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A Lyapunov-Based Nonlinear Power Control
Algorithm for Grid-Connected VSCs

Bo Fan, Member, IEEE, and Xiongfei Wang, Senior Member, IEEE

Abstract—For grid-connected voltage source converters
(VSCs), it is commonly required that its power outputs
can track the power references given by operators under
various grid conditions. To achieve this objective, this ar-
ticle presents a Lyapunov-based nonlinear power control
algorithm. The system dynamics is developed in the sta-
tionary frame, which facilitates the design of the control
algorithm in the absence of phase-locked loops (PLLs) that
may cause instability issues in ultra-weak grids. A virtual
resistance is then introduced to allow fast power tracking
performance and relax the requirement on accurate system
parameters. Further, to simplify the control design, the
quasi-stationary line (QSL) impedance model is applied,
based on which a nonlinear control algorithm that only
utilizes the output voltage and current information is devel-
oped. Afterward, the stability of the closed-loop system is
analyzed via the Lyapunov theory. The theoretical results il-
lustrate that the power regulation goal can be achieved and
the VSC can maintain synchronization with the power grid.
Finally, experimental results demonstrate the effectiveness
of the proposed control algorithm under temporary grid
faults and various short circuit ratios (SCRs).

Index Terms—Nonlinear power regulation, grid-
connected voltage source converter, Lyapunov theory,
ultra-weak grid.

I. INTRODUCTION

IN the past decades, voltage source converters (VSCs) have
been widely applied in power grids due to their flexibility in

control and operation, e.g., microgrids [1], renewable energy
systems [2], flexible ac transmission systems [3], etc. For a
grid-connected VSC, a common control objective is to regulate
its active and reactive power outputs to track their references
[4], [5].

Traditionally, voltage-oriented vector-current control [6], [7]
methods are utilized to achieve this objective. A phase-locked
loop (PLL) is adopted to synchronize the VSC with the
grid [8]. However, the PLL-based synchronization strategy
may suffer from stability issues, especially when the VSC is
connected to a weak grid [9], [10]. To address the instability
issue induced by the PLLs, one solution is to introduce extra
feedforward or feedback terms in the current control loop,
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such as the output impedance reshaping method [11] and
small-signal disturbance compensation control [12]. However,
these solutions increase the implementation complexity of the
current control loop and are dependent on the operating point
of the system. An alternative is to modify the PLL based on
the concept of complex phase angle vectors to eliminate the
frequency-coupling terms induced by traditional PLLs [13].
Recently, an improved parameter tuning method is presented
in [14] to alleviate the negative impact of PLLs in weak grids.
Although the instability effect of the PLL is mitigated by
these strategies, it is still difficult to maintain the stability of
VSCs connected to ultra-weak power grids [15]. Moreover, the
nonlinearities of PLL dynamics, which are usually ignored in
the aforementioned literature, may jeopardize the stability of
these PLL-based controllers under large grid disturbances [16],
[17].

Based on the aforementioned analysis, control algorithms
without PLLs are preferred to ensure the stability of grid-
connected VSCs. In [18], a PLL-free direct power control
(DPC) strategy is developed based on the instantaneous active
and reactive power theory. Further, a model predictive DPC
strategy is proposed to optimize the switching frequency of
the VSC [19]. However, since the switching frequency varies
with the VSCs’ power outputs when using these strategies, un-
desirable broadband harmonics may be injected into the power
grid. Extra efforts on the filter design are therefore required
to eliminate these harmonics. To deal with this problem, a
DPC strategy using space-vector modulation is proposed with
constant switching frequency [20]. Nevertheless, the stability
analyses in weak grids are not performed in [20]. Recently,
Gui et. al. [21] developed a voltage-modulated DPC method
for weak grid-connected VSCs. Better control performance is
achieved by eliminating nonlinear terms in active and reactive
power dynamics, yet the stability of the system is analyzed
based on the linearized small-signal model.

To allow a wide application of grid-connected VSCs, non-
linear control and stability analysis approaches are needed,
e.g., the Lyapunov method [22]. In [23], a Lyapunov-based
controller is developed for a generalized grid-connected VSC
to regulate its power outputs. Further, Altin et. al. [5] de-
signed a sliding-mode controller in the natural frame with
a reduced number of voltage and current sensors. However,
these algorithms require accurate information of the system,
e.g., transmission line parameters, grid frequency and voltage,
etc., which is difficult to obtain in practice. To relax this
requirement, a robust DPC is designed where the parameter
uncertainties are compensated by a robust design [24]. But
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Fig. 1. Overall control diagram of a grid-connected VSC.

the discontinuous signum function used in the robust design
can introduce high-frequency oscillations in the voltage control
signals, which increases the power losses of power converters.
Moreover, the upper bounds of parameter uncertainties are still
required in the robust DPC. Therefore, there is a need to design
a nonlinear power controller for grid-connected VSCs without
the requirement of system parameters.

To this end, in this study, a Lyapunov-based nonlinear
power control algorithm is proposed to regulate the active and
reactive power outputs of grid-connected VSCs. To facilitate
the design of control algorithms in the absence of PLLs, the
dynamic model of the system is developed in the stationary
frame. A virtual resistance is introduced to allow fast power
tracking performance and relax the requirement on accurate
system parameters. The main contributions of this study are
summarized as follows:

1) To meet the control requirement of grid-connected VSCs,
a nonlinear power control algorithm is presented in this study
to regulate the active and reactive power outputs to track their
references accurately;

2) The proposed algorithm can work robustly under a wide
range of grid conditions, e.g., temporary grid faults, various
short circuit ratios (SCRs). The synchronization of the VSC
with the grid can be guaranteed in the presence of grid
frequency deviations;

3) The stability and robustness of the closed-loop system are
analyzed through the Lyapunov synthesis. The system states
are proved to converge to their equilibria exponentially.

The remainder of this article is organized as follows. Sec-
tion II illustrates the QSL model of a grid-connected VSC
along with a virtual resistance. In Section III, the nonlinear
control algorithm, as well as its stability and robustness anal-
yses, is developed based on the Lyapunov theory. Experimental
results are provided in Section IV to show the merits of the
designed algorithm. Finally, Section V concludes this study.

Notation: For a complex variable 𝑥, let 𝑥∗ and ‖𝑥‖ denote
its conjugate and modulus, respectively.

II. MODELING OF GRID-CONNECTED VSCS

Fig. 1 illustrates the overall control diagram of a typical
three-phase VSC connected to the grid through an LC-filter

Lg

vabc vgabc

iabc

Rg

Simplified VSC Grid

Fig. 2. Simplified topology of a grid-connected VSC.

and a transmission line. Based on the active and reactive
power regulation errors, a nonlinear power controller is utilized
to adjust the voltage reference of the capacitor to regulate
the active and reactive power outputs. The inner dual-loop
proportional-resonant (PR) controller is then applied to realize
the voltage reference by modulating the PWM signals of the
VSC.

Since the timescale of the inner dual-loop PR control is
designed much faster than that of the outer nonlinear power
control, the VSC and its output LC-filter with the inner dual-
loop control can be assumed as a voltage source with ideal
reference tracking [25], i.e., 𝑣αβ = 𝑣 (𝑟𝑒 𝑓 )αβ. The simplified
topology of the grid-connected VSC is given in Fig. 2.

A. System Model With Virtual Resistance
The dynamics of the simplified system given in Fig. 2 can

be expressed as 
𝐿𝑔 ¤𝑖a + 𝑅𝑔𝑖a = 𝑣a − 𝑣𝑔a
𝐿𝑔 ¤𝑖b + 𝑅𝑔𝑖b = 𝑣b − 𝑣𝑔b
𝐿𝑔 ¤𝑖c + 𝑅𝑔𝑖c = 𝑣c − 𝑣𝑔c

(1)

where 𝐿𝑔 > 0, 𝑅𝑔 > 0 are the unknown inductance and
resistance of the transmission line, 𝑖a, 𝑖b, 𝑖c denote the output
currents, 𝑣𝑔a, 𝑣𝑔b, 𝑣𝑔c denote the grid voltages, and 𝑣a, 𝑣b,
𝑣c denote the output voltages which are treated as the control
inputs of the simplified system. Next, according to the Clark
transformation, the line dynamic model in the stationary frame
(𝛼-𝛽 frame) is given as{

𝐿𝑔 ¤𝑖α + 𝑅𝑔𝑖α = 𝑣α − 𝑣𝑔α
𝐿𝑔 ¤𝑖β + 𝑅𝑔𝑖β = 𝑣β − 𝑣𝑔β

(2)

where 𝑖α, 𝑖β denote the transformed output currents, 𝑣𝑔α, 𝑣𝑔β
denote the transformed grid voltages, and 𝑣α, 𝑣β denote the
transformed voltage control inputs.
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Based on the linear system theory [26], for given voltage
control inputs 𝑣α and 𝑣β, it can be proved that the line
currents 𝑖α, 𝑖β will exponentially converge to their steady-state
trajectories with a convergence rate of 𝑅𝑔/𝐿𝑔. Therefore, to
allow fast power tracking performance, it requires that the
output currents converge to their steady-state trajectories fast
enough. Hence, a virtual resistance is applied in this study
to obtain a larger output current convergence rate, which is
expressed {

𝑣α = 𝑢α − 𝑅𝑣 𝑖α
𝑣β = 𝑢β − 𝑅𝑣 𝑖β

(3)

where 𝑅𝑣 denotes the virtual resistance, 𝑢α and 𝑢β denotes
the virtual voltage control inputs behind the virtual resistance.
Substituting (3) into (2) yields the system dynamics with the
virtual resistance as{

𝐿𝑔 ¤𝑖α + (𝑅𝑔 + 𝑅𝑣 )𝑖α = 𝑢α − 𝑣𝑔α
𝐿𝑔 ¤𝑖β + (𝑅𝑔 + 𝑅𝑣 )𝑖β = 𝑢β − 𝑣𝑔β

. (4)

Hence, for given virtual voltage control inputs 𝑢α, 𝑢β, the
line currents 𝑖α, 𝑖β will exponentially converge to their steady-
state trajectories with a convergence rate of (𝑅𝑔 + 𝑅𝑣 )/𝐿𝑔,
which is larger than the original one 𝑅𝑔/𝐿𝑔 with a positive
virtual resistance 𝑅𝑣 . Moreover, a larger 𝑅𝑣 allows the designs
of power controllers with faster power tracking performance.

Thereafter, as in [27], [28], the QSL approximation is
applied for system (2) to allow simple control designs. In the
𝛼-𝛽 frame, the QSL impedance model of (4) can be expressed
as {

−𝜔𝑔𝐿𝑔𝑖β + (𝑅𝑔 + 𝑅𝑣 )𝑖α = 𝑢α − 𝑣𝑔α
𝜔𝑔𝐿𝑔𝑖α + (𝑅𝑔 + 𝑅𝑣 )𝑖β = 𝑢β − 𝑣𝑔β

. (5)

where 𝜔𝑔 is the angular frequency of the grid voltage 𝑣𝑔abc.
For ease of expression, define 𝑣αβ = 𝑣α + j𝑣β, 𝑢αβ = 𝑢α +

j𝑢β, 𝑣𝑔αβ = 𝑣𝑔α + j𝑣𝑔β, and 𝑖αβ = 𝑖α + j𝑖β with j being the
imaginary unit. The relationship between 𝑣αβ and 𝑢αβ can be
then expressed as

𝑣αβ = 𝑢αβ − 𝑅𝑣 𝑖αβ (6)

and the system model (5) can be rewritten as

𝑖αβ = 𝑌𝑣𝑢αβ − 𝑌𝑣𝑣𝑔αβ (7)

where 𝑌𝑣 = 1/(𝑅𝑔 + 𝑅𝑣 + j𝜔𝑔𝐿𝑔) represents the virtual line
admittance.

B. Control Objective
The instantaneous active and reactive power outputs (𝑃 and

𝑄) of the VSC can be expressed as{
𝑃 = 3

2 (𝑣α𝑖α + 𝑣β𝑖β)
𝑄 = 3

2 (𝑣β𝑖α − 𝑣α𝑖β)
. (8)

In this study, the main control objective is to regulate the
active and reactive power outputs of the VSC to track given
references (𝑃𝑟𝑒 𝑓 and 𝑄𝑟𝑒 𝑓 ). Based on (8), the complex power
regulation error is defined as

𝑒𝑆 = 𝑆 − 𝑆𝑟𝑒 𝑓 =
3
2
𝑣αβ𝑖

∗
αβ

− 𝑆𝑟𝑒 𝑓 (9)

where 𝑆 = 𝑃+ j𝑄 denotes the complex apparent power output,
𝑆𝑟𝑒 𝑓 = 𝑃𝑟𝑒 𝑓 + j𝑄𝑟𝑒 𝑓 denotes the complex apparent power
reference. Hence, the control objective is achieved if 𝑒𝑆 = 0
holds in the steady-state.

III. CONTROL METHODOLOGY

A. Lyapunov-Based Control Design and Stability Analysis
In this section, a nonlinear power controller based on the

Lyapunov theory is presented to achieve the control objective
defined in Section II-B.

According to the Lyapunov theory, for a function 𝑊 that
is positive definite with respect to 𝑒𝑆 , if ¤𝑊 ≤ −𝜆𝑊 with 𝜆

being a positive constant, then 𝑒𝑆 is bounded for all time and
will converge to zero exponentially. Based on this principle,
consider the Lyapunov function candidate 𝑊 = ‖𝑒𝑆 ‖2, whose
time derivative is

¤𝑊 = 𝑒∗𝑆 ¤𝑒𝑆 + 𝑒𝑆 ¤𝑒∗𝑆 . (10)

The time derivative of 𝑒𝑆 can be given as

¤𝑒𝑆 =
3
2
(1 − 𝑅𝑣𝑌𝑣 )𝑖∗αβ ( ¤𝑢αβ − j𝜔𝑔𝑢αβ)

+ 3
2
𝑌 ∗
𝑣𝑣αβ ( ¤𝑢∗αβ + j𝜔𝑔𝑢

∗
αβ
). (11)

The detailed mathematical deduction procedure for ¤𝑒𝑆 can be
found in Appendix A.

Next, based on ¤𝑊 and the power regulation error dynamics
in (11), a nonlinear power control law is designed as

¤𝑢αβ = −𝑘𝑣αβ𝑒∗𝑆 + j𝜔𝑔𝑢αβ (12)

where 𝑘 = 𝑘𝑅 + j𝑘𝑋 is a user-defined control gain with 𝑘𝑅 and
𝑘𝑋 being two non-negative constants whose selections will be
discussed later. Notice that the first part in (12) is designed to
generate a negative definite term in ¤𝑊 . The second part is to
compensate the dynamic term j𝜔𝑔𝑢αβ in (11).

Now, substituting (12) into the time derivative of 𝑒𝑆 yields
the closed-loop system dynamics as

¤𝑒𝑆 = −(1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑒∗𝑆 − 3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑒𝑆 . (13)

Then ¤𝑊 becomes

¤𝑊 = − (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑒∗2𝑆 − 3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2‖𝑒𝑆 ‖2

− (1 − 𝑅𝑣𝑌
∗
𝑣 )𝑘∗𝑆∗𝑒2

𝑆 − 3
2
𝑘𝑌𝑣 ‖𝑣αβ‖2‖𝑒𝑆 ‖2. (14)

Therefore, the stability of the closed-loop system can be
guaranteed if ¤𝑊 is negative definite. By exploring the condi-
tions for ¤𝑊 ≤ 0, the stability results of the proposed controller
(12) are stated in the following theorem.

Theorem 1: Considering a grid-connected VSC modeled by
(7), if the power controller is designed as (12), then 𝑒𝑆 will
converge to zero exponentially if



1 −

𝑣𝑔αβ

𝑣αβ





 < 𝐾 (15)

where 𝐾 is a constant dependent on the control parameter 𝑘
and the virtual line admittance 𝑌𝑣 , expressed as

𝐾 =
𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣

2‖𝑘 ‖‖𝑌𝑣 ‖
. (16)

Proof: Please see Appendix B.
Hence, according to Theorem 1, the complex apparent

power output 𝑆 of the VSC can track its reference 𝑆𝑟𝑒 𝑓
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Fig. 3. Diagram of the proposed nonlinear power control algorithm.

accurately with the proposed nonlinear power controller (12)
in the steady-state. The control objective is thus achieved.

Moreover, notice that (15) and (16) illustrate the impact
of the control parameter 𝑘 and the virtual line admittance 𝑌𝑣
on the stable operating range of the output voltage 𝑣αβ. By
recalling the definitions of 𝑌𝑣 and 𝑘 , the square of (16) can
be rewritten as

𝐾2 =
(𝑘𝑅 (𝑅𝑔 + 𝑅𝑣 ) + 𝑘𝑋𝜔𝑔𝐿𝑔)2

(𝑘2
𝑅
+ 𝑘2

𝑋
) ((𝑅𝑔 + 𝑅𝑣 )2 + 𝜔2

𝑔𝐿
2
𝑔)
. (17)

With the help of the Cauchy-Schwarz inequality, one can
obtain that 𝐾 ≤ 1 holds, and

𝐾 = 1 ⇔ 𝑘𝑋 (𝑅𝑔 + 𝑅𝑣 ) = 𝑘𝑅𝜔𝑔𝐿𝑔 . (18)

Hence, the largest stable operating range of the output voltage
𝑣αβ can be obtained if the control gain 𝑘 is properly selected
according to (18).

However, in practice, it is hard to directly select the control
parameter 𝑘 to satisfy (18) due to the the unknown line
parameters 𝑅𝑔 and 𝐿𝑔. To deal with the line parameter
uncertainties, one can select a large enough virtual resistance,
e.g., 𝑅𝑣 ≥ 2.5/SCR in per unit value. Then the control
gain can be simply selected as 𝑘𝑅 > 0, 𝑘𝑋 = 0, which is
sufficient to ensure an acceptable stable operating range of
𝑣αβ as illustrated in Section IV.

In Fig. 3, the diagram of the proposed nonlinear power
control algorithm is demonstrated. With the information of the
VSC’s active and reactive power outputs and the given power
references, the power regulation error 𝑒𝑆 is calculated. Further,
with the constant 𝜔𝑔 and the user-defined control gain 𝑘 , the
virtual voltage behind the virtual resistance can be obtained
by (12). Finally, the output voltage reference can be calculated
according to (6) with 𝑣αβ = 𝑣 (𝑟𝑒 𝑓 )αβ, which is further realized
by the inner dual-loop PR controller as shown in Fig. 1.

Remark 1: Notice that based on (6), (7), and 𝑣αβ =

𝑉 exp(j𝜃), the controller in (12) can be rewritten as{ ¤𝜃 = −ℓ𝑅 (𝑄 −𝑄𝑟𝑒 𝑓 ) − ℓ𝑋 (𝑃 − 𝑃𝑟𝑒 𝑓 ) + 𝜔𝑔

¤𝑉 = ℓ𝑅𝑉 (𝑃 − 𝑃𝑟𝑒 𝑓 ) − ℓ𝑋𝑉 (𝑄 −𝑄𝑟𝑒 𝑓 )
(19)

where ℓ𝑅 = Re{𝑘 (1 − 𝑅𝑣𝑌𝑣 )} and ℓ𝑋 = Im{𝑘 (1 − 𝑅𝑣𝑌𝑣 )} are
two constants. Hence, the proposed nonlinear power control
algorithm becomes an integral controller of the coupled power
regulation errors with voltage-dependent control gains. How-
ever, the integral controller (19) will need a longer time to
adjust 𝑒𝑆 to zero compared to the proposed method since it

eliminates the positive impact of 𝑅𝑣 on the convergence speed
of the line current. Besides, when the grid angular frequency
𝜔𝑔 is not equal to the nominal one, the proposed controller
cannot be simply expressed as an integral one given in (19).

Remark 2: It should be noted that for VSCs with L-
filters, the dual-loop PR controller is not required. The voltage
reference 𝑣 (𝑟𝑒 𝑓 )αβ will be directly used for the modulation of
the VSC. The proposed control algorithm becomes a DPC one
[18].

B. Robustness Analysis
As illustrated in (15), the stable operating range of the

proposed power controller is given. Hence, the proposed
controller is robust against grid contingencies if (15) is not
violated, and thus allows a wide range of grid conditions, such
as temporary grid voltage drops, various SCRs, etc. Besides,
the accurate power tracking performance can still be achieved
in the steady-state if the equilibrium points exist.

Notice that the theoretical results obtained in Theorem 1
is based on the condition that the angular frequency in (12)
is exactly the one of the grid. However, in practice, the grid
angular frequency may deviate from its nominal value and the
proposed power controller should be able to synchronize with
the grid in the presence of PLLs.

For ease of exposition, (12) is rewritten as

¤𝑢αβ = −𝑘𝑣αβ𝑒∗𝑆 + j𝜔𝑔0𝑢αβ (20)

with the constant 𝜔𝑔0 being the nominal grid angular fre-
quency, which can be further expressed as

¤𝑢αβ = − 𝑘𝑣αβ𝑒∗𝑆 − j𝜔̃𝑔𝑢αβ + j𝜔𝑔𝑢αβ = −𝑘𝑣αβ𝑧∗ + j𝜔𝑔𝑢αβ (21)

where 𝜔̃𝑔 = 𝜔𝑔 − 𝜔𝑔0 is the error between the grid angular
frequency and its nominal one, and

𝑧 = 𝑒𝑆 −
j𝜔̃𝑔

𝑘∗

𝑢∗
αβ

𝑣∗
αβ

. (22)

Notice that according to (21), the VSC can synchronize with
the grid if 𝑧 = 0 in the steady-state.

Based on the Lyapunov theory, the following theorem can
be given regarding the control law (20).

Theorem 2: Considering a grid-connected VSC modeled by
(7), if the power controller is designed as (20), then 𝑧 will
converge to zero exponentially if



1 −

𝑣𝑔αβ

𝑣αβ





 < 𝐾 −
16|𝜔̃𝑔 |𝑅𝑣

3‖𝑘 ‖‖𝑣𝑔αβ‖2 . (23)

The VSC can maintain synchronization with the grid in the
steady-state.

Proof: Please see Appendix C.
Therefore, compared with (15), one can notice that the

stable operating region of 𝑣αβ in (23) is reduced due to the
deviation between 𝜔𝑔0 and 𝜔𝑔. According to Theorem 2, 𝑧
will converge to zero exponentially instead of 𝑒𝑆 . Similar
to the idea of the power synchronization control (PSC) [29],
according to (22), the power regulation error 𝑒𝑆 will converge
gradually to frequency deviations between the VSC and the
grid to keep the VSC synchronized with the grid. Thus, the
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Fig. 4. Experimental setup.

TABLE I
SYSTEM PARAMETERS

Quantity Value
(Set 1)

Value
(Set 2)

Value
(Set 3)

Active Power Ref. 𝑃𝑟𝑒 𝑓 (kW) 2.0 2.0 2.5
Reactive Power Ref. 𝑄𝑟𝑒 𝑓 (kvar) 0 0 2.0
Line Inductance 𝐿𝑔 (mH) 2.0 10.5 17.5
Line ESR 𝑅𝑔 (Ω) ≈0.1 ≈0.3 ≈0.5
Phase to Ground RMS Voltage (V) 110 110 66

Filter Inductance (mH) 1.5
Filter Capacitance (𝜇F) 15
Nominal Frequency (Hz) 50
DC Voltage (V) 700
Power Filter Bandwidth (Hz) 50

TABLE II
PARAMETERS OF THE PROPOSED CONTROLLER

Quantity Value Quantity Value

Voltage Loop P Gain 0.1 Voltage Loop R Gain 10
Current Loop P Gain 5 Current Loop R Gain 0
PR Control 𝜔𝑐 2π Virtual Resistance 𝑅𝑣 15
Power Control Gain 𝑘𝑅 0.05 Power Control Gain 𝑘𝑋 0

TABLE III
PARAMETERS OF THE PSC-BASED CONTROLLER

Quantity Value

Active Power Control Gain 0.003
Reactive Power Control P Gain 0.01
Reactive Power Control I Gain 0.3

proposed power control algorithm (20) is robust against grid
frequency deviations.

In the case that 𝜔𝑔0 ≠ 𝜔𝑔, one can notice that the accurate
power regulation cannot be ensured according to Theorem 2.
Fortunately, ‖𝑒𝑆 ‖ can be decreased by increasing ‖𝑘 ‖ for
better power tracking performance. Moreover, as demonstrated
in (23), a larger ‖𝑘 ‖ can enlarger the stable operating region
of 𝑣αβ. The impact of the grid frequency deviations can be
alleviated by selecting a proper control gain 𝑘 , e.g., 𝑘𝑅 ≥ 40𝑅𝑣

and 𝑘𝑋 = 0 in per unit value as in Section IV.
Remark 3: In Section II, a precondition used in this study

is that the timescale of the inner dual-loop PR control is much
faster than that of the nonlinear power control one. If the
control gain 𝑘𝑅 is too big, then this precondition will not
be met and thus the stability of the controller may not be
ensured. Hence, 𝑘𝑅 must be upper-bounded and cannot be
selected openly in practice.

ia: [10A/div]

20ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 5. Control performance of the proposed controller with parameters
in Set 1 (SCR≈28.53).

ia: [20A/div]

200ms

vab: [250V/div]

P: [10kW/div]

Q: [10kvar/div]

Fig. 6. Control performance of the PSC-based controller with parame-
ters in Set 1 (SCR≈28.53).

IV. VERIFICATION STUDIES

The effectiveness of the proposed nonlinear power control
algorithm is tested on a prototype experimental setup as
shown in Fig. 4. A three-phase VSC with an LC-filter is
connected to a power grid emulated by the Grid Simulator
Chroma 61845 through a transmission line. The sampling and
switching frequencies are set as 10 kHz. The proposed control
algorithm is implemented in the DS1007 PPC processor board
with an NXP QorlQ P5020 dual-core real-time processor (64-
bit, 2 GHz) and a 32-bit I/O bus. The voltages and currents
are measured through the DS2004 high-speed A/D board with
a 16-bit resolution and 800 ns conversion time. The switching
pulses are generated via the DS5101 digital waveform output
board with a 25 ns resolution. The system parameters for
different cases are listed in Table I. The control parameters for
the dual-loop PR controller and the proposed power controller
are given in Table II. To show the advantages of the proposed
method, a PSC-based VSC with its reactive power regulated
by the PI controller [30] is used for comparison, whose control
parameters are shown in Table III.

A. Case I: Power Tracking Performance

Firstly, the system parameters in Set 1 are used. The SCR is
approximate 28.53. The corresponding results are illustrated in
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ia: [10A/div]

20ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 7. Control performance of the proposed controller with parameters
in Set 2 (SCR≈5.48).

ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 8. Control performance of the PSC-based controller with parame-
ters in Set 2 (SCR≈5.48).

Figs. 5-6. From Fig. 5, one can notice that both the active and
reactive power outputs can track their references accurately
in the steady-state with the proposed method. The settling
time is around 20 ms due to the fast regulation of the output
voltage and current. However, as shown in Fig. 6, the PSC-
based control strategy cannot synchronize the VSC with the
grid when the active power reference increases.

Next, the power tracking performance is tested with system
parameters in Set 2, where the SCR is approximate 5.5. The
experimental results are given in Figs. 7-8. Again, in Fig. 7,
one can see that the proposed controller can achieve accurate
active and reactive power tracking performance with a settling
time of around 30 ms. Besides, from Fig. 8, with the SCR
decreases, the PSC-based control strategy can also achieve
the active and reactive power tracking objective. However, the
settling time is much longer than the proposed method, which
is around 100 ms.

Finally, the performance of the proposed and the PSC-based
controllers is tested with system parameters in Set 3 with the
SCR≈0.95, i.e., the grid is ultra-weak. Notice that in this case,
the reactive power reference is selected as 2 kvar to ensure the
existence of equilibria. The corresponding results are shown in
Figs. 9-10. Again, the power outputs can track their references
accurately in the steady-state by both controllers. The settling
time of the proposed controller and the PSC-based one is

ia: [10A/div]

40ms

vab: [250V/div]

P: [2500W/div]

Q: [2500var/div]

Fig. 9. Control performance of the proposed controller with parameters
in Set 3 (SCR≈0.95).

ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [2500var/div]

Fig. 10. Control performance of the PSC-based controller with parame-
ters in Set 3 (SCR≈0.95).

around 50 ms and 200 ms, respectively, which is longer than
that of a grid with SCR≈5.5. for both controllers.

B. Case II: Voltage Drop
In this case, the performance of both controllers under the

condition that the grid voltage drops from 1 p.u. to 0.6 p.u. for
200 ms is tested. The system parameters in Set 2 are used. The
corresponding results are delivered in Figs. 11-12. As shown
in Fig. 11, during the grid voltage drop, with the proposed
control strategy, the active power output is slightly affected,
while the reactive power output deviates from its reference
during the transient-state and converges to zero in about 40 ms.
The control objective is achieved. In comparison, from Fig. 12,
one can see that when the grid voltage drops, the active and
reactive power outputs with the PSC-based controller deviate
from their set points with the errors around 2500 W and
2500 var, respectively, which are much larger than those of
the proposed method.

C. Case III: Frequency Variation
In this case, the control performance when grid frequency

decreases 49.7 Hz and increases to 50.3 Hz for 200 ms is
tested. Again, the system parameters in Set 2 are used. The
corresponding results are shown in Figs. 13-16. From Figs. 13
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ia: [10A/div]

40ms

vab: [250V/div]

P: [2500W/div]

Q: [2500var/div]

Fig. 11. Control performance of the proposed controller when grid
voltage drops to 0.6 p.u.

ia: [20A/div]

40ms

vab: [250V/div]

P: [2500W/div]

Q: [2500var/div]

Fig. 12. Control performance of the PSC-based controller when grid
voltage drops to 0.6 p.u.

and 15, one can notice that the active power outputs are almost
unaffected, while the reactive power output in the steady-state
is no longer zero with a steady-state tracking error around
100 var. According to Theorem 2, when the grid frequency
changes, both the active and reactive power outputs cannot
accurately track their references if 𝜔̃𝑔 ≠ 0 since the power
regulation errors are used to keep the VSC synchronized with
the grid. From Figs. 14 and 16, for the PSC-based control
methods, the reactive power output is not affected, while
the steady-state active power tracking error will be larger
than 500 W. Although this steady-state tracking error can be
decreased by increasing the active power control gain, the
system may suffer from instability issues.

D. Case IV: Voltage Harmonics

In this case, the control performance when a 10% 5th
harmonic appears in the grid voltage for 200 ms with the
system parameters in Set 2 used. The experimental results
are illustrated in Figs. 17-18. One can notice that the active
and reactive power tracking performance of both controllers is
similar. Compared with the output voltage of the PSC-based
controller, which is almost sinusoid, the proposed controller
is more sensitive to the harmonics. A possible reason is

ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 13. Control performance of the proposed controller when grid
frequency decreases to 49.7 Hz.

ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 14. Control performance of the PSC-based controller when grid
frequency decreases to 49.7 Hz.

that the proposed method is more sensitive to the power
regulation error to achieve a fast and accurate power tracking
performance.

V. CONCLUSION

In this study, a Lyapunov-based nonlinear control algorithm
is presented to achieve the regulation of the active and reactive
power outputs of a grid-connected VSC. A virtual resistance is
introduced to allow fast power tracking performance and relax
the requirement on accurate system parameters. Based on the
QSL impedance model, a nonlinear power control algorithm
that only utilizes the output voltage and current information
is designed. The closed-loop system stability is analyzed via
the Lyapunov theory. Theoretical results show that the VSC
can keep synchronization with the grid in the presence of grid
frequency deviations. Finally, experimental tests under tempo-
rary grid faults and various SCRs illustrate the performance
and robustness of the proposed control algorithm.

In the future, how to achieve accurate power regulation
when grid frequency deviates from its nominal value will be
investigated. The explicit relationship between the convergence
of the power regulation error and the satisfaction of the
requirement on the output voltage will be studied. Besides,
the impacts of the inner control loops on the power control
performance will be explored.
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ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 15. Control performance of the proposed controller when grid
frequency increases to 50.3 Hz.

ia: [10A/div]

100ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 16. Control performance of the PSC-based controller when grid
frequency increases to 50.3 Hz.

APPENDIX A
POWER REGULATION ERROR DYNAMICS

Substituting (6) and (7) into the time derivative of 𝑒𝑆 defined
in (9) yields

¤𝑒𝑆 =
3
2
𝑖∗
αβ
( ¤𝑢αβ − 𝑅𝑣

¤𝑖αβ) +
3
2
𝑣αβ¤𝑖∗αβ

=
3
2
𝑖∗
αβ
¤𝑢αβ −

3
2
𝑅𝑣𝑌𝑣 𝑖

∗
αβ
( ¤𝑢αβ − ¤𝑣𝑔αβ) +

3
2
𝑌 ∗
𝑣𝑣αβ ( ¤𝑢∗αβ − ¤𝑣∗𝑔αβ)

=
3
2
(1 − 𝑅𝑣𝑌𝑣 )𝑖∗αβ ¤𝑢αβ +

3
2
𝑅𝑣𝑌𝑣 𝑖

∗
αβ
¤𝑣𝑔αβ +

3
2
𝑌 ∗
𝑣𝑣αβ ¤𝑢∗αβ

− 3
2
𝑌 ∗
𝑣𝑣αβ ¤𝑣∗𝑔αβ. (24)

According to (7), the time derivative of 𝑣𝑔αβ becomes

¤𝑣𝑔αβ = j𝜔𝑔𝑣𝑔αβ = j𝜔𝑔

(
𝑢αβ −

𝑖αβ

𝑌𝑣

)
. (25)

Then, substituting (25) into (24) yields

¤𝑒𝑆 =
3
2
(1 − 𝑅𝑣𝑌𝑣 )𝑖∗αβ ¤𝑢αβ +

3
2
𝑅𝑣 𝑖

∗
αβ

j𝜔𝑔 (𝑌𝑣𝑢αβ − 𝑖αβ)

+ 3
2
𝑌 ∗
𝑣𝑣αβ ¤𝑢∗αβ +

3
2
𝑣αβj𝜔𝑔 (𝑌 ∗

𝑣𝑢
∗
αβ

− 𝑖∗
αβ
)

=
3
2
(1 − 𝑅𝑣𝑌𝑣 )𝑖∗αβ ¤𝑢αβ +

3
2
𝑌 ∗
𝑣𝑣αβ ( ¤𝑢∗αβ + j𝜔𝑔𝑢

∗
αβ
)

+ 3
2
𝑅𝑣𝑌𝑣 𝑖

∗
αβ

j𝜔𝑔𝑢αβ −
3
2
𝑖∗
αβ

j𝜔𝑔 (𝑅𝑣 𝑖αβ + 𝑣αβ). (26)

ia: [10A/div]

40ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 17. Control performance of the proposed controller when 10% 5th
harmonic appears in grid voltage.

ia: [10A/div]

40ms

vab: [250V/div]

P: [2500W/div]

Q: [1000var/div]

Fig. 18. Control performance of the PSC-based controller when 10%
5th harmonic appears in grid voltage.

Further, by recalling (6), the power regulation error dynamics
in (11) can be derived.

APPENDIX B
PROOF OF THEOREM 1

By revoking (15), there exists a constant 0 < 𝜎 < 1, such
that 



1 −

𝑣𝑔αβ

𝑣αβ





 ≤ 𝜎𝐾. (27)

According to (6) and (7), the following implication based on
(27) can be derived as



1 −

𝑣𝑔αβ

𝑣αβ





 ≤ 𝜎𝐾

⇒‖𝑘𝑌𝑣 (𝑣αβ − 𝑣𝑔αβ)‖2 ≤
𝜎2 (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )2

4
‖𝑣αβ‖2

⇒‖(1 − 𝑅𝑣𝑌𝑣 )𝑘𝑖αβ‖2 ≤
𝜎2 (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )2

4
‖𝑣αβ‖2

⇒‖(1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆‖2 ≤
9𝜎2 (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )2

16
‖𝑣αβ‖4

⇒− (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑒∗2𝑆 − (1 − 𝑅𝑣𝑌
∗
𝑣 )𝑘∗𝑆∗𝑒2

𝑆

− 3
2
𝜎(𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑒𝑆 ‖2 ≤ 0. (28)
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Therefore, ¤𝑊 in (14) further gives

¤𝑊 ≤ −3
2
(1 − 𝜎) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑒𝑆 ‖2. (29)

Again, according to (15), the following implication can be
derived as



1 −

𝑣𝑔αβ

𝑣αβ





 < 𝐾 ≤ 1 ⇒


𝑣αβ − 𝑣𝑔αβ

 < ‖𝑣αβ‖

⇒‖𝑣αβ‖ >
‖𝑣𝑔αβ‖

2
. (30)

Substituting (30) into (29) yields

¤𝑊 ≤ −3
8
(1 − 𝜎) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣𝑔αβ‖2‖𝑒𝑆 ‖2 ≤ −𝜆𝑊 (31)

where 𝜆 = 3
8 (1 − 𝜎) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣𝑔αβ‖2. Then,

𝑊 ≤ 𝑊0 exp(−𝜆(𝑡 − 𝑡0))

⇒‖𝑒𝑆 ‖ ≤ ‖𝑒𝑆0‖ exp
(
−𝜆

2
(𝑡 − 𝑡0)

)
(32)

where 𝑊0 and 𝑒𝑆0 are the initial values of 𝑊 and 𝑒𝑆 at time
𝑡0, respectively. Hence, 𝑒𝑆 will converge to zero exponentially.
The proof is thus completed.

APPENDIX C
PROOF OF THEOREM 2

Firstly, combining (11) and (21) gives the closed-loop
dynamics of the power regulation error as

¤𝑒𝑆 = −(1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗ −
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑧. (33)

To facilitate the stability analysis, substituting (33) into the
time derivative of 𝑧 yields

¤𝑧 = − (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗ −
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑧

−
j𝜔̃𝑔

𝑘∗

¤𝑢∗
αβ
𝑣∗
αβ

− 𝑢∗
αβ
¤𝑣∗
αβ

𝑣∗2
αβ

= − (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗ −
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑧

−
j𝜔̃𝑔

𝑘∗

𝑣∗
αβ
( ¤𝑢∗

αβ
+ j𝜔𝑔𝑢

∗
αβ
) − 𝑢∗

αβ
( ¤𝑣∗

αβ
+ j𝜔𝑔𝑣

∗
αβ
)

𝑣∗2
αβ

. (34)

Combining (6), (7), and the first equality in (25) yields

¤𝑣αβ − j𝜔𝑔𝑣αβ = (1 − 𝑅𝑣𝑌𝑣 ) ( ¤𝑢αβ − j𝜔𝑔𝑢αβ) (35)

and
𝑣αβ − (1 − 𝑅𝑣𝑌𝑣 )𝑢αβ = 𝑅𝑣𝑌𝑣𝑣𝑔αβ. (36)

Now substituting (35) and (36) into the last term of (34) yields

¤𝑧 = − (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗ −
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑧

−
j𝜔̃𝑔

𝑘∗

𝑅𝑣𝑌
∗
𝑣𝑣

∗
𝑔αβ

( ¤𝑢∗
αβ

+ j𝜔𝑔𝑢
∗
αβ
)

𝑣∗2
αβ

. (37)

By invoking the control law in (21), (37) becomes

¤𝑧 = −(1−𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗−
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2𝑧− j𝜔̃𝑔𝑅𝑣𝑌
∗
𝑣

𝑣∗
𝑔αβ

𝑣∗
αβ

𝑧. (38)

Again, consider the Lyapunov function candidate 𝑊 = ‖𝑧‖2,
whose derivative with respect to time is

¤𝑊 =𝑧∗ ¤𝑧 + 𝑧 ¤𝑧∗

= − (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗2 −
3
2
𝑘∗𝑌 ∗

𝑣 ‖𝑣αβ‖2‖𝑧‖2

− (1 − 𝑅𝑣𝑌
∗
𝑣 )𝑘∗𝑆∗𝑧2 −

3
2
𝑘𝑌𝑣 ‖𝑣αβ‖2‖𝑧‖2

− j𝜔̃𝑔𝑅𝑣𝑌
∗
𝑣

𝑣∗
𝑔αβ

𝑣∗
αβ

‖𝑧‖2 + j𝜔̃𝑔𝑅𝑣𝑌𝑣
𝑣𝑔αβ

𝑣αβ
‖𝑧‖2. (39)

With the help of (30), (23) becomes



1 −
𝑣𝑔αβ

𝑣αβ





 < 𝐾 −
2|𝜔̃𝑔 |𝑅𝑣 ‖𝑣𝑔αβ‖

3‖𝑘 ‖‖𝑣αβ‖3 . (40)

Subsequently, there exist two constants 0 ≤ 𝜖 < 1, 0 < 𝜎 < 1
satisfying 



1 −

𝑣𝑔αβ

𝑣αβ





 ≤ 𝜎(1 − 𝜖)𝐾 (41)

and

|𝜔̃𝑔 |𝑅𝑣

‖𝑣𝑔αβ‖
‖𝑣αβ‖3 ≤ 3

2
‖𝑘 ‖𝜖𝐾. (42)

Similar to (28), (41) gives

− (1 − 𝑅𝑣𝑌𝑣 )𝑘𝑆𝑧∗2 − (1 − 𝑅𝑣𝑌
∗
𝑣 )𝑘∗𝑆∗𝑧2

− 3
2
𝜎(1 − 𝜖) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑧‖2 ≤ 0. (43)

Hence, ¤𝑊 becomes

¤𝑊 ≤ − 3
2
(1 − 𝜎) (1 − 𝜖) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑧‖2

− 3
2
𝜖 (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑧‖2 − j𝜔̃𝑔𝑅𝑣𝑌
∗
𝑣

𝑣∗
𝑔αβ

𝑣∗
αβ

‖𝑧‖2

+ j𝜔̃𝑔𝑅𝑣𝑌𝑣
𝑣𝑔αβ

𝑣αβ
‖𝑧‖2. (44)

With the help of the Cauchy-Schwarz inequality and (42), the
last two terms in (44) satisfy

−j𝜔̃𝑔𝑅𝑣𝑌
∗
𝑣

𝑣∗
𝑔αβ

𝑣∗
αβ

‖𝑧‖2 + j𝜔̃𝑔𝑅𝑣𝑌𝑣
𝑣𝑔αβ

𝑣αβ
‖𝑧‖2

≤|𝜔̃𝑔 |
�����j𝑅𝑣

(
𝑌𝑣
𝑣𝑔αβ

𝑣αβ
− 𝑌 ∗

𝑣

𝑣∗
𝑔αβ

𝑣∗
αβ

)����� ‖𝑧‖2

≤2|𝜔̃𝑔 |𝑅𝑣 ‖𝑌𝑣 ‖




𝑣𝑔αβ𝑣αβ





 ‖𝑧‖2

≤3𝜖 ‖𝑘 ‖‖𝑌𝑣 ‖𝐾 ‖𝑣αβ‖2‖𝑧‖2

=
3
2
𝜖 (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑧‖2. (45)

Afterward, (44) can be simplified as

¤𝑊 ≤ −3
2
(1 − 𝜎) (1 − 𝜖) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣αβ‖2‖𝑧‖2. (46)

Substituting (30) into (46) yields

¤𝑊 ≤ −3
8
(1−𝜎) (1−𝜖) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣𝑔αβ‖2‖𝑧‖2 ≤ −𝜆𝑊 (47)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIE.2021.3065614

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

where 𝜆 = 3
8 (1 − 𝜎) (1 − 𝜖) (𝑘𝑌𝑣 + 𝑘∗𝑌 ∗

𝑣 )‖𝑣𝑔αβ‖2. Next,

𝑊 ≤ 𝑊0 exp(−𝜆(𝑡 − 𝑡0))

⇒‖𝑧‖ ≤ ‖𝑧0‖ exp
(
−𝜆

2
(𝑡 − 𝑡0)

)
(48)

with 𝑊0 and 𝑧0 being the initial values of 𝑊 and 𝑧 at time 𝑡0,
respectively. Therefore, 𝑧 will converge to zero asymptotically.
Furthermore, combining (21) and (35) gives

lim
𝑡→∞

𝑧 = 0 ⇒ lim
𝑡→∞

¤𝑢αβ = j𝜔𝑔𝑢αβ ⇒ lim
𝑡→∞

¤𝑣αβ = j𝜔𝑔𝑣αβ (49)

which means that both 𝑢αβ and 𝑣αβ are variables with an
angular frequency of 𝜔𝑔 in the steady-state. Hence, the VSC
can synchronize with the grid automatically. The proof is thus
completed.
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