressure only and it does not match well with the CFD simula-
tion. For the torque about the z-axis it is seen that there is a significant phase
difference between the analytical models and the CFD simulation.

From Figure E.17 it is seen that Sears2D has the largest amplitude fol-
lowed by Sears3D and with Sears2D-AR having the smallest amplitude. That
Sears2D has the largest amplitude is not surprising since the lift slope is not
compensated for due to the finite aspect ratio of the blade. The amplitude
of Sears3D is larger than Sears2D-AR even though they have the same steady
gain. The differences between these two models are due to the difference in
the Sears’ function used for the models. The amplitude of Sears’ function
for Sears2D-AR decreases faster as a function of the reduced frequency than
the amplitude for the Sears’ function used for Sears3D. For the same reduced
frequencies this results in the amplitudes of Sears3D being larger than the
amplitude of Sears2D-AR. The model Sears2D-AR generally fits the model
the best with the exception for the torque about the z-axis. This indicates
that the compensation of Sears’ function due to the finite aspect ratio may
not be appropriate.
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Figure E.17: Comparision of the unsteady hydrodynamical loads between the URANS CFD
simulation and the analytical models for the CVP propeller with the constant pitch trajectory.

For Sears2D-AR it is seen that the x-force and the y-torque are slightly
overestimated and the y-force and x-torque are slightly underestimated. This
may be due to the advance angle, β, being used instead of the hydrodynam-
ical pitch angle for the projection of the lift force. The hydrodynamical pitch
angle accounts for the induced velocities. If the induced velocities were in-
cluded, then the angle used for the projection increases which will reduce the
x-force and the y-torque and increase the y-force and x-torque. The induced
velocities could be included by, for example, using a lifting line to solve the
steady flow around the propeller blades.
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For the cosine and variable pitch trajectories the analytical models that
account for the pitch motion of the blade have to be included. The un-
steady hydrodynamical loads due to the pitching motion are modelled with
Theodorsen’s method and are added to hydrodynamical loads of the gust
model to get the resulting unsteady hydrodynamical loads acting on the pro-
peller blade. Different variations of the model for the pitch motion have been
presented through the above sections. These different variations are:

• Using Theordorsen’s model as presented in Section E.2.1 and thereby
not accounting for the finite aspect ratio of the blade. This model is
superimposed on the Sears2D gust model. This model is noted in the
presented results as Theo2D.

• Using Theordorsen’s model as presented in Section E.2.1 but compen-
sating the circulative terms by AR/(AR + 2). This model is super-
imposed on the Sears2D-AR gust model. This model is noted in the
presented results as Theo2D-AR.

• Using Theordorsen’s model as presented in Section E.2.3 compensating
for the finite aspect ratio of propeller blade. This model is superim-
posed on the Sears3D gust model. This model is noted in the presented
results as Theo3D.

The results for the unsteady hydrodynamical loads using the analytical mod-
els above are shown in Figure E.18 and Figure E.19 for the cosine and variable
pitch trajectory, respectively.
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Figure E.18: Comparision of the unsteady hydrodynamical loads between the URANS CFD
simulation and the analytical models for the CVP propeller with the cosine pitch trajectory.
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Figure E.19: Comparision of the unsteady hydrodynamical loads between the URANS CFD
simulation and the analytical models for the CVP propeller with the variable pitch trajectory.

From Figure E.19, for the variable pitch trajectory, it is seen that all the
models have a shape that corresponds with the shape of the loads from the
CFD simulation. There is some phase difference between the analytical model
and the CFD simulation; the analytical models tend to lead relative to the
CFD simulation. It is seen that the x-force, y-torque and z-torque are over-
estimated and the y-force and x-torque are slightly underestimated. A better
overall correspondence may be obtained if the hydrodynamical pitch angle
was used instead. This would increase the y-force and x-torque and decrease
the x-force and y-torque.
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From Figure E.18 for the cosine pitch trajectory it is seen that the shape of
the loads for the analytical models do not fit the shape of the CFD simulation
as well as for the constant and variable pitch trajectory. The reason for this
poorer fit may be due to the variation in the loads being the smallest for the
cosine pitch trajectory. If there are any unsteady effects that are not accounted
for by the analytical models, then these effects become more prominent for
the cosine pitch trajectory than for the other pitch trajectories. This could,
amongst others, be due to:

• Not accounting for the unsteadiness due to the parallel gust.
• Not accounting for the helically shaped shedded wake for a propeller.

For the analytical models the shedded wake is assumed to be planar.
• Not accounting for the viscous effects.
• Not accounting for the interaction effect between the propeller blades.

To compare the analytical models, the root-mean-square error is determined
for each hydrodynamical load for each model and for each pitch trajectory
as:

ei =

√√√√ 2 π

∑
θb=0

(
Li,hydro,A(θb)− Li,hydro,CFD(θb)

)2
(E.41)

ei is the root-mean-square error of the i’th hydrodynamical load. Li,hydro,A is
the i’th hydrodynamical load determined using one of the analytical models.
Lhydro,CFD is the corresponding hydrodynamical load from the CFD simula-
tion of the CVP propeller. The determined root-mean-square error for each
of the analytical models is shown in Figure E.20 for each of the three pitch
trajectories and each of the hydrodynamical loads.

From Figure E.20 it is seen that the analytical models Sears2D-AR and
Theo2D-AR generally yield the lowest root-mean-square error. That these
models fit the best for the cosine and variable pitch trajectory may be due to
the corresponding gust model having the lowest root-mean-square error.
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Figure E.20: Root-mean-square error of the different analytical models for each of the hydrody-
namical loads and for each of the pitch trajectories.

For the analytical model to be useful for determining the optimum pitch
trajectory for the CVP propeller requires that the model accurately predicts
the unsteady hydrodynamical loads. It can be discussed if the analytical
models presented are good enough in this regard. Alternatively, the analyt-
ical model may be used if it generally determines the correct shape of the
hydrodynamical loads and it just has to be scaled to get the correct value.
Then the analytical model can still be used to determine the optimum pitch
trajectory. This is not the case with the models presented due to there being
some phase difference and some mismatch in the shape for the cosine pitch
trajectory. The analytical model may still be usable as an initial method to
determine the optimal pitch trajectory for the CVP propeller due to its low
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computational costs. This initial determined optimum pitch trajectory can
then be used as an initial pitch trajectory for a more computationally expen-
sive method to determine the optimum pitch trajectory.
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Hydrodynamic Modelling of
CVP Propeller using
Empirical Transfer Function
Estimation

In Appendix A three URANS CFD simulations were presented for the CVP
propeller for three different pitch trajectories. The unsteadiness of these
hydrodynamical loads can be used to determine the dynamics of the CVP
propeller through the use of system identification. A number of different
methods exist in the field system identification that can be used to determine
the dynamics of a system. Both linear and non-linear system identification
methods exist but in this appendix a linear system identification method is
used. This method is based on the Fourier series of the input and output
signal. This Fourier series system identification method is used because both
the input pitch trajectory and the output hydrodynamical loads are cyclically
varying with the fundamental frequency of the propeller’s rate of revolution.
The Fourier series based system identification method therefore seems to be
an appropriate method to use for the CVP propeller.
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F.1 Determining the Empirical Transfer Function
Estimation

The principle of the system identification method using Fourier Series is that
the system dynamics can be determined as [64]:

G(ω) =
Y(ω)

U(ω)
(F.1)

G(ω) is the empirical transfer function estimate of the system at the fre-
quency ω. Y(ω) is the complex coefficient of the Fourier series of the output
signal at the frequency ω. The output is the hydrodynamical loads acting
on the CVP propeller blades. U(ω) is the complex coefficient of the Fourier
series of the input signal at the frequency ω. The input is the pitch of the
propeller blade. The empirical transfer function can also alternatively be de-
termined as the amplitude ratio between the output and input and the phase
difference between them. The frequencies for which the empirical transfer
function can be determined are the frequencies contained in the input signal.
For the URANS CFD simulations made in Appendix A of the CVP propeller,
the three pitch trajectories include the 0th, 1st and 7th harmonics. This is for
the constant, cosine and variable pitch trajectory, respectively. For the con-
stant pitch trajectory it is not possible to determine anything about the system
dynamics but the output still varies cyclically. It is therefore assumed that un-
steadiness due to the wake field and the unsteadiness of the pitch trajectory
are independent of each other and they can be superimposed onto each other
to get the response of the CVP propeller. This is similar to the approach used
in Appendix E. The hydrodynamical loads from the simulation with constant
pitch trajectory are therefore subtracted from the hydrodynamical loads from
the cosine and variable pitch trajectory as:

L̃traj(θb) = LCFD,traj(θb)− LCFD,const(θb) (F.2)

L̃traj is the unsteadiness in the hydrodynamical load due to the pitch trajec-
tory (traj) which can either be the cosine or variable pitch trajectory. LCFD,traj
is the hydrodynamical load of the URANS CFD simulation of the CVP pro-
peller with either the cosine or variable pitch trajectory. LCFD,const is the
hydrodynamical load of the URANS CFD simulation of the CVP propeller
with a constant pitch trajectory. The number of harmonics used to determine
the Fourier series of the output is the same number of harmonics that is in-
cluded in the pitch trajectory. The Fourier series approximated for the cosine
and variable pitch trajectory are made using least-squares estimation of the
Fourier coefficients. The unsteady hydrodynamical loads and the Fourier se-
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ries estimation of it are shown in Figure F.1 for both the cosine and variable
pitch trajectory.

Figure F.1: Comparision of the unsteady hydrodynamical loads due to the pitching motion and
the corresponding estimate Fourier series.

From Figure F.1 it is seen that the estimated Fourier series is able to cap-
ture the unsteady hydrodynamical loads well. This shows that the unsteadi-
ness in the hydrodynamical loads is generally linear with respect to the pitch
motion. The blade positions, where the Fourier series does not match the
simulation results exactly, are within the uncertainty bounds of the simu-
lation. From the estimated Fourier series the empirical transfer function is
determined for each frequency component of the input signal. The empiri-
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cal transfer function is shown in a Nyquist plot in Figure F.2 for each of the
hydrodynamical loads, for each of the pitch trajectories.
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Figure F.2: Nyquist plot of the empirical transfer function.

From Figure F.2 it is seen that the shape of the Nyquist plot is similar
for the x-force and y-torque, and similar for the x-torque and the y-force.
This shows that the y-torque is highly coupled with the x-force and the x-
torque is highly coupled with the y-force. Furthermore, it is also seen that
the first harmonic component of the system for the cosine and variable pitch
trajectories coincide with each other. This supports the assumption that the
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unsteadiness in the hydrodynamical loads has a linear relationship with the
pitch trajectory.

The unsteady hydrodynamical loads due to the pitch trajectory can be
determined for up to the 7th harmonic of the pitch trajectory for the system
considered. The hydrodynamical loads are determined for each harmonic as:

Y(ω) = G(ω) U(ω) (F.3)

The unsteady hydrodynamical loads for each harmonic are superimposed
onto each other to get a single signal for the unsteady hydrodynamical load.
For the optimal pitch trajectory for the CVP propeller, the unsteady load
should be equal to the unsteady load due to the non-uniform wake field, but
with a sign change. The sum of unsteady loads due to the pitch motion and
the non-uniform wake field thereby equals zero.
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Appendix G

Hydrodynamic Modelling of
CVP Propeller Through a
Reduced Model

The URANS CFD simulation of the CVP propeller in Appendix A has six
degrees of freedom for each cell in the mesh. A reduced model for the hy-
drodynamical loads is a model which has fewer degrees of freedom which
gives similar results. The reduced model made in this appendix is inspired
by the model made in Appendix E which uses unsteady foil theory to model
the hydrodynamical loads acting on the CVP propeller. The model structure
used in Appendix E is used for the reduced model, but the model parameters
are determined through a number of CFD simulations. The model therefore
keeps the physical structure which can be beneficial when analysing the sys-
tem. The reduced model is also used to account for some of the effects that
are neglected in Appendix E, such as the helically structured wake, viscous
effects and the blades influence on each other. The reduced model is a grey
box modelling approach where the model made in Appendix F is a black box
model where the physical understanding is lost. This appendix is divided
into five sections which are:

• Section G.1 presents the model structure for the reduced model for
modelling the hydrodynamical loads acting on the CVP propeller. The
reduced model is divided into three components which have to be de-
termined through CFD simulations. These components are described
in the following three sections.

• Section G.2 presents the determination of the reduced model compo-
nent due to the steady circulative effects. These are determined through
a series of quasi-steady CFD simulations of the propeller.
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• Section G.3 presents how the dynamic build-up of the circulative effects
is determined due to the pitch motion. This is determined through an
unsteady CFD simulation where a step change in the pitch is made.

• Section G.4 presents the determination of the reduced model compo-
nent due to the non-circulative effects. These are determined by fitting
the reduced model to the URANS CFD simulation results of the CVP
propeller.

• Section G.5 presents the results for the hydrodynamical loads when the
reduced model is applied on the propeller considered in Chapter 2 for
its three pitch trajectories.

G.1 Reduced Model Structure

The reduced model is made for the ship and the propeller speeds used for
the propeller case considered in Chapter 2. The purpose of the model is to
determine the unsteady hydrodynamical loads due to the pitch trajectory and
is inspired by the model structure in Appendix E. The input to the model is
therefore the pitch trajectory of the propeller blades and the output is the
hydrodynamical loads. The structure for the reduced model is:

Lx,i = KNC,α̈ α̈p,x + KNC,α̇ α̇p,x + KC(αp,e, α̇p,e) (G.1)

Lx,i is the i’th hydrodynamical load modelled for the x’th blade of the pro-
peller i.e. 1-4. KNC,α̈ KNC,α̈ are the non-circulative gains for the pitch accel-
eration (α̈p,x) and pitch rate α̇p,x, respectively. KC is a regression model for
the circulative effects which uses the effective pitch displacement and effec-
tive pitch rate for all the blades. The effective pitch displacement and pitch
rate for all the blades are collected in the vectors αp,e and α̇p,e, respectively.
The effective pitch displacement and pitch rate are determined through the
convolution integral as:

αp,e,x(t) = αp,x(0) φ(t) +
∫ t

0
α̇p,x(t̃) φ(t− t̃)dt̃ = αp,x ∗ φ (G.2)

α̇p,e,x(t) = α̇p,x(0) φ(t) +
∫ t

0
α̈p,x(t̃) φ(t− t̃)dt̃ = α̇p,x ∗ φ (G.3)

αp,e,x and α̇p,e,x are the effective pitch displacement and pitch rate, respec-
tively, for the x’th blade. φ is the step response of the system for the circula-
tive effects similar to Wagner’s function in Appendix E.

The parameters that have to be determined for the reduced model are
KNC,α̈, KNC,α̇, KC and φ. Determining the parameters through CFD simu-
lations ensures that the effects, neglected in Appendix E, are accounted for
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such as the helical wake, viscosity and the influence each blade has on the
other blades.

G.2 Determination of Circulative Effects

For the reduced model the circulative parts of the hydrodynamical loads
are determined through a regression model. This regression model is made
through a series of quasi-steady CFD simulations. The CFD simulations are
made using the steady axial wake field determined in Appendix E thereby
neglecting the unsteady components of the non-uniform wake field. The do-
main for the quasi-steady CFD simulations is shown in Figure G.1.

Figure G.1: The domain used for the quasi-steady CFD simulations of the propeller in the steady
axial wake field.

From Figure G.1 it is seen that the CFD simulation is divided into six
regions as; stationary region, propeller region and four blade regions. The
setup is almost identical to the simulation setup in Appendix A but with the
exception that the propeller blades are enclosed in their own region. The
rotation of the propeller is made by imposing a moving reference frame to
the propeller and blade regions about the shaft with the rate of propeller
revolutions. The blade regions have an additional motion imposed on them
about the blade’s spindle axis with the pitch rate of the blade. The pitch and
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pitch rate of each blade can therefore be set individually and the hydrody-
namical loads due to circulative effects can be determined under quasi-steady
conditions.

To determine which pitch displacements and pitch rates the CFD simula-
tions should be made for, it is necessary to consider both the desired regres-
sion model to be used, as well as the desired range of the pitch trajectories
the reduced model should cover. The considered propeller has four blades
which each has an independent pitch displacement and pitch rate. This gives
eight states/variables for the regression model. Three different structures for
the regression model are considered which are; a first-order model, a first-
order model with interactions and a second-order model with interactions.
These regression models are defined as, respectively [71]:

ŷ = β0 +
k

∑
i=1

βi xi (G.4)

ŷ = β0 +
k

∑
i=1

βi xi +
k

∑
i=1

k

∑
j=1

i<j

βij xi xj (G.5)

ŷ = β0 +
k

∑
i=1

βi xi +
k

∑
i=1

k

∑
j=1

i≤j

βij xi xj (G.6)

y is the output variable which in this case is one of the hydrodynamical loads
acting on the propeller blade. xi is the i’th state/variable i.e. effective pitch
displacement and effective pitch rate. For the quasi-steady simulation the
effective pitch displacement and effective pitch rate are equal to the set pitch
displacement and pitch rate, respectively. This is because there is no time
history effect in the quasi-steady CFD simulaitons. βi are model coefficients
to be determined. To determine the coefficients of the regression models,
a number of quasi-steady CFD simulations is required where the four pro-
peller blades have different pitch displacements and pitch rates. The number
of simulations and simulation settings are determined by using the 2k facto-
rial design approach from [71]. This means that each variable can either be
high (1) or low (-1) which results in 256 combinations of the eight variables.
These 256 combinations can be used to determine the coefficients of the lin-
ear regression model with and without interactions. The 256 simulations can
be reduced to 70 simulations due to the symmetry in the setup of the simu-
lation. For example, if all the variables are high except the pitch rate of the
blade number 1, then this gives the same results as if it is blade numbers 2, 3
or 4 that have a low pitch rate if the indexing is shifted accordingly.
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The second-order regression model requires that the simulations are made
at an additional level (0). If all combinations are made for this additional level
then this results in 6561 simulations that have to be made which reduces to
1665 simulations if the same symmetry consideration is made. Making 1665
simulations are too computationally expensive to be considered. The alterna-
tive is to use the central composite design proposed in [71]. This uses a central
point and series of axial points such that the second-order term of the regres-
sion model can be determined. This results in only 17 additional simulations
that have to be made to the 70 simulations and if the symmetry is consid-
ered this reduces to 5 additional simulations. All 75 simulation conditions
are shown in Figure G.2.

Figure G.2: Levels for the all the variables for the quasi-steady CFD simulations in order to be
able to determine the coefficients of the regression model.

To determine the value of the pitch displacement and pitch rate at the
levels 1, 0, -1 the pitch trajectories from Section 2.2 are considered. This is in
order to be able to compare the reduced model with the URANS CFD simu-
lation for these pitch trajectories. The state trajectories of the pitch trajectories
from Section 2.2 are shown in Figure G.3.
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Figure G.3: State trajectories of the different pitch trajectories from Section 2.2 and the evaluation
points from the factorial design and the central composite design.

In Figure G.3 the state trajectories are enclosed by a box and the levels of
the points are shown in the parenthesis as (pitch displacement, pitch rate).
The corners of the box are the levels of the pitch displacement and pitch
rate due to the factorial design approach also called the factorial points. The
center point is located in the center of the box and the axial points on the sides
of the box. The values of the levels -1, 0 and 1 for the pitch displacement and
pitch rate are given in Table G.1.

Table G.1: The values for the pitch displacement and pitch rate at the different levels.

Level Pitch Displacement [deg] Pitch Rate [rad/s]
-1 -4.7141 -2.1076
0 -1.4129 -0.3640
1 1.8882 1.3795

Having determined the simulation conditions that the CFD simulations
should be made for, the only thing left is to make the CFD simulations. Before
the CFD simulations are made, it is necessary to determine the domain size
for the CFD simulations and the uncertainty in using this domain size. The
domain dimensions are determined using the three parameters L f , Lb and
Lr as shown in Figure G.1. These parameters are respectively the distance
between the propeller and the inlet, the distance between the propeller and
the outlet and the distance from the shaft center to the radial boundary.

To determine the distance between the inlet and the propeller, the error in
the effective wake field velocities at the propeller is considered in a manner
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similar to that in Appendix A. The effective wake field imposed on the inlet
boundary is the steady axial wake field which is determined as a radial vary-
ing zero-order component of the radial varying Fourier series approximation
to the non-uniform wake field. This steady axial wake field is determined in
Appendix E and is shown in Figure G.4.
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Figure G.4: Steady axial wake field.

The steady wake field in Figure G.4 does not cover the whole domain of
the CFD simulation. The wake field is therefore extrapolated to cover the
whole domain. The extrapolation is made using the same approach as used
for the wake field in Appendix A. The steady wake field does not have any
tangential or radial velocity components and it is therefore not necessary to
include the momentum sources in the CFD simulations.

The wake field velocity error is determined through a series quasi-steady
CFD simulations of the domain without the propeller blades for different
distances between the propeller and the inlet. The other domain parameters
Lb and Lr are set to 75m and 30m, respectively, which are the same used in
Appendix D. For each of the simulations the error in the wake field velocity
is determined as:

ew(L f ) =
1
N

N

∑
n=1

∣∣∣∣∣vx(n, L f )− vx,CFD(n, L f )

vx(n, L f )

∣∣∣∣∣ (G.7)

N is the number of points used to measure the wake field. vx is the axial
velocity of the measured effective steady wake field and vx,CFD is the axial
velocity of the simulated effective steady wake field. The wake error for the
simulated values for L f is given in Table G.2.
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Table G.2: Wake field error as a function of the distance between the propeller and the inlet.

L f
Dp

5.4m
2 Dp

10.8m
3 Dp

16.2m
4 Dp

21.6m
5 Dp
27m

Error 0.0133 0.0205 0.0250 0.0284 0.0310

From Table G.2 it is seen that the wake field error is the smallest when
L f = 5.4m. A distance between the propeller and the inlet of 5.4m is therefore
chosen for the following CFD simulations for the reduced model.

To determine the two remaining domain parameters Lb and Lr a series
of quasi-steady CFD simulations are made. These simulations are made us-
ing only a quarter of the domain similarly to the domain used in Appendix
D. Furthermore, the investigation is made for the nine combinations of the
three levels for the pitch displacement and pitch rate in Table G.1. For each
combination the two parameters are varied between 5.4m (1 Dp) to 162m
(30 Dp) whilst the other parameters are fixed at 75m and 30m for Lb and Lr,
respectively. The error for the domain parameters is assumed to converge
exponentially as:

εφi ≈ δd = φi − φ0 = αd e−pd (Lx−βd) (G.8)

εφi is the domain error of the i’th simulation. δd is the approximation of the
domain error. φi is the simulation value. φ0 is the real/true value. Lx is
the length of the domain parameter considered. αd is the error gain for the
domain parameter. pd is the convergence rate coefficient. βd is an exponential
offset coefficient. The parameters φ0, αd, pd and βd are determined through a
least-squares estimation to the simulation data. The least-squares estimation
is made with and without weighting of the data, where the data points at
large Lx are weighted more. The least-squares estimation with the lowest
standard deviation is used to determine the domain uncertainty as:

Udom,Lx (Lx) =
∣∣εφi (Lx)

∣∣+ 2 σ (G.9)

σ is the standard deviation of the least-squares estimation. The limit of the
domain parameter is determined for each hydrodynamical load for each of
the nine simulation conditions. The limit is determined when the relative
uncertainty has increased by 0.15% with respect to the uncertainty at Lx =
30 Dp. This is shown for one of the simulation conditions in Figure G.5,
where the limits for the domain parameters are L∗b and L∗r .
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Figure G.5: The least-squares estimation of Eq. G.8 to the simulation data when the pitch
displacement is −4.71◦ and the pitch rate is −2.11 [rad/s] together with the determined limits
for the domain parameters.

The limits for all the hydrodynamical loads and all the simulation condi-
tions are shown in Figure G.6.
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Figure G.6: The domain limits for Lb and LR for all the hydrodynamical loads and simulation
conditions.

The domain parameters used for the following simulations are chosen to
be the maximum value for L∗b and L∗r . The domain parameters for the CFD
simulations are given in Table G.3.

Table G.3: Domain parameters for CFD simulation with steady state wake field.

Domain Parameter L f Lb LR
Length 1 Dp 12.7 Dp 10.5 Dp

The domain uncertainty is determined as:

Udom =
√

U2
dom,Lb

+ U2
dom,Lr

(G.10)
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The uncertainty due to domain parameters used to determine the domain
uncertainty is the maximum uncertainty for all the simulation conditions.
This is in order to be conservative when determining the domain uncertainty.
The domain uncertainties are given in Table G.4.

Table G.4: Domain uncertainties with the chosen domain parameters.

Uncertainty Udom,Lb
Udom,Lr Udom

Fx [N] 689.7 252.9 734.6
Mx [Nm] 343.0 266.5 434.4
Fy [N] 204.0 177.9 270.7
My [Nm] 948.7 490.2 1067.9
Fz [N] 267.1 153.7 308.2
Mz [Nm] 511.3 238.4 564.2

Having determined the domain size and the corresponding uncertainty,
the quasi-steady CFD simulations can be made for all the test conditions in
Figure G.2. The iterative uncertainty and spatial uncertainty are determined
for each simulation according to the procedure in Appendix C. The spatial
uncertainties are determined using four different spatial discretizations. The
simulation results and their uncertainties are shown in Figure G.7 for all 75
simulation conditions. The uncertainty includes the iterative, spatial and do-
main uncertainty. The simulation numbering correspondence with the num-
bering shown in Figure G.2. The uncertainty of the simulation results tends
to be dominated by the spatial discretization uncertainty.
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Figure G.7: Simulation results and uncertainties for the simulation conditions in Figure G.2.

The simulation data in Figure G.7 is reformulated such that the solution
for all 273 simulation conditions is obtained. These data are used to deter-
mine the coefficients for the regression models in Eq. G.4, Eq. G.5 and Eq.
G.6. The coefficients are determined through a least-squares estimation. To
evaluate the fit of the regression models and to compare them, the standard
deviation of the error, σ, is determined as:

σ =

√√√√ 1
N − Np

N

∑
n=1

(y(i)− ŷ(i)) (G.11)
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N is the number of datasets i.e. simulation conditions. Np is the number
of parameters/coefficients used in the regression model. y is the simulation
value used for the regression model. ŷ is the estimation of the simulation
value using the regression model. The standard deviation of the error for
each of the regression models is shown in Figure G.8.
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Figure G.8: Standard deviation of the three regression models.

From Figure G.8 it is seen that the standard deviation decreases as the
complexity of the regression model increases i.e. including additional coeffi-
cients. The standard deviation does not decrease as significantly when going
from the first-order regression model with interactions to the second-order
regression model with interactions. This may be due to central decomposi-
tion approach being used to include the second-order term of the regression
model. There is, thereby, not as many data points included where the second-
order regression model fits better. The second-order regression model is used
in the further work with the reduced model for the CVP propeller.

The second-order regression model uses 45 coefficients which can be re-
duced by considering the p-value for each coefficient. If the p-value for a
coefficient is larger than 0.05 then it is likely that the coefficient does not have
a significant influence on the regression model and it can be removed. Using
this approach 11-17 coefficients can be removed from the regression model
depending on the hydrodynamical load. This is while the standard deviation
of the regression model does not change more than 1.4%. This reduction
in the number of coefficients in the regression model is not utilized in the
further work because the structure of the regression model becomes unique
for each hydrodynamical load thus complicating the further work with the
reduced model.
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G.3 Determination of the Dynamics in the Circu-
lative Effects

The circulation part of the hydrodynamical loads does not follow the forcing
from the pitch and pitch rate instantaneously. The circulative effects have a
dynamic build-up before they reach a steady state value. This is according
to the unsteady foil theory utilized in Appendix E. The dynamic build-up is
determined through an unsteady CFD simulation where one blade makes a
step change in the pitch. The CFD simulation utilizes the same setup as used
in Appendix A, but uses the steady wake field instead of the non-uniform
wake field. The step response is made from level 0 to level 1 which is equiv-
alent to the pitch displacement changing from −1.41◦ to 1.89◦. The other
blades are, at all times, kept at the 0 level pitch displacement. The simulation
is made using the finest spatial discretization and the smallest time step used
in Appendix A. The results for the hydrodynamical loads on each of the four
propeller blades during the step change are shown in Figure G.9.

In Figure G.9 the step change is made for the blade indexed as one. When
this blade is at the top blade position (180◦), the blade indexed as two is
towards the starboard side, the blade indexed as three is at the bottom and
the blade indexed as four is towards the port side. The blade number four
is therefore the next blade to go into the top position. From Figure G.9 it is
seen that the blade number one is the one mostly effected by the step change
followed by blade number four that is the next blade to go into the top posi-
tion and the same for the following blades. This is due to the following blade
being the closest one to the shedded wake from the pitching blade etc. Fur-
thermore, it is seen that the step responses in the hydrodynamical loads are
unique for each blade and it requires therefore four step response functions
for each hydrodynamical load to model the build-up of the circulative effects.
It is also seen that there is a large initial spike in the hydrodynamical loads
due to the step change in the pitch. This is in part due to the non-circulative
effects and the remeshing of the domain made at the time of the step change
in the pitch. After the initial load spike the load has a transition before it
settles to a steady value. For the pitching blade the transition in the x-force,
y-force, x-torque and y-torque have an overshoot which does not correspond
with the unsteady foil theory used in Appendix E. This may be due to some
of the assumptions made for the unsteady foil theory not being appropriate
for application to the analysis of the CVP propeller. The z-force is almost at
the steady value just after the step and the z-torque is initially larger than
the steady value. This is also not in agreement with the unsteady foil theory,
which may be due to the assumption made when applying the unsteady foil
theory to the CVP propeller.
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Figure G.9: Hydrodynamical loads on the propeller blades during a step change in the pitch.

To determine the step function for each hydrodynamical load, the follow-
ing steps are made:

• The hydrodynamical loads are shifted such that the hydrodynamical
load equals to zero just before the time step.

• The hydrodynamical loads are normalized with the steady state value
at the end of the simulation such that the loads vary between zero and
one.

• The hydrodynamical loads are manually fitted using a cubic spline
function. This is in order to remove small oscillation in the results.
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The step functions determined from the above approach for each of the hy-
drodynamical loads are shown in Figure G.10.
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Figure G.10: Step functions for each hydrodynamical load and for each blade of the propeller.

The step function in Figure G.10 for blades 2 and 3 may have an odd
shape. This is because the hydrodynamical loads for the second and third
blades are relatively unchanged due to the step change in the pitch of blade
number one as seen in Figure G.9. This means that these step functions are
sensitive to small changes in the results.

The step functions determined in Figure G.10 are used to determine both
the effective pitch displacement and the effective pitch rate. This is similar to
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how Wagner’s and Theodorsen’s function are used in Appendix E. To evalu-
ate the hydrodynamical load responses for arbitrary pitch displacements and
pitch rates, each of the four step functions are used. For example if it is de-
sired to determine the circulative part for the hydrodynamical x-force acting
on blade 1, then the combination of step functions, pitch displacements and
pitch rates used are:

KC,Lx,i (αp,e, α̇p,e) (G.12)

Where,

αp,e =


αp,e,1
αp,e,2
αp,e,3
αp,e,4

 =


αp,1 ∗ φ1
αp,2 ∗ φ4
αp,3 ∗ φ3
αp,4 ∗ φ2

 , α̇p,e =


α̇p,e,1
α̇p,e,2
α̇p,e,3
α̇p,e,4

 =


α̇p,1 ∗ φ1
α̇p,2 ∗ φ4
α̇p,3 ∗ φ3
α̇p,4 ∗ φ2

 (G.13)

The reason for using φ4 together with αp,2 and α̇p,2 is because a change in the
pitch displacement and pitch rate of blade 2 influences blade 1 as a change
in the pitch displacement and pitch rate of blade 1 influences blade 4. The
same also applies for using φ2 together with αp,4 and α̇p,4.

The effective pitch displacements and effective pitch rates are shown in
Figure G.11 and Figure G.12, respectively, for the variable pitch trajectory.
The results in Figure G.11 and Figure G.12 are used to determine the hydro-
dynamical loads acting on the blade indexed as 1 and the blade position is
shown with respect to the blade indexed as 1.

From Figure G.11 and Figure G.12 it is seen that the effective pitch dis-
placement and effective pitch rate for the x- and y-forces and x- and y-torques
for blade have a shape similar to each other. It is also clear that there is a re-
duced amplitude and phase lag. For the z-force there is almost no phase shift
and only a small reduction in the amplitude. The z-torque has an increased
gain which corresponds to the initial value of the step function being larger
than unity in Figure G.10. It is also seen that the effective pitch displacement
and pitch rate of blades 2 and 4 are the ones that affect blade 1 the most but in
some cases with a large phase shift and amplitude reduction. The pitch dis-
placement and pitch rate of blade 3 do not generally have an effect on blade
1 because it is smoothed out due to the circulative build-up. The exception
to this is the effective pitch displacement for the z-torque.
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Figure G.11: The effective pitch displacements for the pitch displacements influencing the hy-
drodynamical loads for the blade indexed as 1 for the variable pitch trajectory.
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Figure G.12: The effective pitch rates for the pitch rates influencing the hydrodynamical loads
for the blade with the blade indexed as 1 for the variable pitch trajectory.

G.4 Determination of the Non-Circulative Effects

The two non-circulative gains are determined through minimising the square
of the error between the reduced model and the CFD simulation of the CVP
propeller. The error is determined as the difference between the hydrody-
namical load using the reduced model and the hydrodynamical load differ-
ence between the CVP propeller simulation with the variable pitch trajectory
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and the constant pitch trajectory. Using this method gives the non-circulative
gains in Table G.5 for each of the hydrodynamical loads.

Table G.5: Non-circulative gains for each hydrodynamical load.

Fx Mx Fy My Fz Mz
KNC,α̇ 10−3 79.9 -53.9 33.0 153.1 1.1 4.1
KNC,α̈ 10−3 -1.1 0.5 -0.3 -1.5 -0.2 -0.7

From Table G.5 it is seen that the non-circulative gain for the pitch rate
is significantly larger than the non-circulative gain for the pitch acceleration.
To determine which non-circulative effect that is most dominant, it is neces-
sary to consider the ratio between the pitch rate and acceleration. The ratio
between the peak pitch acceleration and pitch rate is approximately 40. The
non-circulative effect due to the pitch rate is the dominant one for the hydro-
dynamical loads; Fx, Mx, Fy and My. The non-circulative effect due to the
pitch acceleration is the dominant one for the other hydrodynamical loads.

G.5 Application and Comparison of the CVP Pro-
peller Model

To evaluate the reduced model’s capability to predict the unsteady hydrody-
namical loads due to the pitching motion, it is compared to the CFD simu-
lation results of the CVP propeller in Appendix A. The comparison is made
for the unsteadiness due to the pitching motion. The hydrodynamical load
from the CFD simulation for the constant pitch trajectory is therefore sub-
tracted from the hydrodynamical loads from the cosine and variable pitch
trajectory. The hydrodynamical loads due to the pitching motion for the CFD
simulations and the reduced model are shown in Figure G.13. All the hydro-
dynamical loads are shown with their uncertainty as the shaded area. The
uncertainty of the reduced model is determined by linear interpolation of
the uncertainty of the quasi-steady hydrodynamical loads. The uncertainty
also includes two times the standard deviation of the regression model. The
uncertainty is therefore only based on the circulative effects of the reduced
model.
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Figure G.13: Comparison of the unsteady hydrodynamical loads from the CFD simulation of
the CVP propeller and the reduced model.

From Figure G.13 it is seen that hydrodynamical loads determined using
the reduced model generally matches the hydrodynamical loads from the
CFD simulations well. The difference between the reduced model and the
CFD simulation is the most prominent about the blade position at 225◦ −
270◦. This may be due to how the step response is determined. The uncer-
tainty of the reduced model is generally larger than the uncertainty for the
CFD simulation of the CVP propeller.
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