

Aalborg Universitet

Mutation-Based Test-Case Generation with Ecdar

Larsen, Kim G.; Lorber, Florian; Nielsen, Brian; Nyman, Ulrik M.

Published in:
Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2017

DOI (link to publication from Publisher):
10.1109/ICSTW.2017.60

Publication date:
2017

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Lorber, F., Nielsen, B., & Nyman, U. M. (2017). Mutation-Based Test-Case Generation with
Ecdar. In Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation
Workshops, ICSTW 2017 (pp. 319-328). Article 7899077 IEEE. https://doi.org/10.1109/ICSTW.2017.60

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 27, 2024

https://doi.org/10.1109/ICSTW.2017.60
https://vbn.aau.dk/en/publications/f1721060-3a29-4565-8cef-a26d1ddb974d
https://doi.org/10.1109/ICSTW.2017.60

Mutation-Based Test-Case Generation with Ecdar

Kim G. Larsen, Florian Lorber, Brian Nielsen and Ulrik M. Nyman
Department of Computer Science

Aalborg University

Aalborg, Denmark

{kgl,florber,bnielsen,ulrik}@cs.aau.dk

Abstract—Model-based testing is a well-known technique for
automating the otherwise tedious process of testing. Test cases
are automatically created from a formal model, according to
some test criterion which determines when the test suite is
complete. In model-based mutation testing, the test criterion
is defined via faulty models, called mutants, which are used
to create test cases that specifically target the modeled faults.
To be able to reveal timing related faults, timed automata can
be used as the test model. While model-based mutation testing
has already been applied to timed automata, we show how to
implement the technique more efficiently with the tool Ecdar,
which belongs to the well-known UPPAAL tool family. The tool
is used to perform an unbounded conformance check between the
correct specification and the mutants, based on a notion of timed
refinement. If a mutant does not refine the specification, Ecdar
creates a strategy for reaching the non-conformance, which can
be used as an adaptive test case. We applied the procedure to the
timed automata model of a car alarm system, which was used in
the previous approach of model-based mutation testing for timed
automata, and compare the two approaches based on the results.

I. INTRODUCTION

In the last decades testing has proven to be a popular

technique for the verification of industrial systems. Via testing

one either detects bugs, or raises the confidence that the system

under test (SUT) works as expected. However, manual test-

case generation is an error prone procedure which does not

comply to safety standards. Thus, the trend went towards

automated test-case generation methods, like model-based test-

ing [24]. In model-based testing, a formal model is produced

from the requirements and used to derive test cases that cover

the interesting aspects. These test cases are usually produced

according to specified coverage criteria, like for instance state

coverage, where the produced test suite is intended to reach

all states in the model.

In model-based mutation testing [3], [7], the coverage crite-

ria is given via a set of fault models, called mutation operators.

Each fault model specifies a certain type of fault that might

occur in a model, like for instance an off-by-one fault in

the enabling condition of a transition. By applying these

mutation operators to the formal model a set of faulty models,

called mutants, is generated. One can distinguish between

equivalent mutants, where the mutation did not introduce any

faulty behavior, and non-equivalent mutants, which do not

conform to the correct specification anymore. For each non-

equivalent mutant, a test case leading to the conformance

violation is generated. If a (deterministic) SUT contains a bug

that correlates to the fault in a mutant, the test generated for

that mutant is guaranteed to detect it.

The technique can be applied to various different formalisms

for the test model, and has, among others, already been

applied to UML state machines [3], probabilistic finite state

machines [16], and timed automata [5]. The work presented in

this paper builds on the previous work on timed automata [5].

Timed automata extend traditional state machines by a means

for specifying timing behavior, i.e., they are extended by clock

variables which can measure the progress of time. By applying

model-based mutation testing to timed automata, the generated

test suite is able to specifically target timing faults in the tested

systems, such as delayed outputs.

In the existing approach [5] SMT-solving and bounded

model-checking were used to perform a bounded confor-

mance check between the specification and the mutant. In

this paper we propose to perform the conformance check

with Ecdar [11], which allows an unbounded conformance

check, provides a significant speedup compared to the previous

approach and enables the generation of adaptive test strategies,

which produce fewer inconclusive test verdicts than straight-

forward methods. We will present how the tool can be called

for a refinement check between a specification and its mutant,

and how the conformance check differs from the previous one.

Then, we will show how the strategies produced by Ecdar can

be used as adaptive test cases, which will (if possible) lead to

the mutation despite the choices made by the SUT. Finally, we

will compare the two approaches based on the timed automata

model of a car alarm system, that was used to evaluate the

previous approach, and discuss the pros and contras of the

approaches.

The structure of the paper is as follows: first, in Section II

we will present some preliminaries, including the definition of

timed automata, the tool Ecdar and the workflow of model-

based mutation testing. Then, in Section III, we will discuss

some related work. Next, in Section IV we will present

the proposed approach using Ecdar, where we discuss how

the conformance check can be applied in Ecdar, and how

the produced strategies can be used as test cases. Then,

in Section V we will show our evaluation and discuss the

advantages and disadvantages of the new approach compared

to the existing one. Finally, we will conclude the paper and

give an outlook of future work in Section VI.

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.60

319

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.60

319

10th IEEE International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-6676-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSTW.2017.60

319

II. PRELIMINARIES

A. Timed Automata

Timed automata [6] are extended finite state machines,

which contain clock variables for measuring the progress of

time. Let X be a finite set of such clock variables. A clock

valuation v(x) is a function v : X → R≥0 assigning a real

value to every clock x ∈ X . We denote by V the set of all

clock valuations and by 0 the valuation assigning 0 to every

clock. For a valuation v and d ∈ R≥0 we define v+d to be the

valuation (v + d)(x) = v(x) + d for all x ∈ X . For a subset

δ of X , we denote by v[δ] the valuation such that for every

x ∈ δ, v[δ](x) = 0 and for every x ∈ X \δ, v[δ](x) = v(x). A

clock constraint ϕ is a conjunction of predicates of the form

x ∼ n, where x ∈ X , n ∈ N and ∼ ∈ {<,≤,=,≥, >}. Given

a clock valuation v, we write v |= ϕ when v satisfies ϕ.

Definition 1 (TA):
A timed automaton A is a tuple (Q, q̂,Σ,X , I,G, T), where

1) Q is a finite set of locations and q̂ ∈ Q is the initial
location;

2) Σ is a finite set of observable actions;

3) X is a finite set of clock variables;

4) I : Q → LI is a mapping from locations to location
invariants, where each location invariant li ∈ LI is a

conjunction of constraints of the form true, x < n or

x ≤ n, with x ∈ X and n ∈ N;

5) G is a set of transition guards, where each guard is a

conjunction of constraints of the form x ∼ n, where

x ∈ X , ∼ ∈ {<,≤,=,≥, >} and n ∈ N;

6) T ⊆ Q×Σ×G×P (X)×Q is a finite set of transitions
of the form (q, α, g, δ, q′), where

a) q, q′ ∈ Q are the source and the target locations,

b) α ∈ Σ is the transition action,

c) g ∈ G is the transition guard,

d) δ ⊆ X is the subset of clocks to be reset;
The semantics of a TA A is given by the timed transition

system [[A]] = (S, ŝ,R≥0,Σ, T), where

1) S = {(q, v) ∈ Q× V | v |= I(q)};
2) ŝ = (q̂, 0);
3) T ⊆ S × (Σ ∪ R≥0) × S is the transition relation

consisting of timed and discrete transitions such that:

a) Timed transitions (delay): (q, v) d−→ (q, v+d) ∈ T ,

where d ∈ R≥0, if v + d |= I(q),
b) Discrete transitions (jump): (q, v)

α−→ (q′, v′) ∈
T , where α ∈ Σ, if there exists a transition

(q, α, g, δ, q′) in T , such that: (1) v |= g; (2)

v′ = v[δ] and (3) v′ |= I(q′);
We denote by (q, v′) = (q, v) after d the state reached from

(q, v) by a delay of d, and by (q′, v′) = (q, v) after α the state

reached by performing an α transition from (q, v). We denote

by (q, v) 	d−→ that the delay of d is not possible in (q, v).
A run ρ of an TA A is a finite sequence of alternating

timed and discrete transitions of the form (q0, v0)
d1−→ (q0, v0+

d1)
τ1−→ (q1, v1)

d2−→ · · · dn−→ (qn−1, vn−1 + dn)
τn−→ (qn, vn),

Fig. 1. A timed I/O automaton.

where q0 = q̂, v0 = 0, τi = (qi−1, αi, gi,Xrst(i), qi) ∈ T and

αi ∈ Σ.

A TA is called deterministic, iff (q, v)
α−→ (q′, v′)∧(q, v) α−→

(q′′, v′′) =⇒ (q′, v′) = (q′′, v′′), α ∈ Σ ∪ {ε}.
a) Timed I/O Automata: In Timed I/O Automata

(TIOA), the set of actions Σ is split into two disjoint

sets of input actions ΣI and output actions ΣO. Thus, a

TIOA Aio is a tuple (Q, q̂,ΣI ,ΣO,X , I,G, T). Figure 1

illustrates a timed I/O automaton for which we have

Q = {q0, q1, q2, q3}, q̂ = q0, ΣI = {c?}, ΣO = {a!, b!},
X = {x}, I = {q2 → x ≤ 5}, G = {x ≥ 3} and T =
{(q0, a!, true, {x}, q1), (q0, b!, true, {x}, q2), (q1, c?, x ≥
3, {}, q2), (q2, a!, x ≥ 4, {}, q4)}. The semantics of timed

I/O automata is given by timed input/output transition

systems [[Aio]] = (S, ŝ,R≥0,ΣI ,ΣO, T), where discrete

transitions are split into input actions, hereafter denoted

by (q, v)
i?−→ (q′, v′), and output actions, denoted by

(q, v)
o!−→ (q′, v′).

We denote by out(q, v) the set of output actions that appear

in any of the transitions leaving (q, v).
A TIOA A is input-enabled, iff in its underlying TIOTS for

all locations (q, v) and all inputs i?, there exists a transition

(q, v)
i?−→ (q′, v′).

A TIOA A satisfies the independent-progress condition, iff

in its underlying TIOTS for all locations (q, v) either ∀d ≥
0 : (q, v)

d−→ (q, v′) or ∃d ≥ 0 : (q, v)
d−→ (q, v′) ∧ (q, v′) o!−→

(q′, v′′), for some q′′ 	= q′. Thus, either the system can stay in

a location forever, or there exists an output transition leaving

the location. Consequently, the system will never block the

progress of time.

In the presented work we only consider deterministic and

input-enabled TIOA satisfying the independent-progress con-

dition. The automaton illustrated in Figure 1 is deterministic

and satisfies the independent-progress condition. However,

the transitions for making it input enabled were omitted for

keeping it simple.

b) Ecdar: The tool Ecdar was developed on top of

UPPAAL-TIGA, implementing the timed interface theory pre-

sented by David et al. [11]. It works on timed I/O automata,

where inputs are defined as controllable and outputs are

defined as uncontrollable. The tool implements refinement

checks, consistency checks, composition of models and a

320320320

Requirements

System

Under Test

Test Model Mutation Tool

Conformance

Check

Test-Case

Generator

Test Cases

Mutation Operators

Test DriverVerdict

Mutated Models

Fig. 2. Model-based mutation testing workflow.

quotient operator. In the context of this paper, we will use

the refinement check for checking whether or not a mutant

refines the correct model.

The notion of refinement used by Ecdar and introduced by

David et al. [11] closely corresponds to the timed input-output

conformance [19], and they coincide for input-enabled models.

It is defined via the refinement between the underlying timed

input/output transition systems:

Definition 2 (Refinement):
A TIOTS I(SI , ŝI ,R≥0,ΣI ,ΣO, TI) refines a

TIOTS S(SS , ŝS ,R≥0,ΣI ,ΣO, TS), written I ≤ S, iff

there exists a binary relation R ⊆ QI × QS containing

(ŝI , ŝS) such that for each pair of states (sI , sS) ∈ R we

have:

1) whenever sS
i?−→ s′S ∈ TS for some s′S ∈ SS then

sI
i?−→ s′I ∈ TI and (s′I , s

′
S) ∈ R for some s′I ∈ SI

2) whenever sI
o!−→ s′I ∈ TI for some s′I ∈ SI then sS

o!−→
s′S ∈ TS and (s′I , s

′
S) ∈ R for some s′S ∈ SS

3) whenever sI
d−→ s′I ∈ TI for some d ∈ R≥0 then sS

d−→
s′S ∈ TS and (s′I , s

′
S) ∈ R for some s′S ∈ SS

Consequently, a TIOA AI refines a TIOA AS if the

corresponding TIOTS [[AI]] refines the corresponding

TIOTS [[AS]].
Thus, if an implementation refines a specification, then 1)

for every input that can be applied to the specification, that

input needs to be enabled in the implementation as well, 2)

every output that can be produced by the implementation

needs to be produced by the specification as well and 3)

the implementation can only delay time if the specification

can. Within the presented approach, the refinement check will

be applied between the original specification and the slightly

altered mutant, to check whether the mutant still refines the

original specification. The mutated automaton from Figure 3

does not refine its original specification from Figure 1, as

it allows an output at time x = 3 in location q2. However,

the specification refines the mutant, as the mutant covers all

outputs allowed by the specification.

In the case of non-refinement, Ecdar is able to use UPPAAL-

TIGA to produce strategies leading to the non-refinement.

The strategy is produced according to a two player timed

game on the product of the correct specification and the

mutant, where the input transitions are controlled by the player,

and the outputs are controlled by the opponent. The goal

of a strategy is to reach some set of goal-states, denoted

by K ⊆ Q × R≥0, in the TIOTS of a TIOA which in

our case is given by the states that reveal non-conformance.

A run of length n through a TIOA is a winning run if

∃k.0 ≤ k ≤ n∧ (qk, vk) ∈ K). We call the set of all winning

runs and all prefixes of winning runs WR. A strategy f is

a function guiding the player of a timed game towards the

winning states K. A strategy can advise the player to either

trigger a specific input, or to wait, denoted by λ. A state-based

strategy f for a TIOTS (S, ŝ,R≥0,ΣI ,ΣO, T) is a partial

function from S to ΣI∪{λ}. A run is said to be supervised by

the strategy f , if for every step (qk, vk)
dk+1−−−→ (qk, vk+dk+1)

we have ∀d′ ∈ [0, dk+1).f(qk, vk+d′) = λ and for every

step (qk, vk)
τk−→ (qk+1, vk+1) we have αk ∈ ΣO ∨ (αk ∈

ΣI ∧ f(qk, vk) = αk). A strategy is a winning strategy on a

TIOA A for the goal states K, if all supervised runs in A
are in WR. A strategy is a cooperative strategy if it contains

at least one winning run and every supervised run r /∈ WR
contains two prefixis p1, p2 of length k ≥ 0 and k + 1, so

that p ∈ WR, p1 /∈ WR and αk ∈ ΣO. Thus, a cooperative

strategy can guide the player to the goal states, if the opponent

cooperates.

B. Model-based Mutation Testing

Model-based mutation testing is a combination of model-

based testing [24] and mutation testing [17]. However, unlike

most classical mutation testing approaches, the technique is

not used for assessing the quality of an existing testsuite,

but to create a new test suite based on the tests needed to

detect a given set of fault models. The general workflow of

model-based mutation testing is depicted in Figure 2. The

321321321

workflow starts with the requirements, which are used (usually

by individual teams) to create both the SUT and a formal test

model. The test model is then processed by a mutation tool,

which will insert different kinds of faults into the model. The

types of faults are defined via a set of mutation operators,

which may include changing the target/goal locations of tran-

sitions or the enabling conditions of guards. This produces

a set of faulty test models, called mutants. These mutants

usually contain one fault each, and are thus called first-order
mutants. It is however also possible to insert multiple faults

and thus produce higher-order mutants. Figure 3 illustrates a

mutant of the TIOA illustrated in Figure 1, where an off-by-

one fault was introduced into one of the guards, enabling the

corresponding transition early.

After the mutation is done, the core of the test-case gen-

eration is performed, which is mainly the conformance check

between the correct specification and each of the mutants. In

case the introduced fault did not insert any detectable faulty

behavior, the mutant is classified as equivalent with respect

to the used conformance relation and discarded. Otherwise,

the conformance check produces a counterexample to the

conformance, i.e., a trace leading from the initial location to

the transition where the mutation is revealed by the faulty

behavior of the mutant. This counterexample is then turned

into a test case, which means that it is extended by verdicts,

and possibly made more adaptive. E.g., in the previous ap-

proach [5] the test cases were made time-adaptive, by using the

concrete times from the counter example to calculate timing

constraints for the test-case execution which guarantee taking

the same path through the timed automaton even if the test-

execution slightly deviates from the concrete times. Finally,

each created test is executed on the SUT and either reveals

a bug, assigning the verdict fail to the test execution, or

runs through correctly, assigning the verdict pass. In special

cases, when the SUT is allowed to choose between several

outputs, or has a large time frame during which an output

may occur, the system may choose an output (or time for

an output), which is correct but not the one expected by the

test case. In such cases, a non-adaptive test case may not

reach its test purpose, i.e., the mutation, anymore, but also

did not reveal a bug. In this case, most testing frameworks

assign the verdict inconclusive. Depending on the test-case

generation method, the produced test cases may be more or

less adaptive. Non-adaptive test cases only cover the trace of

the concrete counterexample, while adaptive test-cases contain

additional information, in case the specification produces a

different output. Thus, adaptive test-cases can steer the test-

case execution back towards the goal of the test case, if a path

back exists.

If the SUT contains a bug that corresponds to any of the

mutations, the produced test suite is guaranteed to detect it, or,

in certain cases, assign the inconclusive verdict. Additionally,

the corresponding mutant can serve as an aid for detecting the

bug, as it shows the location and type of the bug.

Fig. 3. A mutant of the timed I/O automaton illustrated in Figure 1.

III. RELATED WORK

For general information on model-based testing and muta-

tion testing, we refer to the corresponding surveys [24], [17].

Mutations have already been used for the generation of test

cases both on the code level, see e.g. the work by Offutt and

Untch [22], and on the model level, which will be discussed

shortly. Both approaches face a lot of common problems, like

the high number of mutants, or their expansive execution, and

consequently, there is also an overlap in possible solutions. For

instance, Xavier et al. [14] recently proposed a methodology

for generating featured mutant models, which are models

containing all possible mutants of a transition system within

one model. This both enables higher-order mutants and a very

efficient test execution, where the state-space only needs to

be explored once. While they use the approach for validating

existing test suits, the approach is model-based and could be

applied for the test-case generation as well.

Model-based mutation testing was first introduced by Budd

and Gobal [8] for predicate-calculus specifications. Later on,

it was adapted to various formalisms, like probabilistic finite

state machines [16], action systems [2] specifications and

UML state machines [3]. The approaches presented so far

mainly focused on testing the functional behavior of the SUT,

while the presented approach uses timed automata to be able

to target timing faults as well.

Timed automata have been used for test-case generation

several times. The tools UPPAAL Cover [15] and UPPAAL

Tron [20] were specifically developed to provide online and

offline testing for timed automata. They can be used with

various different testing criteria, however not with a fault-

based approach. Krichen and Tripakis [18] proposed a testing

framework for edge coverage, location coverage and state

coverage for timed automata. Their tool, TTG, can process

non-deterministic timed automata, and produce deterministic

testers. Wang et al. [26] proposed an algorithm and tool

support for a conformance check between timed automata,

allowing non-deterministic but determinizable timed automata.

However, they never applied the approach to test-case gener-

ation. There also have been several approaches using game

strategies for testing of timed systems: David et al. [12]

uses UPPAAL-TIGA for creating winning strategies according

to manually designed test purposes. These strategies were

322322322

then translated into traditional test cases, loosing parts of

their flexibility. In other work David et al. [9] also used the

strategies directly for test-case execution. However, since they

were still created from test purposes instead of mutants, the

test execution varies from the algorithm that will be presented

in Section IV. Additional work by David et al. [10], [13]

extended their approach to partially observable systems and

systems with concurrent behavior. Again, those approaches

were based on manual test purposes and created test strategies

that contain the expected behavior, while our test-strategies in

their last step reflect the behavior of the mutant, and thus need

a different test-execution.

Mutation of timed automata has so far been performed by

AbouTrab et al. [1], Nilsson et al. [21] and Aichernig et

al. [5]. AboutTrap et al. used the mutants for classical mutation

testing, i.e., to assess the quality of existing test suites, not for

the generation of new tests. Nilsson et al. used mutations of

timed automata with tasks for test-case generation, however

the mutation operators focused on the tasks, rather then on

the clock resets and guards. The work by Aichernig at al.

is the most related work to the presented approach, and will

be the work that we compare our results with during the

evaluation. They proposed model-based mutation testing for

timed automata, and implemented the approach in the tool

MoMuT::TA. The tool provides a mutator for timed automata,

the conformance check where timed input-output conformance
(tioco) [19] is used a the conformance relation, and in its

initial version also a translation from a counterexample to time

adaptive test cases. They performed the conformance check via

bounded model-checking, using SMT solving. Thus, contrary

to the presented approach that uses UPPAAL’s zone based

algorithms, they only perform a bounded conformance check.

Additionally, the test cases they produced are less adaptive

than the ones created by the presented approach. A closer

comparison of the approaches can be found in Section V.

IV. MODEL-BASED MUTATION TESTING WITH ECDAR

A. Refinement Check

While Ecdar does not perform mutations on models1, it

provides full capabilities for the conformance check between

the specification and the mutants and the generation of the

strategies used for testing. Conformance is expressed as refine-

ment, using the refinement relation introduced in Definition 2.

For input-enabled, deterministic models, this refinement rela-

tion corresponds to tioco-conformance. In our approach, input

enabledness is ensured via demonic completion [25] for the

specification and via angelic completion [23] for the mutants.

Demonic completion means that for each undefined input we

create a transition with that input, which leads to a universal

state. Thus, if the specified area is left, every future behavior

becomes possible. Traces leading to the universal state will

never yield a counterexample to the refinement, as everything

refines the universal state. This fits our needs, since most ioco-

based testing approaches [25] are only interested in testing the

1In our experiments we used mutants generated with MoMuT::TA.

specified parts of the system, allowing the usage of under-

specified models that do not cover all functionality. These

under-specified models allow the implementation to react to

additional inputs, while they must produce the correct outputs

for the inputs specified by the model. Angelic completion

creates self-loops for undefined inputs, indicating that those

inputs are simply ignored. While a mutant is allowed to only

define partial behavior of the complete specification, it is not

allowed to block any input.

To apply the refinement check between a TIOA speci-

fication S and a TIOA mutant M , the call to the Ecdar

verifier is simply refinement : M <= S. The problem is

solved as a timed game, where the mutant is seen as the

opponent triggering the uncontrollable actions. The goal for

the specification is to find a strategy that reveals the non-

refinement, regardless of the outputs chosen by the mutant. If

such a strategy exists, it can be stored in a file or printed to

the console.

Listing 1. The strategy for detecting the mutant of Figure 3.

− S t a t e : (S . q0 , M. q0)

When you a r e i n t r u e ,

t a k e M. q0 −> M. q2 { , b ! , x :=0}
− S t a t e : (S . q1 , M. q1)

While you a r e i n (S . x<3) ,

w a i t

When you a r e i n (S . x ==3) ,

t a k e S . q1 −> S . q2 {x>=3, c ? ,}
− S t a t e : (S . q2 , M. q2)

While you a r e i n (S . x<3) ,

w a i t

When you a r e i n (S . x ==3) ,

t a k e M. q2 −> M. q3 {x>=3, a ! ,}
A strategy stored by Ecdar consists of a list of pairs of

states, and the corresponding rules for each pair. A rule may

either be a delay rule Rλ or an action rule Rα and each

pair may be linked to several of both. Delay rules consist

of a timing condition φδ and the command to wait, while the

timing condition holds true. Action rules consist of a timing

condition φα and the transition that shall be taken, as soon
as the timing condition holds. Listing 1 gives an example

strategy produced for the specification S and the mutant M, as

depicted in Figures 1 and 3. While both automata are in the

initial location there are no timing constraints, thus there is no

need to wait and the tuple contains only an action rule. Note,

that the b transition is uncontrollable and thus triggered by

the mutant, while the action rule associated to (S.q1,M.q1)
is controllable, and thus associated to the specification. The

transitions associated to the mutant are just kept in the strategy

to keep it complete. During the actual test execution, the

SUT will trigger the uncontrollable actions and thus they are

not restricted by the strategy. Note that the clocks of both

specifications may be used in the timing conditions, and that

they also may be compared among each other.

Contrary to non-adaptive test cases that usually generate

inconclusive verdicts if the test purpose can not be directly

323323323

Fig. 4. A non-adaptive testcase for revealing the mutant from Figure 3.

reached, these strategies allow a far more flexible test-case

execution. Consider the automaton presented in Figure 3

and the non-adaptive testcase from Figure 4, that would be

generated by MoMuT::TA from the shortest counterexample.

The test case reveals the mutation, if the SUT produces a b!
output in the initial location, while the test-case execution is

aborted with an inconclusive verdict if an a! is produced. The

strategy provided by Ecdar is given in Listing 1. The action

rule leaving (S.q0,M.q0) is uncontrollable, and suggests that

the mutant takes the b! transition. However, during the test

execution, the mutant will be replaced by the SUT, which

has the free choice between producing an a! or a b!. If it

decides to produce an a!, this is no problem, as the test

strategy contains instructions for q1, thus guaranteeing the

test execution to reach the mutation. However, it needs to

be mentioned that there exist systems for which a winning

strategy can not be built. Consider the c? transition from q1 to

q2 did not exist: in that case, there exists no winning strategy

and if the SUT decides to produce an a! our test-case execution

can only assign an inconclusive verdict as well. Thus, we

distinguish three types of outcomes of the refinement check.

The output may be a winning strategy, i.e., the mutation will be

reached regardless of the decisions of the SUT, a cooperative

strategy [12], i.e., the mutation will be reached if the system

produces the right outputs, or no strategy, if the mutant refines

the original model. In case we produce a cooperative strategy

in a cyclic automata, if the SUT produces the wrong output

during the test execution, the strategy leads back to the initial

location, and tries to reach the mutation again.

An additional advantage of Ecdar is the support for higher-

order mutants, i.e. mutants with multiple faults inserted. The

produced strategies will lead to the refinement violation that

is the easiest to reach, just like MoMuT::TA would. However,

if the test execution can not reach this goal, e.g., due to

uncontrollable choices, like the choice between a! and b! in

Figure 1, the strategies may alternatively lead to the refinement

violation caused by another fault. At the moment we did

not further investigate this topic, yet we plan to perform

experiments with higher-order mutations as future work.

B. Strategy-driven Test Execution

The strategies produced by Ecdar only contain parts of the

information needed for their execution by a test-driver. To

effectively use them as test cases, the original specification

Algorithm 1 Test-Case Execution

Input: SUT, Strategy, Spec, Mutant, Bound

Output: Pass / Fail / Inconclusive

1: verdict = {}
2: step = 0

3: ((qs, vs), (qm, vm)) = ((q̂s, 0), (q̂m, 0))
4: while verdict = {} do
5: if strategy(qs, qm) = ∅ ∨ step = bound then
6: verdict = inconclusive

7: break
8: end if
9: for Rλ ∈ strategy(qs, qm) do \\ delay

10: while sat{φδ} do
11: wait and continuously check SUT for outputs

12: if SUT produces output then
13: break
14: end if
15: end while
16: d = waited time

17: if (qs, vs) 	d−→ then
18: return fail

19: end if
20: (qs, vs) = (qs, vs) after d
21: (qm, vm) = (qm, vm) after d
22: if SUT produces output o then \\ uncontrollable

23: if o ∈ out(qs, vs) then
24: if o ∈ out(qm, vm) then
25: (qs, vs) = (qs, vs) after α
26: (qm, vm) = (qm, vm) after α
27: else
28: return pass

29: end if
30: else
31: return fail

32: end if
33: end if
34: end for
35: for Rα ∈ strategy(qs, qm) do \\ controllable

36: if sat{φα} then
37: trigger input α on SUT

38: (qs, vs) = (qs, vs) after α
39: (qm, vm) = (qm, vm) after α
40: end if
41: end for
42: step = step + 1

43: end while

324324324

and the mutant need to be provided as well. While the strategy

provides the delays and transitions that need to be taken in

order to reach the mutation, the original specification is needed

to validate all occurring outputs, and the mutant is needed to

detect whether an incorrect output of the SUT corresponds to

the mutant, or whether we just revealed another bug. Thus,

both the specification and the mutant need to be simulated

during the test-case execution, so their current locations and

clock values can be assessed by the test adapter. In case the

strategy is a cooperative strategy, i.e., not a winning strategy, it

may produce a loop, trying to reach the mutation even though

it might not be reachable. For such cases, we need to provide

an upper bound for the test-case execution. Algorithm 1

gives an abstract overview on how the test execution of a

strategy, extended by the specification and the corresponding

mutant, works. We use the variables (qs, vs) and (qm, vm) to

keep track of the current states of the TIOTS of both the

specification and the mutant and initialize them with their

initial locations. Then, as long as we did not yet assign any

verdict, we first check whether the upper bound is reached,

or whether we reached a state tuple which is not specified

by the strategy. If that happened, it means that we reached a

state from which the test goal is unreachable, and we assign

the verdict inconclusive. Otherwise, we look up the delay and

action rules for the current locations of the specification and

the mutant.

While the condition of one of the delay rules is satisfied,

we wait. During waiting, we continuously check the SUT for

outputs. If it produces an output, we break the waiting. The

waited time is stored in the delay variable d. If the delay

rule required to wait longer than the current location invariant

of the specification allows (such strategies are for instance

produced by mutants were the invariant is violated) and the

SUT did not interrupt the waiting with an output, we return

the verdict fail, otherwise we update the current state variables

according to the delay. If during/after waiting an output was

observed, there are several possibilities: if the output is correct

according to the specification, there are two choices: either the

output is also correct according to the mutant, in which case

we can update the current states and go on with the next step

or the output is correct according to the specification, but the

mutant required a different output. In that case we reached the

mutation and the SUT behaved according to the specification.

Consequently, we can terminate the test execution and return

the verdict pass. If the output was not correct according to the

specification, a bug was detected and we issue the verdict fail.
Note that at this point, one could be more fine grained, and

check whether the mutant would have allowed that output. If

so, we know that we revealed that particular mutation in the

SUT, instead of detecting just any bug.

After the outputs of the SUT are processed, we search for

enabled action rules. Due to the deterministic nature of the

strategies, only one rule is enabled at a time. The action rule

corresponds to a controllable action which is simply executed

on the SUT. Additionally the current states of the specification

and the mutant are updated.

flashOn!

open?

soundOn!

unlock?

unlock?

close?

lock?

lock?

unlock?

armedOn!

soundOff!

open?

open?

armedOff!

unlock?

soundOff!

close?

c<=20

e<300

e<=0

e<=0

e<30

e==300

e==30

c==20

g<=0
e<=300

e<=0

e<=30

d<=0

f<=0

e<=300g<=0

flashOff!

e:=0d:=0

c:=0c:=0

f:=0

g:=0

g:=0

c<20

unlock?

close?

unlock?

armedOff!

soundOff!

armedOn!

flashOff!

c<20

Fig. 5. The TIOA of the car alarm system.

The presented algorithm was kept as simple as possible.

Thus, it does not differentiate between catching any bug, and

catching the bug specified by the mutant, which would require

adding a fourth verdict. We did however already pointed

out what would need to be changed, in order to do this

differentiation. The big advantage in that would be the aid in

fault localization. As already discussed in previous work [4],

selecting a set of model mutants that directly correspond to the

faulty behavior of an incorrect SUT may aid the programmer

both with regards to the location of the bug, as well as with

regards to the type of the bug.

V. EVALUATION

A. Car Alarm System

We evaluate our approach by comparison to the results

of the existing model-based mutation testing approach for

timed automata [5]. They applied the technique to a car alarm

system, modeled as a timed automaton with inputs and outputs.

Basically, the car alarm system allows as inputs the unlocking,

locking, closing and opening of the cars door, and prompts

325325325

as outputs the signals for arming, unarming, and turning the

sound and flash alarms on and off. We use the same model

and the same set of mutants, even though we had to make

several small adjustments:

• Instead of keeping the mutant and the specification in

separate files, the specification was appended to each of

the mutants as a separate template.

• All synchronization channels are transformed to be broad-

cast channels.

• All input transitions are marked as controllable, all output

transitions as uncontrollable.

• In the system declaration, the specification and the mutant

are defined as IO automata, including the specification of

their inputs and outputs.

The TIOA of the car alarm system is illustrated in Figure 5.

Uncontrollable transitions are marked via dotted lines. The

transitions for making the model input enabled are omitted

for presentational purposes.

We took the mutants that were used for the original

study, adjusted them as already mentioned, and applied the

refinement checks. For the 10752 mutants of the car alarm

system specification, Ecdar found 677 counterexamples to the

refinement and produced the corresponding strategies. 397
mutants refined the original specification, which includes 226
inconsistent and 39 non-deterministic mutants that could not

be processed. Inconsistent mutants violate properties like for

example the ’independent progress’ property, as the mutation

may remove an output from a time restricted location, allowing

the mutants to block the progress of time. These mutants do

not correspond to real faulty implementations, and are thus not

relevant for the test-case generation anyway. The refinement

check and the creation of the strategies took 164.5 seconds.

We also developed a test driver according to Algorithm 1

and applied the test suite to the faulty Java implementations

used in [5] to see whether the test cases produced by the

model mutants are able to detect corresponding faults in real

implementations. We were able to detect every fault, and thus

achieved a 100% mutation score. Table I summarizes the

previous and the new results. While the number of test cases is

in the same order of magnitude for both approaches, and both

approaches were able to detect all faulty Java implementation,

the runtime of the test-case generation is significantly faster

for the new approach with Ecdar, giving a speedup factor of

over 30 for the car alarm system. Due to the fact that some

mutants could not be processed, Ecdar produces a smaller test

suite. Since the test suite was still able to capture all faulty

implementations, the smaller size actually provides a small

advantage, as it reduces the test-case execution time.

The car alarm system is modeled in a very restrictive way.

The guards of input and output transitions are non-overlapping,

to ensure that for each location at any point of time only either

inputs or outputs are enabled. Additionally the model does

224 of the original 1099 mutants were discarded, as two mutation operators
produced duplicated mutants, i.e., mutants that were equivalent among each
other, but not necessarily to the original specification, where we only kept
one set.

not contain any uncontrollable choices. Thus, also via non-

adaptive test-case generation no test cases with inconclusive

verdicts are generated. However, if the restrictions on the

inputs in the model are weakened, 117 of the non-adaptive

test-cases contain traces leading to inconclusive verdicts, while

none of the adaptive test-cases would.

B. Pros and Cons

The results presented in the previous subsection show that

the implementation of model-based mutation testing via Ecdar

is very efficient with respect to runtime, compared to the

previous approach based on bounded model-checking and

SMT solving. However, both approaches have their individual

benefits, which are discussed below:

• Runtime. In terms of runtime, Ecdar definitely beats

MoMuT::TA. While this may partially be based on the

maturity of the tools, the different programming language

used, and probably other incomparable factors, it still

indicates that bounded model-checking can not compete

with the dedicated zone-based symbolic on-the-fly algo-

rithm implemented in Ecdar.

• Efficiency. Both test suites were able to detect all of the

faulty Java implementation, and their size was in the same

order of magnitude. Thus, in terms of efficiency, the two

approaches seem to be almost equivalent.

• Expressiveness. The two approaches allow a rather dif-

ferent set of model-elements. While the tool ::TA is

restricted to classical timed automata, it allows any type

of expression that can be processed by the used SMT

solver in the guard, including negation and disjunction.

Ecdar on the other hand allows C-like functions, the

use of data variables and urgent/committed locations.

However, excessive use of data variables in the model

might drastically increase the runtime as the states would

be enumerated explicitly.

• Complexity of test-case execution. The proposed test-case

execution algorithm is more complex than the previous

one, as it needs to simulate both the specification and the

mutant in the background, in order to determine the next

states (which are needed to consult the strategy), and to

classify the outputs of the SUT. The previous approach

simply provided a trace leading to the goal state, attached

with the verdicts for the individual outputs.

• Adaptiveness of test-case execution. While the test-cases

described in [5] are time adaptive, and can vary the time

of the inputs, according to the timing of previous outputs,

they will produce an ‘inconclusive’ verdict if the SUT

produces different (but correct) outputs than expected by

the test case. The strategies produced by Ecdar are able

to steer the test-case execution back to the intended path.

• Non-deterministic mutants. In the presented study, all

non-deterministic mutants were simply neglected, as they

do not conform to the restrictions by Ecdar, as some

of the theories implemented by Ecdar only work for

deterministic automata. In the previous work, only the

326326326

Mutants # Tests TCG Time [sec] Mutation Score
MoMuT::TA 1099 628 3 798 100%

Ecdar 1074 677 164.5 100%
TABLE I

A COMPARISON OF TEST-CASE GENERATION RESULTS.

Fig. 6. A specification and its mutant, demonstrating the capabilities of an
unbounded conformance check.

specification was expected to be deterministic, while non-

determinism in the mutants did not pose a problem.

In cases where the faulty SUT shows non-deterministic

behavior, these mutants may reflect the behavior of the

SUT more accurate than the deterministic ones. However,

the test cases produced for the non-deterministic mutants

would only cover one deterministic trace, and would need

to be executed multiple times, to ensure capturing the

fault.

• Boundedness. The previous approach computed a

bounded conformance check between the specification

and the mutant, thus only checking whether the mutant

conforms for the first k steps of the execution. While the

bound can usually be set high enough for the detection of

all mutants, an upper bound has to be approximated, and

if some mutants exceed it, their corresponding test cases

will not be generated. Consider the example presented

in Figure 6. The mutant could only be detected with a

search depth of at least 100. For more realistic examples,

the needed search depth may be a lot harder to determine

and increasing the depth drastically increases the runtime,

which is avoided by Ecdar.

VI. CONCLUSIONS

In this paper we have demonstrated how to implement

model-based mutation testing via the tool Ecdar. We showed

how to use its refinement check for model-based mutation

testing, how the produced strategies can be interpreted as

adaptive test cases, and defined an algorithm for the test-

case execution. We compared the approach to an existing

implementation of model-based mutation testing for timed

automata which showed a high speedup, while maintaining

the quality of the test suite with respect to the mutation score

and improving its quality with respect to adaptiveness.

In future work we intend to provide further features to

Ecdar, including an automated way for turning models input-

enabled, providing more information in the produced strate-

gies and a model-mutator. We also plan further experimental

evaluations, including higher-order mutants.

ACKNOWLEDGMENT

The research leading to these results has received funding

from the Danish Innovation Center DiCyPS (www.dicyps.dk),

the ERC Advanced Grant LASSO: ”Learning, Analysis, Syn-

thesis and Optimization of Cyber Physical Systems” as well

as the H2020-ECSEL-JU ENABLE-S3 European Initiative

to Enable Validation for Highly Automated Safe and Secure

Systems under grant agreement No692455.

REFERENCES

[1] M. S. AbouTrab, S. Counsell, and R. M. Hierons. Specification
mutation analysis for validating timed testing approaches based on
timed automata. In 2012 IEEE 36th Annual Computer Software and
Applications Conference, pages 660–669, July 2012.

[2] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald
Krenn. Uml in action: A two-layered interpretation for testing. SIGSOFT
Softw. Eng. Notes, 36(1):1–8, January 2011.

[3] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald
Krenn, Rupert Schlick, and Stefan Tiran. Killing strategies for model-
based mutation testing. Softw. Test. Verif. Reliab., 25(8):716–748,
December 2015.

[4] Bernhard K. Aichernig, Klaus Hörmaier, and Florian Lorber. Debugging
with Timed Automata Mutations, pages 49–64. Springer International
Publishing, Cham, 2014.

[5] Bernhard K. Aichernig, Florian Lorber, and Dejan Ničković. Time for
Mutants — Model-Based Mutation Testing with Timed Automata, pages
20–38. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[6] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, April 1994.

[7] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening,
Mitra Purandare, Philipp Rümmer, and Georg Weissenbacher. Mutation-
based test case generation for simulink models. In Proceedings of the
8th International Conference on Formal Methods for Components and
Objects, FMCO’09, pages 208–227, Berlin, Heidelberg, 2010. Springer-
Verlag.

[8] Timothy A. Budd and Ajei S. Gopal. Program testing by specification
mutation. Computer Languages, 10(1):63 – 73, 1985.

[9] A. David, K. G. Larsen, S. Li, and B. Nielsen. A game-theoretic
approach to real-time system testing. In 2008 Design, Automation and
Test in Europe, pages 486–491, March 2008.

[10] A. David, K. G. Larsen, S. Li, and B. Nielsen. Timed testing under
partial observability. In 2009 International Conference on Software
Testing Verification and Validation, pages 61–70, April 2009.

[11] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. Timed i/o automata: A complete specification theory
for real-time systems. In Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’10,
pages 91–100, New York, NY, USA, 2010. ACM.

[12] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen.
Cooperative testing of timed systems. Electronic Notes in Theoretical
Computer Science, 220(1):79 – 92, 2008.

[13] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, Marius Miku-
cionis, and Brian Nielsen. Testing real-time systems under uncertainty.
In Proceedings of the 9th International Conference on Formal Meth-
ods for Components and Objects, FMCO’10, pages 352–371, Berlin,
Heidelberg, 2011. Springer-Verlag.

327327327

[14] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-
Yves Schobbens, and Patrick Heymans. Featured model-based mutation
analysis. In Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pages 655–666, New York, NY, USA,
2016. ACM.

[15] Anders Hessel and Paul Pettersson. Cover-a test-case generation tool for
timed systems. Testing of Software and Communicating Systems, pages
31–34, 2007.

[16] R. M. Hierons and M. G. Merayo. Mutation testing from probabilistic
finite state machines. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pages 141–150, Sept 2007.

[17] Yue Jia and Mark Harman. An analysis and survey of the development
of mutation testing. IEEE Trans. Softw. Eng., 37(5):649–678, September
2011.

[18] Moez Krichen and Stavros Tripakis. Real-Time Testing with Timed
Automata Testers and Coverage Criteria, pages 134–151. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[19] Moez Krichen and Stavros Tripakis. Conformance testing for real-time
systems. Form. Methods Syst. Des., 34(3):238–304, June 2009.

[20] Marius Mikucionis, Brian Nielsen, and Kim G. Larsen. Real-time system
testing on-the-fly. In Kaisa Sere and Marina Waldén, editors, the 15th
Nordic Workshop on Programming Theory, number 34 in B, pages 36–
38, Turku, Finland, October 29–31 2003. Abo Akademi, Department of
Computer Science, Finland. Abstracts.

[21] Robert Nilsson, Jeff Offutt, and Jonas Mellin. Test case generation for
mutation-based testing of timeliness. Electronic Notes in Theoretical
Computer Science, 164(4):97 – 114, 2006.

[22] A. Jefferson Offutt and Roland H. Untch. Mutation 2000: Uniting the
Orthogonal, pages 34–44. Springer US, Boston, MA, 2001.

[23] Jan Tretmans. Formal methods and testing. chapter Model Based Testing
with Labelled Transition Systems, pages 1–38. Springer-Verlag, Berlin,
Heidelberg, 2008.

[24] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Softw. Test. Verif. Reliab., 22(5):297–
312, August 2012.

[25] Machiel van der Bijl, Arend Rensink, and Jan Tretmans. Compositional
testing with ioco. In A. Petrenko and A. Ulrich, editors, Formal
Approaches to Software Testing, volume 2931 of Lecture Notes in
Computer Science, pages 86–100, Berlin, Germany, 2004. Springer
Verlag.

[26] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang, and Shanping Li. Are
Timed Automata Bad for a Specification Language? Language Inclu-
sion Checking for Timed Automata, pages 310–325. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

328328328

