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Abstract: Over time, erosion of the leading edge of wind turbine blades increases the leading-edge
roughness (LER). This may reduce the aerodynamic performance of the blade and hence the annual
energy production of the wind turbine. As early detection is key for cost-effective maintenance,
inspection methods are needed to quantify the LER of the blade. The aim of this proof-of-principle
study is to determine whether high-resolution Structure-from-Motion (SfM) has the sufficient
resolution and accuracy for quantitative inspection of LER. SfM provides 3D reconstruction
of an object geometry using overlapping images of the object acquired with an RGB camera.
Using information of the camera positions and orientations, absolute scale of the reconstruction can
be achieved. Combined with a UAV platform, SfM has the potential for remote blade inspections
with a reduced downtime. The tip of a decommissioned blade with an artificially enhanced erosion
was used for the measurements. For validation, replica molding was used to transfer areas-of-interest
to the lab for reference measurements using confocal microscopy. The SfM reconstruction resulted
in a spatial resolution of 1 mm as well as a sub-mm accuracy in both the RMS surface roughness
and the size of topographic features. In conclusion, high-resolution SfM demonstrated a successful
quantitative reconstruction of LER.

Keywords: structure from motion; surface analysis; leading-edge roughness; blade inspection;
quantitative 3D reconstruction; photogrammetry

1. Introduction

Erosion of wind turbine blades poses a challenge for wind energy operation and maintenance [1].
Erosion of the leading edge (LE) increases the surface roughness and reduces the aerodynamic
performance of the blade [1,2]. As the shape of wind turbine blades is specifically designed to
achieve maximum energy efficiency [3], this increased leading-edge roughness (LER) may lead to a
reduced annual energy production of the wind turbine. Through CFD modelling, several studies have
found that even a small degree of LE erosion can lead to 2–5% loss in annual energy production [4–6].
Severely eroded blades with high levels of LER can experience losses from 8% and up to 25% [4,7,8].
As LE erosion over time can develop from small pinholes to large areas of coating delamination [4,9],
early detection of the severity of the erosion is important. At later erosion stages, extensive blade repair
may be necessary causing expensive turbine downtime. Thus, for early erosion detection, inspection
methods for measuring the surface topography of the blade are needed to quantify the LER.
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Visual inspection has long been applied for condition-monitoring of wind turbine blades [10].
In recent years, unmanned aerial vehicles (UAV) have received increased interest for remote inspection
of wind turbines [11–16] with a lower downtime compared to manual rope-access inspection. From 2D
images captured by the UAV, deep learning methods [13,15] can be used for detecting damages and
erosion on the blades. However, while the 2D information can reveal the presence and location,
quantification of the blade surface roughness requires high-resolution 3D data.

Structure-from-Motion (SfM) is a camera-based method that provides a 3D reconstruction of an
object geometry with a simple, fast and low-cost acquisition [17–19]. Aided by a rapid development
of both open source [20,21] and commercial software solutions [22–24], SfM has found industrial
interest in e.g., construction site monitoring [25–27] and infrastructure inspection [28–32]. A lot of
research has also been done in the performance of SfM, for different use cases [33,34]. As input for
the SfM reconstruction, overlapping images of the object from different positions and orientations
are acquired using an RGB camera. Feature points are extracted and matched between the 2D input
images using local feature descriptors such as SIFT [35] or ORB [36]. From the feature points and
intrinsic camera parameters, a sparse 3D point cloud as well as the camera positions and orientations
are computed. Using information from reprojected camera views, further points can be added to create
a dense point cloud, which can be further meshed [37,38].

The accuracy of a SfM reconstruction is influenced by several factors. Since SfM depends on
triangulation of feature points, the accuracy is affected by the angular coverage of the acquired
images [19,39] and scales with the capturing distance from camera to object [38,40,41]. Furthermore,
a sufficient texture level is required for enough distinct features on the object surface to be tracked
from image to image [19,42]. Low texture regions may result in empty regions of the point cloud [43].
To evaluate the accuracy, the SfM reconstruction is typically compared to another optical technique
such as a LiDAR or laser scanner. This can be done either by direct point-to-point comparison with the
SfM point cloud [19,44,45] or raster-to-raster comparison of digital elevation models (DEM) [46,47].
Either way, the comparison is influenced by the measurement uncertainty of the reference points [47].
Common metrics for reporting the accuracy are the standard deviation (SD) [17,33,44] and root mean
square deviation (RMSD) [41,43,46].

Within wind energy, SfM has previously been investigated for 3D reconstruction of blade
geometries [11,16]. However, these studies did not have a sufficient resolution to reconstruct the
surface topography directly and rather used the color texture to identify damages. With high-resolution
SfM, a point-sampling distance below 0.1 mm/pixel can be achieved which allows for reconstruction
of the surface roughness [48,49].

In this proof-of-principle study, we investigate the potential of high-resolution SfM in quantitative
inspection of wind turbine blades. We envisage a scenario where an UAV carrying a high-end RGB
camera is capturing images of the LE of blades. Using these images, a SfM reconstruction of (parts of)
the LE is performed from which quantitative measures of the LER can be extracted. The study seeks
to answer two main questions. First, to demonstrate whether a sufficient resolution can be achieved
to reconstruct the LER of a blade. Secondly, what is the performance of high-resolution SfM in
providing quantitative measures of the surface topography of the LER. A mock-up of an eroded
blade was fabricated by artificially enhancing the LER of the tip of a decommissioned blade. The SfM
capturing was done using a handheld camera and in an outdoor environment to mimic realistic
inspection conditions. In the high-resolution acquisition, the images were acquired from a distance
of roughly 2 m using a 300 mm lens. We believe these conditions to be representative of what the
envisaged UAV inspection scenario might operate with.

For evaluating the accuracy of the SfM reconstruction, selected areas on the blade surface were
extracted from the point cloud and converted to a DEM. Replicas of the same areas on the blade surface
were made using replication molding and transferred to the lab. Replication molding is a demonstrated
method for transferring hard-to-access surface topographies to a substrate suitable for microscopy
measurements [50]. In the replication of surface roughness, accuracies at the sub-micrometer level
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have been demonstrated using elastomer replica materials [51–56]. Using confocal microscopy (CM)
measurements of the replicas, a DEM was created for direct raster-to-raster comparison to the SfM
reconstruction. The resolution of the SfM reconstruction was evaluated using Fourier analysis and
RMSD calculation. For validation of the resolution analysis, a model was constructed by reducing the
resolution of the reference DEM and adding noise. This model DEM was then compared to the SfM
DEM. Finally, the quantitative performance in measuring LER was evaluated using surface roughness
parameters and topographic feature sizes.

2. Methods and Materials

2.1. Blade Mock-up

A decommissioned wind turbine blade was available for the experimental setup. The blade had
been used in a modern 2 MW pitch-regulated wind turbine. Span-wise, the outer two meters of the
blade that already had some erosion was used. To better resemble the examples of severe LE erosion
experienced from field inspections [4,8,9], the erosion was artificially increased by sandblasting the LE.
At this level of erosion, large areas of laminate are exposed along the LE with depths of 1–3 mm.
Severe erosion was chosen for this study for two main reasons. First, depths of these magnitude
are at the order where the aerodynamic performance is significantly impacted. A study by [57]
found that the critical height of roughness for lowering the maximum lift of wind turbine blades was
above 1 mm. Secondly, a large surface roughness represents a good pass/fail test of the feasibility of
high-resolution SfM. If the resolution was not sufficient for resolving large erosion structures, it would
not function for less eroded surfaces either.

For inspection of a wind turbine in operation, we envision that the turbine is stopped with the
inspected blade in a vertical position. To simulate this, the blade was mounted vertically in a gantry,
which was welded together for the purpose of this work. To include the effect of oscillations, chain links
were used to fix the blade mock-up to the gantry, which let the blade segment move freely in the wind.
The height of the gantry was 5 m, resulting in a distance of 5 m from the very tip of the blade to
the ground. The blade setup on the gantry, together with the scissor lift used to capture all the data for
this paper can be seen in Figure 1.

Figure 1. The wind turbine blade segment positioned on the built gantry, together with the scissor lift
used for capturing image and replica data.

2.2. SfM Capturing Conditions

The image capturing process of the proof-of-principle study was done in an outdoor environment
to ensure realistic capturing conditions. A commercial DSLR camera (Canon 5Ds) with a variable
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zoom lens (Canon 70-300 f/4-5.6L IS USM) was used with the focal length fixed at 300 mm. Camera
parameters and settings are summarized in Table 1. As the capturing was done outdoors, a number of
prerequisites need to be taken into account:

• The natural illumination can change between images.
• The sides of the blade mock-up may not be evenly illuminated.
• Wind can cause oscillations of the blade mock-up, which can change its position and orientation

compared to previous images.

Since the accuracy of the SfM reconstruction depends on the stability of light conditions,
camera settings should be robust to environmental changes in light direction and intensity. In addition,
the settings should take into account the possible motion of the blade. The chosen ISO, shutter,
and aperture settings are shown in Table 1. They represent what we believe to be reasonable
compromises between exposure for outdoor conditions, becoming less sensitive to motion blur (shutter)
and not having to worry too much about too shallow depth-of-field (aperture).

Table 1. Camera parameters and settings for the outdoor capturing setup.

Camera Parameters Values

ISO 800
Shutter Speed [sec] 1/200
Aperture f/16
Focal length [mm] 300
Image size [pixels] 8688 × 5792
Sensor pixel size [µm] 4.14

Capturing Setup

Distance to blade [m] 2
Angular spacing [◦] 10
Capturing bands 3
No of images 57
GSD [µm/pixel] 27

For the initial proof-of-principle study, a manual and handheld image capturing was performed.
A part of the wind turbine blade was chosen that contained a variation in surface topography across
the leading edge; from very rough damaged areas to smoother clean areas. The part of the blade
chosen for 3D reconstruction is shown in Figure 2.

A semi-circular 180-degree capturing pattern was used for the image capturing. This capturing
method was shown by [34,58] to produce high accuracy reconstructions while also minimizing the
number of required images. Three horizontal semi-circular bands each with 19 images were acquired
giving a total of 57 images. To ensure enough vertical separation between the horizontal bands,
the first band was taken from the ground level looking toward the suspended blade. To capture the
other two bands a moving scissor lift was used. The captured positions can be seen in Figure 3b.
This way the blade surface could be captured from different positions and angles both in horizontal
and vertical direction, ensuring maximum cover. The semi-circles were centered around the wind
turbine blade with a distance of 2 m from camera to blade. The capturing settings are summarized
in Table 1.

For a fixed focal length, the capturing distance determines the ground sampling distance (GSD),
i.e., the spatial size on the object that each pixel in a captured image covers. Using a pinhole
camera model, the GSD can be calculated as the camera sensor pixel size p multiplied by the ratio of
the distance between camera and surface D over the focal length f as shown in Equation (1).

GSD =
D
f

p (1)
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With the used settings in the study, the GSD was 27 µm/pixel which corresponds to approximately
36 pixels/mm on the blade surface.

Figure 2. Testing blade together with the region chosen for reconstruction. The zoomed-in parts are of
the two sides of the blade.

(a) Input images (b) Camera pose (c) Reconstructed 3D geometry

(d) Reconstruction in color (e) Patch in color (f) DEM of patch

Figure 3. Pipeline for 3D reconstruction using SfM. (a) Initially, images were acquired at every
10 degrees of a half circle around the wind turbine blade at three different heights and tilt angles. (b) The
camera pose of the images and points on the object surface were then calculated. The reconstructed
surface geometry without (c) and with color (d). Extracted patch from the reconstruction shown as
(e) (color) texture and (f) resulting DEM.

2.3. SfM Reconstruction

For SfM reconstruction, the commercial stand-alone software package Agisoft Metashape by [22]
was used. It was selected as it has previously demonstrated a high accuracy compared to other state
of the art solutions, while being robust against sub-optimal capturing conditions [34]. The pipeline
from input images, 3D reconstruction and extraction of depth map patches is visualized in Figure 3.
An overview of the process is given below.

The captured images Figure 3a were imported to Metashape and a triangulation, feature extraction
and matching step were performed to find the camera positions and key feature points from the input
images Figure 3b. From these positions and feature points, a sparse point cloud was formed. Next in



Energies 2020, 13, 3916 6 of 17

the reconstruction process a dense point cloud was created and meshed into a triangle mesh Figure 3c.
Finally, a (color) texture was built from the visual data from the input images Figure 3d.

To establish an absolute scale in the SfM reconstruction, the known camera positions and distance
from camera to blade surface were used. The method presented in [59] was followed. The scale was
calculated using a least-squares transformation estimation between the reconstructed camera positions
and the manually measured positions in the real world.

For evaluating the SfM reconstruction, three areas R1, R2 and R3 were selected for comparison to
reference microscopy measurements. The areas were chosen to include distinctive surface topography
features and cover the boundary between intact coating and damaged surface. For each area, a digital
elevation model (DEM) was created from the reconstruction using the following pipeline. First,
for further processing and analysis of the mesh the reconstruction was imported to the software
CloudCompare [60]. For each area, a patch of roughly 35 mm × 35 mm was created from the
main reconstructed point cloud. The patches were oriented with the Z-axis perpendicular to the
mesh surface, and were rasterized into a DEM of the surface topography Figure 3f. This was done
by an interpolation of the point-cloud points to a map with equidistant point spacing and using the
average z-values of each grid space. The resulting pixel size was chosen to be 13.3 µm to match the
reference microscopy images.

2.4. Replica Molding

Replication was performed for each of the R1, R2 and R3 areas described in Section 2.3. As a
replication material with a fast curing time and resolution down to 0.1 µm, RepliSet T3 by Struers [61]
was selected. In previous studies, the replication of surface textures using RepliSet has achieved a
sub-micrometer accuracy [55,62]. The RepliSet T3 is a black two-part silicone rubber which consists of
a polymer and curing agent. For replication, the two parts were pushed out of the cartridge, mixed in
a static-mixing nozzle and applied onto the blade surface Figure 4a. Immediately after application,
backing paper was placed on top of the mixture and attached by applying a small force as shown
in Figure 4b. The mixture set for 15 min and then the replica was removed from the blade surface
by hand.

(a) (b)

Figure 4. Replication of an area on the blade mock-up. (a) illustrates the application of the combined
polymer and curing agent from a static-mixing nozzle. (b) shows the backing paper being attached by
applying a gentle force to the replication material.

2.5. Confocal Microscopy

Confocal microscopy (CM) was used to produce reference DEMs of the R1, R2 and R3 areas.
The three replica of the blade surface were measured using a calibrated PLU NEOX confocal microscope
by Sensofar [63]. For each replica, an extended area of approx. 35 mm × 35 mm was measured by
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stitching around 400 individual images. A x5 magnification objective with an NA of 0.15 was used.
For each image, a 4 × 4 binning was used resulting in a final pixel size of 13.3 µm. To ensure a
superior resolution for the CM measurement, the pixel size was kept smaller than the GSD of the
SfM reconstruction. The vertical step size (z-axis) used was 12 µm. The 3D surface reconstruction,
stitching and creation of a DEM were performed using the proprietary SensoSCAN software.

The sensitivity of the CM microscope in the vertical direction (z-axis) was calibrated using a set
of step height transfer standards. Traceability was ensured through calibration of the standards by
e.g., an AFM equipped with laser interferometer. The amplification coefficient of the z-axis had a
relative uncertainty lower than 3%.

2.6. Image Processing and Data Analysis

The main software programs used for the surface topography analysis were the Scanning Probe
Image Processor (SPIP) [64] Version 6.6.3 as well as custom scripts in MATLAB version 2019b. SPIP is
an image processing program with special tools for accurate characterization of image structures.

Initially using SPIP, each SfM and reference DEM were levelled by subtracting a least-squares
parabola fit from the overall shape. This way the long wavelength curvature of the surface
was removed, while the short-wavelength surface roughness could be preserved. Then for each
area, the SfM DEMs were co-registered using a Fourier correlation approach in MATLAB.

From the co-registered DEMs, geometrical quantities were extracted from both SfM and
microscopy reference. The chosen quantities are the depth and height of topographic features.

2.6.1. SfM Reconstruction Quality

To evaluate the quality of the SfM reconstruction, two parameters were chosen; The instrument
transfer function at 50% value (ITF50) and the maximum value of the cross-correlation function (CCFmax).

The ITF50 value is a measure of the spatial sharpness, which is analogous to the MTF50 value of
the modulation transfer function. ITF50 is found as the spatial wavelength at which the instrument
response is half the value of the reference. The definition of ITF is shown in (2) [65]. For the calculation,
a region on the surface containing a height is selected. For each line across the height step, the ratio of
the 1D Fourier transforms of the instrument function and reference is calculated. The ITF is found as
the mean of all lines in the region.

ITF( f ) =

〈 ∣∣∣∫ ∞
−∞ z(x, y)e−i2π f xdx

∣∣∣∣∣∣∫ ∞
−∞ zre f (x, y)e−i2π f xdx

∣∣∣
〉

y

(2)

CCFmax has a value between 0 and 1 and describes the spatial similarity of a set of co-registered
measurement and reference topographies. If the measurement is very close to the reference, the value
of CCFmax will be close to 1. CCFmax is found as the maximum of the normalized 2D cross-correlation
function [66].

fCCF
(
tx, ty

)
=

∫∫
A z(x, y)zre f (x − tx, y − ty)dxdy√∫∫
A z2(x, y)dxdy

∫∫
A z2

re f (x, y)dxdy
(3)

2.6.2. Surface Roughness

Prior to performing the surface roughness analysis, an S-filter of 25 µm and an L-filter of 10 mm
were applied to the DEM in accordance with [67]. A plane was chosen as reference surface using
a least-squares linear fit to the height values of the DEM. The following areal surface roughness
parameters as described in [68] were calculated: Sq, Sdq and Sal . These parameters were chosen as
they describe different and complementary features of the surface topography as explained below.
The analysis was performed using the "Roughness Analysis" tool of the SPIP application software.
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• Sq is the root mean square height of the z-values with respect to the reference surface. Sq describes
the overall height variation of the DEM.

• Sdq is the root mean square of the surface gradient. As Sdq depends on variations in the local slope,
it is sensitive to the short-wavelength components of the surface topography.

• Sal is the auto-correlation length, and is a measure of the spatial distance at which the surface
texture becomes statistically different. Sal is calculated as the minimum distance in frequency
space at which the auto-correlation function decays to 0.2 in value. Therefore, Sal contains
information on the long wavelength components of the surface topography.

3. Results

The performance of the SfM reconstruction is illustrated in Figure 5. In Figure 5a,b, the SfM and
reference DEM of replication area R1 are shown. Both have been processed as described in Section 2.6.
The blue box indicates the subregion used for the ITF analysis. As seen in panel Figure 5a, the SfM
DEM captures the main topographic features although the resolution is less than for the reference in
Figure 5b. Although short-wavelength topography variations are missing, holes, edges and the larger
glass-fiber structures are visible in the SfM DEM.

(a) SfM (b) Reference (c) Model

(d) ITF (e) SfM-Reference (f) Model-Reference

Figure 5. (a) Reference, (b) SfM and (c) model DEM of replication area R1. The blue box indicates the
area used for the calculation of ITF50. The scalebar is 5 mm. (d) ITF for SfM and two model curves
based on filtering the reference DEM with and without noise added. (e,f) Residual of SfM and model
DEM with respect to reference DEM.

The ITF function was calculated from the SfM and Reference DEM of area R1 as described in
Section 2.6.1. The ITF was not calculated for R2 and R3 as no height step was present in these areas.
In Figure 5d, the ITF function for SfM is shown (blue solid line) with the 50% value indicated in dashed
black lines. As stated in Table 2, the ITF50 spatial wavelength was 1.3 mm.

To validate the shape of the SfM ITF, a model was developed based on the reference DEM. First,
the reduced resolution of the SfM reconstruction was approximated by applying a Gaussian low-pass
filter to the reference DEM. A filter with a FWHM of 0.65 mm was used to give the model DEM the
same ITF50 value as the SfM. As seen in Figure 5d, the ITF of the filtered reference (dashed red line)
matches the long wavelength values of the SfM ITF. However, at higher frequencies the filtered
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reference has lower values than the SfM. In a second step, structured noise centered at 0.5 mm and
0.1 mm wavelengths was added (dash-dotted yellow line). The two noise components was constructed
through Gaussian low-pass filtering of Gaussian noise with an amplitude selected to match the SfM ITF.
In Figure 5c, the model DEM using Gaussian filter and noise added is shown for area R1. Similarly,
a model DEM was created for both area R2 and R3 using the same Gaussian FWHM and noise settings.

In Table 2, CCFmax and RMSD values for both SfM and model DEM are shown for all
replication areas. The CCFmax values for the model were close to 1 for all areas. For SfM, the values
were >0.9 for both R2 and R3 indicating a very close horizontal spatial resemblance. A slightly smaller
value was found for R1. Overall, the CCFmax values indicate that an accurate scaling of SfM was
obtained. As seen in the table, the RMSD values for SfM are between 0.1–0.2 mm, which is several times
larger than the model values between 0.03-0.04 mm. This discrepancy is illustrated in the residuals
shown in Figure 5e,f. While large differences are observed near sharp edges for both model and SfM
DEM, the SfM residuals also contain a waviness that accounts for the larger RMSD value. The waviness
has a wavelength in the order of 10 mm which shows up as large variations in the long wavelength
part of the ITF in Figure 5d.

Table 2. Quantitative values for evaluating the SfM reconstruction. CCFmax and RMSD are included
for all three areas R1 to R3 while ITF50 was only calculated for R1.

Replication Area R1 R2 R3

ITF50 [mm] 1.3

CCFmax, SfM 0.86 0.95 0.93
CCFmax, Model 0.98 0.99 0.995

RMSD, SfM [mm] 0.099 0.12 0.21
RMSD, Model [mm] 0.038 0.036 0.031

To evaluate the surface roughness of the SfM reconstruction, two regions within each of the R1,
R2 and R3 areas were selected as shown with blue solid lines in Figure 6a–c. Of the six regions named
S1 to S6, an extensive erosion of S1 and S3 resulted in a topography dominated by glass-fiber structures
while S2, S4, S5 and S6 still had an intact surface coating.

The roughness parameters Sq, Sdq and Sal were calculated for each of the S1 to S6 regions as
described in Section 2.6.2. The roughness values for both SfM and reference are shown in Table 3
and illustrated in scatter plots in Figure 6g–i. Overall, both SfM and reference values show a
larger roughness for the eroded S1 and S3 regions than the regions with intact coating. However,
when comparing the three roughness parameters on the scatter plots, some differences are clear.
Although the SfM values for Sq and Sal vary within around 10–20% of the reference values, the SfM
values for Sdq are systematically lower than the reference by around 50%. The absolute RMSD
deviations for S1 to S6 were 9 µm for Sq, 0.5 for Sdq and 0.2 mm for Sal .

Three distinctive topographic features were selected in the R1 and R2 areas; Two depressions
D1 and D2 (red dashed lines) and a height step H1 (yellow dotted lines) as shown in Figure 6a,b.
For all features, the depth and height measurements for the SfM DEM were close to the reference
as shown in Table 3. The relative deviations between SfM and reference are less than 16%, and the
absolute deviations were less than 0.2 mm with an RMSD of 0.1 mm.
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(a) R1, Ref (b) R2, Ref (c) R3, Ref

(d) R1, SfM (e) R2, SfM (f) R3, SfM

(g) Sq [µm] (h) Sdq (i) Sal [µm]

Figure 6. (a–c) Reference and (d–f) SfM DEMs of area R1, R2 and R3, respectively, with prior image
processing as described in Section 2.6. Surface roughness regions S1 to S6 are indicated with solid
blue lines. Depressions D1, D2 and ridge H1 are indicated with dashed red and dotted yellow lines,
respectively. The scalebar is 5 mm. (g–i) Scatter plots of SfM and reference values for Sq, Sdq and Sal ,
respectively. The dotted line indicates where SfM values are equal to reference values.

Table 3. Quantitative values for surface roughness and topography features. The roughness parameters
Sq, Sdq and Sal for regions S1 to S6 were calculated using an S-filter of 25 µm and an L-filter of 10 mm.
The depth for depression areas D1 and D2 and height for ridge area H1.

Replication Area R1 R2 R3

S1 S2 S3 S4 S5 S6

Sq, Ref [µm] 78 31 96 35 37 51
Sq, SfM [µm] 61 28 106 39 36 44

Sdq, Ref 1.03 0.78 1.02 1.22 0.69 0.90
Sdq, SfM 0.43 0.45 0.45 0.50 0.55 0.35

Sal , Ref [mm] 1.04 1.12 1.41 0.66 0.73 0.64
Sal , SfM [mm] 1.25 0.84 1.66 0.85 0.66 0.88

D1 H1 D2

∆z, Ref [mm] 0.57 0.34 1.51
∆z, SfM [mm] 0.66 0.30 1.68
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4. Discussion

The reconstructed SfM displayed a high sharpness and resolution. From the ITF50 value, we have
that features down to 1.3 mm appear sharp. Conversely, the Gaussian FWHM of 0.65 mm from
the model DEM gives a measure of the spatial resolution, i.e., the smallest distinguishable features.
The resolution of around 1 mm is one to two orders of magnitude lower than the GSD of 27 µm,
which is in line with previous high-resolution SfM studies [48,49].

The high value of CCFmax for the R2 and R3 areas shows a good spatial resemblance between
SfM and reference measurements. The slightly lower value for R1 could either indicate an insufficient
resolution or an imperfect co-registration. Since the CCFmax values for the model DEM were close to 1,
the resolution seems sufficient to preserve the topographic features. The accuracy in co-registrating
the DEMs could be limited by the replication molding. Although the replica ensures a high replication
accuracy of the surface roughness, the overall shape is not preserved when demolding the replica.
Although a levelling was applied in data processing, a waviness was still observed in the residual of
the SfM DEM with respect to the reference as seen in Figure 5e. Nonetheless, as the waviness had a
wavelength of 10 mm it did not impact the ITF50 value of 1.3 mm.

Furthermore, as indicated by the model DEM, a rather high noise level was present in the
SfM DEM. Some of this may originate from the point-cloud densification or the interpolation when
creating the DEM. Varying light intensity may also affect the reconstruction as reported by Wang and
Zhang [11]. Further studies are needed to determine the potential for reducing the noise level.

The surface roughness analysis shows relatively good results for SfM measurement of both Sq

and Sal parameters. The resolution of the SfM reconstruction was sufficient as both Sq and Sal are most
sensitive to the low spatial frequencies, i.e., structures larger than 1 mm. Similarly, the topographic
features D1, H1 and D2 had large spatial widths which ensured good results for the measured depths
and heights. In contrast, a poor result was seen for the Sdq parameter, which is sensitive to high spatial
frequencies, i.e., structures smaller than 1 mm.

The potential for using the Sq parameter in quantitative characterization of LER is illustrated in
Figure 7. First, the SfM reconstruction was unfolded to a flat shape and extracted as a DEM using
CloudCompare. A region centered on the LE was selected as indicated with a box in Figure 7b.
For each 10 mm × 10 mm square in the region, the Sq parameter was calculated and visualized in red
in Figure 7c. The strength of the red color indicates the Sq value in each square with a lower bound of
20 µm (no color) and upper bound of 100 µm (color saturated). As seen, the Sq values are low for areas
with the coating still intact, and high along the eroded leading edge. This indicates the potential for
high-resolution SfM for quantitative inspection of LER.

(a) SfM curved shape (b) Plane shape (c) Sqvisualization

Figure 7. Visualization of LER. The curved blade geometry seen in (a) was unfolded to a flat shape
shown in (b) from which a region centered on the LE was selected as indicated by the box. For each
10 mm × 10 mm square in the region, the Sq parameter was calculated. In (c), the strength of the red
color indicates the Sq value in each square. The scalebar is 10 mm.

For quantitative inspection of the blade erosion, the resolution of the SfM reconstruction needs
to match the size of erosion structures, i.e., pits, gauges and delamination. From inspection reports
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of LE erosion structures, Sareen et al. [4] considered pits and gouges with widths down to 0.5 mm
and depths from 0.5 mm to 3.8 mm. In the study by Gaudern [9], widths down to 2 mm and depths
from 0.1 mm to 1 mm were investigated. In both studies, the delamination covered tens of millimeters
in width and 1–3 mm in depth. The lower end of these feature sizes corresponds very closely to the
obtained resolution of 1̃ mm. Conversely, as the results of the SfM measurements of topographic
features D1, H1 and D2 showed, depths from 0.3 mm–1.5 mm could be successfully measured using
high-resolution SfM.

Had the SfM resolution been lower by e.g., using a shorter focal length, the surface roughness
and smaller topographic features would not have been visible. This is illustrated in Figure 8 by a
model DEM of a SfM acquisition of area R1 with a 2 m capturing distance using a 100 mm (Figure 8a)
or 35 mm (Figure 8b) focal length. These settings correspond to a GSD of 0.08 mm and 0.24 mm,
respectively. The model DEMs were created from the R1 reference DEM of Figure 5b by applying a
Gaussian low-pass filter with a FWHM of 1.9 mm and 5.5 mm, respectively. As seen, already for the
100 mm focal length, the glass-fiber structures are becoming blurred. For the model of a 35 mm focal
length, even the topographic features appear blurred.

In previous studies which applied SfM to reconstruct blade surface, the low resolution would
have made a quantification of LER infeasible. In comparison, the settings used by [11,16] resulted
in a GSD of around 0.3 mm which corresponds to the model in Figure 8b. Rather than quantifying
the surface topography, they relied on the texture of the reconstruction to locate damages on the
blade surface. An advantage of using a lower resolution is that a larger surface area of the turbine
blade can be covered in a single reconstruction. Applying high-resolution SfM to reconstruct the full
length of a blade would require a very long inspection time and result in a challenging amount of data.

For full blade inspection, 2D images with even lower resolution can be applied which require fewer
image acquisitions and a lower acquisition time. However, in this approach the absolute geometry
is not obtained, and the LER is not quantified. Instead other methods would be needed to indicate
the presence and location of LER such as the deep learning approach used by [13]. In many ways,
the proposed high-resolution SfM is complementary to this deep learning approach. By combining both,
an initial inspection using low-resolution 2D images would indicate the location of LER on the blades.
Afterwards, high-resolution SfM could be applied to quantify the severity of the located erosion,
which could be used to estimate the aerodynamic impact. Furthermore, if these inspections were
combined with a probabilistic model such as a dynamic Bayesian network model [69], the development
of the erosion in time could be estimated. This would provide an input for when to conduct repairs on
the blade.

(a) f = 100 mm (b) f = 35 mm

Figure 8. Model DEM of a SfM acquisition of area R1 with (a) 100 mm and (b) 35 mm focal length.
The model DEMs were created by Gaussian low-pass filtering of the R1 reference DEM of Figure 5b
with FWHM of 1.9 mm and 5.5 mm, respectively. The scalebar is 5 mm.

5. Conclusions

This proof-of-principle study demonstrated the successful application of high-resolution SfM
to quantify the surface roughness of a decommissioned turbine blade. To better resemble the LE
erosion observed from inspections, a severe level of erosion with a large area of delamination was
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applied to the blade. To mimic realistic inspection conditions, the blade was hanged vertically in an
outdoor setting, and the SfM image acquisition was conducted handheld to ensure a level of vibrations.
Using a 300 mm focal length and 2 m distance from the blade, a 1 mm spatial resolution of the SfM
reconstruction was obtained.

To validate the SfM scan, smaller regions of interest were transferred to the lab using
replication molding and measured with confocal microscopy. From the co-registered SfM and
reference regions, a number of surface roughness parameters and topographic feature size
were extracted. The quantitative results of surface roughness and topographic feature sizes displayed
sub-mm accuracies. Compared to the reference, the RMSD value was 9 µm for the Sq roughness using
an S-filter of 0.025 mm and L-filter of 10 mm, while the RMSD value was 0.1 mm for the depths and
heights of topographic features. The results demonstrate the potential for using high-resolution SfM
for quantitative measurement of LER on wind turbine blades. Quantitative measurements of LER from
blades in operation could aid in creating more realistic CFD models and improve blade inspections.

In future work, a high-resolution SfM inspection using a UAV should be carried out on the blade
of a wind turbine in operation. The camera would be mounted in a gantry on the UAV platform to
allow for the same poses relative to the blade as in the current study. These settings would allow a
more thorough investigation of the effects of vibrations from UAV platform and turbine on the image
acquisition and the quality of the 3D reconstructions. In addition, the sensitivity of high-resolution SfM
towards surface roughness should be investigated further through measurements on blade surfaces
of varying erosion severity. Further studies are also needed on the influence of the texture and color
contrast of the blade surface on the quality of the reconstructed surface details.
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