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Abstract The architecture of ARINC-653 partitioned

scheduling has been widely applied to avionics systems

owing to its robust temporal isolation among applica-

tions. However, this partitioning mechanism causes the
problem of how to optimize the partition scheduling

of a complex system while guaranteeing its schedula-

bility. In this paper, a model-based optimization ap-
proach is proposed. We formulate the problem as a

parameter sweep application, which searches for the

optimal partition scheduling parameters with respect
to minimum processor occupancy via an evolutionary

algorithm. An ARINC-653 partitioned scheduling sys-

tem is modeled as a set of timed automata (TA) in

the model checker Uppaal. The optimizer tentatively
assigns parameter settings to the TA models and subse-

quently invokes Uppaal to verify schedulability as well

as evaluate promising solutions. The parameter space
is explored with an evolutionary algorithm that com-

bines refined genetic operators and the self-adaptation

of evolution strategies. The experimental results show
the applicability of our optimization method.

Keywords partitioned scheduling · model-based opti-

mization · parameter sweep · evolutionary algorithm ·
timed automata · Uppaal
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1 Introduction

As the performance of embedded processors rapidly

increases, there is a growing trend towards integrat-
ing multiple real-time applications into a partitioned

scheduling system in avionics development. The AR-

INC 653 standard [1] prescribes a robust temporal par-

titioning mechanism for Integrated Modular Avionics
(IMA) systems, where a global scheduler assigns a frac-

tion of processor time to a temporally isolated partition

that contains a set of concurrent tasks. A local sched-
uler of the partition manages the included tasks. The

application of partitioned scheduling is effectively able

to prevent failure propagation among partitions. How-
ever, it raises the question of how to allocate processor

time to partitions in an optimal manner while guaran-

teeing their time requirements.

In ARINC 653, the time allocation for partitions
is executed cyclically according to a static schedule. A

schedulable system requires sufficient time allocation

for all partitions. The time requirement of a partition

is described as a tuple of periodic scheduling parame-
ters 〈period , budget〉, which can be used for generating

the static schedule [1]. Given the set of specific real-

time applications in the system, these parameters de-
termine not only the schedulability of the system but

also its processor occupancy. In this paper, the question

of resource allocation is interpreted as the optimiza-
tion of ARINC-653 partition scheduling parameters of

a schedulable system. The goal is to minimize the pro-

cessor occupancy of the system, thus making it possible

to accommodate more additional workload of applica-
tions [34].

The nature of ARINC-653 partition scheduling is a

complex non-linear non-convex parameter optimization

problem [34]. So far, most investigations [30,13,21,34,
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22] have been confined to analytical methods, whose

rigorous mathematical models build on the worst-case
assumptions of a simplified system. In more complex

real-time applications, more expressive model-checking

(MC) approaches [11,33,10,9,23,8] are extensively be-
ing developed to incorporate a great variety of behav-

ioral features including concrete task actions, depen-

dency and communications. They are based on vari-
ous formal models such as preemptive Time Petri Nets

(pTPN), Linear Hybrid Automata (LHA), and Timed

Automata (TA). For each promising scheduling scheme,

its schedulability can be verified or falsified automati-
cally via state space exploration of the system model.

However, to identify a globally optimal scheduling

configuration, the entire combinatorial parameter space

must be explored thoroughly. Each of these combina-
tions leads to a single model-checking operation which

is in itself a PSPACE-complete problem. Therefore, we

use Evolutionary Algorithm (EA) as a heuristic opti-
mization method, thereby avoiding the brute-force sear-

ch of parameter space.

The model-based methods are also confronted with

the state space explosion problem, which makes the ex-

act model checking practically infeasible. There have
been several promising techniques that attempt to mit-

igate the state space explosion of classical MC. Statis-

tical Model Checking (SMC) [28] is a simulation-based
method that runs and monitors a number of simulation

processes, providing the statistical results of verification

with a certain degree of confidence. However, SMC can-

not provide any guarantee of schedulability but quick
falsification owing to its nature of statistical testing. By

contrast, compositional approaches [25] decompose the

system into components, check each component sepa-
rately by classical MC and conclude system properties

at a global level, but might offer conservative results

due to abstraction of the components. Therefore, it is
reasonable to combine the global SMC and composi-

tional MC techniques. Nevertheless, we found no stud-

ies that applied such a combination to the optimization

of ARINC-653 partition scheduling.

Uppaal [3] is a model-checking toolbox for mod-
eling and verifying real-time systems described as ex-

tended TA, which is expressive enough to cover fea-

tures of an IMA system. There are several branches
in the Uppaal family. The classical Uppaal and Up-

paal SMC [12] provide the implementation of symbolic

MC and SMC respectively. In the previous work [18,
19], we have integrated the global SMC and composi-

tional MC into a Uppaal-based schedulability analysis

of IMA systems.

In this paper, we propose a model-based optimiza-

tion method of ARINC-653 partition scheduling for IMA

systems. The core idea is to extend the Uppaal TA

model of the system with a parameter sweep appli-
cation that searches for the optimal schedulable solu-

tions with respect to minimum processor occupancy.

Our main contributions include:

– A model-based optimization method that addresses
the optimal time allocation of partitioned schedul-

ing systems by performing a heuristic search of the

objective parameter space of theUppaal TAmodel.
– A Uppaal-based modeling and analysis technique

that supports parameter sweep by quickly falsifying

non-schedulable solutions and evaluating schedula-
ble ones. An IMA system is modeled as TA mod-

els in Uppaal and its schedulability constraints are

verified automatically via the integrated method of

global SMC and compositional MC analysis.
– A generator of ARINC-653 partition schedules that

connects the parameter optimizer and the Uppaal

TA models of an IMA system to enable the auto-
matic design of IMA partition scheduling.

– An evolutionary algorithm that combines refined ge-

netic search operators and the adaptation of evolu-
tion strategies, thereby accelerating the process of

finding optimal solutions and meanwhile reducing

the risk of premature convergence.

The rest of the paper is organized as follows. Sec-
tion 2 gives the definition of the optimization problem.

Section 3 provides a background of the schedulability

analysis. Section 4 introduces the parameter optimiza-

tion method and briefly presents its constituent com-
ponents. We detail the evolutionary algorithm EA4HS

in Section 5. The experiments on sample systems are

shown in Section 6. Section 7 gives the related work
and Section 8 finally concludes.

2 Optimization Problem Description

In this section, we first outline an IMA partitioned

scheduling system, and then give the definition of its

parameter optimization problem.

2.1 System Model

We focus on a two-level partitioned scheduling system

where partitions are scheduled by a Time Division Mul-
tiplexing (TDM) global scheduler and each partition

also has a local scheduler based on preemptive Fixed

Priority (FP) policy to manage the partition’s internal

tasks.

The system consists of a set of temporal partitions

Ω = {Pi|i = 1, 2, . . . , n} running on a single processor.
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The TDM global scheduler executes time allocation for

partitions according to a static schedule S cyclically
and repeats S every major time frame M [1]. The par-

tition schedule S is comprised of a set of partition time

windows: S = {Wt|t = 1, 2, . . . , w}. Wt is a time slot
〈Pt, ot, dt〉 belonging to a partition Pt ∈ Ω, where ot
and dt denote the offset from the start of M and ex-

pected duration respectively. The w time slots are non-
overlapping, satisfying that 0 ≤ o1 < o1 + d1 < o2 <

o2+ d2 < · · · < ow < ow + dw ≤ M . Partitions are acti-

vated only during their partition time windows within

M .
Each partition Pi accommodates a set of tasks Γi =

{τ ij |j = 1, 2, . . . ,mi} which are scheduled by the lo-

cal scheduler of Pi in accordance with the preemptive
FP policy and executed only when Pi is activated. A

task τ is represented by the tuple 〈I, T,O, J,D,R,L〉
where I is initial offset, T is release interval, O is off-
set, J is jitter, D ≤ T is deadline, R denotes task pri-

ority, and L describes the behavior of τ as a sequen-

tial list. Each element of L is an abstract instruction

〈Cmd ,Res ,TBCET ,TWCET 〉. Cmd is an operation code
in the command set {Compute, Lock , Unlock , Delay ,

Send , Receive, End}. Res is an identifier encoding one

of the resources such as processor time, locks, and mes-
sages. TBCET and TWCET are execution time in the

best case and the worst case respectively. In the com-

mand set, Compute denotes a general computation step,
Lock and Unlock handle locks, Delay allows the task to

stop running for a certain time, Send and Receive are

used for inter-partition communications, and End is the

symbol of job termination.

2.2 Schedulability Condition

The schedulability of a partitioned scheduling system
can also be divided into conditions at the global and the

local level. Figure 1 shows this hierarchical scheduling

architecture.

At the global level, the schedulability is that the
time supply of the global scheduler satisfies the time

requirement of each partition. The partition schedule

S defines the time supply for partitions in the system.
According to the ARINC 653 standard, the time re-

quirement of a partition Pi can be described as a tuple

of periodic scheduling parameters 〈pi, bi〉 where pi is a
partition period and bi is the budget within pi. Thus

the schedulability condition denotes that the budget bi
can be guaranteed by the partition schedule S during

each period pi. Compared with the variable-length par-
tition schedule, we are more interested in handling the

concise parameter tuple 〈pi, bi〉 that is used as an input

in determining the partition time windows of Pi [1].

Gobal Scheduler

‹p1,b1› ‹p2,b2› ‹pn,bn›…

S

P1

Local Scheduler

Task1 Task2 Taskm1…

P2

Pn

Time Supply Time Requirement

Fig. 1 Hierarchical architecture of partitioned scheduling
systems

The schedulability at the local level requires all tasks
to meet their deadlines. The tuple of scheduling param-

eters 〈pi, bi〉 indicates the total periodic time require-

ment of tasks in Pi. We define two types of tasks:

– A periodic task has the kth release time tk ∈ [I +

kT +O, I+kT +O+J ] where k ∈ N and T denotes

a fixed period. A periodic task meets its deadline
iff the task can finish its kth job before the instant

(I + kT +D) for any k ∈ N.

– A sporadic task characterized by a minimum separa-
tion T between consecutive jobs releases its (k+1)th

job at tk+1 ∈ [tk + T,+∞), and its first release

is at t0 ∈ [I,+∞). A sporadic task complies with

its deadline iff its kth job can be completed before
(tk +D) for any k ∈ N.

In addition, the ARINC-653 standard allows tasks

to perform two types of communication between them:
intra- and inter-partition communication. The type of a

communication operation of a task depends on whether

the communicating tasks are located in the same par-
tition. The behavior of resource sharing or message

communication incurs the task-blocking overheads that

could affect the schedulability of partitions at the lo-

cal level. Hence our model-based method also needs
to describe the concrete task behavior including the

(intra- and inter-partition) communication precisely in

Uppaal models.

2.3 Optimization Problem

Consider the aforementioned partitioned scheduling sys-

tem. Given a set of partitions Ω = {Pi|i = 1, 2, . . . , n}
and their respective task sets {Γi}, the optimization

problem is to find a 2n-dimensional vector x = (x1, x2,

. . . , x2n) ∈ R
2n
+ where the parameter tuple 〈pi, bi〉 of Pi
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Parameter vector x

(x1,x2,...,xm)

ARINC-653 Schedule S

Automatic 

Generation of 

ARINC 653 Cyclic

 Scheduling Table

System Model M

UPPAAL SMC 

Global Testing

UPPAAL MC 

Compositional 

Verification
Partition Model Pi

Valid

Satisfied

Satisfied

Yes      Schedulable at global level

No

Yes     Statistically Schedulable

No

Yes

No

Schedulable

Nonschedulable

Nonschedulable

Nonschedulable

SchedulableMessage Interface Ai

Fig. 2 Flowchart of schedulability analysis

corresponds to the elements x2i−1 = pi and x2i = bi,

such that the system minimizes the processor occu-
pancy U while guaranteeing the schedulability at both

the global and local level.

Suppose each release of partitions needs a context

switch. The processor occupancy is defined as

U =

n
∑

i=1

ci · v + bi
pi

, (1)

where ci is the average number of context switching for

Pi during each partition period pi, and v is the context-
switch overhead.

Minimizing the processor occupancy of a partitioned

scheduling system makes it possible to accommodate
more additional workload of applications. Similar defi-

nitions of the processor occupancy function have been

proposed and applied in previous papers [13,34], where

it was called “processor utilization” or “system utiliza-
tion”. We found these names counter-intuitive, because

we normally chase a higher “utilization” but it should

be minimized in this problem. Thus we renamed it pro-
cessor occupancy in this paper. Equivalently, we also

define the remaining processor utilization Ur = 1 − U

and find the maximum Ur instead.

3 Background of Schedulability Analysis

In this section, we formulate the schedulability con-

straints of the optimization problem on the basis of the

modeling formalism of Uppaal. The behavior of the

partitioned scheduling system presented in section 2.1
is further modeled as a set of Uppaal templates. A

template is a generalized object of TA in Uppaal. The

automaton structure of a template consists of locations
and edges. A template may also have local variables

and functions. The templates can be instantiated as

a network of TA model instances M that describe a
complete system. For any scheduling parameter vector

x, the schedulability of its system model is verified or

falsified according to the procedure in Fig. 2, where the

right is the flowchart of our model-based analysis and
the left dashed-line box contains the data objects of

each process.

First, an ARINC-653 partition schedule S is gener-
ated automatically from the input parameter vector x

via an partition scheduling algorithm, which guarantees

S satisfies the time requirement of x, i.e. schedulability
at the global level. We refer to x as a valid parameter

combination if a partition schedule can be generated

from x, then the schedulability analysis will proceed
with the following costly steps. Otherwise, it will con-

clude with the invalidity of x. A partition scheduling

algorithm is presented in section 4.2.

Second, the schedulability constraints of the opti-
mization problem are expressed and fast falsified as

queries of hypothesis testing in Uppaal SMC. We add

a boolean array perror with the initial value False to
TA templates for this purpose. Once the schedulabil-

ity of partition Pi is violated, the related model will

assign the value True to perror[i] immediately. Thus,
the schedulability constraints for Pi are replaced with

the following query ρi:

Pr[<= N](<> perror[i]) <= θ, i = 1, 2, . . . , n (2)

where N is the time bound on the simulations and θ

is a very low probability. Uppaal SMC is invoked to
estimate whether the system modelM satisfies the con-

junction of n queries statistically:

M |= ρ1 ∧ ρ2 ∧ · · · ∧ ρn (3)

SinceUppaal SMC approximates the answer using sim-
ulation based algorithms, we can falsify any nonschedu-

lable solution rapidly but identify schedulable ones only

with high probability (1− θ). Note that the probability
distributions used in such models affect the probabili-

ties of events in the overall model. In our case this is

not important as we do not evaluate the probability of

the events, but only search for a single trace violating
the schedulability. Therefore, all schedulable results of

SMC testing should be validated by classical MC to

confirm the schedulability of the corresponding system.
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Finally, in order to alleviate the state-space explo-

sion problem of classical MC, we apply our composi-
tional method presented in [20] to schedulability valida-

tion, which is comprised of the following four steps:

1. Decomposition: The system modelM is first decom-

posed into a set of communicating partitions mod-

els Pi, i = 1, 2, . . . , n. The schedulability property
is also divided into n TCTL (Timed Computation

Tree Logic) safety properties ϕi:

A[] not perror[i], i = 1, 2, . . . , n, (4)

each of which belongs to one partition.

2. Construction of message interfaces: We define a mes-

sage interface Ai as the assumption of the commu-
nication environment for each partition Pi. Ai con-

tains a set of TA models that mimic the requisite

message-sending behavior of the other partitions.
3. Model checking: We check each partition model Pi

including its environment assumption Ai individu-

ally by verifying the local properties ϕi:

Pi‖Ai |= ϕi, i = 1, 2, . . . , n (5)

where the operator ‖ denotes composition of two TA

models.
4. Deduction: According to the assume-guarantee par-

adigm, we assemble the n local results together to

derive conclusions about the schedulability of an en-
tire system M.

The optimization method proposed in the next sec-
tion builds on the above analysis approach, which guar-

antees the schedulability constraints in search of the

optimal solutions.

4 Parameter Optimization Method

The parameter optimization method presented in this

section belongs to a class of random search methods.

The optimizer searches for the (nearly) optimal schedu-
lable parameters with respect to minimum processor oc-

cupancy U . Each search point in the considered param-

eter space can be converted into a promising ARINC-
653 partition schedule. We finally give a Uppaal tem-

plate framework that describes an IMA partitioned sch-

eduling system as a network of TA models.

4.1 Parameter Sweep Optimizer

The optimizer is structured as a Parameter Sweep Ap-

plication (PSA) that comprises a set of independent

“experiments”, each of which is performed by a PSA

task with a different set of parameters [17]. These PSA

tasks tentatively explore the parameter space of 〈pi, bi〉n
to find promising search points.

For any search point x, the optimizer creates a PSA

task that carries out the following procedure depicted
in Fig.3:

(1) A search algorithm first offers a promising pa-

rameter vector x to the PSA task. (2) An ARINC-653
partition schedule is then generated from the parameter

setting of x. (3) The PSA task instantiates the Uppaal

modeling framework by assigning the partition schedule
to the TA models and (4) subsequently invokes Uppaal

SMC to execute a fast global schedulability test. (5) If

the TA model goes through the SMC test, it should be
validated by Uppaal classic via compositional analysis.

(6) The schedulability constraints and processor occu-

pancy are evaluated by the objective function. (7) The

search algorithm receives feedback on the evaluation
of x to update its candidate solutions and exploration

direction. (8) Finally, this PSA task finishes its exper-

iment and waits for the next call from the optimizer.
The optimizer will continue the parameter sweep, based

upon the results of previous experiments, until the op-

timization criteria are reached. The best scheduling pa-
rameter vector of x and its partition schedule will be

output at the end of the parameter sweep.

Each component of the parameter sweep optimizer
copes with a specific issue of the optimization problem.

A search algorithm guides the parameter sweep to

select search points until an acceptable solution is found.
We consider that exhaustive search is mostly infeasi-

ble and derivative information also unavailable for com-

plex systems, thus employing an evolutionary algorithm

to perform a heuristic search of the parameter space.
Since there are no communications or data dependen-

cies among PSA tasks, we adopt parallel search policies

that distribute PSA tasks over several computing nodes
so as to speed up the parameter sweep. Section 5 details

the design of this evolutionary algorithm.

An ARINC-653 schedule generator converts the pa-
rameter vector x into an ARINC-653 static partition

schedule by using an offline scheduling algorithm, which

can make all scheduling decisions prior to run-time.
This generator connects the parameter sweep optimizer

and theUppaal TAmodels of an IMA system to enable

the automatic design of ARINC-653 partition schedul-

ing. Section 4.2 gives an implementation of the genera-
tor based on the preemptive FP scheduling policy.

A Uppaal template framework describes a parti-

tioned scheduling system as a network of TA models.
Since Uppaal supports arrays and user-defined types,

the ARINC-653 partition schedule is encoded into a

structure array partition_windows where each element
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Fig. 3 Architecture of parameter sweep optimizer

corresponds to a partition time window. The global

scheduler modeled as a TA template GS executes par-

tition scheduling according to the array records. When
instantiating the templates, a PSA task should assign

the array of its partition schedule to a copy of the Up-

paal model file. The Uppaal templates are presented
in section 4.3.

The schedulability constraints of the optimization

problem are expressed as three properties: (1) valid-

ity of x, (2) hypotheses of the SMC testing, and (3)
TCTL safety properties in the MC compositional anal-

ysis. For any x, the schedulability of its corresponding

system is verified or falsified in the form of these prop-
erties according to the procedure in section 3. The re-

sults of this schedulability analysis are transferred from

the ARINC-653 schedule generator or Uppaal to the
objective function in the optimizer.

The objective function of the optimization problem

provides a quality evaluation for any parameter vector

x. Since the processor occupancy U of Eq. (1) is only
valid for schedulable parameter vectors, we define the

objective of the evolutionary search as a fitness func-

tion, which evaluates the remaining processor utiliza-

tion Ur of any x on the basis of schedulability con-
straints. The evaluation of x is to update the state and

search direction of the evolutionary algorithm. We give

the definition of this fitness function in section 5.2.

4.2 Generation of ARINC-653 Partition Schedules

As depicted in Fig. 4, the ARINC-653 schedule gen-

erator takes input of n scheduling parameter tuples

ARINC-653 Schedule Generator

p2

p1

‹p1,b1› ‹p2,b2›

p3

0 M

‹p3,b3›

Input: Partition Scheduling Parameters x

Output: ARINC-653 Partition Scheduling Table S

…

Fig. 4 Data flow of an ARINC-653 schedule generator

〈pi, bi〉, i = 1, 2, . . . , n and produces a partition sched-

ule S with the major time frame M . The design of
the offline scheduling algorithm should prevent a low-

criticality application from affecting high-criticality ap-

plications. Hence we adopt the preemptive FP schedul-
ing policy to allocate processor time to partitions. A

partition is viewed as a periodic execution unit sched-

uled in a preemptive fixed priority manner prior to the

running of the system. For any partition Pi, the execu-
tion budget bi should be provided during each period

pi. We assign a priority ri to Pi and use lower num-

bers for higher priorities. In practice, the priority of a
partition is commonly pre-allocated on the basis of its

criticality level. Without loss of generality, We assume

that ri ≤ rj iff i ≤ j.

Algorithm 1 presents the generation process of an

ARINC-653 partition schedule. The major time frame

M is defined as the least common multiple of all parti-
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Algorithm 1 Generation of ARINC-653 partition schedules

Input:

Partition scheduling parameters {〈pi, bi〉|i = 1, 2, . . . , n}
Output:

Validity of input parameters SCHED

Partition schedule S = {〈Pt, ot, dt〉|t = 1, 2, . . . , w}
Major time frame M

1: SCHED :=true
2: M := LCM (p1, p2, . . . , pn)
3: S := {〈None, 0, 0〉, 〈None,M, 0〉}
4: for each partition Pi from i = 1 to n do

5: for each period j from j = 0 to M/pi − 1 do

6: off := j × pi
7: budg := bi
8: while budg > 0 and SCHED do

9: Find two consecutive partition time windows
〈Pt, ot, dt〉 and 〈Pt+1, ot+1, dt+1〉 ∈ S where
ot ≤ off < ot+1

10: if not found then

11: SCHED :=false
12: else

13: off := max(off , ot + dt)
14: avail := ot+1 − off

15: Insert a new partition time window of Pi

〈Pi, off ,min(avail , budg)〉 into S
16: budg := max(budg − avail , 0)
17: if avail > budg then

18: off := off + budg

19: else

20: off := ot+1 + dt+1

21: end if

22: end if

23: end while

24: if off > (j + 1)× pi then

25: SCHED :=false
26: end if

27: end for

28: end for

29: S := S \ {〈None, 0, 0〉, 〈None,M, 0〉}
30: return SCHED ,S,M

tion periods and calculated by the function LCM (line 2).

The partition schedule S is initialized as a set of two

auxiliary time slots 〈None, 0, 0〉 and 〈None,M, 0〉 that
denote the lower and upper bound of partition time

windows respectively (line 3). We allocate processor

time to partitions from higher priority to lower priority,
thus avoiding handling partition preemption. For each

partition, we iteratively find gaps between the existing

time slots in S (line 9) and insert new partition time

windows into these gaps (line 15).

Algorithm 1 is able to handle any input parame-

ter combinations and offer precise (non-)schedulability

conditions (line 10 and 24) at the global level, thereby
integrating the parameter sweep optimizer with theUp-

paal TA models of ARINC-653 partitioned scheduling

systems.

4.3 UPPAAL Template Framework

In the Uppaal template framework, an IMA parti-

tioned scheduling system is modeled as two types of

TA: scheduler models and execution models. The TA
template of a global scheduler GS and a local scheduler

LS constitute the scheduler models, which control the

execution models by using a set of channels as schedul-
ing commands. The execution models consist of two

TA templates PeriodicTask and SporadicTask describ-

ing two types of tasks. We present the modeling meth-

ods of two major features of partitioned scheduling sys-
tems1.

Two-level Hierarchical Scheduling: The two-level sched-

uler models GS and LS realize the hierarchical architec-
ture. Take the local scheduler LS shown in Fig.5 for

example. A local scheduler belongs to a partition iden-

tified by a template parameter pid. LS receives notifi-

cation from GS through two channels enter_partition

and exit_partition when entering and exiting the par-

tition pid respectively, and uses four channels ready,

release, sched and stop as commands to manage the
tasks in pid. If there is a task becoming ready to run or

relinquishing the processor, the task model will send its

LS a ready or release command respectively. LS main-
tains a ready queue rq that keeps all the tasks ready

and waiting to run, and always allocates the processor

to the first task with the highest priority in rq. If a

new task having a higher priority than any tasks in rq

get ready, LS will insert the task into rq, interrupt the

currently running task via stop and schedule the new

selected task via sched.

According to whether the current time is inside the

partition as well as to the number of the tasks in the

ready queue, we create four major locations NoTask,
Idle, WaitPartition, and Occupied. These four loca-

tions cover all situations, where the model must be at

one of these locations for any instant. By contrast, the

other locations realize conditional branches and atomic
action sequences in the model.

Note that this framework has the capability of adopt-

ing different local scheduling policies in the system.
This can be achieved by instantiating a new template

of the local scheduler with a different scheduling policy

for the partition. The new template is only required to

conform with the same function definition of the chan-
nels as before.

Task Behavior: In the templates PeriodicTask and Spo-

radicTask, we define a set of abstract instructions to de-
scribe concrete task behavior. Figure 6 shows the main

1 A zip file containing the source code for the optimization
and all the models can be found at http://people.cs.aau.

dk/~ulrik/submissions/908233/EA_and_models.zip.

http://people.cs.aau.dk/~ulrik/submissions/908233/EA_and_models.zip
http://people.cs.aau.dk/~ulrik/submissions/908233/EA_and_models.zip
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Fig. 5 Local scheduler model

structure of the task templates. A clock exeTime mea-
sures the processing time during the execution of an ab-

stract instruction, and progresses only when the model

is at the location Running. Once the task is scheduled
by LS through the channel sched, it will start execution

on the processor and move from the location Ready to

ReadOp.

A sequential list of abstract instructions is imple-
mented as the structure array op. By using an integer

variable pc as a program counter, the task can fetch the

next abstract instruction from op[pc] at the location
ReadOp. According to the command of this abstract in-

struction, the task model performs a conditional branch

and moves from the location ReadOp to one of the dif-

ferent locations that represent different operations.

5 Evolutionary Algorithm EA4HS

Evolutionary algorithms (EA) are an iterative stochas-

tic search method inspired by natural selection and

based on the collective learning process within a popu-
lation of individuals, each of which represents a search

point in the solution space of a specific problem [2].

The population evolves from random initial values to-
ward increasingly better solutions by means of three

selection, recombination, and mutation operators. The

individuals are evaluated and selected according to the
value of a fitness function. There are several variants

of EAs such as Genetic Algorithms (GA), Evolution

Strategies (ES), and Evolutionary Programming (EP),

which adopt distinctive fitness function, representation
of search points, and implementation of operators.

In this section, we present an evolutionary algo-

rithm EA4HS for solving the parameter optimization

of ARINC-653 hierarchical scheduling systems. This al-

gorithm combines improved operators of the GA and
self-adaptation of the ES. We first give the outline of

EA4HS. The designs of its fitness function, operators

and self-adaptation are then detailed.

5.1 Outline of the Evolutionary Algorithm EA4HS

The goal of EA4HS is to optimize a set of object pa-

rameters x = (x1, x2, . . . , xm), i.e. the unknown 2n-

dimensional vector x in the optimization problem, re-
garding an objective function Ω : Rm

+ → R. The EA

manipulates populations β(g), g ∈ N of individuals α
(g)
k ,

k = 1, 2, . . . ,K where g is the number of generations
and K the size of the population. An individual α

(g)
k is

represented by a tuple 〈x(g)
k , s

(g)
k 〉 that consists of not

only object parameters x
(g)
k = (x

(g)
k,1, x

(g)
k,2, . . . , x

(g)
k,m) but

also strategy parameters s
(g)
k = (σ

(g)
k,1, σ

(g)
k,2, . . . , σ

(g)
k,m).

The strategy parameters come from evolution strate-

gies to control statistical properties of the genetic oper-
ators [6]. These strategy parameters can evolve together

with object parameters during the evolution process.

For any individual α
(g)
k , there are 2n strategy param-

eters in s
(g)
k where the evolution of x

(g)
2i−1,k and x

(g)
2i,k

with i ∈ {1, 2, . . . , n} (i.e. the unknown parameters pi
and bi in the optimization problem) is guided by the

combination of σ
(g)
2i−1,k and σ

(g)
2i,k.

Let I be the range of individuals. The fitness func-

tion f : I → R realizes the objective functionΩ by map-
ping each individual to a fitness value. In general, the

better an individual fits, the higher is the probability

of its being selected in the next generation. Moreover,

the EA adopts the mechanism of elitism that many of
the fittest individuals are copied directly to the next

generation, and E is the number of elitist individuals

in each generation.

The outline of EA4HS is given in Algorithm 2.

The object parameters in the first population β(0)

are initialized as a set of independent random numbers

from a uniform distribution U(ximin, ximax) where the

interval [ximin, ximax] indicates the search range of the

optimal solutions. By contrast, all the strategy parame-
ters are set to user-defined values at the first generation

according to the definition of the mutation operator of

object parameters. Then we evaluate the fitness value
of each individual in β(0) (line 3). After initialization we

enter and execute the main loop of the evolution process

until a termination condition is satisfied (lines 4-19).

The main loop produces a descendant population

β(g+1) from the parent population β(g) at any genera-

tion g. First, E elitist individuals are copied into the set
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Fig. 6 Main structure of a task model

Algorithm 2 Outline of EA4HS

Input:

Configuration of the evolutionary algorithm
Output:

Scheduling parameters x = (x1, x2, . . . , xm)
1: g := 0

2: initialize β(0) : {α
(0)
k |α

(0)
k = 〈x

(0)
k , s

(0)
k 〉, k = 1, 2, . . . ,K}

3: evaluate β(0) : {f(α
(0)
1 ), f(α

(0)
2 ), . . . , f(α

(0)
K )}

4: repeat

5: e := elitist(β(g), E)
6: β(g)′ := selection(β(g))
7: for k = 1 to K − E do

8: repeat

9: s̄ := recombinations(β(g)′)
10: x̄ := recombinationx (β(g)′)

11: s
(g+1)
k

:= mutations (̄s)

12: x
(g+1)
k

:= mutationx (x̄, s
(g+1)
k )

13: until x
(g+1)
k is valid or Rmax iterations are done

14: end for

15: β(g+1) := e
⋃

{α
(g+1)
k |α

(g+1)
k = 〈x

(g+1)
k , s

(g+1)
k 〉, k

= 1, 2, . . . ,K − E}

16: evaluate β(g+1) : {f(α
(g+1)
1 ), f(α

(g+1)
2 ), . . . , f(α

(g+1)
K

)}
17: update x

18: g := g + 1
19: until termination condition
20: return x

e (line 5). According to the fitness values of β(g), we exe-

cute the selection operator that chooses (K−E) pairs of

parents separately from the population β(g) and writes
these parental individuals into the set β(g)′ (line 6).

Then the algorithm enters an inner loop (lines 7-14)

where a new individual is born during each iteration.

In this inner loop, reproduction should be repeated

until a valid object parameter combination is produced

or the maximum number Rmax of iterations is reached
(lines 8-13). Otherwise the new generation would be

drowning in invalid parameters and starved of infor-

mation. Based on the selected parental pairs in β(g)′,
the recombination and mutation of object parameters

are performed (lines 10 and 12), generating the ob-

ject parameter vector x
(g+1)
k of the kth new offspring.

Meanwhile, the strategy parameters originating from

β(g) also undergo recombination (line 9) and mutation

(line 11) independently to control the mutation oper-
ator of object parameters that achieves mutative self-

adaptation. The resulting object parameters x
(g+1)
k and

strategy parameters s
(g+1)
k constitute a new individual

α
(g+1)
k .

We obtain the descendant population β(g+1) by com-
posing E elitist individuals e and (K−E) new offspring

{α(g+1)
k } (line 15). The fitness of β(g+1) is evaluated

(line 16) to update the current optimal scheduling pa-
rameters x (line 17). Finally, the evolution process re-

turns x as an optimal solution (line 20).

5.2 Definition of the Fitness Function

The fitness function provides a measure for any indi-

vidual α = 〈x, s〉 to determine which individuals should
have a higher probability of being selected to produce

the population at next generation.

The motivation for designing this fitness function

stems from two aspects: First, the fitness value should
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reflect not only the goal of processor occupancy but

also the potential for schedulability satisfaction. Such
a fitness function evaluates the processor occupancy on

the basis of assessment of the schedulability constraints

in such a way that we select better individuals without
breaching the constraints of the optimization problem.

Second, it is necessary to speed up the fitness calcula-

tion due to a costly model-based schedulability analysis.
An integration of global SMC testing and compositional

MC verification should provide a fast strict assessment

of schedulability properties for any individual.

Accordingly, the fitness function f : I → R extracts
the object parameters x = (x1, x2, . . . , x2n) from their

individual α and evaluates the fitness value of x in ac-

cordance with the following principles:

– Invalid parameter combinations, which cannot gen-
erate a valid partition schedule, are assigned to the

lowest fitness.

– For any valid parameter vector x, the MC verifi-
cation should not be invoked to confirm the strict

schedulability until the entire system of x is proved

statistically schedulable by the SMC tests.
– Higher fitness values should be assigned to statisti-

cally schedulable parameter vectors than non-sched-

ulable ones, and to strictly schedulable parameter

vectors than only statistically schedulable ones.
– For any valid parameter vector x, if more schedu-

lable partitions are found in the SMC tests or MC

verification, a higher fitness should be assigned to
x.

– For any two valid parameter vectors, if they are

equal in the number of schedulable partitions, we
will assign a higher fitness to the vector whose schedu-

lable partitions occupy less processor time.

– For any strictly schedulable parameter vector, a lower

processor occupancy U means a higher fitness.

We define the fitness function as the following piecewise
formula:

f(α) =







































































−ζ
(

1 +

∑n

i=1 g(x2i−1, x2i)
∑n

i=1 x2i

)

, γ1

−ζ
(

1− 1
∑n

i=1(x2i/x2i−1)

)

, γ2

0, γ3

ζ
(

1 +
n
∑

i=1

ρ(i)(1− x2i

x2i−1
)
)

, γ4

ζ
(

n+
1

n

(

1 +
n
∑

i=1

ϕ(i)(1− x2i

x2i−1
)
)

)

, γ5

ζ
(

1 + n+ Ur(x)
)

, γ6

(6)

where the conditions consist of

– γ1 : ∃i, x2i−1 < x2i

0- ζ ζ 

…

nζ (n+1)ζ 

γ2 γ4 γ5

- 2ζ 

γ1

γ 3

(n+2)ζ 

γ6

γ1-3 : Invalid cases

γ4    : Nonschedulable case falsified by SMC

γ5    : Statistically schedulable case but falsified by MC

γ6    : Schedulable case confirmed by MC

Fig. 7 Allocation of fitness values on the number axis

– γ2 : ¬γ1 ∧
n
∑

i=1

x2i

x2i−1
> 1

– γ3 : ¬γ1 ∧ ¬γ2 ∧ ¬valid(x)
– γ4 : valid(x) ∧

n
∑

i=1

ρ(i) < n

– γ5 : valid(x) ∧
n
∑

i=1

ρ(i) = n ∧
n
∑

i=1

ϕ(i) < n

– γ6 : valid(x) ∧
n
∑

i=1

ρ(i) = n ∧
n
∑

i=1

ϕ(i) = n,

ζ is a scale factor, g(p, b) =

{

b− p, p < d

0, p ≥ d
provides the

excess budget for the period p and execution budget

b, ρ(i) =

{

1, if SMC query ρi is satisfied
0, if SMC query ρi is not satisfied

returns

the results of the SMC schedulability testing, Similarly

ϕ(i) =

{

1, if TCTL property ϕi is satisfied

0, if TCTL property ϕi is not satisfied
pro-

vides the results of the compositional MC schedulability
verification, Ur(x) gives the remaining processor uti-

lization, and valid(x) fetches the validity of x after in-

voking Algorithm 1. The condition
n
∑

i=1

ρ(i) = n and

n
∑

i=1

ϕ(i) = n imply the statistically and strictly schedu-

lability respectively, for all n partitions of the system
conclude with positive results.

There are six cases in the definition of our fitness

function. As shown in Fig.7, we allocate different ranges

on the number axis to these cases.

The first three cases handle invalid parameter com-
binations that are indicated by negative or zero fitness

values. In the first case γ1, there exists a partition Pi

whose execution budget bi = x2i is greater than its pe-
riod pi = x2i−1. Obviously, such a combination does

not make sense. Thus we compute the normalized sum

of all the excess budgets and shift it to a low inter-
val [−2ζ,−ζ). The second case γ2, where the total uti-

lization ratio
∑n

i=1 x2i/x2i−1 is greater than 1, over-

spends all available budgets. Similarly, the excess ratio

is mapped into the interval (−ζ, 0). The rest of invalid
parameter vectors should be reported by the ARINC-

653 schedule generator due to the non-schedulability at

the global level. They are classified as the third case γ3
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and assigned zero fitness. Note that the model-based

schedulability testing or verification is not required in
these invalid cases.

On the contrary, the fitness of valid object param-

eters is evaluated on the basis of the results of SMC

tests and MC verification. After fast testing the schedu-

lability of each partition in Uppaal SMC, we calcu-
late a fitness value according to the number of statis-

tically schedulable partitions ns =
∑n

i=1 ρ(i). The fit-

ness value is mapped into the interval [nsζ, (ns + 1)ζ)
by adding ζns and the normalized remaining utiliza-

tion ratio of statistically schedulable partitions ζ(1 −
∑n

i=1 ρ(i)x2i/x2i−1) (i.e. case γ4).

Not until all n partitions go through the SMC tests

will the costly compositional MC method be invoked to
verify the schedulability of the system. Once this prop-

erty is confirmed (i.e. case γ6), the fitness function will

extend the remaining processor utilization Ur by an off-
set (n + 1)ζ, thus obtaining the highest fitness within

[(n+ 1)ζ, (n+ 2)ζ). If the schedulability of the system

is falsified by the MC verification (i.e. case γ5), we will

map the sum of the number of strict schedulable par-
titions

∑n

i=1 ϕ(i) and their remaining utilization ratio

(1−∑n

i=1 ϕ(i)x2i/x2i−1) into the interval [nζ, (n+1)ζ).

5.3 Selection Operator

In the evolution process, there is a high probability of

producing low-fitness object parameters such as the in-

valid combinations where an execution budget is greater
than its partition period. Since each generation contains

many bad and only very few good individuals, we pre-

fer exponential ranking selection operator that is able

to give higher selective pressure, i.e. the tendency to
select better individuals from a population [32], while

guaranteeing certain standard deviation of the fitness

distribution of the population after a selection opera-
tion [27].

Exponential ranking selection is implemented as two
steps: (1) K individuals in a population are ranked in

order of fitness from worst 1 to best K. (2) The ith

individual is selected according to the exponentially
weighted probability

pi =
cK−i

∑K

j=1 c
K−j

(7)

where the base of exponent c ∈ (0, 1) is used to control

the selective pressure of the operator. A smaller c will

lead to a higher selective pressure, which means best-
fitness individuals are more likely to be selected. The

selection operation is repeated until (K − E) pairs of

individuals are obtained.

pi 0

bi 

x

y

z

* 
z′

θi

z2i

z2i-1
bi=           pi

Fig. 8 An example of recombination and mutation opera-
tions

5.4 Recombination Operator

There is a widely accepted design principle that recom-

bination operators mainly extract the similarities from

selected parents [5]. In our optimization problem, the
similarities between individuals originate not only from

the independent values of partition periods and budgets

but from the processor usage of each partition. Accord-
ingly, we design a local line recombination operator for

the EA4HS. For any partition Pi, the recombination op-

erator mixes information from parents about the period

pi and budget bi of Pi, and extracts the similarities in
terms of the utilization ratio of bi to pi, which indicates

the processor usage of Pi.

Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be

the object parameters of two parents. The local line re-
combination computes an offspring z = (z1, z2, . . . , zm)

by

zj = xj + ξi(yj −xj) j = 1, 2, . . . ,m i = ⌊j + 1

2
⌋ (8)

where the weighting ξi is randomly generated by a uni-

form distribution U(−d, 1+ d) and d ∈ [0.25, 0.5] is the
constraint value on the line extension. For any offspring

z, two consecutive parameters pi = z2i−1 and bi = z2i
belonging to one partition share a common factor ξi. In

doing so, the recombination produces the offspring pa-
rameters of each partition independently on a common

line segment through both of the parents.

We consider three types of genetic information: (1)

the period pi, (2) the budget bi, and (3) the utilization
ratio bi/pi of the ith partition. As depicted in Fig.8, the

offspring z can be chosen uniformly at random from the

line xy, where the recombination operator mixes these

three types of genetic information simultaneously from
parents. Obviously, all three types of genetic informa-

tion are kept in the offspring z and similar to those in

its parents x and y.
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5.5 Mutation Operator

Compared with recombination, mutation operators do
not only provide a source of genetic variation but also

maintain degree of population diversity, whose insuffi-

ciency is one of the major cause of premature conver-

gence [31]. However, generic mutation operators can-
not utilize the correlations between the period pi and

budget bi in individuals to acquire promising proces-

sor usage of partitions, causing the mutants to be al-
ways eliminated after selection in all probability. This

extremely low survival rate increases the risk of prema-

ture convergence. Thus we propose a rotated Gaussian

mutation operator to help the EA4HS converge to a

global optimum effectively.

The mutation operator has two input parameters in-

cluding the set of object parameters z = (z1, z2, . . . , zm)

after recombination and of strategy parameters s =
(σ1, σ2, . . . , σm) that control mutation strength. Each

pair of the object parameters (z2i−1, z2i) is mutated as

an independent vector z̃i. The mutation operator trans-

forms z into a new offspring z′ = (z′1, z
′
2, . . . , z

′
m). Let

z̃′i stand for (z′2i−1, z
′
2i). We have

z̃′i = z̃i +∆i i = 1, 2, . . . , n (9)

where ∆i is a random sample from a bivariate normal

distribution N (µi,Σi).

The covariance matrix Σi ∈ R
2×2 can be geometri-

cally interpreted as a set of ellipses, each of which is a
density contour of N (µi,Σi). Consider the fact that a

parent z with valid parameters has a high probability of

producing a valid offspring z′ if each of the new utiliza-
tion ratios z′2i/z

′
2i−1 is close to the parental z2i/z2i−1.

We define the covariance matrix Σi as the set of el-

lipses whose major axes are parallel with the lines of

equal ratio z2i/z2i−1 shown in Fig.8. Thus N (µi,Σi)
is obtained by rotating a bivariate normal distribution

N (µi,Di) counterclockwise through an angle θi:

Σi = RiDiR
T
i (10)

where Di = diag(σ2i−1, σ2i) derives two strategy pa-

rameters σ2i−1 and σ2i from s, Ri =

(

cosθi −sinθi
sinθi cosθi

)

is a rotation matrix, and

sinθi =
z2i

√

z22i−1 + z22i

, cosθi =
z2i−1

√

z22i−1 + z22i

. (11)

Strategy parameters σ2i−1 and σ2i indicate the stan-

dard deviations ofN (µi,Σi) along the major and minor

axes respectively. To perform such an ellipses-parallel

mutation, we initialize each σ2i−1 of the strategy pa-

rameters with a greater value than σ2i, thereby adapt-
ing the mutation distribution ∆i ∼ N (µi,Σi) to the

fitness landscape.

The mean µi ∈ R
2 of the normal distribution is

defined as

µi =

{

0, ‖z̃i‖2 ≥ 2σ2i−1

2σ2i−1(cosθi, sinθi), ‖z̃i‖2 < 2σ2i−1
(12)

where ‖z̃i‖2 =
√

z22i−1 + z22i is the Euclidean norm of

the vector z̃i. In most cases, the mean µi is assigned 0

and hence the mutants z′ will center around the in-

put parameters z. However, the zero mean µi = 0

may cause the mutations to generate a large number
of invalid minus parameters, especially when the input

points z̃i are close to the origin but their mutations re-

ceive large standard deviations σ2i−1. According to the
empirical rule in statistics (i.e. 95% of the values in a

normal distribution lie within two standard deviations

of the mean), we will add a 2σ2i−1 offset along the ma-
jor axis of N (0,Σi) to z̃i if the Euclidean norm of z̃i is

less than a distance of 2σ2i−1, effectively reducing the

probability of producing minus parameters.

Subsequently, the EA4HS sets strategy parameters
adaptively to direct the search during the evolution pro-

cess.

5.6 Self-adaptation of Strategy Parameters

The strategy parameters are encoded, selected and in-

herited together with the object parameters of individ-
uals. They also undergo recombination and mutation

operations to control the statistical properties of the

mutation operator of object parameters adaptively.

Since the considerable fluctuations of strategy pa-
rameters normally degrade the performance of EAs [6],

we provide a weighted intermediate recombination oper-

ator for strategy parameters in order to mitigate these
fluctuations as well as extract the similarities. The re-

combinant s̄ is a weighted average of all the K vectors

s
(g)
k = (σ

(g)
k,1, σ

(g)
k,2, . . . , σ

(g)
k,m) of the strategy parameters

in a population β(g) = {α(g)
1 , α

(g)
2 , . . . , α

(g)
K }:

s̄ =
1

K

K
∑

k=1

(1− τr)
λks

(g)
k (13)

where τr ∈ [0, 1] is a user-defined learning rate and

λk is the number of times an individual α
(g)
k appears

continuously in the elitist set ε. The recombination also
assigns s̄ to all the individuals in ε.

A log-normal operator [6] is applied to the mutation

of strategy parameters, providing the primary source of
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their genetic variation. This log-normal mutation en-

sures positiveness of the strategy parameters that serve
as standard deviation of a normal distribution. The re-

combinant s̄ = (σ̄1, σ̄2, . . . , σ̄m) mutates into the strat-

egy parameters s
(g+1)
k = (σ

(g+1)
k,1 , σ

(g+1)
k,2 , . . . , σ

(g+1)
k,m ) at

next generation by

σ
(g+1)
k,j = σ̄je

τuNj(0,1) (14)

where τu is also an input learning rate and Nj(0, 1) de-

notes a random sample from the standard normal distri-
bution. The learning rate τu = 1/

√
m is recommended

according to [6].

6 Experiments

This section presents the experiments on two avionics

systems to demonstrate the applicability of our opti-

mization method. In the experiments, our parameter
sweep method shows the capability of converging to a

global optimum. We also evaluate the performance of

search algorithms by comparing the proposed EA4HS

with exhaustive search and two popular genetic algo-
rithms.

All the experiments in this section were executed

on the cluster that consists of 4 computer nodes with 1

TB memory. Each node has 64 cores of 4 AMD Opteron
6376 processors. The schedulability tests and validation

were performed on Uppaal 4.1.19 64-bit version. We

assign the timebound N = 1.0×104 time units and the
probability threshold θ = 0.05 for Eq.(2).

6.1 Experiment on Simple Periodic Task Sets

We first perform the experiments on a simple periodic
task set taken from [13]. The task set comprises two

identical partitions with different priorities, thus mak-

ing their partition priority ordering irrelevant. Each

partition contains multiple independent periodic tasks,
whose period, deadline and priority are encoded into

Uppaal declarations. The behavior of a task is de-

scribed as a pure Compute instruction with a Worst
Case Execution Time (WCET).

The task set is shown in Table 1 where the column

“PID” and “TID” identify the partitions and tasks re-

spectively, “PR” gives partition priorities, “T” is task

periods, “E” is the WCET, “D” is deadline, and “R” is
task priorities. We define the time unit as a microsec-

ond in the table and the context switch overhead as 2

time units.

Table 1 Task set of Experiment 1 [13] (Times in µs)

PID PR
Task

TID T E D R

P1 1

Tsk1
1 160 8 100 1

Tsk1
2 240 12 200 2

Tsk1
3 320 16 300 3

Tsk1
4 480 24 400 4

P2 2

Tsk2
1 160 8 100 1

Tsk2
2 240 12 200 2

Tsk2
3 320 16 300 3

Tsk2
4 480 24 400 4

Experiment 1

The parameter optimization of the above avionics work-
load was carried out by three following methods:

– Exhaustive search: An analytical condition for schedu-

lable parameters is derived from a response time
analysis [13]. This method scans all possible inte-

ger combinations of the partition period through a

potential interval [4, 200]. For each period combi-

nation, it uses a binary search together with the
schedulability condition to find the minimum exe-

cution budget from the highest priority to the low-

est one. This exhaustive search is able to produce a
global optimal solution, but only applicable to such

a simple system.

– Parameter sweep with GAs: Two popular GAs, the
classic and the breeder genetic algorithm [26], are

first applied to parameter sweep for comparison. Ta-

ble 2 shows their operator combinations and denotes

them by “GA 1” and “GA 2” respectively. Individ-
uals are binary encoded in both of the GAs. In GA

1, an exchange of each bit in parents takes place

with a probability pe = 0.5, and the probability of
bit mutation is pu = 0.2. In GA 2, the percent-

age T% of truncation selection is set to 50%, the

weighting constraint of intermediate recombination
is dr = 0.5, the standard deviation of Gaussian mu-

tation is σu = 10, and the mutation probability is

pu = 0.2.

– Parameter sweep with EA4HS: In the EA4HS, in-
dividuals are also binary encoded, the base c of ex-

ponential ranking selection is 0.8, the value d of lo-

cal line recombination is 0.5, and we initialize the
strategy parameters σ2i−1 = 50 and σ2i = 5 for

i ∈ {1, 2} in an individual. We define the learning

rates τr = 0.7 and τu = 1/
√
4 = 0.5. The operator

combination is also shown in Table 2.

Both the GAs and EA4HS adopt the search range [4, 200]

for all partition periods, population sizeK = 64, elitism

size E = 4, and maximum generation G = 300. For each
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Table 2 Operator combinations of the EAs

EA Selection operator Recombination operator Mutation operator

GA 1 Roulette wheel selection Uniform crossover Bit-flip mutation
GA 2 Truncation selection Intermediate recombination Gaussian mutation
EA4HS Exponential ranking selection Local-line recombination Rotated Gaussian mutation

individual, we calculate its fitness value and store them

in a hash table. Once the same individual reappears

in the following generations, the fitness value will be
fetched from the hash table directly, thus avoiding the

costly redundant fitness calculation.

Table 3 shows the optimization result of Experiment

1. Both the exhaustive search and parameter sweep

with the EA4HS reached the same global optimal so-
lution xopt = (160, 34, 160, 34), which gives a minimum

processor occupancy U = 45%. Unfortunately, two GAs

only offer two local optimal solutions with much higher

processor occupancy 61.67% and 58.73%.

Table 3 Optimization result of Experiment 1 (Times in µs)

Method Solution Occupancy Optimal

GA 1 (120, 26, 180, 66) 61.67% No
GA 2 (126, 35, 126, 35) 58.73% No
EA4HS (160, 34, 160, 34) 45% Yes

Figure 9 presents the evolution of minimum proces-
sor occupancy and cumulative processing time of the

GAs and EA4HS in Experiment 1. Since duplicate fit-

ness calculation is replaced with reading the hash table,

the convergence of the evolution means a synchronous
slowdown in the variation of minimum processor occu-

pancy and cumulative processing time. Obviously, both

GA 1 and GA 2 fell into a premature convergence on
local optimal solutions after 30 generations.

In contrast, the EA4HS adjusts strategy parameters
adaptively to control the average search area of muta-

tion operations. When there was a convergence trend

during the generations of [30, 70) and [160, 200), the
self-adaptation of strategy parameters expanded the

search areas to improve population diversity and subse-

quently made the search concentrated in smaller areas
to find better solutions within few generations, thereby

leading to a fast decrease in the minimum processor oc-

cupancy over the subsequent generations [100, 160) and

[270, 300) shown in Fig. 9(a). The repeated adjustments
of the EA4HS reduce the risk of premature convergence

on a local optimal area, producing two “steps” of its

processing time curve in Fig. 9(b).

Experiment 2

Considering that the premature convergence may af-

fect the result of these two GAs, we continue the com-

parison experiment on the same task set but adopt
different configuration for the EAs to defer their con-

vergence during the evolution. Experiment 2 repeats

the same procedure for Experiment 1, using the same
search range [4, 200], population size K = 64, elitism

size E = 4, maximum generation G = 300, and the

following detailed configuration:

– GA 1: More frequent bit-flip mutation in GA 1 will

produce new individuals more randomly, thus pos-

sibly raising the degree of population diversity to
prevent premature convergence. Hence we keep the

bit-exchange probability pe = 0.5 but use a double

bit-mutation probability pu = 0.4.
– GA 2: We increase both the probability and strength

of the variable mutation to delay the convergence in

GA 2, using the new standard deviation σu = 20 of

Gaussian mutation and its larger mutation probabil-
ity pu = 0.4. We still keep the percentage T = 50%

of truncation selection and the weighting constraint

dr = 0.5 of intermediate recombination.
– EA4HS: In the EA4HS, a lower learning rate τr will

slow down the convergence by adjusting the aver-

age strategy parameters of populations. Hence we
invoke the EA4HS with a smaller learning rate τr =

0.4 and retain the other configuration including the

base c = 0.8 of exponential ranking selection, the

weighting constraint d = 0.5 of local line recombina-
tion, the learning rate τu = 0.5, and the initial strat-

egy parameters σ2i−1 = 50 and σ2i = 5, i ∈ {1, 2}.

In Table 4, the results of Experiment 2 show that

our EA4HS gets accustomed to this new configuration,

for the algorithm acquired the global optimal solution

xopt = (160, 34, 160, 34) with the minimum processor
occupancy U = 45%. Unfortunately, two GAs still de-

viated from the global optima, but they generated bet-

ter solutions compared with their optimization result
in Experiment 1.

Figure 10 depicts the evolution of minimum proces-
sor occupancy and cumulative processing time in Ex-

periment 2. Although GA 1 obtained a lower proces-

sor occupancy than that in Experiment 1, it fell into
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(a) Minimum processor occupancy (b) Cumulative processing time

Fig. 9 Evolution of minimum processor occupancy and cumulative processing time in Experiment 1

(a) Minimum processor occupancy (b) Cumulative processing time

Fig. 10 Evolution of minimum processor occupancy and cumulative processing time in Experiment 2

Table 4 Optimization result of Experiment 2 (Times in µs)

Method Solution Occupancy Optimal

GA 1 (60, 14, 120, 33) 55.83% No
GA 2 (120, 27, 120, 26) 47.5% No
EA4HS (160, 34, 160, 34) 45% Yes

the premature convergence again at around the 30th

generation. The new configuration of GA 2 successfully

avoided its convergence to find more better individu-
als but significantly increased the processing time from

347min to 2833min.

Compared with the configuration of EA4HS in Ex-
periment 1, a lower learning rate τr = 0.4 avoids a

sharp drop in strategy parameters and frequent adjust-

ments during the evolution. Thus the EA4HS gener-

ated smoother curves of minimum processor occupancy
(Fig. 10(a)) and cumulative processing time (Fig. 10(b))

in Experiment 2. The evolution had not entered a con-

vergence until it found a nearly optimal solution at

around the 200th generation, finally reaching the global

optimum at the 212nd generation.

The experiments reveal distinct superiority of our

EA4HS over the GAs. First, GA 1 is not applicable to

this optimization problem. We find the bit-based repro-

duction of GA 1 cannot produce more better individuals
steadily, making GA 1 very prone to premature conver-

gence. By contrast, GA 2 can overcome the problem of

premature convergence by adjusting the mutation con-
figuration. However, GA 2 has a low search efficiency.

In both of the experiments, GA 2 concentrate search

on the local optimal area where all the periods are cen-
tered around 120µs and far from the best 160µs. For

this purpose, our EA4HS is provided with new recom-

bination and mutation operator which can produce de-

scendant individuals on the basis of the processor usage
of parents. Hence it is more likely to climb up a higher

processor occupancy even if our current individuals are

far from the optimal area.
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Table 5 Workload of the avionics system [11,16](Times in milliseconds)

No. Task Release Offset Jitter Deadline Priority
Execution Chunks

Time Mutex Output Input

P1

Tsk1
1 [25,25] 2 0 25 2

[0.8,1.3] - - -
[0.1,0.2] - - -

Tsk1
2 [50,50] 3 0 50 3 [0.2,0.4] - Msg1 -

Tsk1
3 [50,50] 3 0 50 4 [2.7,4.2] - - -

Tsk1
4 [50,50] 0 0 50 5 [0.1,0.2] Mux1

1 - -

Tsk1
5 [120,∞) 0 0 120 6

[0.6,0.9] - - -
[0.1,0.2] Mux1

1 - -

P2

Tsk2
1 [50,50] 0 0.5 50 2 [1.9,3.0] - - -

Tsk2
2 [50,50] 2 0 50 3 [0.7,1.1] - Msg2 -

Tsk2
3 [100,100] 0 0 100 4 [0.1,0.2] Mux2

1 - -

Tsk2
4 [100,∞) 10 0 100 5

[0.8,1.3] - - -
[0.2,0.3] Mux2

1 - -

P3

Tsk3
1 [25,25] 0 0.5 25 2 [0.5,0.8] - - Msg1

Tsk3
2 [50,50] 0 0 50 3 [0.7,1.1] - - Msg2

Tsk3
3 [50,50] 0 0 50 4 [1.0,1.6] - - Msg3

Tsk3
4 [100,∞) 11 0 100 5

[0.7,1.0] - - -
[0.1,0.3] - - -

P4

Tsk
4
1 [25,25] 3 0.2 25 2 [0.7,1.2] - - -

Tsk
4
2 [50,50] 5 0 50 3 [1.2,1.9] - Msg3 Msg1

Tsk
4
3 [50,50] 25 0 50 4 [0.1,0.2] - - Msg4

Tsk
4
4 [100,100] 11 0 100 5 [0.7,1.1] - - -

Tsk
4
5 [200,200] 13 0 200 6 [3.7,5.8] - - -

P5

Tsk5
1 [50,50] 0 0.3 50 1 [0.7,1.1] - - Msg1

Tsk5
2 [50,50] 2 0 50 2 [1.2,1.9] - Msg4 Msg2

Tsk5
3 [200,200] 0 0 200 3

[0.4,0.6] - - -
[0.2,0.3] Mux5

1 - -

Tsk5
4 [200,∞) 14 0 200 4

[1.4,2.2] - - -
[0.1,0.2] Mux5

1 - -

6.2 Experiment on a Concrete Avionics System

We undertake the third experiment on a much larger
and more complex IMA partitioned scheduling system

including multiple task types, task dependency, and

inter-partition communication [11,16]. As shown in Ta-
ble 5, the system consists of 5 partitions that contain

a total of 18 periodic tasks and 4 sporadic tasks. The

type of a task depends on its release interval. A periodic
task has a fixed period, whereas a sporadic task satis-

fies a minimum separation between consecutive release.

The execution of a task is characterized as a sequence of

chunks. Each chunk has a lower and upper bound on ex-

ecution time, a set of potentially required resources and

message-passing operations. There are 3 intra-partition

locks, as shown in column mutex, and 4 inter-partition

message types in the task set. The columns output and

input indicate transfer direction of messages. According

to the resources required by chunks, we convert each

chunk into a subsequence of the abstraction instruc-
tion sequence (Receive, Lock , Compute, Unlock , Send ,

End) in the Uppaal execution models. We assume the

context switch overhead to be 0.2 milliseconds in the
experiment.

In this IMA system, the features such as task depen-
dency and communication render the analytical bounds

in [13] non-applicable. Moreover, the immense parame-

ter space makes it impossible to complete a brute-force

search for a global optimal solution. Hence Experiment
3 compares the EA4HS optimization with the empirical

scheduling scheme given in [11]. Their detailed config-

uration is listed as follows:
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– Empirical scheduling: In this scheme, all the parti-

tions have a unique period p = 25ms, which is the
minimum and a harmonic of task periods. Each par-

tition is allocated to a time slot of the same length

5ms within every partition period. We first create
an ARINC-653 partition schedule according to this

empirical scheme. The common partition period is

used as the major time frame M = 25ms. Within
every M , the five time slots of the partitions are

arranged in order of priority. A context switch over-

head 0.2ms is inserted into the start of the time

slots, each of which thus shrinks to the size of 4.8ms.
Subsequently, we analyze the schedulability of this

empirical scheme by using the compositional ap-

proach given in Section 3.
– EA4HS: Considering the larger parameter space and

longer processing time for each generation, we ap-

ply a new population size K = 256, elitism size
E = 16 and maximum generation G = 200 but

keep the rest of the configuration of Experiment 2,

which has been proved applicable to the simple sys-

tem with similar quantities of time. We set the base
of exponential ranking selection c = 0.8 and the

value of local line recombination d = 0.5. In the

first generation, the strategy parameters of an in-
dividual are initialized as σ2i−1 = 50 and σ2i = 5

for i ∈ {1, 2, . . . , 5}. We define the learning rates

τr = 0.4 and τu = 1/
√
10 ≈ 0.3.

Table 6 presents the optimization results of Experi-

ment 3. Owing to the much larger unknown parameter
space, it is more difficult to find a schedulable solu-

tion than Experiment 1 and 2. The empirical scheme

even failed to conclude with a schedulable solution. In
the schedulability analysis, a counterexample generated

by Uppaal demonstrates that Tsk1
3 misses its deadline

at the instant t = 50.2ms. Although the original 5ms
allocation is sufficient for the execution of Tsk1

3 , the

additional overhead of context switches makes Tsk1
3 go

over budget. Moreover, this empirical scheme takes up

all the processor time, increasing the integration cost of
additional avionics workload.

In contrast to the unsatisfactory results of the em-

pirical method, our EA4HS acquired a schedulable so-
lution x = (25, 4.9, 25, 4.7, 25, 3.4, 25, 4.5, 50, 4.5) with

a lower processor occupancy 82.6%. Its schedulability

is not only tested statistically by Uppaal SMC but
also validated rigorously by Uppaal classic MC. Even

though its global optimality cannot be confirmed, en-

gineers can still benefit from such schedulable results

that have acceptable processor occupancy.
Figure 11(a) illustrates the best fitness value and

processing time of each generation in the EA4HS opti-

mization. The fitness value offers the quality evaluation

of any parameter combination regardless of its schedu-

lability. According to the definition of fitness function
in section 5.2, the coordinate plane can be divided into

three areas that correspond to different fitness intervals:

(1) [0, 500) where the generations contain no schedula-
ble solution, for all the individuals are fast falsified by

SMC. (2) [500, 600) where all five partitions of the best

individual are proved statistically schedulable by SMC
but its schedulability is finally excluded by MC. (3)

[600, 700) where the schedulability of the best individ-

ual is strictly confirmed by MC.

As shown in Fig. 11(a), there was no schedulable

individual in the initial population. During the gener-

ations of [1, 105), the best fitness value and processing
time increased gradually as more partitions of individu-

als were proved statistically schedulable by SMC. At the

105th generation, we found the first statistically schedu-

lable individual with the fitness value 501 and started
the MC compositional analyses. Although its schedula-

bility was excluded by MC, there were a growing num-

ber of higher-fitness individuals that went through the
SMC tests at the following generations. Since most of

the MC compositional analyses were much more time-

consuming than the SMC tests, the average process-
ing time for each generation rose from around 10min

to more than 40min after 105 generations. Finally, we

acquired the first schedulable individual at the 161st

generation and found the best solution with the low-
est processor occupancy 82.6% at the 179th generation

within the cumulative time of 62 hours.

Figure 11(b) shows the composition of populations

during the evolution. A population consists of the fol-

lowing four types of individuals: (1) Invalid individ-

uals that cannot generate ARINC-653 schedules. (2)
SMC falsified individuals that turned out to be non-

schedulable in the SMC tests. (3) MC falsified individ-

uals that were proved statistically schedulable by SMC
but eliminated in the MC compositional analyses. (4)

schedulable individuals.

The evolution of the population composition demon-
strates improvements in the efficiency of our EA4HS

optimization. First, the EA4HS avoids the populations

drowning in invalid individuals via repeated reproduc-
tion (lines 8-13 of Alg. 2). As shown in Fig. 11(b),

invalid individuals accounted for a quarter of the ini-

tial population that was generated randomly, but the
EA4HS kept their proportion falling sharply until they

vanished after the 17th generation. Second, the appli-

cation of SMC fast falsification speeds up the optimiza-

tion. For each population in Fig. 11(b), most of the indi-
viduals underwent the SMC tests rather than the costly

MC compositional analyses. Third, the EA4HS adap-

tively keeps a steady growth in the number of higher-
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Table 6 Optimization result of Experiment 3 (Times in milliseconds)

Method Solution Schedulability Occupancy Optimal

Empirical (25, 4.8, 25, 4.8, 25, 4.8, 25, 4.8, 25, 4.8) No 100% No
EA4HS (25, 4.9, 25, 4.7, 25, 3.4, 25, 4.5, 50, 4.5) Yes 82.6% Unknown

fitness individuals but does not concentrate rapidly on
the localities of dominant solutions, thus reducing the

risk of premature convergence. In Fig. 11(b), the pro-

portion of schedulable individuals increased gradually
until they filled the elitist list. At the following genera-

tions, the newly-produced individuals did not converge

on a few dominant solutions but maintained a degree

of population diversity. Finally, there was a steady pro-
portion of schedulable individuals in the populations at

around the 200th generation.

7 Related Work

A few approaches to optimizing the partition scheduling

of avionics systems have been presented in the litera-

ture, applying analytical or formal methods from either
a global or compositional viewpoint on the hierarchical

scheduling architecture.

Compositional analytical methods introducing the

abstraction and composition of constituent partitions

optimize each partition locally for the whole system.
The authors of [29,15,30] adopted different resource

models to characterize the time demand and supply of

partitions, presented the schedulability conditions un-
der EDF (Earliest Deadline First) and RM (Rate Mono-

tonic) policy, and gave utilization bounds of these re-

source models. In [16], they extended this compositional

framework into ARINC-653 avionics systems, providing
a task model to deal with the behaviors like commu-

nication latencies and blocking/preemption overheads

within partitions. In [24], the authors proposed a simi-
lar analytical method for applications consisting of pe-

riodic or sporadic tasks scheduled by FP policy to find

the best scheduling parameter pairs of partitions. To
improve the runtime performance, Dewan and Fisher [14]

proposed a polynomial-time approximation algorithm

for minimizing the interface bandwidth of sporadic task

systems.

However, the combination of local optimality of each
partition does not necessarily lead to the globally op-

timal solution, because the parameters chosen for one

partition may affect the choice for other partitions [13].

From a global viewpoint, Davis and Burns [13] formu-
lated the optimization problem as a holistic selection

of partition parameters, providing a set of search algo-

rithms to find the best parameter combination. Nev-

ertheless, the optimal solution can only be determined
by an exhaustive search in the case of small systems.

Yoon et al. [34] showed the non-convexity of multiple

partition optimization and solved this non-linear non-
convex problem with Geometric Programming (GP).

Kim et al. [22] formulated a linear programming prob-

lem for the utilization bound of a schedulable periodic

task set scheduled by RM policy in a given ARINC-
653 partition. Blikstad et al. [7] simplified the two-level

hierarchical scheduling into the pre-runtime scheduling

of non-overlapping periodic tasks, adopting a Mixed In-
teger Programming (MIP) formulation to generate the

optimal schedule.

Unfortunately, both of the analytical methods in-
troduce a certain degree of pessimism due to the over-

simplification of their optimization policies or system

models:

The pessimism of the compositional methods mainly

originates from the oversimplification of optimization
policies. The compositional methods employ the “Di-

vide and Conquer” strategy, finding the optimal solu-

tion for each partition independently and assembling all

the local results as a complete solution of the system.
For each partition, such solvers always search for its op-

timal solution on the worst-case assumption of the rest

of the partitions. This policy reduces the complexity of
optimization solving but ignores the possible coordina-

tion between partitions. Hence the final solution of an

ARINC-653 partitioned system is only the combination
of local optima and not globally optimal.

The pessimism of the global optimization methods

is introduced by the oversimplification of system mod-
els. Since the nature of ARINC-653 partition schedul-

ing is a complex non-linear non-convex optimization

problem [34], these global methods simplify the system
models by linearizing the analytical equations of the

schedulability constraints and formulate it as a classi-

cal optimization problem like MIP. This simplification

leads to a conservative solution of partition scheduling.
The degree of pessimism depends on the approximation

precision of the simplified system model.

By contrast, model-based methods provide rigorous

formal models to describe more concrete behaviors of

avionics systems in a readable and understandable way.

Beji et al. [4] expressed the constraints of distributed

IMA architecture as SMT (Satisfiability Modulo The-

ory) logic formulas and used the SMT solver YICES to
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(a) Best fitness values and processing time (b) Composition of populations

Fig. 11 Evolution of best fitness values, processing time and population composition in Experiment 3

find automatically feasible scheduling parameters that

minimize the integration cost. However, modeling a de-

tailed system requires a large number of lengthy logic
formulas. Their SMT model only covering a flat rather

than hierarchical structured partition scheduling sys-

tem did not give any specification of the tasks in parti-
tions.

Sun et al. [33] proposed a component-based schedu-
lability analysis of hierarchical scheduling systems en-

coded into linear hybrid automata, thus enabling the

optimization of partition parameters. All the integer
values of partition parameters were exhaustively tested

for schedulability to minimize the processor utilization.

Obviously, this exhaustive search is not feasible for a

large high-dimensional parameter space.

The authors of [23,8] appliedUppaal to the compo-

sitional optimization of partition parameters. Given a
specific partition, they used a lightweight SMC method

for a fast design exploration of objective parameters, as-

suring the schedulability of the corresponding TA mod-
els with a high confidence. Once a promising parameter

tuple had been found, it could be proved schedulable

using the costly MC method. This approach mitigating
the state-space explosion coped with each partition up

to 6 tasks. However, as remarked above, this compo-

sitional optimization does not necessarily lead to the

globally optimal solution. Moreover, they also ignored
concrete task behaviors in the TA models.

In summary, the analytical methods build on a rig-

orous mathematical deduction under the worst-case as-

sumptions of a simplified system, thereby fast solving

the optimization problem at a low cost. By contrast,
the model-based methods are more expressive to de-

scribe a concrete avionics system but their optimizers

face the challenge of the complexity problem. In this

paper, our model-based approach adopts a global evolu-

tionary search to explore the objective solution space ef-

fectively and uses the integrated method of simulation-
based tests and compositional verification to make the

costly schedulability analysis feasible.

8 Conclusion

The model-based method presented in this paper ad-

dresses the optimization problem of ARINC-653 parti-

tion scheduling in a complex IMA system. We conclude
that our model-based approach is applicable to this op-

timization problem, where an IMA system is modeled

as a network of timed automata in Uppaal. Compared

with widely-used analytic optimization, the timed au-
tomata model of our method is more expressive to de-

scribe complex features of IMA systems. We formulate

the problem as a global search for the optimal parti-
tion scheduling parameters that achieve the minimum

processor occupancy and meet the schedulability con-

straints. A parameter sweep optimizer explores the so-
lution space via evolutionary algorithm while guaran-

teeing the schedulability by model checking. The evolu-

tionary algorithm EA4HS is promising for reaching the

optimal parameters quickly as well as avoids exhaustive
exploration of the solution space. The combination of

global SMC testing and compositional model-checking

verification alleviates the state space explosion of classi-
cal model checking. The experiments demonstrate that

our optimizer is able to identify the global optimum

solutions for simple task sets and find acceptable ones
effectively for complex systems.

The design of the model-based parameter sweep also

introduces limitations into this optimization method.

First, the evolutionary search may not reach a global
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optimal solution within a finite number of generations,

especially when handling a complex IMA system with a
large number of partitions. However, our method is still

capable of producing better high-quality candidates than

purely empirical scheduling schemes. Engineers can ben-
efit from the optimization results of our method in in-

tegrating a set of complex applications. Second, the

model-based method involves frequent time-consuming
schedulability analyses, leading to a long processing

time from a few hours to days. But we believe that such

a processing time is negligible in the development life

cycle of an IMA system. Moreover, we can speed up the
optimization process by running on more powerful clus-

ters. As future work, we plan to add more features such

as multi-core processor support and more local schedul-
ing policies to the system, further generalizing the pro-

posed method to more complex ARINC-653 scheduling

systems.
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