Aalborg Universitet AALBORG

UNIVERSITY

Deep Neural Network-based Receiver for Next-generation LEO Satellite
Communications

Zhang, Yufeng; Wang, Zhugang ; Huang, Yonghui ; Ren, Jian; Yin, Yingzheng; Liu, Ying;
Pedersen, Gert Frglund; Shen, Ming

Published in:
IEEE Access

DOl (link to publication from Publisher):
10.1109/ACCESS.2020.3044321

Creative Commons License
CCBY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Zhang, Y., Wang, Z., Huang, Y., Ren, J., Yin, Y., Liu, Y., Pedersen, G. F., & Shen, M. (2020). Deep Neural
Network-based Receiver for Next-generation LEO Satellite Communications. IEEE Access, 8, Article 9293130.
https://doi.org/10.1109/ACCESS.2020.3044321

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://doi.org/10.1109/ACCESS.2020.3044321
https://vbn.aau.dk/en/publications/501c0a5a-f8e7-4a5c-ac1c-5e071debda00
https://doi.org/10.1109/ACCESS.2020.3044321

Downloaded from vbn.aau.dk on: July 04, 2025



IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 21, 2020, accepted December 7, 2020, date of publication December 14, 2020,
date of current version December 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3044321

Deep Neural Network-Based Receiver for Next-
Generation LEO Satellite Communications

YUFENG ZHANG 123, ZHUGANG WANG', YONGHUI HUANG!,
JIAN REN“4, (Member, IEEE), YINGZENG YIN4, YING LIU"3,
GERT FROLUND PEDERSEN "3, (Senior Member, IEEE),

AND MING SHEN"3, (Member, IEEE)

!National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Electronic Systems, Aalborg University, 9220 Aalborg, Denmark

#National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an 710071, China
3School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Ming Shen (mish@es.aau.dk)

ABSTRACT This paper proposes a novel deep neural network (DNN)-based receiver for next-generation low
Earth orbit (LEO) satellite communications. The DNN receiver can concurrently compensate for multiple
imperfections of the satellite communication system to improve the quality of satellite-to-ground transmis-
sion. A special focus has been placed on handling the nonlinear distortion in the transmitted signal caused by
space-borne high-efficiency radio frequency power amplifiers (RF-PAs), which is crucial in high-throughput
satellite communications, but has been overlooked by existing relevant research. In this receiver, a DNN
is designed and trained to learn the channel effects, nonlinearities of the RF-PAs, and digital modulation
schemes in the received signal for demodulation and nonlinearity/channel effect compensation at the same
time. The proposed receiver has been evaluated using five popular filtered orthogonal frequency division
modulations with the nonlinear distortions experimentally extracted from a real gallium nitride (GaN) RF-PA
and the additive white Gaussian noise channel generated by simulations. The validation results demonstrate
that the DNN receiver can accommodate different modulation schemes and two typical groups of RF-PA
classes with a satisfactory bit error rate performance. It has the potential to boost the performance of existing
on-orbit LEO satellite communication systems with minimal system modifications and serves as a promising
solution for future satellite communication services.

INDEX TERMS Deep neural network, filtered-OFDM, radio frequency power amplifier, nonlinear distor-

tion, digital signal recovery, demodulation, low Earth orbit satellite communications.

I. INTRODUCTION

With the fifth-generation (5G) communication network being
commercialized worldwide, low Earth orbit (LEO) satellite-
to-ground communication has become one of the hot topics
in both academia and the space industry, due to its attractive
advantages (i.e., lower signal attenuation and shorter propa-
gation latency) compared to medium Earth orbit (MEO) and
high Earth orbit (HEO) satellite communications [1]. There
is no doubt that LEO satellite communications will continue
playing as a key role in sixth-generation (6G) communica-
tions [1]. Although LEO satellites deployed at 500—1500 km
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feature a relatively lower signal attenuation than MEO and
HEO satellites, the transmitter of the LEO satellite still
requires a medium- or high-power RF-PA for magnifying the
power of radio signals to support such a long transmission
distance with desired data rates. Due to the limited power
resources available on the LEO satellites, the space-borne
RF-PAs usually work in or close to a saturation region to
obtain high power efficiency, leading to significant nonlinear-
ity. This nonlinearity could cause severe distortion in signals
with high peak-to-average power ratios (PAPR), for instance,
the filtered orthogonal frequency division modulation
(f-OFDM) signal. f-OFDM is an advanced and flexible wave-
form that features low out-of-band radiation while maintain-
ing most of the advantages of conventional OFDM, and has
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become a part of the 5SG standard now [2]. On the other
hand, the scientific community has made efforts to integrate
satellite communications with terrestrial communications
over the past few years, especially the physical layer (PHY),
and hence, f-OFDM is recommended as the most promising
waveform for LEO satellite communications [3]. Therefore,
dealing with the nonlinearity of space-borne RF-PA is cru-
cial for achieving broadband connections in next-generation
LEO satellite services.

Commonly used approaches to handle the nonlinearity
of the RF-PA are digital predistortion (DPD) techniques,
for instance, memory polynomial [4] and lookup tables [5].
As shown in Fig. la, the DPD techniques predistort the
original signals to compensate for the nonlinear distortion
caused by the RF-PA. However, the DPD technique has
an unacceptable drawback for LEO satellite communica-
tions: consuming significant power and computing resources.
To overcome this drawback, a power back-off technique
is widely applied in LEO satellite communication systems,
as shown in Fig. 1b. The power back-off technique decreases
the input signal power of the space-borne RF-PA to relax the
nonlinearity, leading to poor power efficiency (e.g., 32.6 %
in [6]). Therefore, a new technique that can elegantly solve
this issue is highly desired for next-generation LEO satellite
communications.

(DPD based F-OFDM systems _ _ _ _ _ _ ) &)
Data F-OFDM DPD F-OFDM Received
Source Modulator Demodulator Data
\. J
<
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Source Modulator Channel BIRA Data
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\. J

FIGURE 1. System architecture comparison between a) the conventional
DPD based f-OFDM system, b) the conventional power back-off based
f-OFDM system, c) the existing DNN based receiver overlooking the RF-PA
nonlinearity, and d) the proposed DNN based f-OFDM receiver including
the RF-PA nonlinearity mitigation.

Currently, several deep learning techniques have been
well applied in wireless communications [7], especially in
PHY [7]-[13], demonstrating their great potential in com-
munication system characterization and optimization. Gen-
erally, the development of deep learning in PHY mainly
focuses on enhancing certain models used in wireless com-
munication systems [9]. In [10], deep learning techniques
remarkably outperform traditional machine learning tech-
niques such as support vector machines, random forests, and
logistic regression in terms of the identification accuracy of
different digital modulations. Another more radical research
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direction is a deep learning-based end-to-end communication
system design [9], [11]-[14]. The concept of this design is
to jointly optimize the whole communication system within
one or more DNNSs or even generate a new waveform as a
transmitted signal [11]. In this way, traditional rigid math-
ematical models such as carrier frequency synchronization,
channel equalization, modulation and demodulation, and
channel coding and decoding can be omitted. Instead, an elab-
orately customized communication system is designed for
the specific communication environment with the optimal
transmission performance. Generally, these techniques can
achieve a better bit error rate (BER) performance in low
signal-to-noise ratios (SNRs) than traditional communication
systems. The existing deep learning-based receivers have
focused on different technical aspects in the communication
channel, such as multipath fading channels, flat fading chan-
nels, and MIMO channels. The nonlinearities of RF-PAs to
date, however, have been overlooked in the existing end-to-
end solutions, as shown in Fig. ¢ [9]. Additionally, the exist-
ing DNN-based methods were verified using basic wave-
forms (e.g., PSK, QAM, and OFDM signals) [9], [13], [14]
or new waves [11], [12] and cannot be easily implemented
in modern communication systems, which favor advanced
waveforms such as f-OFDM.

In this paper, a new DNN-based f-OFDM receiver is pro-
posed to overcome this challenge. As shown in Fig. 1d,
the proposed system architecture is in line with the end-
to-end communication system design. The novelty of the
proposed receiver is the use of one DNN model to compensate
for the nonlinear distortion in the received signal caused by
the space-borne RF-PA at the ground station and to apply
demodulation simultaneously. After the DNN deployed at
the ground station learns the imperfections of the commu-
nication environment and modulation types, the space-borne
RF-PA is allowed to operate in its saturation region for signals
with advanced modulation schemes, while maintaining the
expected BER performance. This helps the LEO satellite to
operate with high power efficiency. In addition, experimental
results show that the proposed technique could accommodate
different nonlinearities of the RF-PA and modulation types
by training different DNN models. As no modifications in
transmitting are required on satellites, the proposed system
has the ability to enhance satellite-to-ground communication
for existing on-orbit LEO satellites. Different from our previ-
ous work [6], the proposed work not only compensates for
the nonlinear distortion caused by the space-borne RF-PA
but also combines the compensation and demodulation within
one model. The proposed technique also provides a promising
solution for future satellite communications.

Il. IMPERFECTIONS OF LEO SATELLITE-TO-GROUND
COMMUNICATIONS

Regarding LEO satellite-to-ground communications, the main
contributors of imperfections that degrade the transmission
quality are channel effects and hardware imperfections.

VOLUME 8, 2020
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FIGURE 2. Proposed system structure using the DNN and the illustration of the signal distortion caused by the nonlinear space-borne RF-PA.

A. CHANNEL EFFECTS

Because of insignificant multipath fading, the LEO satellite-
to-ground communication channel can be modeled as
a point-to-point additive white Gaussian noise (AWGN)
channel [6], [15]. Moreover, because of the fast motion of
LEO satellites, the LEO satellite-to-ground communication
channel features a wide and rapid time-varying Doppler fre-
quency shift and received signal power. Technically, the time-
varying Doppler frequency shift can be well handled by
existing solutions [6]. Additionally, in the recent research [6],
it has been shown that the impact of the time-varying received
signal power can be eliminated by the batch normalization
layer of the DNN. Apart from all of the above, other factors
can also affect the received signal, including the atmospheric
absorption loss, antenna misalignment loss, and modulation
loss caused by imperfect demodulation. However, compared
with the time-varying SNR, the effects of these effects are
much smaller, especially for S- and X-band LEO satellite-to-
ground communication systems. Hence, the channel in this
work is only considered as an AWGN channel featuring a
time-varying SNR.

B. HARDWARE IMPERFECTIONS

Nonlinear distortion could affect the output signal of the
RF-PA in both amplitude and phase. In the time domain,
the amplitude of the signal cannot remain equivalently magni-
fied when the instantaneous input power frequently changes,
as shown in Fig. 2. In the figure, K represents the digital mod-
ulation order. It can be observed from the time domain dis-
tortion in the figure that when the instantaneous input signal
power of the RF-PA reaches the level that drives the RF-PA
into its saturation region, the peak amplitude of the output
signal would be evidently restricted. The nonlinear distortion
also changes the phase of the signal, leading to a degradation
of the BER performance. To observe the phase distortion,
QPSK-based f-OFDM modulation is used, as shown in Fig. 2.

VOLUME 8, 2020

In addition, for simplicity, perfect f-OFDM synchroniza-
tion for other system imperfections, including timing, carrier
frequency offsets, and Doppler frequency shift synchroniza-
tion, has been performed at the receiver.

Ill. CONSTRUCTION AND DEFINITION

OF THE PROPOSED SYSTEM

Different from the existing DNN (i.e., autoencoder)-based
end-to-end communication system design, the proposed sys-
tem makes full use of the domain knowledge of the f-OFDM
transmitter. Assuming no extra work is needed on the satellite,
a conventional f-OFDM transmitter [16] without the use of
any DPD or power back-off techniques is applied in the
proposed system. Then, a DNN is introduced in the receiver
at the ground station to learn both the modulation type and the
nonlinear distortion included in the received signal, as shown
in Fig. 2. The received signal (i.e., signal (c) in Fig. 2) is
used for training, and the trained DNN can demodulate the
received signal within one model without using fast Fourier
transform (FFT) operations or digital demodulation schemes
after training. In the meantime, this trained DNN also has the
ability to compensate for the combined imperfections caused
by the space-borne RF-PA and LEO communication channel,
which is called signal recovery in Fig. 2.

The proposed system only requires modifications in the
receiver without any other operations at the transmitter.
Note that it could be better to utilize the structure of the
autoencoder (i.e., encoder and decoder at the transmitter
and receiver, respectively) to globally optimize the com-
munication system to achieve the optimal transmission per-
formance. However, the global optimization method needs
modifications at the transmitter, and hence, the autoencoder
cannot be applied in existing on-orbit LEO satellites. In addi-
tion, new technologies are usually not stable, such that they
could only be carefully tested and verified for future satellite
communications. The proposed system not only provides
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a promising solution to apply deep learning techniques for
future LEO satellite communications but also has the poten-
tial to upgrade the existing on-orbit LEO satellite transmis-
sion link to achieve a better transmission performance.

The configuration of the tested f-OFDM transmitter in this
work is shown in Table 1. Note that considering that f-OFDM
is a waveform standard of 5G, a customized f-OFDM sig-
nal could be suitable for simulations and BER analysis.
Therefore, to ensure that nonlinear distortion is correctly
introduced into the signal by the simulations, a 512 sub-
carrier f-OFDM system with 64 data subcarriers inside is
used to verify the proposed receiver. The filter used for
side-lobe suppression of the conventional OFDM signal fol-
lows ref. [16], but the order of the filter is set to 64 considering
the limitation of the space-borne computing resource. There-
fore, one f-OFDM signal has 576 complex-number samples.
In addition, f-OFDM signals based on different digital mod-
ulation schemes feature almost the same PAPR, which is
approximately 12.85 dB. For the RF-PA, this work takes into
account both class AB and class B working states, which
already have strong nonlinearities.

TABLE 1. System configurations.

Due to the complex-number property of the f-OFDM signal,
the input samples are divided into two paths represented as r;
and rgp. Therefore, the number of input and output neurons of
the DNN is set to 1152 and 64 x K, respectively, where K is
the digital modulation order. The DNN has 264K possible out-
puts, and hence, the DNN is difficult to train as a classification
model using the cross-entropy loss. In this paper, the MSE
loss function is used to train the DNN as a regression model.
Note that to reasonably constrain the numerical size of the
DNN outputs, a sigmoid active function with the maximum
and minimum values of 1 and 0 is employed as the last layer.

Several important settings of the DNN are listed in Table 2.
It is worth noting that if the loss no longer decreases after
20 epochs or the adaptive learning rate reaches the minimum
learning rate, the training process is stopped immediately.
To efficiently capture sufficient features from training data,
the learning rate is initially set to 0.01 and reduced while
training in a reasonable way. Then, the adaptive moment
estimation (Adam) method is used as an optimizer for
updating the parameters of the DNN, considering its high
efficient computation [17]. In addition, considering the point-
to-point AWGN channel, an AWGN with an approximate
SNR is added on the transmitted signal for improving the
noise robustness of the DNN [6]. In this work, the training

Modulation type QPSK, 8PSK, 8QAM, 16QAM, 16APSK SNR is chosen when the theoretical BER of the specific
Subcarriers 512 digital modulation scheme reaches 1075, as shown in Table 2.
Data subcarriers 64
ijer type Windowed _Smc L16] TABLE 2. Configurations for training.
Window type Hanning
Filter length 64 Maximum epochs 200
PAPR 12.85dB Step/epoch 50
RF-PA working state Class AB Class B Batch size 5000 Filtered-OFDM signals
Vpp (V) 28 20 12 28 20 12 Early stop patient 20 epochs
Vaa V) 29 29 29 23 25 2.7 Initial learning rate 0.01
Ipg (mA) 66.82 | 6120 | 55.63 | 274.90 | 201.10 | 121.00 Minimum learning rate 10-5
Channel AWGN Loss function Mean squared error (MSE)
Optimizer Adam
Modulation type QPSK 8PSK 8QAM 16QAM | 16APSK
IV. TRAINING PROCESS AND NETWORK DEFINITION Training SNR 126dB | 17.8dB | 173dB | 194dB | 205dB
The training process of the proposed application is shown Training bits/step 5000 x 64 x K
in Fig. 3, where the green and blue arrows are the forward Testing bits 100000 x 64 x K

and back propagation [6], respectively. The purple arrow
shows that the RF-PA is modeled by experiments. In the
training process, parameters of the DNN are updated step by
step by reducing losses between outputs of the DNN (i.e.,
predicted values) and true values (i.e., labels). The DNN
can gradually learn features hidden in training data for clas-
sification or regression missions. Generally, if the DNN is
trained as a classification model, the cross-entropy function is
a commonly used loss function. On the other hand, the mean
squared error (MSE) is typically used to train the DNN to be
a regression model.

As seen in Fig. 3, the expected outputs of the DNN are the
bits corresponding to the f-OFDM signals fed into the DNN.
Therefore, the number of input neurons is correlated with the
number of samples of one f-OFDM signal, and the number
of output neurons is correlated with the type of the digital
modulation scheme and the number of data subcarriers.

222112

All operations are realized using Python 3.8.4 on Visual
Studio Code, including the f-OFDM signal generation, non-
linear distortion simulation, and training process. It is worth
noting that the nonlinearity is modeled by the memory poly-
nomial method using measured data from a CGH40006P
RF-PA, as shown in Fig. 3. The measured data are col-
lected using an R&S SMBV100A signal generator and R&S
FSQ26 signal analyzer controlled by MATLAB. The origi-
nal f-OFDM signals are distorted by feeding them into the
memory polynomial model. In addition, the DNN is built and
trained using Keras 2.3.0-tf, and the version of Tensorflow
is 2.2.0.

V. FEASIBILITY ANALYSIS OF THE PROPOSED SYSTEM
As mentioned in section I, several rigid mathematical models
with different functions are developed to support the whole

VOLUME 8, 2020
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FIGURE 3. Diagram of the training process and the experimental scene for extracting characteristics of the RF-PA.

conventional communication system. The OFDM demodu-
lation (i.e., FFT) and conventional DPD techniques are both
mathematical models described by a few coefficients. Note
that DPD techniques can be exploited in the receiver to
recover the received nonlinear distorted signal under an ideal
environment. However, the recovery method is not a work-
able solution for conventional DPD techniques due to the
time-varying received signal power, which is not a challenge
for the DNN-based recovery method [6]. The DNN is also
a mathematical model with many coefficients and features
a fixed connection form. Different from the conventional
mathematical model, the DNN is nonlinear due to nonlinear
functions (e.g., the ReLu function shown in Fig. 2). Benefit-
ing from this nonlinearity, the DNN can fit arbitrary curves
that are also recognized as functions by training. Therefore,
the DNN could usually model complex problems that are
difficult to express mathematically and even cover all func-
tions within one model. This inference is proved by this
work. The DNN not only demodulates the f-OFDM signal
but also has the ability to recover the received nonlinear
distorted signal. In other words, the DNN could integrate
the two mathematical models together into one model and
simultaneously handles the time-varying effect.

VI. EXPERIMENTAL RESULTS

To design a power-efficient LEO satellite, the nonlinearity
of the space-borne RF-PA must be considered; otherwise,
the transmission performance would be degraded. There-
fore, a reasonable experiment using QPSK-based f-OFDM
modulation under different levels of nonlinear distortion is
performed in this work to demonstrate that the nonlinearity of
the RF-PA can be overlooked in the training process, as shown
in Fig. 4a. Both the amplitude and phase distortions caused by
the nonlinearity of the RF-PA lead to a significant increase
in the error vector magnitude (EVM). In the simulation,
the EVM is used to measure the level of nonlinear distor-
tion. From the figure, the existing conventional DNN-based
receiver, which overlooks the nonlinearity in the training
process, no longer works using the experimentally extracted
RF-PA model corresponding to an EVM of 1055.91 %. If the
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power back-off technique is adopted to relax the nonlinear
distortion caused by the RF-PA, the BER performance of
the conventional DNN-based receiver would be improved
but still has a gap with the theoretical BER performance
bound. Therefore, if nonlinear distortion is not involved in
the training data, the DNN would not know the nonlinearity
of the RF-PA, and hence, the DNN-based receiver does not
work properly.

The proposed DNN-based f-OFDM receiver can accom-
modate different digital modulation schemes. In this work,
QPSK-, 8PSK-, 8QAM-, 16QAM-, and 16APSK-based
f-OFDM modulations are verified. QPSK, 8PSK, and
16APSK are commonly employed in LEO satellite communi-
cations due to their low PAPR (approximately 4 dB). 8QAM
and 16QAM are typical digital modulation schemes in ter-
restrial communications. It can be seen from the Fig. 4c and
Fig. 4d that the BER performance of the proposed receiver
using an QPSK based f-OFDM modulation is close to the
theoretical BER performance. With the growing modulation
order, a slight BER performance degradation is observed due
to the increasingly complex and diverse constellations, but
the proposed receiver still performs very well with only a
1 dB deviation from the theoretical bound. The phase shift
caused by the RF-PA has a more serious impact on complex
constellations than on simple constellations. Compared with
the existing DNN-based receivers that are trained without
nonlinear distortion, a slight degradation of the BER is also
seen but within the acceptable range. The nonlinearity of
the RF-PA cannot be completely compensated, especially for
high-order digital modulation schemes. The maximum SNR
degradation in the 16APSK-based f-OFDM modulation is
approximately 1 dB when a BER of 107 is required.

In addition, the proposed receiver can handle different
working states of the RF-PA well, as shown in Fig. 4b. Gener-
ally, classes AB and B are the most commonly used working
states to achieve an optimal trade-off between power effi-
ciency and nonlinearity. The drifting temperatures, jittering
supply, bias voltages, and varying input power are all factors
that could cause state variations of the RF-PA in real opera-
tion. Therefore, it is of the highest importance to validate the
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FIGURE 4. Experimental results to show a) the necessity of considering the nonlinear distortion (ND) using the QPSK based f-OFDM modulation with
different nonlinearities of the RF-PA measured by the error vector magnitude (EVM) and validate the DNN with b) multiple RF-PA working states, c)
commonly used modulations in LEO communications, and d) commonly used modulations in terrestrial communications.

capability of the proposed receiver under different working
states of the RF-PA. To eliminate randomness, three different
voltage supplies of each class are conducted, represented as
state 1, state 2, and state 3. The supply voltage, bias voltage,
and quiescent current of each state are shown in Table. 1. For
simplicity, the QPSK based f-OFDM modulation is utilized
to verify the proposed idea. It is worth noting that a new
DNN needs to be trained for fitting the current new working
state of the RF-PA. Even so, this experiment can sufficiently
prove that the DNN can handle different RF-PAs and different
working states of the same RF-PA.

VII. DISCUSSION
When the proposed technique is implemented at the ground
station, the computing resource does not prevent the applica-
tion of this work to satellite-to-ground communications, espe-
cially considering the benefit to power efficiency for LEO
satellites that this technology can bring. As a potential tool,
the DNN-based receiver can also be developed for satellite-
to-satellite communications in which power and computing
resources are severely limited. The computational require-
ment consequently needs to be analyzed if that is the case.
In addition, even though the proposed DNN receiver can
be used in satellite-to-ground communication for existing
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on-orbit LEO satellites, it does require an appropriate training
dataset from the LEO satellites for training the DNN. One
solution is to request the on-orbit satellites to send a known
pilot and training sequences in the downlink data. In this way,
the imperfections of the whole communication system and
modulation types are embedded in the known information
(i.e., pilots and training sequences). Then, the DNN can be
trained using that information. This method also provides
a promising solution to realize real-time online training for
handling time-varying communication environment changes
such as rain fades. For future LEO satellite communications,
a simple way to apply this work is to train the DNN to learn
the hardware imperfections and modulation types before the
flight. Considering that the LEO satellite-to-ground commu-
nication channel can be modeled as a point-to-point AWGN
channel, the DNN can still work properly. However, due to
space limitations, this work is not included in this paper.

VIil. CONCLUSION AND FUTURE WORK

In this paper, a novel DNN-based f-OFDM receiver is
proposed for power-efficient high-throughput LEO satellite
communications. Different from the existing DNN-based
receiver techniques, which focus mainly on channel effects,
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the proposed receiver also takes into account the main hard-
ware imperfections caused by the RF-PA, which is crucial
for high-throughput satellites. Experimental validation has
been performed to demonstrate the necessity and benefit
of including the nonlinear distortion caused by the RF-PA
in training. In addition, the proposed DNN-based f-OFDM
receiver can perfectly handle different digital modulation
schemes and nonlinearities of RF-PAs in different operation
classes. By learning the imperfections and modulation types
of the communication system, the proposed receiver has
the potential to improve the transmission quality of exist-
ing on-orbit LEO satellites without any modifications to the
satellites. This paper not only provides a new design method
for next-generation LEO satellite communications but also
shows the potential of this work for terrestrial communication
systems, such as 5G or other point-to-point communication
networks.

As mentioned in section III, adding an autoencoder could
assist communication systems in achieving the optimal
transmission performance. If the encoder is introduced in
the transmitter to globally compensate for the nonlinearity
of the RF-PA, the BER performance of high-order digital
modulation schemes may be further improved. Therefore,
autoencoders could be a major research direction in future
work.
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