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Abstract—Magnetic chokes are conventionally utilized at the
DC or AC side of the Adjustable Speed Drives (ASDs) to suppress
low order harmonics of 0–2 kHz. Recently, the frequency range of
9–150 kHz has been noticed as a new disturbing frequency range,
interfering with the distribution networks. Due to the novelty of
this topic, so far, there has not been a thorough investigation
for the effect of DC and AC choke configurations on 9–150 kHz
emissions, especially for the three-phase ASDs. In this paper, the
effect of DC and AC choke configurations on Common-Mode
(CM) current emissions at the frequency range of 9–150 kHz
is broadly surveyed in the three-phase ASDs. Subsequently, the
comprehensive equivalent models of the system are presented
for each configuration of DC and AC chokes. This investigation
is based on the comparative analysis of the system’s transfer
functions according to the presented single-phase equivalent
model, mathematical calculations, and the three-phase system
circuit. Consequently, the presented approach is highly useful to
minimize the drive system volume, as the designer can predict
the choke configuration of the smallest size for suppressing 9–150
kHz emissions.

Index Terms—Common-Mode noise, filter design, three-phase
adjustable speed drive, 9-150 kHz.

I. INTRODUCTION

Nowadays, a great deal of the world’s energy is harvested

through Adjustable Speed Drives (ASDs) [1]–[3]. Subse-

quently, according to Fig. 1, more than 40% of the global

energy is consumed by the electric-motor driven systems [4].

Until now, drive manufacturers should meet the the Electro-

magnetic Compatibility (EMC) requirements for the frequency

ranges of 0–2 kHz and 0.15–30 MHz [5]. Recently, due to the

significant advances in power electronics technology, there is

a growing tendency to increase the switching frequency of

electronic devices in order to improve the operation and reduce

the total size of the system. In fact, the switching frequency

of these devices typically takes place at the range of 2–150

kHz. Accordingly, the characteristic of emissions has been

changed in terms of magnitude and frequency range [6]–[11].

As a result, the frequency range of 2–150 kHz is recognized

as a new frequency range, interfering with the distribution

networks [12]–[14]. This frequency range is divided into 2–9

kHz and 9–150 kHz ranges according to the IEC (International

Electrotechnical Commission) Sub-Technical Committee 77A

(SC77A). Consequently, due to the importance of this new

frequency range, the drive manufactures are taking serious

steps to design filters for this range in order to devise for

the emerging EMC standards of the 2–150 kHz [15].

Electromagnetic Interference (EMI) is divided into two

types: 1- Differential-Mode (DM) currents 2- Common-Mode

(CM) currents. Separating these two emissions is of great

importance to design the DM and CM filters, meeting the

standard requirements. Although many studies have been

conducted to separate these two emissions for the single-phase

drive systems, there are very limited investigations for the

three-phase ASDs. These investigations even get narrower for

the emerging range of 2–150 kHz. Recently, a limited number

of investigations have been carried out for analyzing the factors

affecting the filter design at the new frequency range of 2-150

kHz.

In [15], an improved asymmetrical model of AC machine

compatible with the emerging 2–150 kHz standard has been

proposed. Moreover, an approach has been suggested to model

different sub-systems in the three-phase ASD. Accordingly,

the presented model can be useful for simulation-based filter
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Fig. 1. Estimated allocation of worldwide electricity demand by end-use [4].

design at the frequency range of 2–150 kHz through prediction

of resonances in the system.

In [16], factors affecting the filter design in the three-

phase ASDs have been investigated for 0–2 kHz and the new

frequency range of 2–9 kHz. Accordingly, effects of DC-link

filter, cables, and EMI filter (including CM capacitors and

inductors) have been analyzed by presenting a system model.

In [17], an estimation method has been proposed to predict

resonances in the three-phase ASDs for the frequency range

of 9-150 kHz. In fact, the estimation approach is based on the

impedance analysis of the CM equivalent circuit model for the

three-phase ASD. Consequently, the CM noise circulations in

the drive system can be analyzed for the EMI filter design at

the new frequency range of 9-150 kHz.

Fig. 2 shows the typical configuration of a three-phase ASD.

According to Fig. 2, in order to comply with the standard

related to the low frequency range of 0–2 kHz, chokes are

placed at the DC or AC side of the system, known as DC

and AC chokes, respectively. Although theses chokes are con-

ventionally aimed at suppressing the low frequency harmonics

of 0–2 kHz, their configurations can affect emissions in the

emerging frequency range of 2–150 kHz. Until now however,

as far as our knowledge goes, there has not been a clear

investigation for the effect of choke configurations on the EMI

emissions.

In this paper, effects of DC and AC choke configurations on

the CM emissions in the frequency range of 9–150 kHz are

investigated. Accordingly, the CM equivalent circuits of the

three-phase drive system, including DC and AC chokes, are

presented. In this study, an approach is proposed to predict

the attenuation/amplification range of the CM current from

the motor to Line Stabilization Network (LISN), based on the

transfer functions of the equivalent CM circuit. As a result, the

proposed strategy gives the designer useful information on the

most effective choke configuration to suppress the emissions

of 9–150 kHz.

II. CM EQUIVALENT CIRCUIT MODEL

According to Fig. 2, there are four main CM loops in the

system: 1- CM current flowing through the motor (ig−Motor)

2- CM current flowing through the DC-Link filter (ig−DCLink)

3- CM current flowing through the EMI filter (ig−EMI ), and

4- CM current flowing through the LISN (iLISN ). In order

to analyze the effect of DC and AC choke configurations on

emissions of 9–150 kHz range, the Laplace transfer functions

of the CM loops (ig−DCLink/ig−Motor, ig−EMI/ig−Motor,

and iLISN/ig−Motor) are extracted. In fact, the main duty of

the filters is to reduce the magnitude of the transfer function

iLISN/ig−Motor although analysis of ig−DCLink/ig−Motor

and ig−EMI/ig−Motor is also useful for designing the filters.

Therefore, by defining these transfer functions, it can be

predicted how ig−Motor is amplified or attenuated at the grid

side based on configurations of DC or AC chokes.

The aforementioned transfer functions of the system will

be extracted based on the single-phase CM equivalent circuit

of the drive with configurations of DC and AC chokes.

Subsequently, Fig. 3 shows the presented CM equivalent

circuit when the DC or AC chokes are assigned in the drive

system. It is to be noted that the equivalent circuit is extracted

under the assumption that the drive system is symmetrical and

balanced. In this equivalent model, the parasitic elements of

the EMI filter, chokes and AC machines are extracted through

the experimental measurements [15]. This is due to the fact

that these parasitic elements are critically important when

analyzing the CM emissions. Subsequently, Table I describes

the parameters and specifications of the investigated drive

system.

Fig. 4 shows the current route in ASD at a specific com-

mutation interval of rectifier diodes. According to Fig. 4 (a),

at each commutation interval of diodes, DC chokes add the

impedance of 2×Ldc to the CM loop. On the other hand,

according to Fig. 4 (b), AC chokes add the impedance of

2×Lac to the CM loop at each commutation interval of rectifier

diodes. Therefore, in order to draw a fair comparison, the

inductance values assigned for each DC choke (Ldc) and

AC choke (Lac) are 1.25 mH; thus, at each commutation

interval of the system, a circuit loop is created containing

the impedance of 2×1.25 mH for both DC and AC choke

configurations.

According to Fig. 3, the CM voltage (i.e., vCM as shown

in Fig. 2) is generated by two sources: 1- Grid side volt-

age through the diode rectifier, which is the low-frequency

CM voltage (vCM−LF ), and 2- Pulse-Width Modulation

(PWM) output voltage through the inverter, which is the high-

frequency CM voltage (vCM−HF ). In this paper, the authors

have modeled the CM voltage based on the high frequency

PWM signals (vCM−HF ). Then the simulated transfer func-

tions of the presented model along with the mathematical

equations are provided to evaluate the procedure. It is to be

noted that according to Fig. 3, the LISN utilized in the system

is based on the CISPR16 for analysis of the 9–150 kHz range.



Fig. 2. Typical motor drive system, excluding motor cables.
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Fig. 3. CM equivalent circuit of the drive system when either AC or DC chokes are assigned in the system.

TABLE I
SPECIFICATIONS OF THE DRIVE SYSTEM

Parameters Ldc, Cdc, rsdc, Rpdc, Cpdc Lac, rsac, Rpac, Cpac Lw , Cw , Cws1, Cws2, rs, Rw , Rf1, Rf2 Switching Frequency Rated Power

Value
1.25 mH, 1000 μF, 0.28 Ω,

1.29 kΩ, 228 pF
1.25 mH, 0.28 Ω,
1.29 kΩ, 228 pF

9.4 mH,4.6 pF, 680 pF, 1100 pF,
9.5 Ω, 12.7 kΩ, 20 Ω, 13 Ω

5 kHz 7.5 kW

III. COMPARATIVE STUDY

In this section, the ability of DC and AC choke configu-

rations in suppressing emissions at 9-150 kHz is compared.

This comparison is based on the the transfer functions of CM

equivalent circuit (see Fig. 3). According to the discussion in

the previous section, in order to have a fair comparison, DC

and AC choke volumes are chosen to get the same performance

in terms of current Total Harmonic Distortion (THD).

A. ASD with DC Choke Configuration

In order to extract the transfer functions of the presented

model in, vCM−HF has been analyzed in the ANSYS Sim-

plorer software to model the CM voltage created by the PWM

inverter. To validate the transfer functions extracted by AN-

SYS software, the mathematical calculations of these transfer

functions with constant coefficients have been extracted as

(1)–(3). Also, the constant coefficients of (1)–(3) are provided

in the Appendix. Consequently, Fig. 5 shows the compari-

son between the modeled transfer functions through ANSYS

Simplorer software and the mathematically calculated ones.

According to Fig. 5, the model and calculations accurately

match with each other, validating the extracted model in the

software.

ig−DCLink(s)

ig−Motor(s)
=

∑9
i=0 ais

i

∑9
i=0 misi

(1)
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Fig. 4. Current route in ASD at a commutation interval of rectifier diodes.
(a) ASD with DC choke, (b) ASD with AC choke.

ig−EMI(s)

ig−Motor(s)
=

∑9
i=0 bis

i

∑9
i=0 misi

(2)

iLISN (s)

ig−Motor(s)
=

∑8
i=0 cis

i

∑9
i=0 misi

(3)

B. ASD with AC Choke Configuration

With the same scenario explained above, transfer func-

tions of the system can be extracted when the AC chokes

are assigned in the system. Subsequently, Fig. 6 shows the

comparison between the modeled transfer functions of the

system assigned with DC and AC chokes. According to Fig. 6

(c), at the frequencies less than 30 kHz, AC chokes provide

better attenuation/damping of the CM current at the LISN side

though at higher frequencies, DC chokes outperform in terms

of CM current attenuation. This is a critically important factor

in filter design for the emerging frequency range of 2–150

kHz, as the designer can choose the most optimum choke

configurations to minimize the measured CM current flowing

through the LISN.

To evaluate the ability of the presented single-phase models

to predict the amplification/attenuation rate of ig−Motor at the

LISN side, the Fast Fourier Transform (FFT) of the related

currents in the real-case three-phase drive system (see Fig. 2)

have been extracted as shown in Fig. 7, using MATLAB

software. In fact, these plots are provided for both DC and

AC choke configurations in the drive.

By comparing Figs. 5, 6 and 7, it can be noted that

the extracted model can optimally predict the CM current

behavior. According to Fig. 7 (c), it can be realized that at low

frequencies (less than 30 kHz), harmonics at the LISN side are

more effectively attenuated when the AC chokes are assigned

in the system; however, at higher frequencies, the DC chokes

prove to be more effective. These findings are fully in alliance

with the predictive model in Fig. 6 (c). Moreover. According

to Fig. 7 (c), it can be noted that if only DC chokes are applied

(a)

(b)

(c)

Fig. 5. Modeled (ANSYS) and calculated transfer functions of the system

when DC chokes are assigned. (a)
ig−DCLink(s)

ig−Motor(s)
, (b)

ig−EMI (s)

ig−Motor(s)
, (c)

iLISN (s)
ig−Motor(s)

.

in the system, bigger CM chokes may be needed. This could

be attributed to the fact that according Fig. 7 (c), when using

only DC chokes in the system, the cut-off frequency of the CM

filter should be at a lower frequency range as the amplitudes

of the transfer function is higher at below 30 kHz compared



(a)

(b)

(c)

Fig. 6. Comparison between the modeled transfer functions of the system

assigned with DC and AC chokes. (a)
ig−DCLink(s)

ig−Motor(s)
, (b)

ig−EMI (s)

ig−Motor(s)
, (c)

iLISN (s)
ig−Motor(s)

.

to when utilizing AC chokes in the system.

IV. CONCLUSION

In this paper, an approach was proposed to compare the

capability of DC and AC chokes in suppressing emissions at

the frequency range of 9-150 kHz. The presented method is

based on calculation of the system transfer functions of the

equivalent single-phase CM circuit. The results validate that

the extracted transfer functions can predict the behavior of dif-

ferent choke configurations towards attenuation/amplification

of ig−Motor at the LISN side of the three-phase ASD.

Accordingly, in this case study, it is shown that at low

frequencies (9-30 kHz), AC chokes could more effectively

attenuate ig−Motor, while DC chokes outperformed at higher

frequencies (30-150 kHz). This approach is highly useful to

optimize the size of the system, as the designer can achieve

the choke configuration of the smallest volume leading to

effectively suppressing the emissions.

APPENDIX

TRANSFER FUNCTION COEFFICIENTS [SEE (1)–(3)]

ig−DCLink(s)

ig−Motor(s)
:

a0=1.3230×10156, a1=1.2888×10152, a2=2.8991×10149,

a3=1.5391 × 10145,a4=5.7998 × 10140, a5=1.4739 × 10136,

a6=2.7040 × 10131, a7=2.0317 × 10126, a8=1.82 × 10120,

a9=2.5411× 10111.

m0=4.9672 × 10158, m1=2.7333 × 10154, m2=4.5231 ×
10150, m3=2.1280×10146, m4=5.0183×10141, m5=5.1377×
10136, m6=3.3218×10131, m7=2.0692×10126, m8=1.8284×
10120, m9=2.5527× 10111.

ig−EMI(s)

ig−Motor(s)
:

b0=1.8305× 10157, b1=1.7002× 10153, b2=3.6430× 10150,

b3=1.9250 × 10146,b4=4.4298 × 10141, b5=3.6631 × 10136,

b6=6.1777 × 10130, b7=3.7499 × 10124, b8=8.3355 × 10117,

b9=1.1584× 10109.

iLISN (s)

ig−Motor(s)
:

c0=4.7709× 10158, c1=2.5504× 10154, c2=5.9016× 10149,

c3=4.9053 × 10144,c4=8.5799 × 10138, c5=7.3746 × 10132,

c6=5.0120× 10126, c7=2.3474× 10120, c8=5.1758× 10113.
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