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Abstract: Transitioning to a circular built environment can reduce the environmental impacts, re-
source consumption and waste generation emanating from buildings. However, there are many
options to design circular building components, and limited knowledge on which options lead to
the best environmental performance. Few guidelines exist and they build on conventional envi-
ronmental performance assessments that focus on single life cycles, whereas the circular economy
(CE) focuses on a sequence of multiple use- and life cycles. In this article, environmental design
guidelines for circular building components were developed in five steps. First, examples of circular
variants of a building structure were synthesized. Second, the environmental performance of these
variants was compared with a business-as-usual variant through Life Cycle Assessments (LCA)
and Material Flow Analysis (MFA) respectively. Circular parameters of these variants were tested
using a scenario-specific approach. Third, from 24 LCAs and MFAs, a scorecard, rules-of-thumb and
nine environmental design guidelines for designing circular building components were developed
that provide guidance on which circular pathways and variants lead to the best environmental
performance. For components with a long functional–technical lifespan, the following are promoted:
resource efficiency, longer use through adaptable design, low-impact biomaterials and facilitating
multiple cycles after and of use. Fourth, the design guidelines were evaluated by 49 experts from
academia, industry and government in seven expert sessions. Further research is needed to validate
the generalizability of the design guidelines. However, this research makes an important step in
supporting the development of circular building components and, subsequently, the transition to a
circular built environment.

Keywords: circular economy (CE); life cycle assessment (LCA); material flow analysis (MFA) design
guidelines; buildings; structure

1. Introduction

The global building sector is responsible for approximately 39% of all human-induced
emissions of which 11% comes from manufacturing building materials and products [1].
Construction and maintenance of buildings and infrastructure represent almost 50% of
the global material consumption [2] and in return generates 40% of solid waste streams
in developed countries [3]. Around 10–15% of building materials are wasted during
construction and 54% of demolition materials are landfilled due to destructive demolition
or toxicity. At the same time, the building sector is experiencing a scarcity of resources.
Zinc and chromium, used in roofing, facades, technical building services, etc., are predicted
to reach their supply horizon within the next 20 years [4]. While the demand for gypsum
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is increasing, the production of industrial gypsum has been reduced, due to reduced coal
incineration (e.g., in Denmark [5]). The demand for sand used in concrete is growing
faster than natural sources can sustain [6]. In parallel, construction raw material prices
are increasingly volatile and rising [7,8]. For example, between 2014 and 2018 cement
and construction metals prices by 9.4% and 7.2% respectively in the United Kingdom
increased [9]. These issues are especially concerning when considering that the global
building stock is expected to double in 2050 [1]. A radically different approach is needed
for the buildings to be built in the next 30 years.

The concept of Circular Economy (CE) can facilitate minimizing these unresolved
issues in the building sector. This is done by optimizing current and future resource
loops by narrowing (efficient resource use), slowing (temporally extended use) and closing
(cycling) resource loops [10,11]. CE is operationalized through value retention processes
(VRPs) (also known as R-imperatives) such as reduce, reuse, repair, refurbish, recycle
and recover that seek to keep materials at their highest utility and value for as long as
possible [12]. VRPs can be aided by a multitude of different design strategies (e.g., design
for disassembly, adaptability). Some VRPs result in re-loops (e.g., when a component or
material is reused or recycled) [13]. CE does not only consider one re-loop but a sequence
of multiple re-loops also called cascading systems (e.g., when a component or material is
used in a series of different applications one after the other) [14]. The built environment
can gradually become (more) circular by integrating circular principles into existing or
new building components. However, this will require fundamental changes in building
activities, supply chains and market structures within the building sector.

There is no commonly accepted definition of CE in the building sector [15] and the
concept embraces a variety of different design strategies [13,16,17]. Thus, there are many
options to design circular building components [18,19]. Consequently, circular building
component designs may incorporate and combine different attributes of the CE concept
for which the potential for circularity is very different (e.g., using bio-based, recyclable
and/or reusable materials that can be returned to biological or technical material flows,
life extension through durable and/or adaptable design). There are many guidelines on
how to implement CE in buildings [20–25]. However, questions remain on which circular
design options result in the optimum environmental and resource performance to support
design and decision making.

Two methods are often applied for environmental performance assessment; Life Cycle
Assessment (LCA) is a scientifically based and ISO-standardized method for assessing
the environmental performance of a given product, service or system over its entire life
cycle/value chain, i.e., from raw material extraction, production, use to end-of-life (i.e., cra-
dle to grave) [26–29]; Material Flow Analysis (MFA) is used to characterize material flows
and more recently stocks [30,31] and can be used in parallel with/to support LCA. Both
are commonly accepted methods to quantify and even certify a building’s environmental
performance [26] and resource consumption [30] and can facilitate CE decision-making [32].

Environmental building design guidelines exist [18,33,34]. These can be categorized
into two main types: generative and evaluative, based on their applicability at the front-
or back-end of the product development process [35]. “Generative” refers to front-end
support to generate designs (e.g., guidelines, criteria, rules-of-thumb, case examples) while
“evaluative” offers support to evaluate designs at the end of design (e.g., using LCA and
MFA). LCA has the most prominent potential to reduce building life cycle environmental
impacts when applied at the front-end in the early design stage [36–38]. However, industry
practitioners view LCA as being too laborious and time-consuming [39,40]. Thus, sim-
plifications are needed to encourage the use of LCA knowledge in practical design (e.g.,
guidelines based on LCA [34,41–43]). However, existing LCA guidelines are challenging
to use for designing “ideal” circular solutions for several reasons: (1) they predominantly
focus on conventional building design [43], (2) they build on conventional environmental
performance assessment methods that focus on assessing single life cycles, (3) they focus
on the overcomplex building level or the limiting material level to reach sustainability
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goals, (4) they tend to focus on single circular design strategies and (5) they tend to build on
single impact indicators (e.g., embodied greenhouse gas emissions [18,34]), neglecting other
impacts of environmental importance. Although, some environmental design guidelines
exist for the building component level [44,45] guidelines that specifically target the design
of circular building components with multiple use- and life cycles are needed in practice.

In this article, the environmental and resource benefits of existing CE design options
are quantified to derive environmental design guidelines for circular building components
on the most optimal CE design options and combinations of design options using LCA and
MFA based on the case of a building structure. This paper was part of a larger collaborative
research project between Danish and Dutch researchers, housing companies and industry
partners that included the development of a CE LCA method and exemplary circular
kitchens, façades and structures [46–48].

2. Methods

The study at hand explores the environmental performance of various and signifi-
cantly different circular visions based on theoretical design models and assumptions of
“ideal” conceptual design variants deviating from the current practice. By applying an iter-
ative research-through-design method, design guidelines for circular building components
were developed in five steps. In step 1, design variants for a circular building structure were
synthesized. Due to the large share of the total building mass, the structure can contribute
significantly to the environmental impact of a building. In step 2, the environmental per-
formance of the design variants was compared with a business-as-usual variant using LCA
and MFA. A scenario-specific sensitivity analysis of circular parameters was performed
as part of the interpretation of the LCA and MFA to validate the results and guide the
development of the design guidelines. In step 3, the environmental design guidelines were
derived from the LCA and MFA results. In step 4, the design guidelines were evaluated
with LCA and CE design experts from academia, industry and government. Finally, the
resulting design guidelines were discussed and opportunities for further development
were identified.

2.1. Design Variants for the Circular Structure

This study was initially targeted at the Danish building context that is dominated
by concrete structures. Compared to other building components, concrete structures are
more challenging from a CE perspective as they are environmentally intensive to produce,
are not easily reusable with current construction methods and therefore down-cycled and
are often prematurely demolished. Thus, different circular design variants of a structure
were developed on a concept level in co-creation with TU Delft, AMS Institute, Aalborg
University, the Danish contractor MT Højgaard and other industry partners. The structural
variants were generated by combining various circular design options identified by van
Stijn and Gruis [49], environmental optimization opportunities found from [50,51] and
precedent and current circular building projects [12,52,53] and products [54]. A tunnel
structure (3 m high, 6 m wide and 7.2 m deep) for multi-storey (+3 storey) buildings
was used. Only the “raw” structure was considered; additional finishing was neglected.
In terms of circular designs for structures, the Danish building sector is mostly focused
on lighter concrete structures, substituting concrete with bio-materials, reuse of concrete
elements through design for disassembly and extending the use through easy adaptations.
On that basis, four variants were considered plausible future scenarios and representative
of “pure” and fundamentally different circular pathways (facilitating different re-loops),
see Figure 1. The floor and wall thicknesses of the variants were assumed based on supplier
information, example details and dimensioning rules-of-thumb. The design variants were
designed as a composite of components, parts and materials which—potentially—have
different and multiple use-, and life cycles (see variant flow diagrams in Supplementary
Materials Figure S1).



Sustainability 2021, 13, 5621 4 of 27

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 30 
 

thumb. The design variants were designed as a composite of components, parts and 

materials which—potentially—have different and multiple use-, and life cycles (see 

variant flow diagrams in Supplementary Materials Figure S1). 

 

Figure 1. The circular principles of the structural design variants and their functional lifespan 

compared to the reference study period of 200 years. 

The “business-as-usual” (BAU) structure, represents the current practice; consisting 

of in-situ casted reinforced concrete. A 75-year functional lifespan was assumed. At the 

end-of-life (EoL) the structure is demolished, and 90% of the concrete is crushed for road 

filling and 10% goes to landfill, whereas 99% of the reinforcement steel is recycled into 

new steel products and 1% is landfilled [55]. 

Concrete structures are often over-dimensioned, with unnecessarily large amounts 

of concrete and reinforcement steel [56]. The “eco-efficiency” (ECO) structure, narrows 

loops, saving 22% and 25% of the concrete and reinforcement steel respectively on the 

BAU through lean design using prefabricated elements that are cast together on site. The 

BAU’s functional lifespan and EOL are assumed for the ECO. 

The “bio” (BIO) structure, narrows and closes loops using wood: a renewable, low 

impact, biomaterial. It consists of prefabricated cross-laminated timber (CLT) walls and 

timber hollow core floor slabs. These are connected with dowelled joints. A 50-year 

technical lifespan is assumed, in accordance with the product. At EoL, the hollow-core 

Figure 1. The circular principles of the structural design variants and their functional lifespan compared to the reference
study period of 200 years.

The “business-as-usual” (BAU) structure, represents the current practice; consisting
of in-situ casted reinforced concrete. A 75-year functional lifespan was assumed. At the
end-of-life (EoL) the structure is demolished, and 90% of the concrete is crushed for road
filling and 10% goes to landfill, whereas 99% of the reinforcement steel is recycled into new
steel products and 1% is landfilled [55].

Concrete structures are often over-dimensioned, with unnecessarily large amounts
of concrete and reinforcement steel [56]. The “eco-efficiency” (ECO) structure, narrows
loops, saving 22% and 25% of the concrete and reinforcement steel respectively on the BAU
through lean design using prefabricated elements that are cast together on site. The BAU’s
functional lifespan and EOL are assumed for the ECO.

The “bio” (BIO) structure, narrows and closes loops using wood: a renewable, low
impact, biomaterial. It consists of prefabricated cross-laminated timber (CLT) walls and
timber hollow core floor slabs. These are connected with dowelled joints. A 50-year
technical lifespan is assumed, in accordance with the product. At EoL, the hollow-core
timber floor slabs are recycled, after which they are incinerated for energy recovery. A
100-year technical lifespan is assumed for the CLT wall elements. Hence, they can be reused
once after 50 years, after which they are recycled and finally incinerated for energy recovery.
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Concrete elements are often difficult to separate without damage because they are
cast together. Hence, at EoL, they are commonly crushed into concrete gravel for road
filling and the reinforcement steel is recycled into new steel products. The “design for
disassembly” (DFD) structure, slows and closes loops by using long-lasting materials,
and standard-sized prefabricated concrete elements that are demountable for direct reuse,
thereby prolonging the elements’ service life and avoiding burdensome production of
new concrete [57,58]. The DFD consists of a mix of virgin and secondary prefabricated,
reinforced concrete wall elements and hollow-core reinforced concrete floor slabs with
demountable steel connections. A 75-year functional lifespan of the building in which the
elements are placed is assumed. However, due to the long technical lifespan of concrete and
separable joints, four (re)uses of the elements (i.e., in four different locations) is assumed,
after which they are recycled.

Buildings often become prematurely obsolete because of failure to predict and meet
changing functional requirements over time [59,60]. Hence, the building industry poten-
tially fails to exploit the long technical lifespan of concrete. The “open” (OPEN) structure,
narrows, slows and closes loops by applying a leaner design than the BAU, durable ma-
terials and facilitates adaptability for future changes in use. It consists of prefabricated
reinforced concrete wall and floor elements that are cast together. The OPEN structure has
three and four openings in the walls and floors, respectively. Insulated timber frame wall
panels and hollow-core timber floor slabs can be placed or removed within these openings
to combine or separate adjacent floors and rooms if needed, prolonging the functional
lifespan to 200 years with changes in the infill panels every 50 years. Both the concrete
structure and infill panels are recycled at EoL.

The numbers of use- and life cycles, functional and technical lifespans of components
and materials were estimated based on the Danish standard lifespans for building LCAs
stated by Aagaard, Brandt, Aggerholm and Hauhbølle [61] and supplier information.
The functional lifespan of the DFD (four uses in different locations) and OPEN structure
(200 years) deviate from the standard lifespan (120 years) for concrete stated by Aagaard,
Brandt, Aggerholm and Hauhbølle [61]. There are many examples of the technical lifespan
of concrete being much longer than 120 years. Therefore, the DFD and OPEN structure
explores the possibilities of utilising the long technical lifespan of concrete through life-
extension design solutions to achieve a longer functional lifespan. The DFD and OPEN
structure build on Habraken’s [62] “open” building movement and Stewart Brand’s [63]
design theory on “shearing layers”, assuming a functional lifespan of up to 300 years when
the structure becomes independent from the rest of the building layers. In light of the
resource and climate challenge, it is imaginable that society will be forced to maintain
buildings for longer in the future than is the current practice. Under these circumstances, it
is valid to assume that contemporary buildings will last 200 years. Hence, it is necessary
to compare long-lasting designs with multiple reference scenarios, taking various future
developments into consideration. In this case, a traditional lifespan is not sufficient for
measuring the potential benefit of circular structures such as the DFD and OPEN structure.

The material composition of the variants is shown in Supplementary Materials
Figure S2.

2.2. Method for the Life Cycle Assessment

In this study, the focus of assessment is on the environmental impact of each structure
within a system of cycles. Thus, all the use-, and life cycles of components, parts and
materials inside, and outside of the assessed system (see the flow diagrams in Supple-
mentary Materials Figure S1), were inventoried following the method described by van
Stijn, Eberhardt, Wouterszoon and Meijer [47]. For example, for the “DFD” structure, the
production, use, reuse(s), recycling and disposal of components in subsequent use-cycles
were included. However, processes such as assembly, drilling, and cutting, related to the
variants were not included. Capital goods were excluded in the foreground system.
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The EN15978 building standard was followed. However, the CE LD allocation ap-
proach developed by Eberhardt, van Stijn, Nygaard Rasmussen, Birkved, and Birgisdot-
tir [46], which is more closely aligned with the multi-cycling aspect of CE, was used to
assess and divide impacts over multiple use- and life cycles. This approach has been shown
to create incentives for short-term and long-term narrowing, slowing and closing of loops
in line with the CE concept [46]. Impacts from virgin material production and disposal are
allocated in a linearly degressive way to all use cycles, with the highest share of impacts
being allocated to the cycle where the impact is induced. The re-loop impacts of a material
(i.e., reuse and recycling) are equally allocated between the use cycle(s) that share the
material or component. The approach qualitatively assumes a limited number of cycles for
materials, such as metals, that are open-loop recycled for an unknown number of times.
The approach does not consider the length of the cycles. For that reason, all cycles are
considered to have the same length, including recycling and energy recovery cycles.

The functional unit was the use of a specific circular tunnel structure with the dimen-
sions of 3 m high, 6 m wide and 7.2 m deep for multi-storey (+3 story) buildings for a
period of 200 years, in a circular system. The reference study period was set according to
the variant with the longest lifespan (i.e., 200 years) to be able to compare the variants to
one another (see Figure 1). Hence, the BAU, ECO and DFD (with a functional lifespan of
75 years) were placed 2.67 times within the 200-year reference study period. In other words,
only a 0.67 fraction of the impacts of the third placement of the structure was counted, as
the third structure would reach EoL prematurely.

The modelling was carried out in openLCA v1.9.0 software (GreenDelta, Berlin, Ger-
many), using Centre for Environmental Studies (CML) CML-IA baseline characterization
factors from which a set of 11 environmental, resource-depletion and toxicology mid-
point impact categories were assessed (global warming potential (GWP), ozone depletion
potential (ODP), photochemical ozone creation potential (POCP), acidification potential
(AP), eutrophication potential (EP), abiotic depletion potential for elements (ADPe), abiotic
depletion potential for fossil resources (ADPf), freshwater aquatic ecotoxicity potential
(FAETP), marine aquatic ecotoxicity potential (MAETP), human toxicity potential (HTP)
and terrestrial ecotoxicity potential (TETP)). CML is commonly used by the building sector,
for example in the Deutches Gesellschaft für Nachhaltiges Bauen (DGNB) certification
system. The Life Cycle Inventory (LCI) of the background system was based on the Ecoin-
vent 3.4 APOS database [64], using system processes to get aggregated results. APOS
already uses an allocation principle in the background system. However, APOS is the
best option for controlling the allocation approach in the foreground system. Furthermore,
biogenic carbon (e.g., in wood) is excluded in openLCA v1.9.0. The design variants’ LCI
was modularly structured, separating components, parts and materials based on material,
lifespan and life cycle(s). Qualified estimations were made together with the partners
on transport distances (480 km the longest transport distance in Denmark), production,
disposal, number of use- and life cycles, lifespans of components, parts and materials
based on supplier information and amount of materials. Assumptions were kept coherent
between variants (e.g., similar transportation distances and open-loop recycling scenarios).

2.3. Method for the Material Flow Analysis

The MFA was aligned with the goal and scope applied in the LCA. The material flows
(direct import and export [kg]) of the variants were analyzed using the LCI developed
for the LCA. The material import distinguished between virgin, non-virgin, renewable
and non-renewable input. The material export distinguished between reusable, recyclable,
recoverable/biodegradable and disposed materials. The material consumption of the
system was calculated by subtracting reusable and recyclable material from the import. As
MFA is based on the law of matter conservation, only the primary use cycle in the structure
over the 200-year reference study period was calculated (see the punctured line on the flow
diagrams in Supplementary Materials Figure S1).
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2.4. Method for the Sensitivity Analysis

The functional lifespan and future cycles are highly uncertain and difficult to pre-
dict [46,48]. However, they are of great importance for the design variants’ performance.
Furthermore, the long 200-year reference study period could result in a skewed and perhaps
unfair comparison of the design variants and biased conclusions. Therefore, the influence
of assumptions on lifespan and number of cycles was tested on the LCA (focusing on
global warming potential (GWP)) and MFA results. A number of “what-if” scenarios that
encompassed a “better” or “worse” case compared to the base scenario were analyzed
(see Table 1). The scenarios considered how a variant’s performance would change: (1) if
the length of the variant’s use were shorter/longer than designed for, (2) if the length of
the variant’s material cycles were longer/shorter than designed for, (3) if reuse/recycling
cycles that the variant had been designed for were not realized in the future and (4) if
more cycles than the variant were designed for occurred in the future. The sensitivity of
lifespans was tested in two ways. For the first test, the length of the use of the structure
was varied within the 200-year reference study period (i.e., varying the functional and
technical lifespans in parallel). There was no change in the amount or length of material
cycles and therefore the allocation fractions from the baseline scenario stayed the same. The
performance of the BAU, ECO and BIO was tested assuming they were used for a shorter
(25 years (L25)) and a longer (200 years (L200)) period. The performance of the OPEN struc-
ture was tested assuming that the concrete structure was kept for 200 years with increased
or decreased adaptations placing and removing the infill modules every 25 years (L200_25)
and 75 years (L200_75). Furthermore, it was examined how the OPEN structure would
perform if it prematurely reached its EoL after 75 years, aligning it with the BAU, ECO
and DFD (L75_50) and including the effect of an increased number of adaptations (every
25 years (L75_25)) within the 75 years. For the second test, the lifespan of the materials
was maintained based on the baseline scenario of the variants but varying the length of
the material cycles within the material lifespan. Thus, the number, as well as types of
cycles, change, leading to a change in the allocation fraction. For example, it is uncertain
when and how many times reuse will occur. Hence, for the DFD, the effects of keeping
the material lifespan based on the baseline scenario but varying the length of the material
cycles with 25 and 200 years within that lifespan were tested. All structural variants were
tested for adding an additional cycle (C + 1) (i.e., local reuse with no additional transport or
processes) by changing the allocation fractions. Furthermore, the DFD was tested assuming
one (C-1) or two (C-2) reuse cycles were not realized. The most uncertain cycles were
removed first, namely the cycles at the furthest end of the chain of cycles. However, current
final recycling, incineration and waste disposal practices were maintained.

Table 1. Sensitivity scenarios tested for each of the structural design variants.

Sensitivity Scenarios Abbreviation BAU ECO BIO DFD OPEN

Number of
cycles

−2 cycles C-2 x
−1 cycle C-1 x
+1 cycle C + 1 x x x x x

Lifespan

25 years L25 x 1 x 1 x 1 x 2

75 years L75_50 x 1

L75_25 x 1

200 years
L200 x 1 x 1 x 1 x 2

L200_25 x 1

L200_75 x 1

Note: Type of lifespan sensitivity analysis applied: (1) varying the length of the use of the structure and (2)
keeping the lifespan of the materials based on the baseline scenario of the variant but varying the length of the
material cycles within the material lifespan.
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2.5. Method for Developing Design Guidelines

Comparing the overall performance of one variant with another was challenging due
to burden-shifting: the environmental performance of the design variants varies from one
environmental impact and material flow category to the other. Hence, deriving design
guidelines required an evaluation methodology to determine the relative importance of
different impact and material flow categories in the LCA and MFA respectively. Various
suggestions for ranking environmental optimization strategies to support decision-making
exist and can commonly be categorized as: (1) normalization and/or weighting [65],
(2) ranking based on single-issues (e.g., based on embodied greenhouse gas emission) [65],
(3) ranking on damage-based single indicators e.g., “eco-indicator-99” [65], or (4) rank-
ing on prevention-based indicators “shadow cost” [66], or “eco-cost” [67]. There are
(dis)advantages of each method, the different methods yield different results and there is
no consensus on which method to use.

In this study, the variants and different scenarios were ranked according to the percent-
age savings of their normalized LCA results, and MFA results compared to the BAU. Each
impact category of the LCA was given equal weight to calculate an average percentage
saving of each variant across all 11 environmental impact categories compared to the BAU.
This procedure was repeated for the material flow types of the MFA. For the MFA, the
percentage savings of five material flow categories were considered: (1) total material
import, (2) percentage of virgin import, (3) non-renewable import (4) biodegraded, recov-
ered, or discarded material export, and (5) final material consumption. Then, each variant
was ranked using two methods to create transparency of the difference between using
different decision-making methods: (1) ranking based on an average percentage saving of
the LCA (i.e., all impacts) and MFA based on equal weighting, and (2) ranking based on
an average percentage saving of the GWP (i.e., single-issue method) and MFA based on
an equal weighting. Design guidelines were developed in three different formats that are
usable by the designer in the early design stage. First, from the ranking, a scorecard was
developed for all the assessed variants and scenarios. In the scorecards, the circular design
options applied in the technical, industrial and business models were also listed. Second,
rules-of-thumb on circular design principles were developed by comparing savings of
selected design scenarios with “pure” circular principles (e.g., adding/subtracting cycles,
substituting materials or extending/reducing the lifespan) towards each other. Third, nine
rules for designing circular building components were induced by identifying “lessons
learned” from comparing the LCA and MFA results of the examples of circular structures,
as well as the circular kitchens and facades of which this paper is a collaborative part of.
Hence, rules 1–5 and 7 are similar to those of the kitchens and facades whereas rules 6, 8
and 9 are slightly different for the structure.

2.6. Method for Expert Sessions

Seven semi-structured expert sessions were conducted with 49 experts within the
fields of LCA, CE design and CE built environment from academia, industry and govern-
ment. The LCA and MFA method and results, as well as the derived and induced design
guidelines, were presented to the experts. They were asked to answer two questions:
(1) do you think the design guidelines are valid? and (2) how would you improve them?
Following these questions, there was time for discussion. Answers and remarks were
summarized, categorized and analyzed from the session transcripts using an inductive
coding technique (i.e., emergent coding) to quantify the content (see Supplementary Mate-
rials Table S1) [16,68,69]. The expert sessions were used to iteratively improve the design
guidelines. Hence, the majority of the improvements suggested during the expert sessions
are implemented into the design guidelines presented in the paper at hand. Any remaining
recommendations are included in the discussion section.
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3. Results
3.1. Results of the Life Cycle Assessment and Material Flow Analysis

Table 2 summarizes the LCA and MFA results. Additionally, Supplementary Materials
Figure S3 shows a graphical representation of the results of the MFA from Table 2. Table 2
shows that all of the variants result in material import reductions from 18–69% and a
notable impact reduction in GWP from 24–84% compared to the BAU. However, only
the ECO and OPEN realize impact reductions in all 11 environmental impact categories
compared to the BAU. The ECO results in impact saving ranging from 23–41% compared
to the BAU. However, the ECO has, as the only variant, a material consumption due to
material disposal following the current practice. The other variants save 100% material
consumption compared to the BAU since all the materials go to either reuse or recycling. Of
all the variants, the OPEN structure exhibits the best performance in all 11 environmental
impact categories with high percentage savings ranging from 64–84% compared to the
BAU. In addition, the OPEN structure significantly reduces the material import by 69%
compared to the BAU. Due to noteworthy transportation impacts related to the reuse
of the heavy prefabricated concrete elements, the DFD exhibits a higher impact in ODP,
ADPe, ADPf and HTP (−46%, −34%, −14% and −15% respectively). However, the DFD
saves 69% virgin material by partially using secondary materials. The BIO variant has a
higher impact in the categories ODP, POCP, EP and ADPe (−22%, −44%, −17% and −30%
respectively) due to the forestry harvesting related to the cross-laminated timber. Thus,
the substitution of materials, e.g., biomaterials (BIO) does not necessarily lead to a better
environmental performance in all environmental impact categories. On the other hand, the
BIO structure significantly reduces the material import by 64% and uses 100% renewable
material compared to the BAU. Thus, changing the design and materials of the BAU results
in a shift of the burden to other impact categories and material flows and does not always
lead to savings. For all the variants, the environmental impact primarily originates from
material production and material processes.

Figure 2 informs on the variants temporal impact performance over the 200-year
reference study period showing tipping points between the variants depending on their
lifespan (T) based on GWP. The BIO, DFD and OPEN have quite similar emissions in year
1 but very different emissions 200 years into the future. When T < 50 years, the BIO variant
has the lowest GWP compared to the other variants. However, the BIO variant’s GWP
benefits are offset over time because it is replaced more frequently than the other variants
due to its shorter technical lifespan of 50 years thereby gradually increasing the GWP. When
T > 50 years, the OPEN and DFD structure perform better than the BIO variant. When
T > 75 years, the OPEN structure has the lowest GWP followed by the BIO structure. At
T = 200 the OPEN structure has a much lower GWP than the other variants as the primary
concrete structure of the OPEN variant is kept for 200 years, and only the infill modules are
placed or removed every 50 years due to adaptations. Hence, the benefits of the variants
are dependent on the timeframe. Therefore, it is important to not only consider the present
burdensome production but also temporal aspects such as future cycles.
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Table 2. Environmental impacts and material flows of each structural variant.

Impact Category Unit
Design Variants

BAU ECO BIO DFD OPEN

GWP kg CO2 eq. 1.32 × 104 1.01 × 104

(24%)
5.69 × 103

(57%)
8.08 × 103

(39%)
2.15 × 103

(84%)

ODP kg CFC-11 eq. 6.50 × 10−4 4.50 × 10−4

(31%)
7.90 × 10−4

(−22%)
9.5 × 10−4

(−46%)
1.60 × 10−4

(75%)

POCP kg C2H4 eq. 1.36 9.98 × 10−1

(27%)
1.97

(−44%)
1.19

(12%)
4.47 × 10−1

(65%)

AP kg SO2 eq. 3.16 × 10 2.32 × 10
(27%)

3.08 × 10
(3%)

2.34 × 10
(26%)

7.81
(64%)

EP kg PO4
3− eq. 1.05 × 10 7.77

(26%)
1.23 × 10
(−17%)

7.00
(33%)

2.78
(74%)

ADPe kg Sb eq. 1.38 × 10−2 1.02 × 10−2

(26%)
1.79 × 10−2

(−30%)
1.85 × 10−2

(−34%)
4.21 × 10−3

(69%)

ADPf MJ 7.70 × 104 5.52 × 104

(28%)
7.55 × 104

(2%)
8.81 × 104

(−14%)
1.78 × 104

(77%)

FETP kg 1,4-DB eq. 2.39 × 103 1.40 × 103

(41%)
1.72 × 103

(28%)
1.53 × 103

(36%)
4.68 × 102

(80%)

HTP kg 1,4-DB eq. 2.96 × 103 1.98 × 103

(33%)
2.68 × 103

(9%)
3.40 × 103

(−15%)
7.25 × 102

(76%)

MAETP kg 1,4-DB eq. 5.45 × 106 3.75 × 106

(31%)
5.05 × 106

(7%)
3.70 × 106

(32%)
1.35 × 106

(75%)

TETP kg 1,4-DB eq. 8.10 × 10 6.26 × 10
(23%)

1.95 × 10
(76%)

3.24 × 10
(60%)

1.16 × 10
(86%)

Import|Total
material kg 1.93 × 105 1.51 × 105

(22%)
6.87 × 104

(64%)
1.58 × 105

(18%)
5.92 × 104

(69%)

Import|Virgin kg 9.63 × 104 7.53 × 104

(22%)
3.43 × 104

(64%)
2.97 × 104

(69%)
2.93 × 104

(70%)
Import|Non-

virgin kg 0.00 0.00
(0%)

0.00
(0%)

4.95 × 104

(100%)
0.00 (0%)

Import|Renewable kg 0.00 0.00
(0%)

1.47 × 104

(100%)
0.00
(0%)

1.25 × 103

(100%)
Import|Non-

renewable kg 9.63 × 104 7.53 × 104

(22%)
1.97 × 104

(80%)
7.92 × 104

(18%)
2.86 × 104

(70%)

Export|Reusable kg 0.00 0.00 × 10
(0%)

8.84 × 103

(100%)
7.92 × 104

(100%)
0.00
(0%)

Export|Recyclable kg 8.69 × 104 6.79 × 104

(22%)
2.55 × 104

(71%)
0.00

(100%)
2.98 × 104

(66%)
Export|Recoverable/

biodegradable kg 0.00 0.00
(0%)

0.00
(0%)

0.00
(0%)

0.00
(0%)

Export|Disposed kg 9.45 × 103 7.40 × 103

(22%)
0.00

(100%)
0.00

(100%)
0.00

(100%)
Material

consumption kg 9.45 × 103 7.40 × 103

(22%)
0.00

(100%)
0.00

(100%)
0.00

(100%)

Note: The colour shows a 5-level gradient between the worst (dark grey) and best (white) value. The best value is the lowest value in all
indicators, except in the renewable, non-virgin, re-usable, recyclable and recoverable/biodegradable material export, where the highest
value is the best. Percentage saved or added compared to the BAU is shown below each value in brackets.
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The LCA and MFA results show that the OPEN structure (i.e., the use of durable
materials in a lean design that is used in the same location for as long as possible by
facilitating temporal adaptations and multiple cycles (reuse, refurbish, recycle) before
final disposal) leads to the lowest environmental impacts, material import and material
consumption in the long term. This is because the amount of the impact-intensive concrete
has partially been substituted with lightweight and low-impact timber in-fills that facilitate
easier adaptations, potentially prolonging the structure’s use. However, life prolongation,
can be achieved through a variety of different design solutions. For example, the concrete
elements of the DFD structure are also designed for a longer functional lifespan and the
structure also uses a mix of primary and secondary concrete elements. However, the DFD
does not match the OPEN structure’s performance. Therefore, it cannot be claimed that life
prolongation alone implies a universal gain in all cases. It suggests that the material design
is presumably equally as important for the environmental and resource performance as the
life-prolonging design solution.

In the short term, the best GWP performance comes from the BIO (i.e., the use of
low-impact biomaterials such as wood), OPEN (i.e., the use of a lean design) and DFD
structure (i.e., the use of secondary materials) while facilitating multiple cycles (i.e., reuse,
recycle, recover). This is due to a favorable balance between: impacts/kg, technical lifespan,
amount needed compared to virgin and non-renewable materials. Thus, the use of bio-
materials, lean design and secondary materials could focus on up-front reductions of
shorter-lived environmentally intensive building components and make the benefit of
reuse, recycling and recovery available sooner.

It was also found that optimizing the BAU by applying a leaner design that is re-
cyclable (ECO) can also reduce the environmental impact and material consumption.
However, the optimization potential is limited compared to the complete redesign of the
other variants as the ECO still builds on a business-as-usual practice.

3.2. Results of the Sensitivity Analysis

The sensitivity analysis informs on the robustness of the variants’ performance in
different circular scenarios in terms of the high level of uncertainty introduced by the
multi-cycling aspect far into the future. Figures 3 and 4 show the accumulated GWP and
MFA results respectively of the sensitivity scenarios compared to the baseline scenario of
each structural variant. Supplementary Materials Figure S4 shows more detailed graphs.

Altering the number of cycles (e.g., adding or removing a cycle) affects the variant’s
LCA performance in terms of the share of impact distributed between the cycles. It also
affects the MFA in terms of what happens to the materials after they leave the structure.
The results show that adding one cycle (C + 1) improves the GWP performance of all the
variants although the improvement is minor for the BIO and DFD. An extra cycle also
increases the amount of reusable material of the BAU, ECO, BIO and OPEN whereas the
amount stays the same for the DFD as it already contains reusable material. For the DFD the
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removal of one reuse cycle results in the same GWP performance as for the baseline scenario,
whereas the removal of two cycles results in a slightly worse performance. Furthermore,
removing one or two cycles decreases the amount of reusable material and increases the
amount of recyclable material of the DFD.
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Extending the functional lifespan to 200 years improves the GWP and decreases the
amount of material proportionally of the BAU, ECO, BIO and DFD because the variants
are only produced once within 200 years instead of every 75 years for the BAU, ECO and
DFD and every 50 years for the BIO. However, the DFD L200 has a higher GWP than
the baseline in the first 75 years. Figure 4 shows that, for the DFD baseline scenario, the
structure is built from a mix of primary and secondary prefabricated concrete elements.
After 75 years, all of the concrete elements are transported for reuse elsewhere. When the
DFD structure’s lifespan is extended from 75 years to 200 years, the concrete elements are
used for a longer time within the DFD. Consequently, this reduces the number of times
the elements can be subsequently reused. Hence, a larger share of the GWP is allocated to
the DFD. Furthermore, non-virgin elements have a shorter lifespan than virgin elements.
Thus, to ensure a longer use of the elements in the DFD, all of the prefabricated concrete
elements need to be virgin which increases the amount of virgin material and recyclable
material, and decreases the amount of non-virgin material and reusable material of the
variant. This creates a higher up-front GWP but over 200 years the GWP is much lower
compared to the baseline scenario. Fewer adaptations reduce GWP for the OPEN, whereas
more adaptations increase the GWP. As the prefabricated concrete elements make up 92%
of the OPEN structure’s mass, whereas the infill modules only make up 8%, the changes in
the infill modules’ lifespans show a minor change in the material amounts.

A shorter functional lifespan of 25 years increases the GWP and material amounts
proportionally for all the variants because they are produced more frequently than baseline
scenario.

The OPEN structure provides the most consistent and beneficial reductions in GWP,
material import and material consumption. Even with a reduced functional lifespan and
increased amount of adaptations, the OPEN still performs better than any of the other
variants and scenarios. The only scenario that surpasses the performance of the OPEN
structure is when the BIO structure, like the OPEN structure, is used for 200 years.

The results show that additional cycles and longer use improve the performance of the
variants while unfulfilled cycles and shorter use worsen the performance of the variants
compared to the variants’ baseline scenarios. Furthermore, the variants are in general more
sensitive to changes in the variants’ lifespan, especially if the lifespan is shorter than what
is set in the baseline scenario, compared to the number of cycles.

3.3. Environmental Design Guidelines for Circular Building Structure

In this section, design guidelines for designing circular building components, that
designers are recommended to consider in the early design phase, are quantitatively
derived from the findings of the LCA and MFA. The environmental design guidelines
consist of: (1) a “score-card” derived from ranking the LCA and MFA performance of
the variants and scenarios, (2) “rules-of-thumb” derived from comparing the savings of
“pure” circular principles and (3) “nine rules” for designing circular building components
identified from the lessons learned from comparing the variant’s and scenario’s LCA and
MFA results.

3.3.1. Score-Card

Table 3 shows the variants’ and scenarios’ average percentage saving compared to the
BAU baseline. The environmental performance of the variants and scenarios can signifi-
cantly differ from one environmental impact category or material flow type to the other
making it difficult to determine which variant or scenario performs best. Hence, in Table 3
the variants and scenarios are ranked based on the average percentage saving of (1) all
environmental impacts and the material flows and (2) the GWP and the material flows.



Sustainability 2021, 13, 5621 15 of 27

Table 3. Ranking of design variants and scenarios based on the average percentage LCA and MFA savings compared to the BAU (baseline).
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Based on the ranking from Table 3, the “pure” circular pathways (i.e., baseline scenar-
ios) and sensitivity scenarios for the structure are listed in accordance with their rank in
Table 4. Designers can use the score-card in the design phase to identify circular pathways
and strategy combinations in the technical, industrial and business model which leads to a
good environmental and resource performance.

Table 4. Scorecard of the “pure” circular pathways, circular design variants and scenarios and their applied design
principles.

Ranking
Variant/Scenario

Applied Design Principle

LCA +
MFA

GWP +
MFA Technical Model Industrial Model Business

Model

‘P
ur

e’
ci

rc
ul

ar
pa

th
ay

s

1 1 OPEN baseline

Adaptable (50 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), very long lifespan

(200 years)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

2 3 DFD baseline

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

3 2 BIO baseline
Biomaterials, multiple cycles (reuse,

recycle, recover), long lifespan
(50 years)

Open-loop
recycling and

incineration by
third party

Sale

4 4 ECO baseline Lean design, long lifespan (75 years)

Open-loop
recycling and

landfill by third
party

Sale

5 5 BAU baseline Linear design, long lifespan (75 years)

Open-loop
recycling and

landfill by third
party

Sale

A
ll

va
ri

an
ts

an
d

sc
en

ar
io

s

1 1 BIO L200 1
Biomaterials, multiple cycles (reuse,
recycle, recover), very long lifespan

(200 years)

Open-loop
recycling and

incineration by
third party

Sale

2 2 OPEN C+1

Adaptable (50 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), very long lifespan

(200 years for the concrete structure), 1
additional cycle (reuse)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

3 3 OPEN L200_75 1

Adaptable (75 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), very long lifespan
(200 years for the concrete structure)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

4 4 OPEN baseline

Adaptable (50 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), very long lifespan
(200 years for the concrete structure)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service
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Table 4. Cont.

Ranking
Variant/Scenario

Applied Design Principle

LCA +
MFA

GWP +
MFA Technical Model Industrial Model Business

Model

5 5 OPEN L200_25 1

Adaptable (25 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), very long lifespan
(200 years for the concrete structure)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

6 8 DFD L200 2

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle), very long lifespan (200 years)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

7 12 ECO L200 1 Lean design, long lifespan (200 years)

Open-loop
recycling and

landfill by third
party

Sale

8 9 OPEN L75_25 1

Adaptable (25 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), long lifespan (75

years for the concrete structure)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

9 14 ECO C+1 Lean design, 1 additional cycle (reuse)

Local reuse,
open-loop recycling

and landfill by
third party

Sale

10 10 OPEN L75_50 1

Adaptable (59 years between
adaptations), durable materials,

standard sized parts, multiple cycles
(reuse, recycling), long lifespan (75

years for the concrete structure)

Maintenance,
updates, reuse by

client, recycling by
third party

Sale,
maintenance
and update

service

11 6 BIO C+1
Biomaterials, multiple cycles (reuse,
recycle, recover), 1 additional cycle

(reuse)

Local reuse,
open-loop recycling
and incineration by

third party

Sale

12 16 BAU L200 1 Linear design, very long lifespan (200
years)

Open-loop
recycling and

landfill by third
party

Sale

13 11 DFD C+1

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle), 1 additional cycle (reuse)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

14 18 BAU C+1 Linear design + 1 additional cycle
(reuse)

Local reuse,
open-loop recycling

and landfill by
third party

Sale

15 13 DFD baseline

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale
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Table 4. Cont.

Ranking
Variant/Scenario

Applied Design Principle

LCA +
MFA

GWP +
MFA Technical Model Industrial Model Business

Model

16 7 BIO baseline
Biomaterials, multiple cycles (reuse,
recycle, recover), long lifespan (50

years)

Open-loop
recycling and

incineration by
third party

Sale

17 15 DFD C-1

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle), 1 less cycle (reuse)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

18 17 DFD C-2

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle), 2 less cycles (reuse)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

19 20 ECO baseline Lean design, long lifespan (75 years)

Open-loop
recycling and

landfill by third
party

Sale

20 21 BAU baseline Linear design, long lifespan (75 years)

Open-loop
recycling and

landfill by third
party

Sale

21 19 BIO L25 1
Biomaterials, multiple cycles (reuse,

recycle, recover), short lifepan
(25 years)

Open-loop
recycling and

incineration by
third party

Sale

22 22 DFD L25 2

Standard sized parts, durable
materials, demountable parts,

reusable parts, multiple cycles (reuse,
recycle), short lifespan (25 years)

Reuse by provider
or client, recycling

by third party

Sale with
takeback, or

sale and re-sale

23 23 ECO L25 1 Lean design, short lifespan (25 years)

Open-loop
recycling and

landfill by third
party

Sale

24 24 BAU L25 1 Linear design, short lifespan
(25 years)

Open-loop
recycling and

landfill by third
party

Sale

Note: Type of lifespan sensitivity analysis applied: (1) varying the length of the use of the material in the structure and (2) keeping the
lifespan of the materials based on the baseline scenario of the variant but varying the length of the material cycles within the material
lifespan.

Table 4 shows that for the “pure” circular pathways, the two different ranking methods
rank the OPEN, ECO and BAU similarly, but the DFD and BIO are ranked differently.
Similar results are seen for the sensitivity scenarios. The different ranking is caused by the
difference in the variants’ and scenarios’ average performance in the 11 impact categories
compared with their performance in GWP. For example, the DFD has a higher average
performance within all 11 impact indicators (12%) and a lower average saving in GWP
(39%) compared to the BIO, which has a lower average performance within the 11 impact
categories (6%) but a higher average saving in GWP (57%). Overall, the OPEN results in the
best performance in both ranking methods. Although ECO is the only other variant, besides
the OPEN, that obtains savings in all 11 impact categories compared to the BAU, it is only
ranked number 4 while the DFD, which does not obtain savings in all impact categories,
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is ranked number 2. This is because the DFD performs much better in the MFA, as it is
partially based on non-virgin material, while exporting reusable material whereas the ECO
is based on virgin material and exports material for recycling and disposal. Thus, the
ranking can provide a simpler decision basis that can support designers in the early design
stage, but does not always represent the variants’ performance within single indicators.

The ranking shows that focus on single optimizations (i.e., “pure” circular design
pathways) does not lead to the best performance. Scenarios that combine different circular
design options perform much better than the baseline scenarios. For example, the best
performing scenario is the BIO L200, which combines biomaterials with multiple VRPs (i.e.,
reuse, recycle and recover) and a long functional lifespan of 200 years. Thus, optimizing
the environmental impact and material consumption is not a matter of changing single
design parameters (e.g., substituting concrete with bio-materials), but considering several
design parameters in interrelation with each other (i.e., material amount, material type,
lifespan, processes, life-cycles, VRPs and design strategies). This way of designing requires
considering building components as a composite of sub-components, parts and materials
each with different and multiple use- and life-cycles. This means that circular design
options and design parameters need to be considered for each constituent of the component.
However, due to the long temporal aspect and the uncertainty it creates, the right pairing
of these parameters and the circular design options facilitated in the technical design of the
structural variants and scenarios cannot be determined, realized or guaranteed without
(re)designing the technical, industrial and business model integrally and in co-creation
with all stakeholders in the supply chain.

3.3.2. Rules-of-Thumb

Table 5 provides rules-of-thumb for designing circular building components by indi-
cating how much the environmental performance is reduced or increased when a specific
circular design option is applied. The circular design principles which lead to consistent
and significant savings in environmental impact and material flows are: adding cycles,
life-extending design, and reducing the amount of materials used. Other circular design
options (e.g., use of biomaterials, and modularity) are less consistent in their effect on the
environmental performance as they could lead to both reduced and increased environ-
mental impacts. The percentage reduction in material for a leaner variant saves (for the
compared case) approximately the same percentage on impact. Designing for reuse, but
not realizing the reuse cycle, would increase the environmental impact. The effect of not
realizing a recycling cycle is minor.
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Table 5. Preliminary rules-of-thumb for designing circular building components based on comparisons of the Life Cycle
Assessments (LCA) and Material Flow Analysis (MFA) results.
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3.3.3. Nine Environmental Design Rules for Circular Building Components

From the experience and analysis of the LCA and MFA results, nine rules for designing
circular building components were induced in Table 6. Rules 1–7 provide guidance on how
to design circular building components (i.e., considerations, dos and do-nots). Rules 8 and
9 conclude by providing advice on which design variants for circular building components
are the most circular from an environmental perspective based on the case of the structure.

It was found that (1) realizing and securing “ideal” circular designs requires the
design parameters and technical, industrial and business model to be developed integrally
and in co-creation with the supply chain. For example, reuse of the DFD structure could
require a supply chain partner to offer take-back services of the concrete elements to avoid
premature disposal. (2) The results show that the CE benefits are time-dependent. Hence,
CE entails considering the temporal aspect of building projects more extensively (i.e., all
future cycles) than is currently the practice (e.g., production and maintenance). (3) From the
results it is concluded that designing circular building components requires a different way
of viewing the components where the building component is considered as a composite
of sub-components, parts and materials with different and multiple use- and life-cycles.
Thus, for each constituent of the component circular design options and design parameters
needs to be considered. (4) The results show that optimizing single design parameters
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(e.g., material choices) can improve the environmental impact and material consumption
upfront (e.g., substituting concrete with bio-materials in the BIO variant) but does not
necessarily lead to a better environmental performance in the long term as one design
parameter may affect another. For example, switching from concrete to wood increases
the replacement rate of the BIO variant. Thus, all design parameters need to be considered
in relation to one another. (5) In the same regard, facilitating multiple rather than single
CE design options showed to improve the environmental performance of the variants.
(6) The DFD variant showed significant transportation impacts related to the reuse of the
heavy concrete elements for reuse. Therefore, impacts related to the transportation of
bulky or heavy components should be optimized. For example, by finding alternative
ways of transportation, optimizing the transportation route or reusing the components
in the vicinity. (7) Optimizing a linear (business-as-usual) design, as done for the ECO
variant, can reduce the material consumption and environmental impact but the gain is
limited compared to complete redesign as presented in the other variants. (8) For a building
component with a long lifespan, such as the structure, the best long-term performance was
found for the OPEN structure where the design is lean, durable and facilitates continuous
adaptations and multiple cycles before final disposal. However, in the case where the
structure will not last long, it is (9) better to focus on achieving up-front reductions by
applying a lean design, secondary materials or use low-impact bio-materials and make the
benefit of reuse, recycling and recovery available sooner before final disposal.

Table 6. Nine environmental design rules for circular building components.

(1) (Re)design the technical, industrial and business model integrally and in co-creation with involved
stakeholders.

(2) Consider in a project not only the present production but consider all future cycles.
(3) Consider building components as a composite of sub-components, parts and materials with different

and multiple use- and life cycles. Determine circular design options and design parameters (i.e.,
material amount, material type, lifespan, processes, life-cycle(s), VRPs and design strategies) in the
materialisation (of each constituent) of the building component.

(4) Consider all circular design parameters in interrelation with each other (e.g., material amount, material
type, lifespan, processes, life-cycles, VRPs and design strategies). Merely substituting linear materials
with more circular materials (e.g., biomaterials, low-impact, reused or recycled) does not necessarily
result in a more circular building component.

(5) Combine circular design options as opposed to focusing on a single option. For example, facilitating
multiple VRPs (reuse, repair, refurbish, recycle and recover).

(6) Optimise impacts related to transportation when the component is bulky or heavy (e.g., find another
less burdensome means of transportation, optimise the transportation route or minimise transport
through local reuse).

(7) Prefer complete re-design of a building component above optimising the current linear
(business-as-usual) variant.

(8) For a building component with a long functional lifespan (e.g., the circular structure), the best
environmentally performing design applies the following principles:

• Uses durable materials with a very long lifespan while keeping the design as lean as possible.
• Keeps the components and materials in place for as long as possible by facilitating adaptations

and adjustments over time.
• Multiple cycles are organised and incentivised after end of use of the components and materials

to prolong the use (e.g., reuse) and close the loop (e.g., recycling) before final disposal (e.g.,
energy recovery).

(9) If the component will not last long, then the best environmentally performing design for a building
component (e.g., the circular structure) applies the following principles:

• Applies a lean design, secondary materials or uses low-impact biomaterials if they have a
favourable balance between: impacts/kg, technical lifespan, amount needed compared to virgin
and non-renewable materials.

• Multiple cycles are organised and incentivised after end of use of the components and materials
to prolong the use (e.g., reuse) and close the loop (e.g., recycling) before final disposal (e.g.,
energy recovery).

3.4. Results of the Expert Sessions

Forty-nine experts and practitioners from academia, industry and government in the
field of LCA, CE design and CE built environment evaluated the LCA and MFA results
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and the environmental design guidelines. The results of the expert sessions are shown in
Supplementary Materials Table S1. In 57% of the expert sessions, the participants raised that
the design guidelines overall did not deviate from existing assumptions and circular design
strategies. However, individual aspects of individual guidelines were questioned in 43% of
the expert sessions. These remarks were used to iteratively improve the design guidelines
of which the majority of the suggested improvements were implemented. The remaining
recommendations are elaborated on in the discussion section. An important concern
raised was on the accuracy of the results, as the design guidelines are based/depend on
assumptions reaching far into the future (i.e., very long lifespans and future cycles) that
are associated with high uncertainty. Thus, in 43% of the expert sessions, it was argued
that the guidelines’ validity largely depends on the industry determining, documenting
and realizing future cycles. Related to this, the experts suggested in 57% of the expert
sessions that future cycles are beyond the practice and scope of building projects. The
transparency of the applied LCA and MFA method, as well as the results and limitations of
the study, were regarded as crucial for the validity of the design guidelines. To improve the
certainty of the guidelines, rigorous sensitivity analysis of the circular design parameters
was suggested and is included within the scope of this study. Improving the usability of the
design guidelines was recommended in 71% of the sessions by making them less abstract,
clarifying the terminology used and providing concrete examples and practical advice. In
41% of the sessions, it was stressed not only to induce the guidelines from the LCA, but to
qualitatively derive them directly, and therefore the scorecard and rules-of-thumb were
developed.

4. Discussion and Conclusions

Knowledge on which circular design options result in the optimum environmental
performance to support design and decision-making is still lacking. It is suggested that a
broader scope is needed to transition to a circular built environment to significantly reduce
waste, resource use and environmental impacts emanating from the building industry.
In this paper, environmental design guidelines for circular building components were
developed by applying LCA and MFA to a case of a structure in a Danish context. The LCA
and MFA assessed not only the environmental performance of each individual use- and
life cycle of the building component but its entire chain of use- and life cycles. The design
guidelines presented provide theoretical insight and concrete, practical support on how to
design circular building components with a competitive environmental performance.

The circular design options assessed in this paper have also been suggested by others
(e.g., bio-materials, secondary materials, longer use, lean design) [33,34]. In that regard, it
is questionable whether there is a need for extending the scope of the LCA and MFA in
terms of assessing and designing multi-cycling systems as it points to some of the same
conclusions derived from existing methods. However, unlike other studies, the findings
suggest that individual circular design options and design parameters cannot alone secure
the most optimal environmental performance but rather effective combinations are needed.
For example, for a long-lived structure, the best option combined a lean and durable
design that facilitates adaptations and multiple cycles before final disposal. Furthermore,
for a short-lived structure, the best option combined a lean, bio- or secondary material-
based design that facilitates multiple cycles before final disposal. Further investigation is
needed to identify the most effective combinations of different circular design options and
design parameters. Similarly, design for disassembly has been praised by others [70,71]
but in this paper, the DFD variant was found to be less beneficial due to the burdensome
transportation of the concrete elements for reuse. However, it is possible that the benefits
of the DFD will significantly increase if the transportation impacts are reduced by using a
less burdensome means of transportation, optimising the transportation route or reduce
the need for transportation through local reuse.
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Implementation of multi-cycling environmental impact assessment and the design
guidelines could have significant implications in multiple areas: (1) LCA practice, (2) the
building industry and (3) the circular approach in the building industry.

(1) The industry focus for structures is now often on material substitution (e.g., light-
weight structures, bio-based alternatives such as CLT, design for disassembly and
durability) and limited to consider only one cycle at a time, independently of one
another. The findings of this paper suggest that this focus alone does not lead to
optimum long-term environmental performance. Instead, for components with a long
functional–technical lifespan, the design guidelines entail facilitating a combination of
circular design options: a resource-efficient design, longer use through adaptable de-
sign, substituting high-impact materials with low-impact biomaterials and facilitating
multiple cycles before final disposal.

(2) The LCA and MFA approaches used in this study are currently not included in the
LCA standards or practice tools. Implementation of the method is not straightforward
as it would require changing the LCA scope, the calculation method, and the datasets
of the different LCA databases used by the building industry.

(3) It is stressed that the variants in this study are not proven concepts, but concept ideas
about ideal circular solutions. As a result, the circularity facilitated in the technical
design for the design variants spans over chains of cycles that happen at different
points in time and in some cases far into the future. Some of the major challenges of
facilitating circularity arise because building projects consist of multiple processes,
functions and stakeholders that are subject to change over time [21] and do not nec-
essarily run in sequence but in parallel. The long life of building components and
materials increases the uncertainty of the circularity. Furthermore, the structural vari-
ant with the best environmental performance might not be the most viable variant for
the building industry. Hence, to guarantee the circularity would require a completely
different approach in the building industry, including new market mechanisms, busi-
ness models, supply-chain dynamics and multidisciplinary stakeholder co-creation
throughout the value chain. Furthermore, circularity calls for moving away from
the current short-term “one-off” independent project focus to a long-term project-
transcending approach, where buildings are perceived as a composite of components,
parts and materials with different and multiple use- and life cycles in a CE (i.e., to
consider materials in different cycles).

The generalizability of the design guidelines is questionable for several reasons. Firstly,
the performance of the variants is temporal and site-specific. The study presented relies on
static LCA. Hence, dynamic factors (e.g., technological progress of resource and energy
consumption, energy grid mix, waste management, design and innovation and production
efficiency) during the variants’ long service life that influence the environmental perfor-
mance of the variants were not considered. For example, transportation was modelled
using present-day datasets. The variants are also aimed at a Danish context. Secondly,
the design guidelines are based on four long-lived circular building structures; however,
many more CE design solutions exist. Hence, the design guidelines would benefit from
further validation. To strengthen the derived design guidelines, further testing of circular
building structures based on other CE pathways is needed. Furthermore, whether the
design guidelines work in every case should be investigated and which (if any) only work
in some cases. It is important to stress that different “rules” may apply for designing other
short-lived and medium-lived circular building components. For example, the design
guidelines for circular kitchen and facade variants of the joint project that this paper is a
part of look slightly different [47]. For the kitchen and facades, the best design was durable,
used bio- or secondary materials, facilitated easy maintenance and multiple cycles before
final disposal. However, if multiple cycles cannot be facilitated the best design for the
kitchen and façade was lean, used for as long as possible, used bio- or secondary materials
that can be biodegraded or recycled.
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The outcome of the LCA and MFA resulting in the design guidelines also depends on
the underlying method applied and assumptions in the LCI. Performing a scenario-based
sensitivity analysis provided valuable insight into how the results may be influenced by
important design parameters such as the number of cycles and the length of the lifespan. It
is therefore recommended that future assessments, similar to the one performed herein, are
combined with rigorous sensitivity analyses. Furthermore, the design guidelines rely on
attributional LCA, where the environmental impacts that can be attributed to the building
components were quantified [65]. Hence, the recommendations of this paper are only
valid at the building component level and cannot be directly projected to the societal
level (i.e., what is right for the building component is not necessarily right for society).
This is an important consideration in order to move whole societies towards reaching
sustainability goals. It is also important to notice that design principles which save impacts
over time (e.g., life-prolonging design solutions such as “design for disassembly”) do not
necessarily reduce environmental impacts and resource consumption today. Subsequently,
such principles might not facilitate nearing climate agendas such as the EU’s 2030 and 2050
climate goals. Thus, both short-term and long-term solutions are needed. Additionally,
allocating environmental impacts to future cycles, such as in this paper, may lead to
greenwashing if impacts are unaccounted for and hinder “real” progress.

Other ranking methods, e.g., prevention-based single-indicator systems such as “eco
cost” or “shadow cost” may lead to other conclusions than those presented in this paper.
Furthermore, this study focused on evaluating the variants’ circularity based on environ-
mental performance. However, other circularity metrics exist (e.g., considering environ-
mental performance in relation to economic performance) [72]. Therefore, multi-criteria
assessment methods are needed to fully assess the circularity of a building component.

From the above, it is concluded that there are still various opportunities for further de-
velopment, testing and implementation of the presented environmental design guidelines.
However, the derived design guidelines are an important step to support the industry
in developing “ideal” circular building components and they provide insight into the
environmental effect of different combinations of circular design principles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13105621/s1, Figure S1: Flow diagrams of the design variants, Figure S2: Material Shares,
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