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An Automatic Weak Learner Formulation for
Lithium-ion Battery State of Health Estimation

Jinhao Meng, Member, IEEE, Lei Cai, Daniel-Ioan Stroe, Member, IEEE, Xinrong Huang, Student
Member, IEEE, Jichang Peng, Tianqi Liu, and Remus Teodorescu, Fellow, IEEE

Abstract—Current pulses are convenient to be actively
implemented by a Battery Management System (BMS).
However, the Short-Term Features (STF) from current
pulses originate from various sensors with uneven quali-
ties, which hinders one powerful and strong learner with
STF for the battery SOH estimation. This paper thus pro-
poses an optimized weak learner formulation procedure for
Lithium-ion (Li-ion) battery SOH estimation, which further
enables the automatic initialization and integration of the
weak learners with STF into an efficient SOH estimation
framework. A Pareto Front-based Selection Strategy (PFSS)
is designed to select the representative solutions from
the non-dominated solutions fed by a Knee point driven
Evolutionary Algorithm (KnEA), which guarantees both the
diversity and accuracy of the weak learners. Afterwards,
the weak learners, whose coefficients are obtained by Self-
adaptive Differential Evolution (SaDE), are integrated by a
weight-based structure. The proposed method utilizes the
weak learners with STF to boost the overall performance
of SOH estimation. The validation of the proposed method
is proved by LiFePO4/C batteries under accelerated cycling
ageing test including one mission profile providing Primary
Frequency Regulation (PFR) service to the grid and one
constant current profile.

Index Terms—Lithium-ion battery; State of health es-
timation; Automatic weak learner formulation; Ensemble
learning.

I. INTRODUCTION

RENEWable energy has recently played a significant role
in the power supply as well as in the transportation

sector. For improving the flexibility and reliability of the
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energy flow in the electrical grid and the driving range in e-
mobility, batteries have become a key energy storage technol-
ogy [1]–[4]. Lithium-ion (Li-ion) batteries have drawn much
attention from academia and industry due to their superior
performance, such as high energy density, long life-span, low
maintenance, etc. [5]–[9]. However, the complex and uncertain
degradation behavior of Li-ion batteries still hinders their
applications in a large-scale system [10]. During the long-time
operation, the performance of the Li-ion battery is subject to
degradation resulting in capacity fading and increased internal
resistance. Thus, the capacity and internal resistance can be
used to express the State of Health (SOH) of the batteries.
The battery degradation is influenced by various factors, such
as temperature, current rate, cycling number, etc.

Accurate SOH estimation can ensure the reliable and eco-
nomically viable operations of the battery by managing its
lifespan [11]. In this way, the aged batteries can be replaced
before causing any severe accidents. The long downtime
periods can be avoided so that the usage of the battery could
be maximized. Unfortunately, the SOH cannot be directly
measured by placing a sensor inside the battery. Measuring the
capacity or internal resistance is a straightforward approach to
know battery SOH. However, the Li-ion battery is not always
fully charged or discharged during the operation, which means
it is not convenient to measure its capacity during daily usage.
Considering the fact that the internal resistance of a high-
power Li-ion battery is usually a small value in the range of
milli-Ohms, it is also not effective to measure an accurate
internal resistance taking into account the interference from
the sensors. Thus, various advanced techniques have been
proposed to estimate the battery SOH.

The existing battery SOH estimation methods in literature
can be divided into three categories: empirical models [12],
model-based methods [13], [14], and data-driven methods
[15]–[17]. After collecting the measurement from a long-
term degradation test under various stresses, such as storage
time, temperature, cycling current rate, empirical models are
developed based on the polynomial or exponential functions
to describe the connections between those stresses and the
battery SOH [18]. One drawback of the empirical model is
that the models are only suitable for a specific battery for
which they are parameterized. The main limitations are the
model’s oversimplified structure and the developer’s personal
experiences [19]. Model-based estimation identifies the inter-
nal resistance and capacity online [13]. It is noted that the
online estimation of resistance and capacity is vulnerable.
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The identified values are easily contaminated by noises from
the sensors [20]. In addition, the state space equations for
internal resistance and capacity identification are not explicit.
For example, online capacity identification usually needs the
battery State of Charge (SOC) acting as an input, but the SOC
itself is an estimated value with uncertainties.

Recently, great progress has been made in the machine
learning area, which utilizes the information behind the orig-
inal dataset. Machine learning techniques, such as Extreme
Learning Machine (ELM) [21], Gaussian Process Regression
(GPR) [16], [22], Support Vector Regression (SVR) [15], [17],
[23], [24], Prior Knowledge-based Neural Network (PKNN)
[25], Long Short-Term Memory (LSTM) network [26], etc.,
have been used for SOH estimation. An efficient SVR based
SOH estimation method under different measurement con-
ditions is established in [15], which aims at improving the
flexibility of using one data-driven estimator in reality. After
selecting the degradation features from the voltage curve,
the Markov chain is adopted to enhance the performance
of PKNN-based SOH estimator in a long-term period [25].
Using LSTM as the base model, transfer learning is chosen
to estimate the battery SOH in [26] with the features coming
from the charging voltage curves.

After analyzing the previous works, we find there are two
pivotal procedures for battery SOH estimation with data-driven
methods: the feature collection and the training process. The
feature contains information related to battery ageing, and a
training process is used to establish the data-driven methods.
In [27]–[30], the long-term degradation features extracted from
Incremental Capacity (IC) curve and Differential Voltage (DV)
curve are used. It is easily known from the calculation of
the IC and DV curves that those curves are sensitive to the
measurement noise. Additionally, the battery has to be charged
or discharged with an extremely small current (1/25C) [31] for
the purpose of acquiring the IC and DV curves in reality. The
aforementioned limitations restrict the usage of IC and DV
curve-based methods. The voltage curve during the charging
process is chosen as the features in [32]–[34]. Although the
charging process is relatively deterministic, the degradation
features from the voltage charging curve are still subjected to
a long-term measurement period. One should be aware that the
users may not always charge the battery through a pre-defined
voltage range only for SOH estimation. Thereby, one issue for
the data-driven methods in battery SOH estimation is that the
feature cannot be conveniently obtained in real applications.

Another issue is that we can obtain only weak learners,
which are not perfect, in most conditions. Although the data-
driven methods have great potential in the field of SOH pre-
diction [35], [36], we find that most of the algorithms attempt
to establish a strong estimator. In fact, it is quite difficult to
establish a perfect estimator in practice. The historical dataset
of the battery comes from defective sensors, and the quality
of the measurement is difficult to be unified. In addition, the
training samples cannot cover all the cycling conditions of a
specific scenario, and it is burdensome to set a group of right
hyper-parameters for training a data-driven method.

In order to mitigate the above issues, we propose an ensem-
ble learning framework for Li-ion battery SOH estimation with

weak learners fed by Short-Term Features (STF). Those STFs
come from current pulse lasting only a few seconds, which is
convenient to be actively imposed to the cells in real-life appli-
cations. Therefore, the first issue regarding the convenience of
the feature is alleviated. Considering the fact that only weak
learners with the defective dataset and the imperfect hyper-
parameters are the reality for SOH estimation in real-life, an
automatic weak learner formulation procedure combined with
an ensemble framework, is proposed to solve the second issue
on estimation accuracy. Ensemble framework can boost the
overall SOH estimation performance by integrating a group
of weak learners, which can only predict the battery SOH
with limited ability. The weak learners should be as diverse
as possible in an ensemble learning framework [37]. Thus,
a Pareto Front-based Selection Strategy (PFSS) is proposed
to find the representative solutions originated from the Knee
point driven Evolutionary Algorithm (KnEA). Afterwards, the
integration of weak learners is optimized by Self-adaptive
Differential Evolution (SaDE) for the ultimate estimation.

The main contributions of this work are as follows:
(1) An automatic weak learner formulation procedure is pro-

posed for battery SOH estimation by combining a PFSS
with the non-dominated solutions generated by KnEA. In
this way, the diversity of each weak learner is naturally
guaranteed for an efficient ensemble estimator.

(2) STFs from the current pulses, which are easy to be
obtained in real-life applications, are chosen as the features
for battery SOH estimation.

(3) SaDE, which avoids the time-consuming parameter tuning
process in traditional Differential Evolution (DE), is used
to integrate all the weak learners so that the predictability
of SOH estimator can be significantly improved.

(4) Five LiFePO4/C (LFP/C) batteries aged under two differ-
ent cycling conditions, including one mission profile pro-
viding the Primary Frequency Regulation (PFR) service
to the grid and one constant current profile, are used to
verify the proposed method.

The rest of the paper is organized as follows. Section II
describes the STF. The automatic weak learner formulation
and the proposed ensemble framework are detailed in Section
III. The validation of the proposed method is presented in
Section IV. Conclusions are given in Section V.

II. THE SHORT-TERM FEATURE FOR LI-ION BATTERY
SOH ESTIMATION

Data-driven methods have great potential in battery SOH
estimation [36]. Features containing valuable information re-
lated to battery ageing should, however, be properly chosen in
advance.

The procedure in Fig. 1 is designed for cycling the five
LFP/C batteries under two different scenarios. For Case 1,
two LFP/C batteries are cycled with a mission profile, which
corresponds to a battery energy storage system providing PFR
to the grid. The mission profile has a length of one week, and
the SOC varies between 10% and 90%. In Case 2, a constant
current I=10A (4C-rate) is used for cycling three LFP/C
batteries in the range from 20% to 80% SOC.The ageing test is
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Fig. 1. The test procedure
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tC

Fig. 2. The current pulse

periodically stopped and a Reference Performance Test (RPT),
including capacity test and current pulse test, is performed.
The current pulse test includes a series of charging and
discharging current pulses under three different C-rates (1C,
2C, 4C) at SOCs (20%, 50%, 80%). Each current pulse lasts
18 seconds. During the ageing test, the batteries are placed in
the climatic chamber at 25oC for Case 1 and 42.5oC for Case
2. The measurement data is logged with 1-second resolution.
The specifications of the LFP/C battery are as follows: the
nominal capacity is 2.5Ah, and the voltage ranges from 2.0V
to 3.6V. More information related to the LFP/C battery can be
found in [17].

For clarifying the STFs, the pattern of the current pulse is
illustrated in Fig. 2. It can be seen that the current profile
changes at 4 different transition times, i.e., tA, tB , tC , tD.
The voltage responses of a LFP/C battery measured at SOC
= 20% and I = 10A are chosen as an example in Fig. 3.
Since the voltage curves vary from Week 1 to Week 33, those
voltage responses definitely contain the information related to
the battery degradation. For simplicity, the voltage values at
4 transfer moments (tA, tB , tC , tD) is chosen as the features
and are represented as a vector [UA, UB , UC , UD]. As shown in
Fig. 1, the current pulse is performed at 18 different conditions.

A

B

C

D

Fig. 3. The voltage response of the current pulse test
(SOC=20%, I=10A) at different ageing stages

Thus, we have altogether a 72-dimension vector acting as the
input of the weak learners in the training phase. Because the
current pulse lasts only 18 seconds and the transfer moments
have already known from the controller of the power converter,
the proposed feature is very convenient to be obtained in
real applications. Features under various conditions have the
necessary diversity, which can lead to a promotion in the
generalization of the ensemble learning framework. Thus, the
diversity of the weak learners can be firstly achieved by the
proposed feature to some extent.

III. THE PROPOSED SOH ESTIMATION METHOD

Although STFs are efficient in practical applications, they
are also fragile considering the measurement noise. Thus, only
weak learners with limited accuracy can be obtained in reality.
The main purpose of this work is to optimize the weak learner
formulation with good diversity so that the weak learners
can be utilized to boost the overall performance of the SOH
estimation through an ensemble framework.

The diversity of weaker learners must be guaranteed at
first. Although different voltage responses can naturally ensure
the diversity of the weak learners to some extent, we still
need to enhance the diversity in the phase of the weak
learner formulation. Moreover, we aim at creating a genetic
method without the requirement of any manual interactions on
the feature selection and configuration of the algorithm. The
procedure of the SOH estimation method is shown in Fig. 4.

In Step 1, the process of feature selection and hyperpa-
rameters tuning are formed as a Multi-objective Optimization
Problem (MOP) which considers both the accuracy and the
complexity. The expected solutions are non-dominated with
each other and well-distributed in the objective space of MOP,
which means the solutions have the property of diversity.
Thanks to the natural diversity of the non-dominated solutions
from MOP, the requirement of diversity for ensemble learning
can be guaranteed simultaneously. However, it is still very
challenging to solve this MOP, especially in the scenario
where the diversity is more preferable. Hence, KnEA [38] is
utilized, which makes full use of its advantage on diversity
first and convergence second strategy. The ultimate solutions
are selected from KnEA according to the shape of the Pareto
front, which can be summarized as PFSS in this work.

In Step 2, Support Vector Regression (SVR) is chosen to
train the optimized weak learners, which can generate the
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Fig. 4. The procedure of the proposed method

regression model with good generalization to unknown dataset
taking the advantages of the Vapnik-Chervonenkis (VC) and
statistical theory.

Afterwards, a weight coefficient-based structure with SaDE
is used to integrate the weak learners into one unified frame-
work in Step 3, which avoids the costly trial and error
procedure on the trial vector generation strategies and tuning
the associate parameters in traditional DE [39].

A. Automatic weak learner formulation
In order to finalize the automatic weak learner formulation,

the selection of the STF and the hyperparameters of SVR are
formulated as an optimization problem.

In feature selection, the measurements come from various
conditions in reality. Especially, the current pulses used in
this work are convenient yet fragile. The overall quality of
the STF is hard to be unified and guaranteed in a BMS. 72
dimensions STF has to be carefully selected to extract useful
information. Thus, the procedure of feature selection is formed
as a combinatorial optimization problem in this work. The
decision value for each feature is a binary value that specifies
whether the current feature is selected or not as shown in Fig.
5.

1 0 0 1 1 ... 1 1 0

1 2 3 4 5 70 71 72STF No.

Decision 

value

Fig. 5. The decision value for each feature

Besides the STFs, tuning the hyperparameters of SVR is
another aspect to improve the diversity of the weak learners.
SVR depends on the hyperparameters C, ε and γ in the
training phase. Thus, the hyperparameters of SVR should
be tuned not only to improve the performance of the weak
learners but also to enhance their diversity from the training
aspect. The main idea of synchronously optimizing the feature
and hyperparameters can be referred to [17].

This work optimizes the feature selection and the model
setting simultaneously through a MOP procedure. For a spe-
cific weak learner, we generally tend to use all 72 dimensions
STFs hoping that sufficient information can be included. But
large numbers of STFs need the measurement from various
conditions and also induce a higher computing burden. In

Hyperparameters [C,    ,    ] 
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Section II

Section III.B

Section III.A.1
Section III.A.2
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Eqs.(1)-(2)
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weak learners

Section III.B

SVR 

 KnEA
Pareto Front Shape 

based Selection (PFSS)

Fig. 6. The procedure of the optimized weak learner formula-
tion

addition, the STF contains noise and redundancy, which will
lower the performance of the weak learner. There sometimes
exists a conflict, that is, to minimize the number of the features
and to maximize the accuracy of the weak learners. Hence, the
first reason that we formulate the MOP is to balance the two
objectives for obtaining accurate and efficient weak learners.
Another pivotal reason is to utilize its basic property that the
diversity of the weak learner will naturally be fulfilled once the
MOP is solved. The main idea of MOP for feature selection
and hyperparameters tuning can be found in [15]. Specifically,
the two objectives are defined as follows,

f1 =MSE5−foldCV (SV R) (1)

f2 = Numfeature (2)

where MSE5−foldCV is the MSE of SVR under 5-fold cross-
validation, Numfeature is the number of the features. It
should be noted that Numfeature counts [UA, UB , UC , UD]
individually in this work.

KnEA is used to solve the MOP and generates diverse non-
dominated solutions as shown in Fig. 6. According to the two
objectives in Eqs.(1) and (2), KnEA will select features from
the database as well as tuning the hyperparameters of SVR
in each iteration. Once the criterion of KnEA is meet, we
will obtain the non-dominated solutions for the MOP. Then,
PFSS will take over to choose representative solutions with
good diversity. By using KnEA to solve the MOP and PFSS
to choose a few representative solutions, the weak learners are
automatically initialized. More details related to KnEA and the
proposed PFSS will be detailed as follows.

1) KnEA [38]: Knee points are preferred for the selection
of the non-dominated solutions in MOP. KnEA uses the knee
points from the current population acting as the secondary
criterion for the parents’ generation. To be more specific,
the solutions are firstly chosen according to the dominance
comparison. If two solutions are non-dominated with each
other, the knee point will be used as the secondary criterion.

The knee point is chosen only if one solution has the largest
distance to the extreme line in the nearest neighborhood. The
extreme line L is determined by the solutions that have the
maximum value of the cost functions f1 and f2. For example,
the a1 and a5 in Fig.7. Define that L is represented by the
function ax+ by+ c = 0. The distance of the solution a3 can
be calculated by the following equation,

d(a3, L) =
|ax3 + by3 + c|√

a2 + b2
(3)
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where x3 and y3 are the coordinates of a3. According to the
largest distance from Eq. (3), a3 is thus knee point in Fig.7.

f1

f2

L

a1

a3

a4
a5

a2

Fig. 7. The knee point selection in KnEA

From the above descriptions, we can see that the non-
dominated solutions with knee point selection can also speed
up the convergence of the optimization for a MOP. If the
neighbourhood relationship of the non-dominated solution can
be maintained properly, the diversity will also be satisfied.
In KnEA, the size of the neighbourhood of the solutions is
adaptively adjusted so that the survived knee points would be
well sampled in the whole objective space. Thus, with high
speed on convergence and good property on diversity, KnEA
can provide us with a series of solutions that have a high
quality of diversity.

2) Pareto front based selection strategy (PFSS): Currently,
we cannot pass the optimized solutions directly to the inte-
gration steps. The main concern now is how to determine a
specific number of solutions in advance. In this phase, we
need strong diversification whereas no strong convergence is
needed. Therefore, a PFSS procedure is proposed to choose
a few representative solutions according to the shape of the
Pareto front. In this way, the diversity of the weak learners
is preserved to the utmost extent, and the numbers of weak
learners can be reduced.

The pseudo-code of the PFSS is shown in Algorithm 1.
Lines 2 and 3 are used to select a boundary solution from the
current solution set. The purpose of loop between Lines 5 and
9 is to iteratively select a solution from the final population of
KnEA with the largest angle to the V. It is worth mentioning
that the angle of a solution vector to a set can be defined as
the smallest one among the angles between this solution and
all solutions,

angle(s,V) = arg min
vi∈V

< s,vi > (4)

At last, a solution set V with K solutions is returned.
Fig. 8 is an example for clarifying the PFSS. The angle of a

vector to S is defined as the smallest angle between the vector
and the rest vectors in S. sr is randomly selected as the first
vector. Then, s1 has the largest angle to sr, and s2 has the
largest angle to s1. s3 has the largest angle to S including s1
and s2. If three solutions are the target, the red arrows in Fig.
8 will be the selected solutions by PFSS.

B. Training the weak learners
After the automatic weak learner formulation, each solution

has already contained the suitable hyperparameters and STFs
for initializing the SVR based weak learners.

f1

f2

s1

s3

s2

sr

Fig. 8. Example of the PFSS

Algorithm 1 Update procedure of PFSS
Input: Solution set S, the size of selected solution K, the

number of solution set N
1: V = ∅
2: p← rand(1, N ) // To randomly select an index of solution

from the solution set
3: V = V ∪{sp}, S = S\{sp}
4: i← 0
5: while i < K − 1 do
6: Find a solution sj in S with the largest angle to V.

An angle of the solution to a set can refer to Eq. (4)
7: V = V ∪{sj}, S = S\{sj}
8: i++
9: end while

10: return V

Compared with other regression algorithms, SVR has a
strictly proof in mathematics and can be represented as fol-
lows,

f(x) = wT · ϕ(x) + b (5)

where w and b are the coefficients to be adjusted.
The original SVR can be transferred to solve the following

optimization problem,

min
1

2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i ) (6)

Subject to the constrains, yi −wT · ϕ (xi)− b ≤ ε+ ξi
wT · ϕ (xi) + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(7)

where C is a positive constant and ξi is the slack variable.
After solving the above quadratic optimization, the SVR

regression function can be reformulated as follows,

f(x) =

N∑
i=1

(β∗i − βi) ·K(xi,x) + b (8)

where βi is the Lagrangian multipliers, and K(xi,x) is the
kernel function.

The kernel function can convert the nonlinear space into
a higher dimensional space. It is noted that the RBF kernel
function is able to approximate other kernel functions by
tuning its parameters. Thus, we choose to use the RBF kernel
function, which can be expressed as follows,

K(xi,xj) = exp(−1

2
‖xi − xj‖2/γ) (9)
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From the above equations, we can find that C (Eq. (6))
controls the trade-off between the flatness of SVR and the
degree to which the deviation larger than ε is tolerated, and γ
determines the performance of the kernel function. C, ε and γ
can significantly influence the performance of SVR. Thus, it
is possible to control the diversity of weak learners by tuning
the hyperparameters of SVR. Due to the superior performance
and the feasibility of controlling the diversity, SVR is chosen
in this work to form the weak learners.

C. Integration of the weak learners
Finally, the weak learners are integrated into an ensemble

framework as shown in step 3 of Fig. 4 for the SOH estimation.
The weak learners with STF are integrated by a weight
coefficients-based structure with SaDE [39]. A proper set of
the weight coefficients (w1, w2, w3, . . . ) can be obtained by
SaDE. The cost function of SaDE is defined as the MSE of
the SOH estimation with 5-fold cross-validation in this work,
which is similar to Eq. (1).

The performance of traditional DE is closely related to
the strategy for generating the trial vectors and the control
parameters, such as the population size NP, the scaling factor
F, and the crossover rate CR. In order to achieve good
solutions, a suitable trial vector generation strategy and the
control parameters for a specific problem have to be cho-
sen for DE. Thus, traditional DE still suffers from a time-
consuming tuning process. To alleviate this issue, SaDE is used
to adaptively adjust the trial vector generation strategy and
the associated parameters. A candidate pool including several
typical strategies in SaDE enables the adaptively choosing of a
suitable generation strategy for the trial vector. According to
the memory of success and failure, the strategic probability
is learned from the success rate of a particular strategy.
Moreover, CR is generated from a normal distribution N(CRm,
Std), and CRm can be adjusted according to the experiences of
CR in the previously promising solutions. The scaling factor
F, related to the convergence speed, can be randomly selected
in another normal distribution N(0.5,0.3). In this way, the trial
and error tuning process is avoided in SaDE, which is capable
of guaranteeing high-quality solutions in different situations.
For more details about SaDE, please refer to [39].

IV. EXPERIMENTAL VALIDATION

In this work, 5 LFP/C batteries are aged with different
cycling profiles as shown in Fig. 1. FuelCon test station is
used to implement the battery degradation test as introduced
in [24]. After the long-term cycling test, the capacity variations
of the 5 cells are shown in Fig. 9 and Table. I.

A. Validation of the automatic weak learner formulation
An optimized formulation procedure is responsible for the

automatic initialization of the weak learners with good diver-
sity, which is critical to the overall performance of the SOH
estimation in this work. Thus, the diversity of the weak learner
is firstly validated in this subsection.

According to the two cost functions (Eqs. (1) and (2)),
the non-dominated solutions from KnEA are illustrated as
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Fig. 9. The variation of battery capacity during the degradation
test

TABLE I. The variation of the capacity for the five cells

Cell NO. Initial Capacity (Ah) Final Capacity (Ah)

1 2.5743 2.1723

2 2.5629 2.3326

3 2.4028 1.9231

4 2.4425 1.9525

5 2.4627 1.9923

the red diamonds in Fig. 10. It is easily found from the
distribution of the red diamonds in Fig. 10 that the distribution
of the solutions endows the weak learners with diversity.
Each solution contains information about the STFs and the
hyperparameters setting of SVR, which can be further used to
establish a weak learner.
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Fig. 10. The non-dominated solutions from KnEA
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Afterwards, the representative solutions can be picked up
by PFSS. Generally, the solutions close to the origin of the
coordinate are a good balance of the two cost functions in
MOP. From Fig. 10, we can find that the non-dominated
solutions (red diamonds) can be distributed into several groups.
If all the non-dominated solutions are used to establish the
weak learners, the structure of the ensemble framework will
be exceeded. For both the efficiency and the accuracy, PFSS
is designed to simplify the structure and choose a few repre-
sentative solutions for an optimized weak learner formulation.
Regarding the shape of the Pareto front in Fig. 10, 4 typical
solutions are suitable for most cells. According to [40], we also
calculate the Pure Diversity (PD) to quantitatively evaluate the
diversity of the solutions selected by PFSS. The PD values of
the 5 cells in Fig. 11 are 114.66, 827.32, 635.64, 927.72, and
855.86, which proves the effectiveness of PFSS. Thus, the 4
blue boxes in Fig. 10 selected by PFSS are used to formulate
the weak learners with good diversity in this work. In this
way, PFSS keeps the diversity and reduces the complexity of
the whole ensemble structure simultaneously.

B. Validation of the proposed method in Case 1

From Fig. 1, we can find that the current pulses are
performed at 18 different conditions. 18 weak learners can
be naturally obtained, and the STFs from each condition
endows the weak learner with diversity to some extent. Thus,
an ensemble framework utilizing 18 weak learners [41] is
chosen as a comparison method for the purpose of showing the
advantages of the proposed method including a superior weak
learner formulation procedure. The comparison method [41] is
named as Method 1 in the following description. An obvious
difference between the proposed method and Method 1 is
that there is no specially designed weak learner formulation
procedure in Method 1. In order to show the advantages of the
SVR based method, the proposed method is also compared
with ELM and GPR used in [16], [21]. For ELM the Sine
function is used as an activation function and the number of the
hidden nodes is set to 20. For GPR, rational quadratic function
is selected as the kernel function. These configurations are
carefully tuned to make a fair comparison.

This subsection validates the proposed method in Case 1.
We have to point out here that all the tests of the SOH
estimation methods in this work are based on 5-fold cross-
validation as shown in Fig. 11. In step 1, the dataset is
randomly divided into 5 subsets. During step 2, 4 subsets are
used to train the model and the 1 left is used for testing. The
validation will repeat 5 times until traversing all the subsets.
The test results are then obtained in step 3. Thus, the validation
results can ensure the generalization of the SOH estimation in
this work.

The SOH estimation results in Case 1 are shown in Fig.
12. The proposed method is close to the reference (red line)
in most conditions for Cell 1, while larger errors exist in
the other three methods. For Cell 2 in Fig. 12b, we can see
similar results that the proposed method (blue line) is closer
to the reference. Compared with the comparison methods, the
proposed method presents a better estimation accuracy for

Fold Fold 

Training dataset Testing dataset

Fold 1 Fold 5Fold 2 Fold 3 Fold 41

 2

3

 4

 5

Test result

Step 2

Step 3

Fold 1 Fold 5Fold 2 Fold 3 Fold 4

Fold 1 Fold 5Fold 2 Fold 3 Fold 4

Fold 1 Fold 5Fold 2 Fold 3 Fold 4

Fold 1 Fold 5Fold 2 Fold 3 Fold 4

Fold 1 Fold 5Fold 2 Fold 3 Fold 4

Step 1

Fig. 11. The test procedure of estimation methods

both Cells 1 and 2. It is noted that Method 1 includes 18
weak learners, while the proposed method contains only 4
optimized weak learners. Thus, the proposed method is able
to obtain accurate estimation results with fewer weak learners.
The MOP and PFSS in the proposed method can maintain the
diversity of the weak learner, thereby optimizing the weak
learner formulation. The advantages of the proposed method
are then proved.
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Fig. 12. The estimation results of two LFP/C batteries in Case
1

We further analyze the estimation results by calculating the
absolute error of the results in Fig. 12. The absolute errors of
the three comparison methods are much larger than the usual
error band in Fig. 13, which shows an unstable performance
of those methods.

The Maximum Absolute Error (MAE) and Mean Squared
Error (MSE) of the SOH estimation results are illustrated in
Table. II. The accuracy of the estimation using the proposed
method is much better than the other methods. The MAE of
the proposed method is less than 35% of Method 1, while the
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Fig. 13. The absolute error of two LFP/C batteries in Case 1

TABLE II. MAE and MSE of the SOH estimation methods in
Case 1

Cell NO. Error Type ELM GPR Method 1 Proposed Method

Cell 1
MAE 0.0859 0.0913 0.0855 0.0417
MSE 0.0018 0.0016 0.0017 3.7910×10−4

Cell 2
MAE 0.1514 0.1574 0.1394 0.0344
MSE 0.0031 0.0038 0.0028 2.6642×10−4

TABLE III. MAE and MSE of the SOH estimation methods
in Case 2

Cell NO. Error Type ELM GPR Method 1 Proposed Method

Cell 3
MAE 0.1175 0.1292 0.1287 0.0528
MSE 0.0018 0.0015 0.0015 4.8847×10−4

Cell 4
MAE 0.1424 0.1150 0.1253 0.0590
MSE 0.0023 0.0016 0.0015 8.6598×10−4

Cell 5
MAE 0.1503 0.1949 0.1641 0.0275
MSE 0.0025 0.0021 0.0021 1.9835×10−4

MSE is less than 15% of Method 1. In this way, the advantages
of the proposed method are proved in Case 1.

C. Validation of the proposed method in Case 2

In this subsection, the SOH estimation methods are val-
idated on Case 2, including Cells 3, 4, and 5. From Figs.
14 and 15, we can see the proposed method estimates the
SOH with higher accuracy than the other methods. The MAE
and MSE of the SOH estimation methods in Fig. 14 are
summarized in Table. III. Both the error types of the proposed
method are smaller than the three comparison methods, which
proves the advantages of the proposed method in Case 2. It
should be noted that KnEA, PFSS, SaDE and SVR training
are both implemented in the training phase of the proposed
method. Only 4 weak learners integrated by a group of weight
coefficients are needed to be calculated for online estimation.

V. CONCLUSION

Considering the fact that one strong and unified data-
driven estimator is difficult to be established in practice, this
paper proposes a SOH estimation method by integrating a
group of weak learners with STFs. An optimized formulation
procedure, including PFSS and KnEA, is designed for the
automatic initialization of weak learners with good diversity.
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Fig. 14. The estimation results of three LFP/C batteries in Case
2
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Fig. 15. The absolute error of three LFP/C batteries in Case 2
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According to the distribution of the non-dominated solutions
in the Pareto front, weak learners can be well formulated.
Afterwards, SaDE integrates weak learners to boost the overall
performance of the SOH estimation. Note that the STF from
a current pulse test, which is convenient to be obtained in
real-life applications, can be used for Li-ion battery SOH
estimation with good accuracy.

The proposed method, which uses only 4 weak learners,
is validated on 5 LFP/C batteries aged under two different
cycling profiles. In Case 1, the average MSE of the proposed
method for Cells 1 and 2 is only 14.34% of Method 1 that
includes 18 weak learners. In Case 2, the average MSE of
the proposed method for Cells 3, 4, and 5 becomes 30.45%
of Method 1. Note that all the estimation results in this work
are validated by 5-fold cross-validation. Thus, the advantages
of the proposed method, including an automatic weak learner
formulation procedure, can be proved.

Since Li-ion battery generally presents a nonlinear degrada-
tion process, future works will focus on developing and vali-
dating this SOH estimation algorithm on a more sophisticated
dataset.
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