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Abstract: Unmanned aerial vehicle (UAV) routing is transitioning from an emerging topic to a
growing research area as the 3D flexible utilization of airspace, promogulated by UAVs, is a potential
game changer in solving the urban air mobility challenge by allowing to reshape transportation and
logistics in the future. This has revealed a need to classify different types of research and examine
the general characteristics of the research area. This research aims to assist in identifying the main
topics and emerging research streams and provides a published overview of the current state and
contributions to the area of the UAV routing problem (UAVRP) and a general categorization of
the vehicle routing problem (VRP) followed by a UAVRP classification with a graphical taxonomy
based on the analysis of UAVRP current status. To achieve this, an analysis of the existing research
contributions promulgated in this domain is conducted. This analysis is used to identify the current
state of UAVRP and the gaps related to the UAVs’ flight dynamics and weather conditions, which
significantly influence the fuel consumption of the UAV when modeling the UAVRP.

Keywords: unmanned aerial vehicles; UAV routing and scheduling; UAV routing; vehicle
routing problem

1. Introduction

Unmanned aerial vehicles (UAVs) have been the subject of immense interest in recent years
and have developed into a mature technology applied in areas such as defense, search and rescue,
agriculture, manufacturing, and environmental surveillance [1–5]. Without any required alterations to
the existing infrastructure, for example, deployment stations on the wall or guiding lines on the floor,
UAVs are capable of covering flexible wider areas in the field [6]. However, this advantage comes
at a price. To utilize this flexible resource efficiently, there is a need to establish a coordination and
monitoring system for the UAV or fleet of UAVs to determine their environment-based route and
schedule in a safe, collision-free, and a time-efficient manner [4,7].

While the most common models of UAVs can be identified as quadcopters and the hexacopters,
the most common types of UAVs are multi-rotors, fixed-wing, flapping wing, and hybrid systems,
where multi-rotor system is the most popular type of UAVs because it is used for versatile applications
and the number of rotors can be in the range of 1 to 12 [8]. The fixed-wing UAV is used in accurate
mapping and monitoring applications due to its long flight endurance and high-altitude operability,
which allows covering long distances and carrying equipment such as cameras and sensors [8].
Flapping-wing UAVs are often referred as Ornithopter that simulates the mechanics of flying birds and
insects to generate lift by using semi-rigid articulated wings. These UAVs are mainly used for research
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purposes due to the improved maneuverability and high flight efficiency when compared to both
the multirotor and fixed-wing systems. The hybrid UAVs system is a combination of the multi-rotor
and fixed-wing UAVs, and the combination of these two models has boosted its capabilities to allow
vertical take-off and landing [8].

Following recent advancements in UAV technology, Amazon, DHL, Federal Express, and other
large companies with an interest in package delivery have begun investigating the viability of
incorporating UAV-based delivery into their commercial services [9,10]. UAVs have the potential
to significantly reduce the cost and time required to deliver materials as, in general, they are less
expensive to maintain than traditional delivery vehicles such as trucks and can lower labor costs by
performing tasks autonomously [11–14]. To support this emerging area, a new problem category arises,
the UAV routing problem (UAVRP). Despite the increasing focus on UAVs and the field’s status as an
emerging technology, there is no comprehensive overview of the current state available in terms of the
UAVRP characteristics and the methods used to solve UAVRP in the current state.

The main objectives of this paper are to identify the unique characteristics of the UAVRP and
present the first overview of the current state of research. This is achieved by analyzing the existing
research contributions promulgated in this domain. Based on the analysis, we identify the current
state of UAVRP and the challenges in current state of the general vehicle routing to address the specific
nature of the UAVRP. Simultaneously, this paper also provides a published overview of the current
state and contributions to the area of the UAVRP. The remainder of the paper is structured as follows:
First, a general categorization of vehicle routing problem (VRP) is presented. An overview of UAVRP
based on the analysis of UAVRP current state follows next. Section 5 presents an overview of identified
challenges in the current state before presenting conclusions and avenues of further research.

2. UAV Routing with an Emphasis on the Problem Type, Transportation Mode,
and Degree of Automation

The basis of all routing literature is the VRP, which is a well-studied field and still very much
applicable for the advancement of new technology [13–15]. VRPs have been applied to solve delivery
problems [16], which could appear similar to the UAV routing as a VRP attempts to find the optimal
routes for one or more vehicles to deliver commodities to a set of locations [17]. We identify three main
dimensions that seem particularly relevant to apply when addressing the UAVRP:

1. The problem type: When classifying routing literature, it can be segregated based on the problem
type with an emphasis on the VRP, which has given the major research contributions in the
domain of vehicle routing [16,18] and is used as an input for all the routing problems in general.

2. The transportation mode: Routing literature can be partitioned according to the categories of
transportation mode, as the characteristics of the modes (such as land, sea, and air) affect the
routing methods. Transportation modes have different characteristics in terms of cost, transit time,
accessibility, and environmental performance [19]. Compared to other transportation modes,
UAVs can be a competitive alternative for delivery and pickup of time-sensitive items, regardless
of the ground-level road conditions [20].

3. The degree of automation: The degree of automation in the transportation systems is a dimension as
automated systems are discussed in dynamic vehicle routing [21], generalized vehicle routing [22],
and real-time vehicle routing [23]. Technological advances in the area of UAV have been impressive,
and this leads to an increased degree of automation of these systems [24]. In production systems,
the majority of research has been focused on automated guided vehicles (AGVs) [25], mobile
robot routing [26–34], or six degrees of freedom aerial robots [35], which are UAVs.

2.1. Different Types of Vehicle Routing Problems

In its simplest form, the VRP addresses the routing of a fleet of homogeneous vehicles to
deliver identical packages from a depot to customer locations while minimizing the total travel
cost [14]. The VRP definition is that a set of vehicles initially located at a depot are to deliver
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discrete quantities of goods to a set of customers determining the optimal route used by the set of
vehicles when serving the set of customers [14,16,36–39]. The objective is to minimize the overall
transportation cost, and the solution of the classical VRP problem is a set of routes that all begin and
end in the depot, which satisfies the constraint that all the customers are served only once [14,16,36].
The transportation cost can be improved by reducing the total traveled distance and by reducing the
number of required vehicles [14,37–44]. Several sub-categories of VRP exist, addressing a specific set
of routing problems [16,36,37]:

• Capacitated VRP (CVRP): Every vehicle has a limited capacity [38,39]. CVRP is important when
using UAVs with limited capacities in delivering goods.

• VRP with time windows (VRPTW): Every customer has to be supplied within a certain time
window [40]. VRPTW is important when referencing using UAVs to deliver perishable goods.

• Multiple Depot (MDVRP) VRP: The vendor uses many depots to supply the customers [41].
MDVRP is important when using UAVs with multiple depots to transport materials to customers.

• VRP with Pick-Up and Delivering (VRPPD): Customers may return some goods to the depot [15,40].
VRPPD is important when using UAVs with multiple pick up and deliveries of goods.

• Split Delivery VRP (SDVRP): Customers may be served by more than one vehicle [42]. SDVRP is
important when using UAVs to delivering goods to customers where one vehicle can visit many
customers and one customer can be visited by many UAVs.

• Stochastic VRP (SVRP): Some parameters (like number of customers, their demands, serve time,
or travel time) are random [43,44]. SVRP is important when using UAVs in delivering goods to
satisfy stochastic demands.

• Time-dependent VRP with path flexibility (TDVRP-PF): Any arc between two customer nodes has
multiple corresponding paths in the road network [45].

• VRP with trailers and transshipments (VRPTT): In addition to depot and customer locations, this
introduces transshipment locations [46]. VRPTT is important when using UAVs along with a fleet
of trucks in delivering goods and in last-mile deliveries.

• VRP with profits: A profit is associated with each customer that makes such a customer more or
less attractive. Unlike to the most classical VRPs, in VRP with profits, the set of customers to serve
is not given and different decisions have to be taken on which customers to serve and how to
cluster the customers to be served in different routes and order the visits in each route [47,48].

These relate to the UAVRP as the different categories of VRP inspire the existing work in UAV
routing. In solving the UAVRP, certain studies have used different VRP approaches, and these are
identified in Section 4.

2.2. Based on Modes of Transport

When studying routing literature, it is also apparent that it can be partitioned according to the
transportation mode such as land-based, maritime, and air transport. However, the application of
VRP is mainly visible in land-based and maritime-based transportation modes as described below,
and the UAV routing falls under the domain of air transport along with typical airplanes used in
airline industry.

2.2.1. Land-Based Transportation Modes (Vehicle Routing)

Trucks, delivery vehicles, AGVs, and other land-based transportation modes fall under this
category, and much research has been carried out regarding route optimization [49]. The VRP can,
in this context, typically be described as the problem of designing optimal delivery or collection routes
from one or several depots to any number of geographically scattered cities or customers, subject to
side constraints [36]. VRP plays a central role in the fields of physical distribution and logistics [43].
In this field, fuel models are seldom considered.
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2.2.2. Maritime-Based Transportation (Vessel Routing)

The other relatively well-researched transportation mode is the vessel routing or maritime
routing problems [50]. In maritime routing, in contrast to land-based modes of transportation, one
generally must consider non-linear fuel-consumption models. The main concern with non-linear
fuel-consumption models is that they make the solution of relevant models complicated [50,51]. In this
area, one also often encounters network design problems [50,52] where the aim is to set up cyclical
plans [53]. The same is often seen when designing, for example, airline flight schedules [54]. The focus
of these is not dynamic routing such as covered by the traditional VRP and of particular relevance to
the UAVRP.

2.2.3. Mathematical Formulation of the Problem

In this section, we formally define the UAV routing, the problem in which a homogeneous fleet of
UAVs has to visit a set of nodes to deliver demands assuming dynamics constraints.

In the following, we assume a homogeneous fleet K of UAVs is available at the depot 0. Let
G = (N, E) be a graph, representing transportation network, where: N = {0 . . . n} is a set of nodes and
E =

{{
i, j

}∣∣∣ i, j ∈ N , i , j
}

is a set of edges. Travel distance from node i to j (length of edge
{
i, j

}
) is

di, j and travel time from node i to j is ti, j. Let us assume that demand at node i ∈ N, i , 0 is Di and
maximum loading capacity of a UAV is Q. Each UAV has a maximum energy capacity of Pmax , and Pk

i, j

is the energy consumed by a UAV per time unit. Time that kth UAV arrives at the node i is denoted by
yk

i and payload weight amount delivered to node i by kth UAV is denoted by ck
i . Ground speed of a

UAV from node i to j is vgi, j.
Let us define the following binary variables.

xk
i, j binary variable used to indicate if kth UAV

travels from node i to node j

xk
i, j =

1 if kth UAV travels along from node i to node j

0 otherwise.

The objective function (1) minimizes the sum of the total travel time to visit all targets for a fleet
UAVs. Constraints (2) ensure the relationship between the binary decision variable of xk

i, j and the

decision variable of yk
i . where: w—time spent for take-off and landing of a UAV. If an UAV k is flying

from node i to j, then arrival time yk
j to node j is equal to the sum of travel time ti, j between node i to j,

time spent for take up landing w and the arrival time yk
i to node i. Constraints (3) make sure that the

demand assigned to a UAV should not exceed its capacity. Constraint (4) represents the flow of UAVs,
which ensure that an UAV arriving at a node and that UAV must leave from that node. Constraint (5)
make sure that each UAV departs from the depot (Node 0) and comes back to the depot. Constraint (6)
ensures that that energy consumed by the kth UAV should be less than or equal to the maximum energy
capacity of the UAV. Collision avoidance between UAVs and weather conditions can be incorporated
into the model as well.

min
K∑

k=1

n∑
i=1

n∑
j=1

di j

vgi, j
·xk

i j , (1)

s.t.
(xk

i, j = 1)⇒ ( yk
j = yk

i + ti, j + w) ∀(i, j) ∈ N, ∀k ∈ K (2)∑
i∈N

∑
j∈N

xk
i, jc

k
j 6 Q k = 1 . . .K (3)

∑
j∈N xk

i, j −
∑

j∈N xk
j,i = 0 k = 1 . . .K, ∀i ∈ N0 = N ∪ {0} (4)

(xk
i, j > 0)⇒ (

∑
i∈N xk

0,i =
∑

i∈N xk
i,0 = 1 ) k = 1 . . .K (5)
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∑
i∈N

∑
j∈N

xk
i, j Pk

i, j ti, j 6 Pmax k = 1 . . .K (6)

2.3. Degree of Automation

This paper also considers the degree of automation of transportation as automation and autonomy
play a large role in practical applications of the UAVRP [55,56]. Furthermore, they play an increasing
role in various modes of transport. Driverless trains are already in operation; the degree of automation
in cars is continuously rising, and even the air transport sector is discussing the use of pilotless
aircraft [57]. It is observed that certain modes of transportation are fully automated and certain modes
are semi-automated [56,58]. Automated guided transport (AGT) systems and AGVs fall under the fully
automated modes of transportation and have been subjected to intense study in literature [25,27,59–62].
In maritime transport, automated vessel routing has been introduced and unmanned vessels will be
the future of maritime transportation [63].

As UAVs flight and navigation tasks are increasingly automated to gain economies-of-scale
and speed of operations and support the large-scale operations, UAV routing and execution are
evolving from teams of operators managing a single UAV to a single operator managing multiple
UAVs as illustrated in Figure 1. The increasing degree of autonomy and automation has created
a continuous push for developing methods for managing complex UAV operations. Such systems
will naturally require the development of advanced prediction, routing, and scheduling methods
and implementation of various systems to support decision-makers in handling the complexity of
operations [11–14]. It is also worth noting that most contributions focus on the VRP characteristics,
specific or multimodal transportation modes, and to some degree, on the VRP for automated land-based
transportation (typically indoor robotic solutions such as AGVs, mobile robots). While the classical
VRP is well-studied, the methods and approaches found within this domain are still very much
applicable for the advancement of new technology in the area of UAV operations [13].

  

∑  𝑖∈𝑁 
∑  𝑗∈𝑁 

𝑥𝑖,𝑗
𝑘  𝑃𝑖,𝑗

𝑘  𝑡𝑖,𝑗 ⩽ 𝑃𝑚𝑎𝑥                                           𝑘 = 1 … 𝐾             , (6) 
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2.4. Significance of UAVRP

UAV routing problems involve a huge amount of stochastic information in contrast to VRPs in
general, as UAVs should be able to change, adapt, modify, and optimize their routes in real-time.
In contrast to general routing problems, several individual objective functions can be used in UAV
routing such as reducing individual UAV costs, enhancing its profit, increasing safety in operations,
reducing lead time, and increasing the load capacity of the entire system [64,65].

Influencing parameters for UAV routing includes numerous parameters and constraints in
contrast to traditional VRP problems. UAVs’ nature is routing and scheduling in 3D environment [66],
whereas land- and maritime-based transportation are 2D [67] and in UAV routing, changing weather
conditions (wind speed, wind direction, air density) should be considered in solutions. Moreover,
UAVs specifications, energy consumption affected by weather conditions, carrying payload of UAVs,
and collision avoidance with respect to moving/fixed objects adds more complexity in finding solutions
in the domain of UAV routing. All these elements emphasize the significance of UAV routing as it is
challenging to develop models considering all the influencing aspects together.
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Unlike the traditional routing problems, the UAV routing should address different decision layers
in the system architecture (Figure 2), which includes the fleet level where the fleet is managed to
provide delivery services using the UAV fleet and the platform level where it focuses on the individual
functioning of the UAVs [13,14]. The current state of research is fragmented as shown in the layers
illustrated in Figure 1 and neglects that different types of decisions are addressed at different abstraction
levels [14].
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3. UAVRP Current State

Limited contributions have been presented [68,69] in the area of UAV routing in 3D environments.
What has been accomplished in the field has focused on UAV routing for transporting materials
and surveillance [11] without considering the stochastic conditions in weather and non-linear fuel
consumption models [10]. Table 1 shows the top seven subject areas in UAV routing literature, where
the majority of contributions are seen in engineering and computer science domains.

Table 1. Top seven subject areas.

Subject Area No of Papers

Engineering 173
Computer Science 83

Mathematics 41
Physics and Astronomy 25

Social Sciences 24
Materials Science 18
Decision Sciences 14

A literature review aims to map and evaluate the body of literature and identify potential research
gaps highlighting the limitations of knowledge [70,71]. The search was conducted for the context
keyword “UAV routing,” using the “article title, abstract, keywords” search in the Scopus database.
Through the exhaustive search, we initially identified 396 papers published in UAV routing, and these
papers were analyzed to identify the areas covered in addressing the UAV routing problem.

The first published research we were able to identify on the topic stems from 1998, and this work
contains a Reactive Tabu Search (RTS) heuristic within a discrete-event simulation to solve routing
problems for unmanned aerial vehicles (UAVs) [72]. The next contribution was in 1999 and proposes
a variation of standard VRP that arises in routing UAVs in the presence of terrain obscuration, thus
introducing visibility-constrained routing of UAVs [73]. From the timeline presented in Figure 3, it is
apparent that the UAV routing theme is gaining increasing attention, especially from 2005 and onward,
with a steadily increasing number of publications per year. After the year 2000, an increasing trend is
visible with a focus on wireless sensor networking and ad-hoc sensor networking. The top journals
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and conferences contributing to UAV routing are identified in Figure 4 where publication sources
with more than three contributions are included. From Figure 3, The International Society for Optical
Engineering Conferences, IEEE Military Communications Conferences, and Journal of Intelligent and
Robotic Systems have topped the list with the majority of contributions.  

 

Figure 3. Publishing trend in UAV routing as identified using Scopus [14, 70]. 

 

Figure 4. Top journals/conferences contributing to the area of UAV routing [14]. 

To limit the detailed study of the literature to understand the current state of UAV routing, we 

chose to focus on all the relevant published journals and the top 10% cited conference papers. This 

list includes 51 journal papers and 21 conference papers and indicates that the clear majority (70%) 

of contributions on UAV routing to date have been disseminated through conferences rather than 

journals. 

For the identified 72 main contributions, the keywords have been recorded, and Figure 3 shows 

a rich image of these and their prevalence. The illustration of the keywords presents the different 

areas of technologies, industries, and research areas linked to UAV routing. Most commonly used 

keywords are presented in larger fonts and we can see the various areas linked with UAV routing in 

Figure 5. 
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Figure 4. Top journals/conferences contributing to the area of UAV routing [14].

To limit the detailed study of the literature to understand the current state of UAV routing,
we chose to focus on all the relevant published journals and the top 10% cited conference papers.
This list includes 51 journal papers and 21 conference papers and indicates that the clear majority
(70%) of contributions on UAV routing to date have been disseminated through conferences rather
than journals.

For the identified 72 main contributions, the keywords have been recorded, and Figure 3 shows a
rich image of these and their prevalence. The illustration of the keywords presents the different areas
of technologies, industries, and research areas linked to UAV routing. Most commonly used keywords
are presented in larger fonts and we can see the various areas linked with UAV routing in Figure 5.
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4. Approaches and Domains in UAV Routing in Existing Literature

When considering the published literature both in terms of sources and keywords, it becomes
clear that various approaches are used in addressing UAV routing. The contributions’ approaches are
inspired primarily by different variants of the VRP and traveling salesman problem (TSP). The difference
between TSP and VRP is that TSP considers finding the shortest path that connects an arbitrary number
of nodes whose pairwise distances are known [74,75].

The most basic form of a VRP can be considered as a direct descendant of TSP [41,76] in which there
are one salesman and one fixed depot; the rules are to visit all customers once and only once and end
the route at the depot where it started [77]. Many approaches for the VRP were inherited from the huge
and successful work done for the solutions of the TSP [39]. This UAVRP is similar to the traditional TSP
if the UAV can arrive at or depart from each target only once with the objective of minimizing the total
cruise distance [78]. This is relevant in UAV routing if one particular considers sense-and-avoid [79],
where the objective is to move to the nearest safe point in a collision-free manner [4,80], or complete
autonomy where the UAVs are self-navigating point-by-point [81]. The VRP considers a problem
similar to the TSP but with a different context, as the VRP considers the problem of delivering goods
located at a central depot to customers.

Based on the analysis in the existing literature, VRP approaches used for routing of UAVs can
be grouped mainly in a few variants of VRP. These correspond with the general classifications of
VRP stated in Section 2. Table 2 categorizes the different VRP approaches used to solve UAV routing.
The majority of applied VRP approaches are the general VRP, dynamic VRP, VRP with time windows,
and capacitated VRP.

Table 2. Distribution of papers with respect to various domains/approaches used in UAV routing.

Area/Approach No of Papers

Wireless networks 24
Scheduling 8

VRP 18
TSP 9

Other 13

Besides VRP approaches, the literature review also identified various other approaches.
Chief among these approaches is formulating the problem as a TSP. Tables 3 and 4 presents an
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overview of contributions in the literature that utilize the VRP and TSP approaches used in UAV
routing. Several contributions use a combination of the variants of both TSP and VRP.

Table 3. Overview of (vehicle routing problem) VRP approaches used in UAV routing.

Author Approach Objective Experimental Data

[82] Shetty, Sudit, and Nagi, 2008 General VRP+
multi-vehicle TSP

Maximize the total weighted service to
the targets from the homogeneous fleet
of UAVs

TSPLIB (http://www.iwr.uni-heidelberg.de/
groups/comopt/software)

[83] Xingyin Wang, Poikonen, and
Golden, 2016 VRP Minimize the maximum duration of the

routes (i.e., the completion time)

Have considered two problems which have
the same set of customers, but different
homogeneous fleets

[84] Sundar and Rathinam, 2014 Single VRP

To find a path for the UAV such that
each target is visited at least once by the
vehicle, the fuel constraint is never
violated along the path for the UAV, and
the total fuel required by the UAV is a
minimum

50 instances of 10 targets to 25 targets with
increments in steps of 5 in each problem
size and all the targets are chosen randomly
from a square area of 5000 × 5000 units

[85] David W. Casbeer, 2011 VRP with Precedence
Constraints

Minimize the total distance traveled by
a homogeneous fleet of UAVs

Five UAVs and ten targets placed randomly
in the area of responsibility

[86] Karaman and Frazzoli, 2008
VRPTL-VRP with
Temporal Logic
Specifications

Minimize the relative risk for using a
homogeneous fleet of UAVs in the
mission.

A scenario with three UAVs, one launch
site, two landing sites, and five targets

[87] Klein et al., 2013 Dynamic VRP Minimize the time required to
determine the location of the source

Have conducted a pair of flight tests where
they deploy 6 sensors over a 1 km2 region
and localize acoustic sources within the area

[88] Arsie and Frazzoli, 2008 Dynamic VRP
Minimize the expected time between
the appearance of a target point and the
time it is visited by one of the agents

-

[3] Avellar, Pereira, Pimenta, and Iscold,
2015

Coverage problem in to
VRP

Minimize the time coverage of ground
areas using a homogeneous fleet of
UAVs equipped with image sensors

Have tested using two fixed-wing UAVs
controlled by the 2128 g Micropilot’s
autopilot over an area of dimensions of 900
m× 1600 m

[89] Murray and Chu, 2015 VRP+ Flying Sidekick
TSP

Minimize the latest time at which either
the truck or the UAV returns to the
depot

10 or 20 customers, such that 80%–90% of
customers are UAV-eligible according to
weight, while the truck and UAV speeds
were fixed at 25 miles/h, with the UAV
having a flight endurance of 30 min

[90] Kinney, Hill, and Moore, 2005
VRP with Pick-Up and
Delivering (VRPPD) +
TSP

To find the shortest tour visiting all of
the customers

56 test problems comprising the standard
test set of Solomon were used in the testing

[75] Guerrero and Bestaoui, 2013 TSP+ Capacitated VRP
(CVRP)

Minimizes the sum of travel time
among waypoints

Have considered three 2D and two 3D
example scenarios with different waypoints
and home waypoints

[91] Wen, Zhang, and Wong, 2016 Capacitated VRP (CVRP) Minimize the total travel time and fleet
size of the homogeneous fleet of UAVs

Have considered nine instances according
to different proportions between hot water
and blood

[76] Savuran and Karakaya, 2016 Capacitated Mobile
Depot VRP (C-MoDVRP)

Maximize the total number of targets
visited by the UAV

The simulation tests are conducted using 16
of bench-mark problems from Heidelberg
TSP Library (of Heidelberg 1995)

[92] Murray and Karwan, 2013 VRP with Time windows
(VRPTW)

Maximize the overall effectiveness of
the mission, minimize changes to the
initial mission plan, minimize total
travel time, and minimize the use of
resources, payloads, and “dummy”
bases

Test problems are created for a combination
of different initial tasks, resources, pop-ups,
time window scales, loiter times, and
payloads for a battlespace area of size
(∼unif(50,400)) × (∼unif(50,400))

[93] Lamont, Slear, and Melendez, 2007 VRP with Time Windows
(VRPTW)

Minimizing cost and risk generally
associated with a three-dimensional
VRP

Three-element target packages are created
along with a grid of real-world terrain and
a realistic threat lay down

[68] Guerriero, Surace, Loscri, and
Natalizio, 2014

VRP with Soft Time
Windows (VRP-STW)

Minimize the total distances traveled by
the homogeneous fleet of UAVs,
maximize the customer satisfaction and
minimize the number of used UAVs

Fleet of 6 homogeneous UAVs in a field of
110 × 80 m2 with different parameters for a
sport event

[20] Kim, Lim, Cho, and Côté, 2017 Multi-Depot VRP
(MDVRP)

Minimizing the operating cost of a
heterogeneous fleet of UAVs and to find
the optimal number of UAV center
locations

Have considered 9 candidate sites for
centers and 40 patients to be served by two
types of UAVs

[94] Habib, Jamal, and Khan, 2013 Multiple-Depot VRP
(MDVRP)

Minimize the total distances traveled by
a homogeneous fleet of UAVs

Have considered 12 instances with different
combinations of fleet size and targets (Max
fleet size of 5 homogeneous fleets of UAVs
and max targets of 101)

The rest of the papers found in UAV routing, other than VRP and TSP approaches, are mainly in
the domain of wireless networks and scheduling. Most of these remaining contributions are related
to wireless networks with a focus on contributions in the fields of ad-hoc networks and wireless
sensor networks (WSN). Figure 4 presents an overview of these areas. The UAV routing taxonomy
covering the four major areas of UAV routing with VRP approaches, UAV routing with TSP approaches,
UAV routing in WNS, and UAV routing in scheduling problems are graphically illustrated in Figure 5.

http://www.iwr.uni-heidelberg.de/groups/comopt/software
http://www.iwr.uni-heidelberg.de/groups/comopt/software
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Table 4. Overview of traveling salesman problem (TSP) approaches used in UAV routing.

Author Approach Objective Experimental Data

[95] Oberlin, Rathinam, and Darbha,
2009

Heterogeneous, Multiple
Depot, Multiple TSP
(HMDMTSP)

Minimize the total cost of traveling for
the heterogeneous fleet of UAVs

6 UAVs with a minimum turning radius
vary uniformly from 100 to 200 meters and
uniformly generated targets [4,40] in a
square of area 5 × 5 km2

[78] Liu, Gao, Guang, and Song, 2013 TSP Minimize the total traveling time for the
homogeneous fleet of UAVs

6 UAV having cruise speed 100 km/h and
maximum distance 200 km

[96] Babel, 2016
The
curvature-constrained
TSP with obstacles

Minimize the total tour length
One aerial vehicle with a cruise speed of
100 m/s covering an operational area of size
20 km × 20 km

[97] Manyam et al., 2016 Asymmetric TSP Minimize the total traveling time for
homogeneous fleet of UAVs

2 UAVs in a zone of size 30 × 30 units
where targets are located randomly and 50
instances for each problem size with 10–40
targets

[98] Furini, Persiani, and Toth, 2016
Time-Dependent TSP in
Controlled Airspace
(TDTSPPCA)

Minimize the total traveling time and
the holding time over mission
waypoints for homogeneous fleet of
UAVs

5 scenarios 10–40 mission waypoints,
randomly selected among the navigation
points located within a circle having center
in Milano Linate and ray of 80 NM

[99] Enright and Frazzoli, 2005
Dynamic Traveling
Repairperson Problem
(DTRP)

Minimize the expected waiting time
between the appearance of a target, and
the time it is visited

Simulated with a Single UAV with
randomly generated targets

[72] Ryan, Bailey, and Moore, 2013 Multi-vehicle TSP Maximize the expected target coverage 21-day simulation of the Sisson’s (1997)
[100] notional Nari dataset

There is a trend to use UAV routing in WSN domain for surveillance, exploring, and monitoring
large regions [101–116]. The recent papers related to UAV routing in various wireless networks are
presented in Figure 6. These systems can integrate information from ground with WSN, in atmosphere
with the sensors of UAVs and Global Positioning System (GPS) [109–113,117–120]. These collaborative
systems have been used for large-scale monitoring, increasing mobility, accessibility, and reaction
time in case of emergencies [101–116]. WSNs and ad-hoc networks have been widely used for data
collection using UAVs in both outdoor and indoor settings [108–113] and in numerous application
domains, and WSNs have been enhanced with data processing abilities in the direction of on-board
intelligence [104–111]. Physical constraints of energy consumption, communication range and
autonomy, data transmission, and processing capabilities have been analyzed literature in the domain
of WSN design considerations of UAV routing [117–121].

UAV routing in scheduling problems mainly focuses on assigning tasks to UAVs in an approach
that efficiently utilizes the fleet of UAVs [122–125]. UAV routing should be done to have a seamless flight
during the operations and the required navigation control is derived from a command, which is provided
by a scheduler [123–126]. Generally, these problems aim at assigning various tasks, and actions such as
recharge, hover, and wait-on-ground are assigned to the UAVs at different execution times [4,126–129].
There is limited literature on UAV routing in scheduling domain [122–129] and a summary of related
studies that focuses on UAV scheduling is presented in Figure 7.

From the overviews of UAV routing literature, the graphical representation of the UAV routing
taxonomy is presented in Figure 7. This leads this domain of research to conclude that chief among
them are the extensions of VRP and TSP, while next major contributions are identified in wireless
networks as UAV routing is linked with various types of wireless network communication methods.
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5. Challenges in UAV Routing

What is noticeable is that there are some issues in the UAVRP that are unaddressed in the
existing literature. Specifically, the authors have identified the following issues that are highly relevant.
In outdoor route optimization for UAVs, we must deal with the following stochastic conditions,
which have received limited attention in the current state. Stochastic conditions influencing the
UAV routing can be identified under weather conditions [14,90,133], air traffic control [7,14,133–135],
fuel consumption, and range [136–141].

These elements are not encountered in the general VRP or TSP and have some characteristics that
can potentially greatly influence the solution strategy for the UAVRP. Ignoring the impact of weather
will not provide more realistic solutions as flying with the wind could reduce energy consumption
and cold temperatures may adversely affect battery performance [17]. As UAVs have fuel constraints,
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it may not be possible for a UAV to complete a mission before refueling at one of the depots [84].
Even though these challenges with regard to stochastic conditions and minimizing fuel consumption
are studied for some years, they are different regarding the context of this paper as in UAVRP, it
is different to typical stochastic VRPs where in UAVRP the routings are done in 3D environment
with highly non-linear fuel consumption models and the stochastic behavior is not similar to typical
stochastic VRPs. Weather makes the conditions time-dependent as changes in the weather conditions
impact the fuel consumption and the flying dynamics of the UAVs. There are various approaches to
address the time dependency in routing and, in UAV routing, more focus should be put on the sources
of uncertainty and time dependency than on the particular manner in which this stochasticity and time
dependencies are addressed.

5.1. Weather Conditions

Weather is a critical feature for UAV routing as it affects the travel speed of the UAV, and the
temperature in the atmosphere affects the energy consumption [14,17,141] of batteries used in UAVs.
Figure 8 presents the relationships between different factors linked to energy consumption of UAVs.
Weather in various forms is critical for energy consumption as it affects the travel speed of the UAV, and
the temperature in the atmosphere affects the energy capacity of batteries used in UAVs. Air density
affects energy consumption, but that is a function of humidity, air pressure, and temperature. Flying
with the wind could, for example, reduce energy consumption. Cold temperatures may adversely
affect battery performance until the batteries warm up [11,14,142].
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The current state of research has not considered the weather factors and ignores the impact of
weather on performance [68,84,94]. Interestingly, this seems to add another type of SVRP that should
be considered as weather is changing over time in a stochastic manner [134]. Rarely has research
focused on considering wind conditions on energy consumption while simultaneously using that
information in routing of UAVs [14,137,139].

5.2. Air Traffic Control

Many rules and regulations govern the movement of objects in the airspace. These lead to blocking
and opening of flying zones [7]. Even though air traffic control has a significant impact on designing
and implementing routes for UAVs, none of the current VRP approaches to solve UAV routing has
considered this due to its complex nature. Countries have established systems for notifying blocks
of airspace where particular limitations are placed on the flight of all types of UAVs. Such areas are
typically either: Prohibited Areas, Restricted Areas, or Danger Areas such as military ranges. Other
airspaces may have temporary restrictions imposed at specific times, either as a result of a longer-term
pre-planned event or in reaction to a short notice occurrence, such as an emergency incident. Permanent
Prohibited, Restricted, or Danger areas are marked on aviation ‘Visual Flight Rules’ (VFR) flight charts
(maps), which are readily available for purchase online and proprietary VFR flight-planning and
navigation software and apps contain such information in their mapping databases. UAVs around
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airfields or airports that are designated as ‘protected aerodromes’ are tightly restricted. UAVs of any
size must not be flown within the Flight Restriction Zone (FRZ) of a protected aerodrome, without
appropriate permission. This information about the restricted or controlled air space is taken as input
data and used as constraints in UAV route planning. Furini et al. (2016) [98] uses the Time-dependent
TSP in Controlled Airspace (TDTSPPCA), which consists of finding the best order of visit of a UAV
over a set of waypoints, aiming at minimizing the operational cost and, at the same time, ensuring a
minimum separation with respect to the planned air traffic. However, the technology already exists to
build UAVs that can see electronically and avoid other aircraft [131].

5.3. Fuel Consumption and Range

From the airline industry we know that the fuel/energy consumption depends on certain factors
such as maximum flight distance or the flight time of the UAV could be constrained by gross takeoff

weight, empty weight, thrust to weight ratio [82], fuel weight, payload, and number of battery
units [116], thereby giving more emphasis to the criticality of focusing on fuel consumption.

The range of the UAV is also a crucial aspect where the existing literature has not to give attention
and the range is not the same as fuel consumption, as the extent of this depends on many other
conditions. How far an UAV can travel is described as range, and the range of a UAV is dependent on the
amount of energy capacity of the UAV, endurance, flight speed, and aerodynamic performance [137,139].
Endurance for an UAV can be explained at the total time taken during flight. For an electric fixed-wing
aircraft or quadrotor, this is directly related to the capacity of the battery and the amount of current the
motor produces to keep the aircraft in the air. There are many other aircraft parameters that determine
the endurance for any UAV; however, the range of the UAV heavily depends on UAV dimensions,
Weight, and Payload [137,139]. Any entity that is concerned about UAV security should be extremely
concerned about the endurance and range capabilities of various types of UAV categories.

In routing algorithms, some studies have either assumed unlimited fuel capacities [135] in UAV
routing or not considered the fuel at all in their approaches to solving UAV routing. Certain studies
in UAV routing have considered fuel as a constraint [69,84], and Sunder et al. (2014) introduce a
fuel-constrained UAV routing problem (FCURP). This implies that, given a set of targets and depots
and a UAV that is initially stationed at one of the depots, a path can be found for the UAV such that
each target is visited at least once, the fuel constraint is never violated along the path for the UAV,
and the travel cost for the vehicle is a minimum.

Although fuel consumption is typically considered in vessel routing [136], when it comes to UAVs,
the fuel consumption models differ from vessels by depending on not only just speed but also weight or
type of payload and weather conditions [137]. For vessels, the non-linear aspects are heavily dependent
on the speed of the vessel [138]. Even though existing research uses linear approximations [11],
we know from industry that this is not a reasonable approach for UAVs where the weight of the
payload is more critical when seen in combination with speed and weather conditions [139–141]. From
the airline industry, one can find comparable models for flight—such as available fuel models for
multirotor helicopters [142]—that indicate that linear approximation of the energy consumption is not
applicable for large variations of the payload carried [17].

6. Conclusions

In general, UAV routing is a novel topic. There has been a very limited number of research
contributions published on UAV routing compared to the VRP and vessel routing. This paper identifies
different VRP approaches to solve UAV routing, and most of them consist of variants of VRP and
TSP. This paper provides a detailed overview of UAV routing literature with a general mathematical
formulation for the UAVRP and presents a UAV routing taxonomy covering four areas of VRP-based
UAV routing, TSP-based UAV routing, UAV scheduling problems, and UAV routing in wireless
networks. The four areas of taxonomy are done considering the common attributes from the literature
and the proposed taxonomy is applied to 54 recent papers.



Appl. Sci. 2020, 10, 4504 14 of 20

In majority of the literature on UAV routing the kinematics are neglected and the UAVs’ flight
dynamics are neglected or simplified using assumptions. It is worth noting that a UAV’s performance
is highly influenced by the payload it is carrying (weight and dimensions) and the weather conditions
in which it is operating. Both significantly influence the fuel consumption of the UAV and, thus, they
must be included when modeling the UAVRP. Such models will lead to computationally expensive
formulations with more realistic solutions. There is seldom research done for heterogeneous fleet of
UAVs due to the complexity and the majority of existing literature focuses on homogeneous fleet of
UAVs. This problem should be further derived by the non-linearity of the fuel consumption model,
and it is also worth noting that the existing literature does give importance to stochastic conditions.
Thus, modeling energy consumption must be further investigated by giving more focus to the literature.
These models and their integration in the UAVRP seem like particularly relevant avenues of future
research and development of efficient frameworks for solving UAVRPs addressing the challenges
presented in this study need to be answered.
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16. Ekşioglu, B.; Vural, A.V.; Reisman, A. The vehicle routing problem: A taxonomic review. Comput. Ind. Eng.
2009, 57, 1472–1483. [CrossRef]

17. Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle Routing Problems for Drone Delivery.
IEEE Trans. Syst. Man, Cybern. Syst. 2016, 47, 70–85. [CrossRef]

18. Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The vehicle routing problem: State of the art classification
and review. Comput. Ind. Eng. 2016, 99, 300–313. [CrossRef]

19. Toro, E.M.; Escobar, A.H.; Granada, E.M. Literature Review on the Vehicle Routing Problem in the Green
Transportation Context. Luna Azul 2015, 362–387. [CrossRef]

20. Kim, S.J.; Lim, G.J.; Cho, J.; Côté, M.J. Drone-Aided Healthcare Services for Patients with Chronic Diseases in
Rural Areas. J. Intell. Robot. Syst. 2017, 88, 163–180. [CrossRef]

21. Psaraftis, H.N. Dynamic vehicle routing: Status and prospects. Ann. Oper. Res. 1995, 61, 143–164. [CrossRef]
22. Baldacci, R.; Bartolini, E.; Laporte, G. Some applications of the generalized vehicle routing problem. J. Oper.

Res. Soc. 2010, 61, 1072–1077. [CrossRef]
23. Ghiani, G.; Guerriero, F.; Laporte, G.; Musmanno, R. Real-time vehicle routing: Solution concepts, algorithms

and parallel computing strategies. Eur. J. Oper. Res. 2003, 151, 1–11. [CrossRef]
24. Le Ny, J.; Dahleh, M.; Feron, E. Multi-UAV dynamic routing with partial observations using restless bandit

allocation indices. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June
2008; Institute of Electrical and Electronics Engineers (IEEE): Los Alamitos, CA, USA, 2008; pp. 4220–4225.
[CrossRef]

25. Kłosowski, G.; Gola, A.; Amila, T. Computational intelligence in control of AGV multimodal systems.
Ifac-Papersonline 2018, 51(11), 1421–1427. [CrossRef]

26. Dang, Q.-V.; Nielsen, I.; Steger-Jensen, K.; Madsen, O. Scheduling a single mobile robot for part-feeding
tasks of production lines. J. Intell. Manuf. 2013, 25, 1271–1287. [CrossRef]

27. Bocewicz, G.; Nielsen, P.; Banaszak, Z.; Thibbotuwawa, A. Routing and Scheduling of Unmanned Aerial
Vehicles Subject to Cyclic Production Flow Constraints. In Proceedings of the 15th International Conference
Distributed Computing and Artificial Intelligence, Toledo, Spain, 20–22 June 2018; pp. 75–86. [CrossRef]

28. Nielsen, I.; Dang, Q.-V.; Bocewicz, G.; Banaszak, Z. A methodology for implementation of mobile robot in
adaptive manufacturing environments. J. Intell. Manuf. 2015, 28, 1171–1188. [CrossRef]

29. Dang, Q.-V.; Nielsen, I. Simultaneous scheduling of machines and mobile robots. e-Bus. Telecommun. Netw.
2013, 365, 118–128. [CrossRef]

30. Zou, B.; Gong, Y.; Xu, X.; Yuan, Z. Assignment rules in robotic mobile fulfilment systems for online retailers.
Int. J. Prod. Res. 2017, 55, 6175–6192. [CrossRef]

31. Mann, M.; Zion, B.; Shmulevich, I.; Rubinstein, D. Determination of robotic melon harvesting efficiency:
A probabilistic approach. Int. J. Prod. Res. 2015, 54, 3216–3228. [CrossRef]

32. Djordjevich, A.; Tso, S.; Zhang, J. Extended range tactility in material handling. Int. J. Prod. Res. 2000, 38,
4357–4367. [CrossRef]

33. Logendran, R.; Sriskandarajah, C. Sequencing of robot activities and parts in two-machine robotic cells. Int. J.
Prod. Res. 1996, 34, 3447–3463. [CrossRef]

34. Rembold, B.; Nof, S.Y. Modelling the performance of a mobile robot with RTM. Int. J. Prod. Res. 1991, 29,
967–978. [CrossRef]

35. Franceschini, F.; Mastrogiacomo, L.; Pralio, B. An unmanned aerial vehicle-based system for large scale
metrology applications. Int. J. Prod. Res. 2010, 48, 3867–3888. [CrossRef]

36. Toth, P.; Vigo, D. The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 2002. [CrossRef]

37. Sonmezocak, E.; Kurt, S. Optimum Route Planning and Scheduling for Unmanned Aerial Vehicles;
Navel Postgraduate School: Monterey, CA, USA, 2010.

http://dx.doi.org/10.1007/s10846-019-01045-7
http://dx.doi.org/10.1016/j.cie.2009.05.009
http://dx.doi.org/10.1109/TSMC.2016.2582745
http://dx.doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.17151/luaz.2016.42.21
http://dx.doi.org/10.1007/s10846-017-0548-z
http://dx.doi.org/10.1007/BF02098286
http://dx.doi.org/10.1057/jors.2009.51
http://dx.doi.org/10.1016/S0377-2217(02)00915-3
http://dx.doi.org/10.1109/ACC.2008.4587156
http://dx.doi.org/10.1016/j.ifacol.2018.08.315
http://dx.doi.org/10.1007/s10845-013-0729-y
http://dx.doi.org/10.1007/978-3-319-99608-0_9
http://dx.doi.org/10.1007/s10845-015-1072-2
http://dx.doi.org/10.1007/978-3-642-38061-7_12
http://dx.doi.org/10.1080/00207543.2017.1331050
http://dx.doi.org/10.1080/00207543.2015.1081428
http://dx.doi.org/10.1080/00207540050205145
http://dx.doi.org/10.1080/00207549608905099
http://dx.doi.org/10.1080/00207549108930113
http://dx.doi.org/10.1080/00207540902896220
http://dx.doi.org/10.1137/1.9780898718515


Appl. Sci. 2020, 10, 4504 16 of 20

38. Toth, P.; Tramontani, A. An Integer Linear Programming Local Search for Capacitated Vehicle Routing
Problems. In The Vehicle Routing Problem: Latest Advances and New Challenges; Springer: Boston, MA, USA,
2008; pp. 275–295.

39. Toth, P.; Vigo, D. Models, relaxations and exact approaches for the capacitated vehicle routing problem.
Discret. Appl. Math. 2002, 123, 487–512. [CrossRef]

40. Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34,
2403–2435. [CrossRef]

41. Montoya-Torres, J.R.; Franco, J.L.; Isaza, S.N.; Jiménez, H.F.; Herazo-Padilla, N. A literature review on the
vehicle routing problem with multiple depots. Comput. Ind. Eng. 2015, 79, 115–129. [CrossRef]

42. Archetti, C.; Speranza, M.G. The Split Delivery Vehicle Routing Problem: A Survey. In The Vehicle Routing
Problem: LATEST Advances and New Challenges; Springer: Boston, MA, USA, 2008; Volume 43, pp. 103–122.

43. Gendreau, M.; Laporte, G.; Séguin, R. Stochastic vehicle routing. Eur. J. Oper. Res. 1996, 88, 3–12. [CrossRef]
44. Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. A review of dynamic vehicle routing problems. Eur. J.

Oper. Res. 2013, 225, 1–11. [CrossRef]
45. Huang, Y.; Zhao, L.; Van Woensel, T.; Gross, J.-P. Time-dependent vehicle routing problem with path flexibility.

Transp. Res. Part B Methodol. 2017, 95, 169–195. [CrossRef]
46. Drexl, M. A Generic Heuristic for Vehicle Routing Problems with Multiple Synchronization Constraints; Gutenberg

School of Management and Economics–Discussion Paper Series: Mainz, Germany, 2014; Volume 1412, p. 43.
[CrossRef]

47. Stavropoulou, F.; Repoussis, P.; Tarantilis, C. The vehicle routing problem with profits and consistency
constraints. Eur. J. Oper. Res. 2019, 274, 340–356. [CrossRef]

48. Archetti, C.; Speranza, M.G.; Vigo, D. Vehicle routing problems with profits. In Vehicle Routing: Problems,
Methods, and Applications, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA,
2014; pp. 273–297.

49. Ibarra-Rojas, O.J.; Delgado, F.; Giesen, R.; Muñoz, J.C. Planning, operation, and control of bus transport
systems: A literature review. Transp. Res. Part B Methodol. 2015, 77, 38–75. [CrossRef]

50. Kontovas, C.A. The Green Ship Routing and Scheduling Problem (GSRSP): A conceptual approach. Transp. Res.
Part D Transp. Environ. 2014, 31, 61–69. [CrossRef]

51. Wang, X. Operational Transportation Planning of Modern Freight Forwarding Companies: Vehicle Routing under
Consideration of Subcontracting and Request Exchange; Springer Nature: Basel, Switzerland, 2015; pp. 1–161.
[CrossRef]

52. Hoff, A.; Andersson, H.; Christiansen, M.; Hasle, G.; Lokketangen, A. Industrial aspects and literature survey:
Fleet composition and routing. Comput. Oper. Res. 2010, 37, 2041–2061. [CrossRef]

53. Kjeldsen, K.H.; Ergun, O.; Lysgaard, J.; Erera, A. Rescheduling ships and cargo in liner shipping in the event
of disruptions. Liner Shipp 2011, 105–133.

54. Campbell, J.F.; O’Kelly, M.E. Twenty-Five Years of Hub Location Research. Transp. Sci. 2012, 46, 153–169.
[CrossRef]

55. Holden, J.; Goel, N. Fast-Forwarding to A Future of On-Demand Urban Air Transportation; Uber Elevate:
San Francisco, CA, USA, 2016; Available online: https://www.uber.com/info/elevate (accessed on 14 April
2018).

56. Esa, J.; Poikonen, E.; Hyvönen, M. Remote and Autonomous Ships: The Next Steps; AAWA Position Paper; Rolls
Royce plc: London, UK, 2016.

57. Zheng, F.; Wang, F.; Wu, J.; Zheng, X. A methodology of UAV route planning for fast image mosaicking. In
Proceedings of the 2015 23rd International Conference on Geoinformatics, Wuhan, China, 19–21 June 2015;
pp. 1–5. [CrossRef]

58. Drones: High-Profile and Niche. Deloitte Touche Tohmatsu Ltd, London, UK. Available online: https:
//www2.deloitte.com/content/dam/Deloitte/global/Documents (accessed on 11 May 2019).

59. Confessore, G.; Fabiano, M.; Liotta, G. A network flow based heuristic approach for optimising AGV
movements. J. Intell. Manuf. 2011, 24, 405–419. [CrossRef]

60. Ulusoy, G.; Bilge, Ü. Simultaneous scheduling of machines and automated guided vehicles. Int. J. Prod. Res.
1993, 31, 2857–2873. [CrossRef]

61. Oboth, C.; Batta, R.; Karwan, M. Dynamic conflict-free routing of automated guided vehicles. Int. J. Prod.
Res. 1999, 37, 2003–2030. [CrossRef]

http://dx.doi.org/10.1016/S0166-218X(01)00351-1
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1016/j.cie.2014.10.029
http://dx.doi.org/10.1016/0377-2217(95)00050-X
http://dx.doi.org/10.1016/j.ejor.2012.08.015
http://dx.doi.org/10.1016/j.trb.2016.10.013
http://dx.doi.org/10.1016/j.ejor.2015.07.046
http://dx.doi.org/10.1016/j.ejor.2018.09.046
http://dx.doi.org/10.1016/j.trb.2015.03.002
http://dx.doi.org/10.1016/j.trd.2014.05.014
http://dx.doi.org/10.1007/978-3-658-06869-1
http://dx.doi.org/10.1016/j.cor.2010.03.015
http://dx.doi.org/10.1287/trsc.1120.0410
https://www.uber.com/info/elevate
http://dx.doi.org/10.1109/geoinformatics.2015.7378663
https://www2.deloitte.com/content/dam/Deloitte/global/Documents
https://www2.deloitte.com/content/dam/Deloitte/global/Documents
http://dx.doi.org/10.1007/s10845-011-0612-7
http://dx.doi.org/10.1080/00207549308956904
http://dx.doi.org/10.1080/002075499190888


Appl. Sci. 2020, 10, 4504 17 of 20

62. Qiu, L.; Hsu, W.-J.; Huang, S.Y.; Wang, H. Scheduling and routing algorithms for AGVs: A survey. Int. J.
Prod. Res. 2002, 40, 745–760. [CrossRef]

63. Wróbel, K.; Montewka, J.; Kujala, P. Towards the assessment of potential impact of unmanned vessels on
maritime transportation safety. Reliab. Eng. Syst. Saf. 2017, 165, 155–169. [CrossRef]

64. Coelho, B.N.; Coelho, V.N.; Coelho, I.M. A multi-objective green UAV routing problem. Comput. Oper. Res.
2017, 88, 306–315. [CrossRef]

65. Enright, J.J.; Frazzoli, E.; Pavone, M.; Ketan, S. Selection of Appropriate Class UAS/Sensors to Support Fire
Monitoring: Experiences in the United States; Handbook of UAVs; Springer Nature: Basel, Switzerland, 2015.
[CrossRef]

66. Goerzen, C.; Kong, Z.; Mettler, B. A survey of motion planning algorithms from the perspective of autonomous
UAV guidance. J. Intell. Robot. Syst. 2009, 57, 65. [CrossRef]

67. Karpenko, S.; Konovalenko, I.; Miller, A.; Miller, B.; Nikolaev, D. UAV Control on the Basis of 3D Landmark
Bearing-Only Observations. Sensors 2015, 15, 29802–29820. [CrossRef]

68. Guerriero, F.; Surace, R.; Loscrí, V.; Natalizio, E. A multi-objective approach for unmanned aerial vehicle
routing problem with soft time windows constraints. Appl. Math. Model. 2014, 38, 839–852. [CrossRef]

69. Sundar, K.; Venkatachalam, S.; Rathinam, S. An Exact Algorithm for a Fuel-Constrained Autonomous Vehicle
Path Planning Problem. arXiv Preprint 2016, arXiv:1604.08464.

70. Rojas-Viloria, D.; Solano-Charris, E.L.; Muñoz-Villamizar, A.; Montoya-Torres, J.R. Unmanned aerial
vehicles/drones in vehicle routing problems: A literature review. Int. Trans. Oper. Res. 2020. [CrossRef]

71. Perera, H.N.; Hurley, J.; Fahimnia, B.; Reisi, M. The human factor in supply chain forecasting: A systematic
review. Eur. J. Oper. Res. 2019, 274, 574–600. [CrossRef]

72. Ryan, J.L.; Bailey, T.G.; Moore, J.T.; Carlton, W.B. Reactive tabu search in unmanned aerial reconnaissance
simulations. J. Chem. Inf. Model. 2013, 53, 1689–1699. [CrossRef]

73. Buck, K.; Gassner, R.; Poore, A.B.; Yan, X. Visibility Constrained Routing of Unmanned Aerial Vehicles. Signal
Processing, Sensor Fusion, and Target Recognition. Int. Soc. Opt. Photonics 1999, 3720, 256–266. [CrossRef]

74. Laporte, G. The Vehicle Routing Problem: An overview of exact and approximate algorithms. Eur. J.
Oper. Res. 1992, 59, 231–247. [CrossRef]

75. Guerrero, J.A.; Bestaoui, Y. UAV path planning for structure inspection in windy environments. J. Intell.
Robot Syst. 2012, 69, 297–311. [CrossRef]

76. Savuran, H.; Karakaya, M. Efficient route planning for an unmanned air vehicle deployed on a moving
carrier. Soft Comput. 2015, 20, 2905–2920. [CrossRef]

77. Lawler, E.L. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley-Interscience
Series in Discrete Mathematics: Hoboken, NJ, USA, 1985.

78. Liu, X.; Gao, L.; Guang, Z.; Song, Y. A UAV Allocation Method for Traffic Surveillance in Sparse Road
Network. J. Highw. Transp. Res. Dev. 2013, 7, 81–87. [CrossRef]

79. Geyer, C.; Dey, D.; Singh, S. Prototype Sense-and-Avoid Sstemy for UAVs; Report 2009 Tech. Report,
CMU-RI-TR-09-09; Robotics Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2009.

80. Fu, Y. New Development on Sense and Avoid Strategies for Unmanned Aerial Vehicles. Master’s Thesis,
Concordia University, Montréal, QC, Canada, 2016.

81. Imanberdiyev, N.; Fu, C.; Kayacan, E.; Chen, I.M. Autonomous navigation of UAV by using real-time
model-based reinforcement learning. In Proceedings of the 2016 14th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [CrossRef]

82. Shetty, V.K.; Sudit, M.; Nagi, R. Priority-based assignment and routing of a fleet of unmanned combat aerial
vehicles. Comput. Oper. Res. 2008, 35, 1813–1828. [CrossRef]

83. Wang, X.; Poikonen, S.; Golden, B. The vehicle routing problem with drones: Several worst-case results.
Optim. Lett. 2016, 11, 679–697. [CrossRef]

84. Sundar, K.; Rathinam, S. Algorithms for routing an unmanned aerial vehicle in the presence of refueling
depots. IEEE Trans. Autom. Sci. Eng. 2013, 11, 287–294. [CrossRef]

85. David, W.; Casbeer, R.H.C. Column generation for a UAV assignment problemwith precedence constraints
David. Int. J. Robust Nonlinear Control 2011, 21, 1421–1433. [CrossRef]

86. Karaman, S.; Frazzoli, E. Vehicle Routing Problem with Metric Temporal Logic Specifications. In Proceedings
of the IEEE Conf Decis Control, San Diego, CA, USA, 13–15 December 2006; pp. 3953–3958. [CrossRef]

http://dx.doi.org/10.1080/00207540110091712
http://dx.doi.org/10.1016/j.ress.2017.03.029
http://dx.doi.org/10.1016/j.cor.2017.04.011
http://dx.doi.org/10.1007/978-90-481-9707-1
http://dx.doi.org/10.1007/s10846-009-9383-1
http://dx.doi.org/10.3390/s151229768
http://dx.doi.org/10.1016/j.apm.2013.07.002
http://dx.doi.org/10.1111/itor.12783
http://dx.doi.org/10.1016/j.ejor.2018.10.028
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1117/12.357165
http://dx.doi.org/10.1016/0377-2217(92)90138-Y
http://dx.doi.org/10.1007/s10846-012-9778-2
http://dx.doi.org/10.1007/s00500-015-1970-4
http://dx.doi.org/10.1061/JHTRCQ.0000319
http://dx.doi.org/10.1109/ICARCV.2016.7838739
http://dx.doi.org/10.1016/j.cor.2006.09.013
http://dx.doi.org/10.1007/s11590-016-1035-3
http://dx.doi.org/10.1109/TASE.2013.2279544
http://dx.doi.org/10.1002/rnc
http://dx.doi.org/10.1109/CDC.2008.4739366


Appl. Sci. 2020, 10, 4504 18 of 20

87. Klein, D.J.; Venkateswaran, S.; Isaacs, J.T. Localization with sparse acoustic sensor network using UAVs as
information-seeking data mules. ACM Trans. Sens. Netw. 2013, 9, 1–29. [CrossRef]

88. Arsie, A.; Frazzoli, E. Efficient routing of multiple vehicles with no explicit communications. Int. J. Robust
Nonlinear Control 2007, 18, 154–164. [CrossRef]

89. Murray, C.C.; Chu, A.G. The flying sidekick traveling salesman problem: Optimization of drone-assisted
parcel delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [CrossRef]

90. Kinney, G.W.; Hill, R.R.; Moore, J.T. Devising a quick-running heuristic for an unmanned aerial vehicle
(UAV) routing system. J. Oper. Res. Soc. 2005, 56, 776–786. [CrossRef]

91. Wen, T.; Zhang, Z.; Wong, K.K.L. Multi-objective algorithm for blood supply via unmanned aerial vehicles to
the wounded in an emergency situation. PLoS ONE 2016, 11, e0155176. [CrossRef] [PubMed]

92. Murray, C.; Karwan, M. A Branch-and-Bound-Based Solution Approach for Dynamic Rerouting of Airborne
Platforms. Nav. Res. Logist. 2013, 60, 141–159. [CrossRef]

93. Lamont, G.B.; Slear, J.N.; Melendez, K. UAV swarm mission planning and routing using multi-objective
evolutionary algorithms. In Proceedings of the 2007 IEEE Symposium on Computational Intelligence in
Multi-Criteria Decision-Making, Honolulu, HI, USA, 1–5 April 2007; pp. 10–20. [CrossRef]

94. Habib, D.; Jamal, H.; Khan, S.A. Employing multiple unmanned aerial vehicles for co-operative path planning.
Int. J. Adv. Robot. Syst. 2013, 10(5), 235. [CrossRef]

95. Oberlin, P.; Rathinam, S.; Darbha, S. A Transformation for a Heterogenous, Multiple Depot, Multiple
Traveling Salesman Problem. Transformation 2003, 1292–1297. [CrossRef]

96. Babel, L. Curvature-constrained traveling salesman tours for aerial surveillance in scenarios with obstacles.
Eur. J. Oper. Res. 2017, 262, 335–346. [CrossRef]

97. Manyam, S.G.; Rathinam, S.; Darbha, S. GPS Denied UAV Routing with Communication Constraints. J. Intell.
Robot Syst. 2016, 84, 691–703. [CrossRef]

98. Furini, F.; Persiani, C.A.; Toth, P. The Time Dependent Traveling Salesman Planning Problem in Controlled
Airspace. Transp. Res. Part B Methodol. 2016, 90, 38–55. [CrossRef]

99. Enright, J.J.; Frazzoli, E. UAV Routing in a Stochastic, Time-Varying Environment. IFAC Proc. 2005, 38,
295–300. [CrossRef]

100. Sisson, M.R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk and Maximum Expected Coverage
Routes. Air Force Inst of Tech Wright-Patterson of School of Engineering. Master’s Thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH, USA, 1997.

101. Jawhar, I.; Mohamed, N.; Al-Jaroodi, J.; Zhang, S. A framework for using unmanned aerial vehicles for data
collection in linear wireless sensor networks. J. Intell. Robot. Syst. 2013, 74, 437–453. [CrossRef]

102. Antonio, P.; Grimaccia, F.; Mussetta, M. Architecture and methods for innovative heterogeneous wireless
sensor network applications. Remote. Sens. 2012, 4, 1146–1161. [CrossRef]

103. Mascarenas, D.; Flynn, E.; Farrar, C. A mobile host approach for wireless powering and interrogation of
structural health monitoring sensor networks. IEEE Sens. J. 2009, 9, 1719–1726. [CrossRef]

104. Say, S.; Inata, H.; Liu, J.; Shimamoto, S. Priority-Based Data Gathering Framework in UAV-Assisted Wireless
Sensor Networks. IEEE Sens. J. 2016, 16, 5785–5794. [CrossRef]

105. Sahingoz, O.K. Networking models in flying Ad-hoc networks (FANETs): Concepts and challenges. J. Intell.
Robot. Syst. 2013, 74, 513–527. [CrossRef]

106. Rosati, S.; Kruzelecki, K.; Heitz, G. Dynamic Routing for Flying Ad Hoc Networks. IEEE Trans. Veh. Technol.
2015, 65, 1690–1700. [CrossRef]

107. Guo, Y.; Li, X.; Yousefi’zadeh, H.; Jafarkhani, H. UAV-aided cross-layer routing for MANETs. In Proceedings
of the IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012;
pp. 2928–2933. [CrossRef]

108. Sahingoz, O.K. Mobile networking with UAVs: Opportunities and challenges. In Proceedings of the
International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013;
Institute of Electrical and Electronics Engineers (IEEE): Los Alamitos, CA, USA, 2013; pp. 933–941. [CrossRef]

109. Maxa, J.-A.; Ben Mahmoud, M.S.; Larrieu, N. Secure routing protocol design for UAV Ad hoc NETworks.
In Proceedings of the IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), Prague, Czech Republic,
13–17 September 2015; pp. 4A5-1–4A5-15. [CrossRef]

http://dx.doi.org/10.1145/2480730.2480733
http://dx.doi.org/10.1002/rnc.1258
http://dx.doi.org/10.1016/j.trc.2015.03.005
http://dx.doi.org/10.1057/palgrave.jors.2601867
http://dx.doi.org/10.1371/journal.pone.0155176
http://www.ncbi.nlm.nih.gov/pubmed/27163361
http://dx.doi.org/10.1002/nav.21526
http://dx.doi.org/10.1109/mcdm.2007.369410
http://dx.doi.org/10.5772/56286
http://dx.doi.org/10.1109/ACC.2009.5160666
http://dx.doi.org/10.1016/j.ejor.2017.03.067
http://dx.doi.org/10.1007/s10846-016-0343-2
http://dx.doi.org/10.1016/j.trb.2016.04.009
http://dx.doi.org/10.3182/20050703-6-CZ-1902.02010
http://dx.doi.org/10.1007/s10846-013-9965-9
http://dx.doi.org/10.3390/rs4051146
http://dx.doi.org/10.1109/JSEN.2009.2030706
http://dx.doi.org/10.1109/JSEN.2016.2568260
http://dx.doi.org/10.1007/s10846-013-9959-7
http://dx.doi.org/10.1109/TVT.2015.2414819
http://dx.doi.org/10.1109/WCNC.2012.6214304
http://dx.doi.org/10.1109/ICUAS.2013.6564779
http://dx.doi.org/10.1109/DASC.2015.7311415


Appl. Sci. 2020, 10, 4504 19 of 20

110. Zhang, K.E.; Zhang, W.; Zeng, J.Z. Preliminary study of routing and date integrity in mobile Ad Hoc uav
network. In Proceedings of the 2008 Int Conf Apperceiving Comput Intell Anal ICACIA, Boston, MA, USA,
7–11 July 2008; pp. 347–350. [CrossRef]

111. Huang, X.; Wang, G.; Hu, F.; Kumar, S. Stability-Capacity-Adaptive Routing for High Mobility, Multi-Hop
Cognitive Radio Networks. Communic Res. 2011, 60, 1–17.

112. Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun.
Surv. Tutor. 2015, 18, 1123–1152. [CrossRef]

113. Li, Y.; Shirani, R.; St-Hilaire, M.; Kunz, T. Improving routing in networks of Unmanned Aerial Vehicles:
Reactive-Greedy-Reactive. Wirel. Commun. Mob. Comput. 2012. [CrossRef]

114. Alshabtat, A.; Dong, L.; Li, J.; Yang, F. Low latency routing algorithm for unmanned aerial vehicles ad-hoc
networks. Electr. Comput. Eng. 2010, 6, 48–54.

115. Shi, N.; Luo, X. A Novel Cluster-Based Location-Aided Routing Protocol for UAV Fleet Networks. Int. J.
Digit. Content Technol. Its Appl. 2012, 6, 376–383. [CrossRef]

116. Zhang, J.; Jia, L.; Niu, S. A space-time network-based modeling framework for dynamic unmanned aerial
vehicle routing in traffic incident monitoring applications. Sensors 2015, 15, 13874–13898. [CrossRef]

117. Casas, I.; Malik, A.; Delmelle, E.M. An automated network generation procedure for routing of Unmanned
Aerial Vehicles (UAVs) in a GIS environment. Netw. Spat. Econ. 2006, 7, 153–176. [CrossRef]

118. Gu, D.L.; Gerla, M.; Ly, H.; Xu, K.; Kong, J.; Hong, X. Design of multilevel heterogeneous ad-hoc wireless
networks with UAVs. Wirel. Mob. Commun. 2001, 4586, 327–338. [CrossRef]

119. Brown, T.X.; Argrow, B.; Dixon, C. Ad Hoc UAV-Ground Network, Test Bed. Test 2004, 1, 1–5.
120. Xu, K.X.K.; Hong, X.H.X.; Gerla, M.G.M. Landmark routing in large wireless battlefield networks using

UAVs. In Proceedings of the Proceedings Communications for Network-Centric Operations: Creating the
Information (MILCOM), McLean, VA, USA, 28–31 October 2001; pp. 230–234. [CrossRef]

121. Gu, D.; Pei, G.; Ly, H. Hierarchical routing for multi-layer ad-hoc wireless networks with UAVs. MILCOM
2000, 310–314. [CrossRef]

122. Ahner, D.K.; Buss, A.H.; Ruck, J.; Ave, S. A discrete event simulation with optimization in the loop approach
to solving. In Proceedings of the Winter Simulation Conference (WSC), Monterey, CA, USA, 3–6 December
2006; pp. 1349–1356.

123. Weinstein, A.L.; Schumacher, C. UAV scheduling via the vehicle routing problem with time windows.
In Proceedings of the AIAA Infotech Aerospace Conference and Exhibit, Rohnert Park, CA, USA, 7–10 May
2007. [CrossRef]

124. Kim, Y.; Gu, D.W.; Postlethwaite, I. Real-time optimal mission scheduling and flight path selection. IEEE Trans.
Autom. Control. 2007, 52, 1119–1123. [CrossRef]

125. Kim, J.; Song, B.D.; Morrison, J.R. On the scheduling of systems of UAVs and fuel service stations for
long-term mission fulfillment. J. Intell. Robot. Syst. 2012, 70, 347–359. [CrossRef]

126. Kwon, J.; Hailes, S. Scheduling UAVs to bridge communications in delay-tolerant networks using real-time
scheduling analysis techniques. In Proceedings of the IEEE/SICE International Symposium on System
Integration, Tokyo, Japan, 13–14 December 2014; pp. 363–369. [CrossRef]

127. Bocewicz, G.; Nielsen, P.; Banaszak, Z.; Thibbotuwawa, A. Deployment of Battery Swapping Stations for
Unmanned Aerial Vehicles Subject to Cyclic Production Flow Constraints. In Biomedical Engineering Systems
and Technologies; Springer: Cham, Switzerland, 2018; pp. 73–87. [CrossRef]

128. Tso, K.S.; Tharp, G.K.; Zhang, W.; Tai, A.T. A multi-agent operator interface for unmanned aerial vehicles.
In Proceedings of the 18th Digital Avionics Systems Conference, St. Louis, MO, USA, 24–29 October 1999.
[CrossRef]

129. Nigam, N.; Bieniawski, S.; Kroo, I.; Vian, J. Control of multiple UAVs for persistent surveillance: Algorithm
and flight test results. IEEE Trans. Control. Syst. Technol. 2011, 20, 1236–1251. [CrossRef]

130. Popescu, D.; Stoican, F.; Stamatescu, G.; Chenaru, O.; Ichim, L. A Survey of Collaborative UAV–WSN Systems
for Efficient Monitoring. Sensors 2019, 19, 4690. [CrossRef]

131. Baek, J.; Han, S.I.; Han, Y. Energy-Efficient UAV Routing for Wireless Sensor Networks. IEEE Trans.
Veh. Technol. 2020, 69, 1741–1750. [CrossRef]

132. Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.; Debbah, M. A Tutorial on UAVs for Wireless Networks:
Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [CrossRef]

http://dx.doi.org/10.1109/ICACIA.2008.4770039
http://dx.doi.org/10.1109/COMST.2015.2495297
http://dx.doi.org/10.1002/wcm.2333
http://dx.doi.org/10.4156/jdcta.vol6.issue18.45
http://dx.doi.org/10.3390/s150613874
http://dx.doi.org/10.1007/s11067-006-9000-9
http://dx.doi.org/10.1117/12.445243
http://dx.doi.org/10.1109/MILCOM.2001.985795
http://dx.doi.org/10.1109/MILCOM.2000.904964
http://dx.doi.org/10.2514/6.2007-2839
http://dx.doi.org/10.1109/TAC.2007.899048
http://dx.doi.org/10.1007/s10846-012-9727-0
http://dx.doi.org/10.1109/SII.2014.7028065
http://dx.doi.org/10.1007/978-3-319-99972-2_6
http://dx.doi.org/10.1109/DASC.1999.821969
http://dx.doi.org/10.1109/TCST.2011.2167331
http://dx.doi.org/10.3390/s19214690
http://dx.doi.org/10.1109/TVT.2019.2959808
http://dx.doi.org/10.1109/COMST.2019.2902862


Appl. Sci. 2020, 10, 4504 20 of 20

133. Holcombe, R.G. Integrating Drones into the US Air Traffic Control System; Working Paper; Mercatus Center
at George Mason University: Arlington, WV, USA, 2016; Available online: https://www.mercatus.org/

publications/technology-and-innovation (accessed on 13 February 2019).
134. Wu, J.; Zhang, D.; Pei, D. Autonomous route planning for UAV when threats are uncertain. In Proceedings of

the IEEE Chinese Guidance, Navigation and Control Conference, CGNCC, Yantai, China, 8–10 August 2014.
[CrossRef]

135. Frazzoli, E.; Bullo, F. Decentralized algorithms for vehicle routing in a stochastic time-varying
environment. In Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Bahamas,
14–17 December 2004; Volume 4, pp. 3357–3363. [CrossRef]

136. Zhang, J.; Zhao, Y.; Xue, W.; Li, J. Vehicle routing problem with fuel consumption and carbon emission. Int. J.
Prod. Econ. 2015, 170, 234–242. [CrossRef]

137. Thibbotuwawa, A.; Nielsen, P.; Zbigniew, B.; Bocewicz, G. Energy Consumption in Unmanned Aerial
Vehicles: A Review of Energy Consumption Models and Their Relation to the UAV Routing. In Advances in
Intelligent Systems and Computing; Springer International Publishing: Berlin, Germany, 2019; pp. 173–184.
[CrossRef]

138. Feng, Y.; Zhang, R.; Jia, G. Vehicle Routing Problems with Fuel Consumption and Stochastic Travel Speeds.
Math. Probl. Eng. 2017, 2017, 6329203. [CrossRef]

139. Thibbotuwawa, A.; Nielsen, P.; Zbigniew, B.; Bocewicz, G. Factors Affecting Energy Consumption of
Unmanned Aerial Vehicles: An Analysis of How Energy Consumption Changes in Relation to UAV Routing.
In Advances in Intelligent Systems and Computing; Springer International Publishing: Berlin, Germany, 2019;
pp. 228–238. [CrossRef]

140. Thibbotuwawa, A.; Bocewicz, G.; Zbigniew, B.; Nielsen, P. A Solution Approach for UAV Fleet Mission
Planning in Changing Weather Conditions. Appl. Sci. 2019, 9, 3972. [CrossRef]

141. Thibbotuwawa, A.; Bocewicz, G.; Radzki, G.; Nielsen, P.; Banaszak, Z. UAV Mission Planning Resistant to
Weather Uncertainty. Sensors 2020, 20, 515. [CrossRef]

142. Leishman, D.S. Principles of Helicopter Aerodynamics; Cambridge University Press: Cambridge, UK, 2006.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.mercatus.org/publications/technology-and-innovation
https://www.mercatus.org/publications/technology-and-innovation
http://dx.doi.org/10.1109/CGNCC.2014.7007214
http://dx.doi.org/10.1109/CDC.2004.1429220
http://dx.doi.org/10.1016/j.ijpe.2015.09.031
http://dx.doi.org/10.1007/978-3-319-99996-8_16
http://dx.doi.org/10.1155/2017/6329203
http://dx.doi.org/10.1007/978-3-319-99996-8_21
http://dx.doi.org/10.3390/app9193972
http://dx.doi.org/10.3390/s20020515
http://dx.doi.org/10.1002/1521-3773(20010316)40:63.3.CO;2-C
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

