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ENGLISH SUMMARY 

        Recent developments in the marine industry concentrate on using modern 

technology to apply an innovative strategy for reducing greenhouse gas emissions 

(GHG) and increasing energy efficiency. Most advanced ships are equipped with 

electric propulsion, diesel generators to produce power for variable speed propellers, 

and distribution systems. Furthermore, maneuvering in deep water due to anchor 

handling limitations such as oil exploration, offshore wind farm, cable, and pipe 

laying is defined as a high-risk operation. Advanced technology is known as the 

dynamic positioning system (DPS) to avoid loss of position and compensate for the 

ship motions induced by sea disturbances during the DP operation (DPS), which is 

automatically used to control the ship motions desired position. Hence, the DPS 

applies to compute the power demand and corresponding command forces and 

direction to each thruster motors to counteract sea disturbances. Inadequate power can 

reduce DPS execution, loss of station, power failure, and increase fuel consumption 

and GHG emissions. Therefore, an energy storage system (ESS) is implemented to 

improve the power system's reliability and stability to prevent the risk of blackout and 

power system failure. Furthermore, ESS reduces the propulsion torque and power 

consumption due to the loading of standby generators during the synchronization 

process, peak power demand in harsh environments, and closed busbar failure. 

Accordingly, the unpredicted thruster's power demand due to uncertainties and sudden 

sea forces changes such as wind and wave is forecasted for PMS in the DP ship based 

on the artificial intelligence (AI) method. 

  

    For that reason,  to optimum scheduling and operation of dynamic positioning (DP) 

ship's power demand with the modern propulsion systems, optimization techniques 

are being applied with the prospect of significant cost savings. To achieve this goal, 

the knowledge of future power propulsion demand is an essential issue for short-term 

load estimating depend on sea state changes. Therefore, the accurate power 

consumption of DPS thrusters is predicted to maintain the ship's position for the power 

management system (PMS). Then, PMS will receive adequate knowledge concerning 

DP power demand in the sea disturbance to optimize power generation and economic 

dispatch between diesel generators (DGs) and ESS. This study proposed a deep 

learning method for DP ships to predict thruster's power consumption in the 

environmental disturbances more accurately for PMS, which is considerably used in 

the shipboard system's operational planning to improve the stability of DP ships. 
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Predicting DPS's propulsion power request is already a critical issue where PMS's 

power demand for maneuvering be subject to sea disturbance. 

      Consequently, unidentified power consumption is forecasted by deep learning 

techniques relying on nonlinear regressive neural networks for economic dispatching 

and operational scheduling between generators in sea disturbances. Therefore, the 

proposed method estimates precise propulsion's power for setting the PMS's ship 

location to have high performance in operational conditions. This advanced technique 

exchanges predicted thruster's power demand with DPS and PMS to enhance 

operational planning, optimize engine performance, and decrease fuel consumption 

and GHG emissions in different sea circumstances. Hence, the model is expressed as 

a multi-objective boundary decision making with mixed-integer nonlinear 

programming (MINLP) optimization problems. The multi-objective function is also 

determined to appropriately minimize the sum of operational, emissions, and fuel 

costs. 

      Moreover, It Should be mentioned that the MINLP and simulation algorithms are 

performed in the GAMS and Matlab as an advanced modeling system designed for 

solving optimization problems. Furthermore, the BARON solvers are used to enable 

the users to connect the capabilities of GAMS as high-level modeling software for 

solving objective functions with the ability of optimizers. The combination of deep 

learning techniques and the proposed optimization method in ESS presence is given 

an excellent engine performance, lowest fuel consumption, and CO2 emissions during 

maneuvering and operational condition.  
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DANSK RESUME 

         Den seneste udvikling i havindustrien koncentrerer sig om at bruge moderne 

teknologi til at anvende en innovativ strategi til reduktion af drivhusgasemissioner 

(GHG) og øget energieffektivitet. De fleste avancerede skibe er udstyret med elektrisk 

fremdrift, dieselgeneratorer til at producere strøm til propeller med variabel hastighed 

og distributionssystemer. Desuden defineres manøvrering på dybt vand på grund af 

begrænsninger i ankerhåndtering som olieefterforskning, havmøllepark, kabel- og 

rørlægning som en højrisikodrift. Avanceret teknologi er kendt som det dynamiske 

positioneringssystem (DPS) for at undgå tab af position og kompensere for skibets 

bevægelser induceret af havforstyrrelser under DP-operationen (DPS), som 

automatisk bruges til at kontrollere skibets bevægelser ønskede position. DPS gælder 

derfor for at beregne effektbehovet og de tilsvarende kommandokræfter og retning til 

hver thrustermotor for at modvirke havforstyrrelser. Utilstrækkelig effekt kan 

reducere DPS-udførelse, tab af station, strømsvigt og øge brændstofforbruget og 

drivhusgasemissioner. Derfor implementeres et energilagringssystem (ESS) for at 

forbedre elsystemets pålidelighed og stabilitet for at forhindre risikoen for blackout 

og strømsystemfejl. Desuden reducerer ESS fremdrivningsmomentet og 

strømforbruget på grund af belastning af standbygeneratorer under 

synkroniseringsprocessen, det maksimale effektbehov i barske miljøer og lukket 

samlesvigtfejl. Derfor forudsiges den uforudsete thruster's krævede kraft på grund af 

usikkerhed og pludselige ændringer i havkræfter som vind og bølge for PMS i DP-

skibet baseret på kunstig intelligens (AI) -metoden. 

      For at optimere planlægning og drift af dynamisk positionering (DP) skibs 

kraftbehov med de moderne fremdrivningssystemer anvendes optimeringsteknikker 

med udsigt til betydelige omkostningsbesparelser. For at nå dette mål er kendskabet 

til fremtidig efterspørgsel efter fremdrift et væsentligt spørgsmål for kortsigtet 

belastningsestimering, afhængig af havtilstandsændringer. Derfor forudsiges det 

nøjagtige strømforbrug af DPS-thrustere at bevare skibets position for 

strømstyringssystemet (PMS). Derefter vil PMS modtage tilstrækkelig viden om DP-

efterspørgsel efter havforstyrrelser for at optimere elproduktion og økonomisk 

forsendelse mellem dieselgeneratorer (DG'er) og ESS. Denne undersøgelse foreslog 

en dyb læringsmetode for DP-skibe til at forudsige thrusterens strømforbrug i 

miljøforstyrrelser mere nøjagtigt for PMS, som i væsentlig grad bruges i 

skibssystemets operationelle planlægning for at forbedre stabiliteten af DP-skibe. 

Forudsigelse af DPS's anmodning om fremdrivningskraft er allerede et kritisk 

spørgsmål, hvor PMS's magtkrav til manøvrering er udsat for havforstyrrelser. 

      Følgelig forudsiges uidentificeret strømforbrug ved dyb læringsteknikker, der er 

afhængige af ikke-lineære regressive neurale netværk til økonomisk afsendelse og 

operationel planlægning mellem generatorer i havforstyrrelser. Derfor estimerer den 

foreslåede metode præcis fremdrivningskraft til at indstille PMS's skibsposition til at 
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have høj ydeevne under driftsforhold. Denne avancerede teknik udveksler forudsagt 

thruster's energibehov med DPS og PMS for at forbedre driftsplanlægningen, 

optimere motorens ydelse og mindske brændstofforbrug og drivhusgasemissioner 

under forskellige havforhold. Derfor udtrykkes modellen som en multi-objektiv 

grænsebeslutning med blandet-heltal ikke-lineær programmering (MINLP) 

optimeringsproblemer. Den multi-objektive funktion er også bestemt til passende at 

minimere summen af drifts-, emissions- og brændstofomkostninger. 

      Desuden skal det nævnes, at MINLP- og simuleringsalgoritmerne udføres i 

GAMS og Matlab som et avanceret modelleringssystem designet til at løse 

optimeringsproblemer. Desuden bruges BARON-løsere til at gøre det muligt for 

brugerne at forbinde GAMS-funktionerne som modelleringssoftware på højt niveau 

til løsning af objektive funktioner med optimeringsmuligheder. Kombinationen af dyb 

læringsteknikker og den foreslåede optimeringsmetode i ESS-tilstedeværelse giver en 

fremragende motorydelse, laveste brændstofforbrug og CO2-emissioner under 

manøvrering og driftsforhold. 
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CHAPTER 1. INTRODUCTION 

1.1 Background of hybrid  DP shipboard system 
 

       Nowadays, worldwide public interest reduces GHG emissions and a significant 

factor in the shipboard system's design and operation. Accordingly, the International 

Maritime Organization (IMO) has issued guidelines to reduce emissions from the 

maritime segment since 1983. As a result, it improves the ship's electrical system's 

efficiency and greenness by researching advanced technologies, management 

strategies, and network architecture. Since 1880 (for example, the ship's first electrical 

system), the shipboard power system has evolved following international maritime 

regulations and costs according to the innovative technology. In a real vessel, the 

electrical power system is a multi-level power grid that typically uses power electronic 

devices to integrate multiple electromechanical systems with different levels of 

voltages and waveform values to meet varying power requirements. The ship's power 

system consists of generators, distribution systems, electric propulsion motors such as 

propellers and thrusters with driver units. Mobile engines are usually diesel engines 

that operate in the high-speed medium or range and have a variable or constant speed. 

Typically, energy efficiency for medium and high-speed diesel engines is limited by 

approximately 50% in the operational condition. Most of the produced energy is 

wasted in the atmosphere with a significant amount of harmful emissions and 

discharged to the environment. Hence, as a maritime authority, IMO has introduced 

technical guidelines for fueling each type of ship burns to the ship-owners and 

builders. This series of technical baselines have been established to measure energy 

efficiency to decrease GHG emissions from vessels. Hence, this technical guideline 

introduces program management for all ships, such as an energy efficiency strategy 

for indicating the operation to measure fuel efficiency and a design index that 

measures new shipbuilding. In a maritime microgrid, the intelligent power 

management system based on the energy storage system (ESS) for the DC shipboard 

power system has been introduced in [1],[2].  

      

      The importance of using ESS strategies for greener and smarter ships operation 

has been investigated on [3] that significantly improved the design for zero emissions, 

fuel-saving, peak shaving, and the spinning reserve of generators. Furthermore, In [3] 

proposed using the ESS to decrease fuel consumption in offshore vessels equipped 

with several diesel generators. Therefore, many PMS algorithms have been used based 

on mixed-integer linear programming (MILP), the heuristic methods for economic 

dispatch, and optimal unit power generation commitment [4]. The energy-efficient 

management results illustrate that it can enhance operational efficiency in saving fuel 

consumption and reducing generator operating hours [5]. A power management 

strategy for a hybrid dynamic positioning ship is proposed in [6],[7] for the optimal 

distribution of power flow between the energy sources, containing the battery ESS 

and generators. Likewise, the energy management optimization strategies for hybrid 
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power systems in the shipboard system are presented [8]. The simulation results show 

the ability of such optimization strategies to achieve reduced fuel consumption and 

emission reduction. Additionally, to descend fuel consumption under the variable 

loading circumstances, an optimization algorithm is suggested in [9] and analyzes the 

hybrid shipboard power system [10]. One of the biggest challenges in the marine 

industry is the operation in deep water that is a costly and risky maneuver.  

 

 

1.2. Power management system in DP ship 
 

      DPS is an advanced technology widely applied in DP ships and other offshore 

constructions to maintain vessels' position in the operation region. The semi-

submerged vessels and other offshore structures in deep water are continuously 

subjected to sea disturbances such as waves and wind to keep their hydrocarbon fields. 

Therefore, DP vessels are consumed lots of energy to keep their location instead of 

adjusting the tension of anchored ships. Most DP ships are used DGs, ESS, and 

variable speed drivers for keeping the ship position.  On the other hand, the worst-

case scenarios for DP ships are shutdown during the offshore operation, such as 

drilling in gas and oil fields, cable and pipe laying, and offshore wind farm platform 

in rough weather conditions due to loss of power generation. Figure1-1 demonstrates 

the configuration of a DP drillship power generation and distribution system[11]. 
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      The thruster local controllers are adjusted to stabilize the power grid's frequency 

fluctuations by different commands received from DPS by computing the thrust 

assignment algorithm (TAA). The thruster's local controller level prevents the 

probability of the ship's position aberration. In contrast, the individual thrusters 

controller does not have engagement about the other local controller's performances 

and cannot calculate the generalized power resultant's deviation. Consequently,  

thrusters power demands are reduced to compensate for load oscillations on the busbar 

power plant. Hence, PMS's maximum existing power plant information is used to 

coordinate the thrusters controller [13].  An essential part of the ability to prevent 

blackouts is recognized in PMS. 

 

      Consequently, ship designers attempt to significantly improve shipboard power 

systems' stability to prevent blackouts during the DP operation, especially in too rough 

sea conditions. This project aims to introduce an intelligent control method to avoid 

the risk of power failure, peak shaving, reduce emissions, fuel consumption.  Hence, 

a deep learning method is used to predict the DP power demand and improve DGs 

performance with optimal power flow, and economic dispatch of  PMS in the presence 

of ESS, and prediction of thrusters power demand by as shown in the Figure1-2 [13].  
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1.3. Thesis objectives 

 Design and develop PMS by applying the artificial intelligent algorithm for 

optimal operational planning of generators and ESS  based on sea conditions. 

 To predict DP power demand precisely by applying machine learning 

technique for PMS with adequate information to economic dispatch between 

DGs and  ESS in the complexity of DPS's decision-making procedure to keep 

the ship position in different sea states. 

 To investigate the energy storage system's cost-effectiveness to minimize 

greenhouse gas emissions based on IMO regulations. 

 To investigate the accuracy and speed of the power management system's 

analytical predictions using artificial intelligent control to reduce and 

synchronize the total number of running hours for all gen-sets.  

1.4. Thesis outlines 

     The outcomes of this Ph.D. thesis are expected to take the form of a collection of 

relevant published articles throughout the accomplished project period. Furthermore, 

the Ph.D. thesis is structured as follows: 

 

Chapter 1. Briefly introduces the power management system of dynamic positioning 

ship background, motivation, research objectives, list of the published journals, and 

conference papers. 

 

Chapter 2. Introduces the first journal paper where has published in Energies, which 

reviews the theory of dynamic positioning system and control strategies to achieve 

advanced control accuracy and decrease ship movement persuaded by the sea 

disturbances. Furthermore, it studies the possible control techniques and compares the 

conventional and intelligent controllers in the literature. In addition, this chapter 

elaborates on the power management system (PMS) in the DP ships as an essential 

subject for future research. 

 

Chapter 3. This chapter presents deep learning performances in the second paper for 

the DP load forecasting that is published in applied sciences. In this paper, an iterative 

nonlinear neural network is used to predict driver power consumption concerning 

power generation challenges with a comparative degree of accuracy by incorporating 

climatic parameters' dependences on sea disturbances. The proposed technique 

forecasts the dynamic load of thrusters in the future more precisely than the traditional 

PMS methods and enhances the power system's operational planning, and improves 

the main engine's performance. 

 

Chapter 4. This chapter extends the concept of optimal planning and economic 

dispatch problems to shipboard systems where some means of generation and storage 

are also schedulable. The proposed plan's optimal operating strategy is applied to 

solve the economic dispatch and optimization problems based on the General 
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Algebraic Modeling System (GAMS) for DP ships. The result shows an efficient PMS 

solution to optimal power-sharing between DGs and ESS. Accordingly, fuel 

consumption and greenhouses are significantly decreased by optimal power-sharing. 

 

Chapter 5. This chapter concludes and summarizes the Ph.D. project with the outlook 

to further investigation.   

 

1.5. List of publications 

A list of papers during the Ph.D. study, which is published until now, is given as 

follows. 

Journal Papers 

J1. Mehrzadi, M, Terriche, Y., Su, C. L., Othman, M. B., Vasquez, J. C. and 

Guerrero, J. M., "Review of dynamic positioning control in maritime microgrid 

systems," June 2020, Energies. 13, 12, 3188. 

 

J2. Mehrzadi, M, Terriche, Y., Su, C-L., Xie, P., Bazmohammadi, N., N. Costa, M., 

Vasquez, J. C. and Guerrero, J. M, "A Deep Learning Method for Short-Term 

Dynamic Positioning Load Forecasting in Maritime Microgrids," July 16th 2020, 

Applied Sciences. 

 

J3. Terriche, Y, Mutarraf, Muhammad Umair, Mehrzadi, M, et al. Adaptive 

Cascaded Delayed Signal Cancellation-Based Open-Loop Synchronization 

Technique for Dynamic Response Enhancement of SAPF. Ieee Access, 2019. 

 
J4. Yacine Terriche, Abderezak Lashab 1, Muhammad. U. Mutarraf, Mehrzadi, M, 

et al. "Voltage Stability and Harmonics Mitigation Analyses of Two Effective 

Compensators for More Electric Marine Vessel Applications," IEEE Transactions on 

Industry Applications (under review). 

 

J5. Yacine Terriche, Abderezak Lashab 1, Muhammad. U. Mutarraf, Mehrzadi, M, 

et al., "Effective Controls of Fixed Capacitor-Thyristor Controlled Reactors for Power 

Quality Improvement in Shipboard Microgrids," IEEE Transactions on Industry 

Applications (accepted for revision). 

 

J6. Peilin Xie, Josep M. Guerrero, Sen Tan, Najmeh Bazmohammadi, Juan C. 

Vasquez, Mojtaba Mehrzadi, Yusuf Al-Turki., "Optimization-based Power and 

Energy Management System in Shipboard Microgrid: A Review," IEEE system 

journal (accepted for revision). 
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Conference 

 

C1. M. Mehrzadi, C. Su, Y. Terriche, J. C. Vasquez and J. M. Guerrero, "Operation 

Planning of Standalone Maritime Power Systems Using Particle Swarm 

Optimization," 2019 1st International Conference on Electrical, Control and 

Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 2019, pp. 1-6, 

 

C2. Terriche, Y, Mutarraf, Muhammad Umair, Mehrzadi, M., et al. Power quality 

and Voltage Stability improvement of Shipboard Power Systems with Nonlinear 

Loads. International Conference on Environment and Electrical Engineering and 2019 

IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). 

IEEE, 2019. p. 1-6. 

 

C3. Terriche, Y., Mutarraf, M. U., Mehrzadi, M., Su, C-L., Guerrero, J. M., & 

Vasquez, J. C. More in-depth analytical investigations of two Effective Harmonics 

Filters for More Electric Marine Vessel Applications. International Conference on 

Power and Energy Systems (ICPES). IEEE Press, 6 p. 9105508 

 

C4. Terriche, Y., Su, C. L., Mutarraf, M. U., Mehrzadi, M., Lashab, A., Guerrero, J. 

M., & Vasquez, J. C. (2020, June). Harmonics mitigation in hybrid AC/DC shipboard 

microgrids using fixed capacitor-thyristor controlled reactors. In 2020 IEEE 

International Conference on Environment and Electrical Engineering and 2020 IEEE 

Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-
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CHAPTER 2. DYNAMIC POSITIONING 

SYSTEM 

     This chapter summarizes the dynamic positioning system for maritime microgrids 

published as a review paper in [13]. This chapter's particular consideration is proposed 

to the relevant issues about the power supply of the thruster's system, and different 

controllers strategy applied earlier in DP ships. 

 

2.1. Background 

      In the Marine industry, DPS automatically keeps the location and compensates the 

ship's motion from the desired position induced by sea disturbances. Due to limitations 

on anchor handling for offshore operation in deep water, a ship is used propulsion 

systems such as propellers and thrusters to counteract environmental disturbances. 

Historically, in the 1960s, a proportional-integral-derivative (PID) was applied in [14] 

to control ship motion such as sway, surge, and yaw as three degrees of freedom. 

However, the phase changes in PID control have increased the DP system [15]. Hence, 

to improve the DP challenges, Balchen and his colleagues were developed the PID 

controller by the Kalman filtering theory based on the kinematic equations hypothesis 

[16],[17],[18],[19],[20]. However, the DP system's performance could not be 

promised due to nonlinear ship motion equations for fixing the position stability and 

yaw angles. Hence a nonlinear controller based on the backstepping technique was 

introduced to measure sea disturbance [14]. 

     On the other hand, sea disturbance is dynamic and must be observed to adjust the 

nonlinear control model parameters. Consequently, a passive nonlinear observer is 

proposed to reduce the amount of regulating parameters and wave filtering by 

measuring ship motions' speed containing the low-frequency (LF) position [21]. 

Therefore, a proportional-derivative (PD) controller is designed to perform the 

observer filters methodology to remove the noises from the measured ship position 

and speed, which changes because of sea disturbances. An adaptive nonlinear PID 

(ANPID) controller was designed in [22] to reduce the ship deflection from setpoint 

position induced by sea disturbances because of unpredicted position changes. Above 

and beyond, the (ANPID) has been developed based on adaptive fuzzy logic (AFL) 

to define nonlinear parameters of the DP controller [23]. 

     Furthermore, to adjust the set of fuzzy rules while the AFL control parameters 

changes, a neural network (NN) was proposed in [24],[25],[26],[27] to regulate the 

fuzzy rules and membership. Using the NN for self-tuning member functions in fuzzy 

logic rules does not consider the mathematical equations in the deriving control model 
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due to time savings. The obligation of a supplementary study in this field is a hybrid 

control technique designed in [28] for DP ships to operate from calm to high sea states. 

The proposed control scheme is analyzed for swapping between nonlinear or linear 

control in the extreme operating conditions. With the intention of DP controller 

performance improvement, a model predictive control (MPC) was proposed in 

[29],[30], and[31] to incorporate the DP system (DPS) and thrusters controller into a 

single algorithm. The mathematical model of DPS includes environmental changes 

such as wind, wave disorders, and boundaries input and output of variables. Hence, 

designing the DPS is typically very complicated because of nonlinearities, 

uncertainties, instabilities of information, and variable output limitations. The MPC 

could be performed mathematically in an unidentified system by applying linear 

models to precisely control a DP ship in the operation zone, as shown in Figure2-

1[13]. 

     Additionally, to reduce the mathematical equations' nonlinearities, MPC is a 

progressive controller to simulate ship motions' future performances through earlier 

control input consequences, and forecasts appropriate control output response. This 

proposed method allows the implemented limitations in input and output deviations 

to forecast the impact of instabilities on the future trend. Thus, the estimation model 

contains optimization technique abilities for forecasting the DP ship's dynamic 

response above the defined time perspective. For instance, the study in [32] is 

presented the MPC model could be effectively performed for DPS, which is dependent 

on high-superiority control variations in extraordinary restrictions.  
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Figure 2-1. The MPC control method for DP ship[13]. 
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       On the other hand, the DPS continuously needs a dynamic energy source that 

thrusters have high priorities to consume power amongst the other heavy consumers 

on the shipboard [33]. In the DP ships, the grid power typically contains some diesel 

generators that are connected to the thruster and other consumer connected to the 

flexible distribution system with different voltage levels and some separable sections. 

The shipboard system's hierarchical control is distributed through autonomous 

controllers for DGs fuel oil infusion, generators' magnetization, circuit breaker status, 

and local and centralized thruster controllers. Undoubtedly, controlling the thruster's 

power demand based on the desired pitch and rpm setpoint is critical for the PMS to 

optimally power flow between generators, power failure prevention in the DP ship 

[7]. The PMS generally has to approve definite changes and report impending 

oscillations to the maximum available power and TAA energy consumption due to 

widespread deviation from heavy-duty consumers such as winch, rotary drilling 

equipment, and offshore wind farm operations [34]. 

     Consequently, the TAA calculates the propulsion power to rotate per minute 

(RPM) command to regulate thrusters' speed by the related VFD, which power supply 

is produced from DGs. Additionally, the thruster's controller level makes it possible 

to predict and limit the deviations of signal errors at the ship's location because the 

local thrust controllers have no information about each other's execution. As a result, 

they can not change the generalized power obtained. However, to deal with power 

fluctuations, local thrust controllers must increase and reduce the requested power 

allocation. Therefore, PMS regulates local power driver controllers' set points for 

compensating thruster power fluctuations in shipboard power plants [35].  

 
2.2. DP ship architecture 

        In many marine operations, fixing the vessel's position and stability is crucial 

because the ship's position and guidance use continuously dynamic actuators to 

control environmental forces from waves and winds. Sea disturbances attempt to 

transfer the vessel from its planned position, so DPS automatically compensates 

environmental forces and uses its thrusters to keep the vessel stable. A ship's motions 

have six degrees of independence in the sea, for instance, sway, surge, yaw, which 

DPS be able to compensate for three horizontal axes and can not control the roll, pitch, 

and heave of the axis components. A naval ship's mathematical pattern is accurate, 

such as many physical features to define ship motion observation. Hence, various 

mathematical models for vessels have been applied and formulated by engineers. 

Several models of these cases are proposed in [13]and [15], such as the DP ship 

models and high-speed ships and the phenomenon mathematical of roll parametric 

resonance. Different features of the ship models are focused on accurately in various 

operations and different conditions. Typically, the ship's precise model should be 

designed to contrast the computational and mathematical complexity parameters. 

Overall, the models that are utilized to build naval ships are more complex than the 
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schemes that are applied for control objectives. The research in [35] is presented a 

ship at relatively low speed on the ocean's surface, which the roll, pitch, and heave of 

the ship motion are not controlled. Hence, the model is used to describe only the flat 

direction and position of the ship. In a coordinated system, the DP setpoint is 

determined in the origin of the x-axis directing to the north, y-axis in the east direction, 

and z-axis directing to the downward based on the right-hand logic [13].  

Z

X

O

Heave

Roll

Pitch

Yaw

 

Figure 2-2. The geometrical relationship between the direction and speed of the ship 

motions [13] 

 

Table 2.1. Abbreviations of  velocity and position of the DP ship [13],[36] 

Contraction Description 

3[ ]Tx y R               
Where is the position and direction of the ship in 

an inertial structure of the vector , ,x y z . 

3[ ]Tx yv u v r R  
Wherev is the speed of the ship in its hull frame   

x yu v r that is aligned with the vector of [ ]Tx y . 

 

        The direction in which the ship moves horizontally x-y is termed a right-handed 

rotating with the North reference arc point. The ship's speed is typically defined in its 

proprietary reference frame as forward speed u, lateral speed v pointing to the 

starboard, and the clockwise rotation speed r in the yaw angle direction. The acronym 

used to define the ship's position and speed is given in Table 1.1, and The geometrical 

relationship between them is shown in Figure 2-2 [13] and described by [36]: 

                                                    ( )R v                                   (2-1) 
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where the ( )R  in [36] and [13] is given: 

                             

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

R
                 (2-2) 

 

2.3. Mathematical Model of DPS 

      The mathematical model of DP ship has a complicated relationship function, 

which the hydrodynamics model of vessels is simplified as the first model with the 

low-reliability[36],[13]. The mathematical model will be the DP controller segment 

and signified as kinematic development, which separately involves a dynamic ship 

model. Furthermore, an overview of the actual structure is termed by the second 

mathematical model as a highly reliable formals model. The real ship's dynamic model 

is simulated as the mathematical relationship's primary function during the sea 

disturbances with control inputs and sensor output [36],[13]. Moreover, pitch and roll 

control models are introduced to compensate for vessels' movement in shallow waters. 

However, designing and observing control gains might be essential to approximate 

pitch and roll angular speeds. Nevertheless, the ship's dynamic mathematical model 

is used in DPS to compute the velocity, acceleration, and location as inputs of the DP 

controller and adjust the reference points. In [36], the authors are defined in more 

detail reference models, some local optimization reference point models, and 

guidance systems. 

      The majority of ships are equipped with DPS to maintain position utilizing its 

thrusters force to control the individual thrusters with computers automatically. 

Therefore, the computer system is designed to compute the different levels of control 

motion algorithms. The Primary control algorithm is a high-level control motion 

algorithm that estimates the full moment and force of the thrusters system called the 

DP control system. At that moment, the TAA synchronizes the thruster's power to 

supply the requested torque from the DP control system. If the environmental 

conditions are favorable, the dynamic positioning task's achievement may be 

negligible. The exact positioning needs of the leisure position are small, and the 

operator has no concern about fuel and machine wear costs. To control high-level 

motion, the PID controllers can control three degrees of freedom with a simplistic 

thrust assigning system. An advanced control algorithm for the high-level motion has 

been proposed in [32] to rapidly obtain desired positioning and compensate the 

vessel's deviations via reducing fast changes of thruster's command force restrictions 

and speed directions. For instance, to control the high-level motion algorithm, an MPC 

algorithm has been used in [32] to keep the ships within a predetermined operational 

zone. The typical TAA calculates the allocated command forces of thrusters. 
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However, in the simulated algorithms, the sea disturbances and ship position 

limitations for the thrust assigning have not been considered. Recently, most 

tendencies are concerned with the integrity and increase of the data exchanges through 

to the thrust assignment and shipboard PMS. Hence, a TAA has been presented in 

[37] with the range of operations that could be executed equivalency between thrusters 

power demand and shipboard system to reduce load variations of the power plant. 

 

2.3.1 Dynamic model of the DP ship 

       The expression of the forces acting on the hull of the vessel is usually the most 

appropriate. In DPS, the vessel is typically displayed physically rigidly in three 

degrees of freedom: sway (moving sideways), surge (moving forward), and yaw 

(vertical rotation around Z-axis). The model is divided into dynamic and kinetic 

equations where the strengths of the ships and torques come from several physical 

sources. Hence, the total effect of forces and torque is equivalent to their algebraic 

sum while the same axis represents the torques. One of the most critical issues to 

control the DPS is might be the generalized forces produced by thrusters. Other forces 

acting on a ship consist of hydrodynamic traction, sea currents, and waves. The 

angular rotational speed of the ship hull orientation is fixed, and the equations of 

movement typically are improved by Newtonian formulations for centrifugal forces 

[13]. However, if the yaw angle's rotation speed is moderated, and these conditions 

can be ignored in this action. An essential component in hydrodynamic traction on the 

rigid hull of the fluid proportion to the rigid body resists acceleration. Contrasting 

body mass, the result is not symmetrical, and usually, it is more than longitudinal 

direction compares with lateral direction for the vessels. Therefore, the obtained 

equations of motion as a vector are shown as follows [36],[13]: 

 

                                          thr env
Mv Dv                        (2-3) 

 
whereM denotes the physical matrix and the mass of hydrodynamic and the 

generalized mass as follow matrix[36],[13]: 

 

                                          

0 0

0

0

u

v g r

g v z r

m X

M m Y mx Y

mx N I N
                   (2-4) 

 
      Moreover, the estimation value Dv is placed on the right side of this equation 

changes the signs of the damping matrix elements  ofD  as defined equation in 

[36],[13]:  
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0 0

0

0

u

v r

v r

X

D Y Y

N N

                                 (2-5) 

 
    The environmental forces have not been considered in theDv  and Mv  in (2-3). 

Therefore, it is proposed as low and high-frequency elements of the wave and wind 

forces in (2-6) [36],[13]:  

 

                                           [ ]
env env env

T
env X Y N                         (2-6) 

 

where env is presented as environmental matrix forces in the direction of the ship 

motions in the x-y-z axes. The Low-frequency elements of wind and wave forces are 

controlled by integral operation in the DP controller's algorithm. Typically it is not 

essential to pay off the wave forces' high-frequency level, where the ship moves forth 

and back. Before sending position measurements to the DP system, those movements 

are typically removed by the wave filter. Typically wind force is approximated with 

wind sensors. In theory, this can be done with sufficient precision, which often faces 

a tricky situation because of the local changes in the ship's wind velocity and complex 

geometry. Predicting and modeling of forces is an active research area that is produced 

by different thruster's device.  

 

 

2.3.2. Thruster assignment algorithm 

      The main components of DPS consist of the driver subsystem as essential devices 

such as main propellers, electronic drive unit, and stern, bow, and azimuths thrusters. 

The DPS controls the thruster's subsystem to calculate thrust forces and the velocity 

of propulsion rotation. The high-level controller of thrusters for repositioning the DP 

ship has been used to forecast the required forces at six degrees of motion. Besides, 

the thruster assignment algorithm TAA estimates the corresponded thrusters' forces 

and direct command of each drive motor [36],[13]. To prevent mechanical corrosion 

parts, harmonious distortion, and blackout in the power supply, the effect of the low-

level control of thruster in the calm and rough sea state is emphasized in [38],[13] 

which the sensors measure the position and speed of the ship motion. As a result, the 

measured data are transferred for DPS  to calculate reference of torque (τd) for high 

and low levels of thruster control in various marine modes, for instance, extreme 

rough to slight state correspondingly.  

      The shipboard power system produces enough power and torque, where the ship's 

speed is calculated based on position reference by the TAA to bring the vessel to the 

wanted location. The TAA method calculates the torque τ reference to synchronize 

the thrusters control command and forces. Therefore, the TAA monitors the torque 

reference precisely by the slight deviation between the actual and desired generalized 
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force to improve the transient power fluctuation of the shipboard system. As a result, 

it is crucial to minimize power reference by applying TAA to decrease power 

consumption because of momentary deviations from the vessel's position. 

2.3.2.1 The resultant force of thrusters 

 

      The generalized generated force of thi  thruster device is located to the origin of 

the standard corresponded system, where the generated thruster force ti
f at the 

clockwise angle ti  as from the forward direction is calculated as [36] and [13]:  

 

                             

cos( )

sin( )

cos( ) sin( )

ti

ti ti ti

yi ti xi ti

f

l l
               (2-7) 

 

      Therefore, the generated generalized force for the entire thrusters system is 

described in [36] and [13]:  

                                               
( )

thr t t
T f

                               (2-8) 

 

where the thruster configuration matrix columns ( )tT consist of the TAA that the 

command force t
f is defined as [36] and [13]: 

 

                                              

1( )
t t thr
f T

                            (2-9) 

 

      The individual force of thrusters is typically normalized into the range [-1 1]. 

Furthermore, the desired generalized forces thr  for all thrusters, which is consist of 

sway, surge forces, and yaw displacement as the following equation [36]: 

 

 

                                            ( )t t thr
T Kf s                      (2-10) 

 

      The configuration matrix of the general forces ( )
t

T generated by individual 

thruster at the orientation angle vector t and the small deviation ( s ) between the 

desired thruster's command force and the vessel's actual generalized force ( )t t
T Kf  at 

time t is defined in the equation (2-10). The mathematical model does not express the 

azimuth variations or thruster saturation; hence, the practical application's advanced 

algorithms are proposed in [36],[13].  
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2.3.3 Thrusters power consumption and power management system 
 
      The power plant capacity must produce sufficient power for the thruster's drive 

system to keep propeller rotation and torque stationery during the DP operation. The 

second-ordered estimation is often used to deliver the required power relatively 

expected to the distributed power square to thrusters. In any situation, the proportion 

factor between the propeller designs can be very different. In [33], the TAA is 

proposed to control the thruster system to move away from the directed path to 

improve the power system's dynamic stability over a short period. The proposed 

method has been initially studied in [39] to decrease the local thrusters control 

system's variation. The coordinated deviation from the DP controller commands in 

the TAA makes it possible to approximate and the boundary deviations due to the 

ship's speed and position. The minimum power consumption mint
P by the TAA is 

required to generate the thruster commanded force for solving the nonlinear 

optimization problem as follows equation [36]: 

 

                                    
1

3/2 2

min
min

t ct t q
P P K f s                  (2-11) 

where the (2-11) is subjected to (2-8),(2-9) and (2-10) in [36]. 

                                          
3/2

thr ct t
P P K f                                (2-12) 

      The minimum power consumption mint
P by the TAA once the thruster bias power 

is no obligation in [36]: 

23/2 2 2 22
min 2 13 2 1

min ( )
t ct t t thr dthr q q q
P P K f Kf C P P s s s    

                                                                                                         (2-13) 

where dthr
P  is specified as the desired change rate of the thruster's power consumption. 

The proposed signal is used to decrease either power variations or frequency on the 

shipboard power system. Furthermore, the total power consumption variation cost C 

and the generated variation force resulting from individual thrusters in (2-13) is 

defined as a quadratic cost matrix . Subject to position e  and velocity e
v  

deviations of the vessel from the position and speed reference, the boundaries are 

identified in [36]: 
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                           1 1
(max ) (max )

e e e
v s v v s                (2-14) 

                                    2 2
(max ) (max )

e e e
s s               (2-15)  

        

       Hence, the general thruster command force is allocated to compensate for the 

variations caused by environmental forces such as waves and wind. The proposed 

optimization problem in (2-13) consists of individual thrusters' produced force and 

power consumption variation cost. The solution to minimizing the 
mint
P  is that as long 

as the deviation between the requested command force thr from DPS and the actual 

generalized force ( )
t

T Kf  situation holds on 0S  with the cost matrix 1
q  when is 

useful. The small velocity and position deviation are limited in (2-14) and (2-15) with 

variables 
1
S and 

2
S with corresponding cost matrix 2

q and 3
q in (2-13) [36]. 

      Typically PMS confirms some changes and is aware of impending oscillations for 

current power consumption and maximum available power to TAA due to enormous 

aberrations from heavy-duty consumers, such as anchor handling, rotary drilling 

equipment, and cable installation operations. The control command of thruster 

computes by TAA adjusts the speeds and rotation per minute (RPM) of the thrusters 

driver, which the power reference generates by the PMS as shown in Figure 2-3 [13].  

Moreover, the thruster's driver controller level provides the vision to predict and limit 

the deviation of signal errors at the ship's position because the local driver controllers 

have no information on supplementary local controllers' performance. Accordingly, 

they cannot compute variations in generalized power. However, to manage thrust load 

oscillations, local driver controllers must increase and decrease power demand. PMS 

is applied to regulate available generated power for driver controllers [40]. The ability 

to operate and maneuver ships' position depends on the sea's state and the generator's 

capacity. Undoubtedly, inadequate power can reduce DP performance, power outages, 

and positioning, resulting in power outages. The main uncertainty for the DP ship's 

electrical system is that the thrusters' power under harsh sea conditions can lead to a 

higher power ratio than the generator's capacity. The excessive DPS power demand 

for repositioning from distribution units in the DP operating mode will increase the 

potential of power failure for all types of DP ships. As a result, power systems 

redundancy is costly due to increasing the power system reliability by using ESS such 

as batteries, super-capacitors, flywheels, fuel cells, etc. [13]. 
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Figure 2-3. Correlation of DPS and PMS control in the DP ship [13]. 

       For example, the shipboard power system's uncertainties due to the DP operation 

for exploring hydrocarbon resources or transferring energy from offshore wind farms 

by cable laying are made disturbances in the shipboard system's PMS to provide 

thrusters command forces [13].  

      Furthermore, the PMS can control the optimal power-sharing between the 

generators and ESS during DP operation. Thus, the DP power demand could be 

estimated by PMS with an effective optimization method [33]. Therefore, power 

balance flexibility between the DP power demand and power plant production must 

be appropriate energy resources by applying PMS as a crucial control technique in the 

marine microgrids [32],[33],[34],[35],[36]. Moreover, energy-efficient and cost-

effective solutions are needed to invest in tools, protection, emissions, and fuel 

consumption due to generator operating hours [9][41]. Hence, the PMS can be sure of 

DP demand in the prospect of operation conditions and optimal power generations. 

Along these lines, the requested DP power could be forecast via PMS based on the AI 

method and efficient optimization strategy [38]. Consequently, the power system 

stability between the DP demand and power plants is crucial to produce adequate 

energy resources by performing progressive control methods for PMS in maritime 

microgrids [10]. 
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CHAPTER 3. DEEP LEARNING FOR DP 

POWER PREDICTION 

      This chapter summarizes an intelligent method based on the deep learning 

algorithm to forecast the requested DP power, which has been published in [38]. The 

machine learning methodology in this chapter is used to estimate the power thrusters' 

power consumption in various sea state conditions to increase the power system's 

stability and reliability in the DP ship operation.  

 

3.1. Introduction  

        Due to the different character of the proposed controllers, which are reviewed in 

[13], the control method has been not responding rapidly to unexpected environmental 

forces changes, for instance, wave and wind storms. At the same time, the station 

forecast fails to take appropriate and timely action. The DPS compensates for the 

vessel's movement from the desired position where changing the sea's state affects 

thrusters' energy consumption in the operational condition. Depending on the high 

and low-level power consumption of thrusters, the driver speed is increased or reduced 

correspondingly. Consequently, the setpoint of RPM speed during fast response 

consumes the full power of power system capacity. In this case, an appropriate driver 

control command can be used to prevent the shutdown. However, in the rough sea 

conditions, the driver control must use full power in the bus bar as a high priority to 

other dynamic power consumers. Otherwise, due to the absence of sufficient energy 

generated, the thruster control commands cannot stabilize the vessels' position and 

relocation. The DP system takes power, while the lower steering system calculates 

each driver engine's corresponding power, speed, and direction. To compensate for 

the lack of electricity demand, most of these modern ships are utilized generators, 

shaft generators, and energy storage systems. Inadequate power generations are likely 

to reduce the lower thruster's efficiency, position, and power failure rates [42].  

      The main challenge for DP ships is that critical loads, including heavy power 

requirements for thrusters motor in the rough sea state, may have a greater power 

consumption inclination than generator power and potentially increase the risk of 

power outages[35],[43]. To keep away power outages due to the rough sea state, DPS 

requires to develop via the machine learning algorithm to exchange the predicted DP 

load profile with PMS to dispatch among the generator-sets and ESS economically[5]. 

Typically, DPS significantly reduces driver power to prevent dynamic transience in 

the electrical system. For instance, PMS's unpredicted power demand to conduct DPS 

in offshore operations increases the power system's instability [35]. PMS is a 

progressive controller in the shipboard system to determine the optimal power 

generations giving to DP energy requirements for future operating conditions. Hence, 

shipboard systems use PMS to control generators and ESS to prevent power outages, 
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restrictions, load flow, and protection[35]. As a result, DPS manages the available 

PMS power by applying deep learning techniques to compute thrusters' power 

consumption in the shipboard power system [38]. Thus, unidentified demand for DP 

load due to sea uncertainty may impose PMS as an optimization problem [5]. 

       In the marine industry, ship vendors meet numerous economic and technical 

operational optimization and power system problems. Optimization techniques with 

essential cost-saving prospects are applied for optimal operation of diesel generators 

(DGs) for dynamic load and thrusters system [3]. To obtain these objectives, it is very 

critical to forecasting upcoming power demand in operational conditions. Therefore, 

predicting the propulsion consumption in different sea states is crucial for optimal 

power flow between DGs. The load prediction is defined for medium-term load 

forecast (MTLP), long-term load forecast (LTLP), and short-term load prediction 

(STLP), which predicts one hour or one day forward [44],[45]. Typically, prediction 

techniques are used to control generators' power production, distribution, scheduling, 

planning applications, etc. The STLP is required for economic power dispatching and 

control of the DP ship's power system, which is applied for fault analysis or power 

flow distribution [46]. Predicting DP load demand is considered imposes of climate 

fluctuations on the power network due to thrusters' power consumption. Therefore, a 

suitable method for DP load forecasting, which depends on sea state and climate 

changes, is required to investigate this work.  

      Load forecasting has been performed previously by the Fourier series or trend 

curve concerning time function. Another method proposed to estimate load 

performance is an automatic reverting-moving average (ARIMA) [47]. Moreover, the 

prediction techniques are used to forecast the MTLP model of electricity demand. An 

automated regression (AR) is a linear approximation method with time and automatic 

variables for modeling power demand uncertainty. The time series model is described 

in the ARIMA method, where multiple technique analysis for STLP [48]. For 

example, the STLP technique based on artificial neural networks (ANN) is applied 

for extensive data set in [49]. The MTLP-based ANN method is used for past monthly 

datasets[50]. For adjusting neuron weights for STLP, MTLP, and LTLP based on the 

fuzzy algorithm, and particle swarm optimization (PSO) method has been used in 

[51],[52]. In [51], an MTLP has been studied based on the backpropagation (BP) 

algorithm and analysis features parameters complexity, operation speed, and 

convergence speed. An ANN-based on fuzzy logic is to analyze and forecast wind 

speed in [53]. An extensive analysis of wind speed for LTLP is studied in the works 

of literature [54] and [55] for the nonlinear recurring neural network (NRNN). This 

work reviews wind speed prediction for electricity demand by applying NN based on 

automatic regression(ARRX), moving average (ARMARX), and nonlinear automated 

recurrent with external inputs and (NARX). Moreover, an LM-BP algorithm is used 

to adjust neurons weight for STLP of wind turbines.   

      As a result, to optimum power generation between DGs and ESS in DP operation, 

a recurrent network based on the NN-NARX algorithm is executed to forecast the 

STLP. Accurate forecasting of DP demand and power estimation is intended to 
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compensate for ship movement. This method provides the information needed for DP 

load profiles to make better PMS decisions in marine disturbances. Thus, thrusters' 

power consumption is anticipated using the correlation method, which is considered 

an environmentally sensitive load in the shipboard system. To this end, a Levenberg-

Marquardt (LM-BP) based on the NARX with environmental disturbances as external 

inputs is suggested to increase the accuracy of the DP demand for STLP in this 

research work. The proposed technique is applied to predict hourly, daily, and a month 

of the thruster's power consumption depending on sea condition. The presented 

technique's execution is given by collecting real-time DPS parametric data and 

comparing it with three conventional time series prediction techniques. 

  

3.2. Methodology  

      The ANN has been progressed significantly because of the ANN's nonlinearity, 

which can deeply learn from the unidentified environment and estimate NN's 

properties. The ANN control methods are highly suitable to solve signal processing 

complexity. The networking model of neurons is categorized as the NN configuration 

that is designed to predict the real problems of the model. Hence, understanding the 

DP problem's nature is essential to configure a suitable NN prediction model to solve 

the DP challenges. Furthermore, the DP operation's reliability and performance are 

considerably enhanced by assessing the deep learning method's impact. 

      On the other hand, evaluating NN learning models, structures, and designing 

algorithms for solving signal processing problems is the most critical issue [56],[57]. 

Prediction systems based on the ANN method consist of simple neurons and 

interconnected elements for processing the network's inputs and outputs with actual 

outputs. Recently, the research of ANN structures is significantly increased since 

these structures can deliver solutions to some of the problems faced by computer 

science and artificial intelligence (AI). Figure 3-1 shows an overview of ANN's 

generalized feedback, commonly used in the ANN structural design. 
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Figure 3-1. Simplified schematic of a neuron [38]. 
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       A neuron consists of inputs with varying weights, which changes the network 

architecture's NN behavior by developing neuron layers and output. The fundamental 

purpose of changing the NN weight is to execute the anticipated network output. As 

shown in Figure 3-1, there are n inputs defined X = [
1x …

nx ] as input matrix-vector 

correspond to the matrix of weight W=[
1w … nw ]. The input signals are specified 

with the bias term b as a constant value, one with the bias weight wb, and the activate 

function F(u) that can be linear or nonlinear. The multiplied of the sum of the weight 

inputs, and bias passes via an active function which the NN net function nu  is defined 

as [38]: 

                                           
1

n

n i i
i

u w x wb b


                              (3-1) 

     The ANN is identified as an entirely interconnected processing array element 

called neurons. An extensive ANN model that uses multi-neuron networks is a 

multilayer perceptron (MLP) for the deep learning method [56]. Figure 3-2 displays 

the ANN feeding of the MLP type, including multi-layered output neurons, multi-

input neuron layers, and hidden layers' output. 
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Figure 3-2.  A model of MLP configuration with the interconnection of neurons [38]. 

      The inputs layer signal is connected to the output layers with weight and current 

through the hidden layers to pass over the linear or nonlinear transmission function 

known as the nonlinear activation function (NAF). In Figure 3-2, a single neuron is 

symbolized as each circle in the structure. Vertical neuron layers are specified as 

hidden layers 1 and 2 and connected with different neurons to the output layers. The 

MLP performs mathematically nonlinear prediction via sigmoid functions [38] as 
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hidden parts and linear weight in the feedforward NN. The neuron vector feature's 

weight is continuously modified to decrease the predicted network's signal error and 

the desired output. Accordingly, equation (3-2) defines the output layers based on 

multi hidden layer neurons [38]: 

                 

1

1
;1

1 exp[ ( )]
n m

bk jk j
j

y n n

w w h


  

   

             (3-2) 

where the input neuron ix is connected to hidden layer neurons ih  via weights ijw  

and the output neurons iy  via weights jkw . The hidden-layers neuron is calculated in 

(3-3), where the input signal passes the summed signal through to the sigmoid 

function 
/

1
( )

1 u t
f u

e



 in [38]. Therefore, the hidden layers are computed as follow 

[38]: 

                  

1

1
;1

1 exp[ ( )]
j l

bj ij i
i

h j m

w w x


  

   

           (3-3)                        

 

3.2.1 MLP backpropagation learning technique 

      The training method in multilayer perceptron consists of hidden layers is very 

complicated. An effective strategy for regulating the MLP neurons' weight is the 

propagated technique. The single-layer MLP configuration includes a single neuron 

to provide a replication training method is displayed in Figure 3-3. Accordingly, a 

neuron is separated into two parts, where the first part summarizes the function of 

neuron output defined as u and the second section calculates the NAF [38].  
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Figure 3-3 . MLP training model for a single neuron [38]. 
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       The network y


 output is evaluated with the error signal e y y


   to calculate 

deviation from the actual output y. The error backpropagation (BP) signal  is 

defined for training the input's weight among the MLP network.  Therefore, the 

preliminary estimation for the matrix of weights vector is presented by the square 

error summation as follows [38]: 

  

   

^
2 2 2

1 1 1

[ ( )] [ ( ) ( )] [ ( ) ( ( ))]
n n n

b b
n n n

E e n y n y n y n f wx n
  

      
    (3-3) 

 

where the error square bE  in (3-3) adjusts the matrix of weights (w) to reduce the 

error signal between actual and network outputs. These adjusted weights matrices are 

defined as [38]: 

 

                                        
( 1) ( ) ( )i i iw t w t w t   

                              (3-4) 

      Hence, the adjusted weight ( 1)iw t  , the parameter of current weight ( )iw t  , and 

the different weight values ( )iw t  at time t in the BP method are defined as the 

adjusted weight parameter. Equation (3-3) is described as a mean squares error (MSE) 

optimization problem. Therefore, to minimize the error square bE , the weights vector-

matrix is adjusted in the equation (3-4). Then, to solve the optimization problem of 

MSE, the gradient descent (GD) set of rules adjusts the weight of neurons related to 

the BP error signal  . The quantity bE of scalar derived in the case of discrete 

weights is defined as the following equations [38]: 

 

                

^
2 ^

1 1

[ ( )] ( )
2[ ( ) ( )]( )

n i
b b

n ii i i

E e n y n
y n y n

w w w 

  
   

  
            (3-5) 

where [38] 

          

^

1
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. ( ) ( )

n

i i nb i
ii i i

y n f u u
f u w x w f u x

w u w w 

   
    
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         (3-6) 

hence [38] 

                       
^

1

2 [ ( ) ( )] ( ( )) ( )
n

b
i

ni

E
y n y n f u n x n

w 


  


              (3-7) 

 
       Therefore, equation (3-8) calculates as [38]: 
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1

2 ( ) ( )
n

b
i

ni

E
n x n

w





  


                          (3-8) 

where the derivative activation function ( )f e  reduces the error signal ( )n . As a 

result, the global weight changes in (3-4) is adjusted as [38]:  

                                    
1

( 1) ( ) ( ) ( )
n

ij ij i
n

w t w t n x n 


                 (3-9) 

       For adjusting the weights of MLP, the new symbols are assumed for separate 

neurons in different layers where the outputs of the earlier neurons are passed the 

synaptic weights of the ith neuron of the lth layer as displayed in Figure 3-4 with their 

related output of learning term [38].  
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Figure 3-4. The architecture of a typical MLP network [38]. 

 

      Therefore, GD's produced a set of rules that adjusts the weight's values regarding 

gradient error (GE) and can be expressed as [38]:  

 

                    
^

( 1)

1 1

( )
2 . 2 [ ( ). ( ) ]

( )

ln n
llb b i

il l l
n nij i ij
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n y n

w u n w
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 
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        (3-10) 

      Equation (3-11) is defined as a BP formula that computes the GE of the output 

layer and backward to the input layers via passing the hidden layers to regulate the 

neuron weights. Consequently, delta error ( )l
i n can be an iterative process to compute 

the 
1( )l

m n 
in the layer weights of (l + 1)th where 

^

( )l
iy n  is overtaken (l +1) th layer of 

the m neurons numbers.  
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Figure 3-5. The MLP error BP method [38]. 

 

       The signal error is adapted via the following formulations as [38]: 
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                (3-11) 

       

where the adjusted neuron weight in the (l + 1)th layer weights is defined as the last 

weight changes [38]:  

 
1^

1

( 1) ( ) . ( ) ( ) [ ( ) ( 1)] ( )

l
n

l l l l l l
ij ij i ij ij ijj

n

w t w t n y n w t w t t   





              (3-12) 

 

where   and   are known the continuous momentum constraint and the learning 

coefficient, respectively. The gradient of the mean square, momentum term, and 

minor random noise rate is defined to decrease error by adapting the weight values 

and NN learning algorithm as the second and the third term of the equation (3-12) 

[38]. 

 

 

3.2.2 Load prediction based on NARX-LM-BP method 

       In many applications, recurrent learning procedures are not performed online, and 

they are used offline. In the following sections, the error signal values of NARX are 

reduced by the LM-BP method [38]. Consequently, due to the improving accuracy of 

the NARX model during the learning procedure, a history of sea disturbances 

correlation is performed between input and output. As a result, a NARX-LM method 

is proposed to forecast the thrusters' power demand as a sensitive load depends on 
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different sea conditions. The principal mathematical relation for the LM-BP-NARX 

process in the nonlinear time series pattern is identified in [38],[58], and [59]: 

 

( , ) ( ( , 1),..., ( , ), ( , 1),..., ( , ))x ny n t f x n t x n t Td y n t y n t Td             (3-13) 

 

where ( , )y n t , ( , )x n t , and ( )f x shows kth output and inputs values and nonlinear 

activation function, correspondingly. Moreover, the tapped delay lines (TDL) in 

equation (3-13) are defined as integer numbers of the input and output  xTd  and yTd  

in  RNN, respectively [60]. As a result, the ( , )y n t  is computed regarding the initial 

values of the TDL input and output. To calculate the NARX feedforward output, a 

sigmoid NAF is used as f(x) for the learning procedure related to DP power demand. 

Figure (3-6) is shown, a feedforward series-parallel architecture connected to the 

NARX input and output preceding values [61].  
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Figure 3-6. The structure of NARX network with BP error and TDL values 

Tdx and Tdy [38] 

       As a result, the current output signal in (3-13) is defined based on ambient 

turbulence related to the signal of the external inputs' previous values such as sea 

disturbances and DP demand as the output target. In addition, the NARX output 

mathematical model is computed as [38], [58], and[59]: 

 

( , ) ( , 1),..., ( , ), ( , 1),..., ( , )) ))( ( ( )(out x n hid outout hid hidy n t f x n t x n t Td y n t yW n t bf W Td b
  

            

                   (3-14)  
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where ( , )y n t


, outf


, outW


, hidb , and outb are the estimated value of the output, active 

function, hidden layers, and output bias of weights matrix, respectively. Furthermore, 

the weight matrix hidW  and hidf  are the activate function of the hidden layers, 

respectively. The LM-BP algorithm in [38]  is applied for solving the BP scale factor 

problem, tends to reduce frequently the local error converge in the preference of the 

total error. Furthermore, BP's performance has been appropriated on the simple 

learning problem; In contrast, BP's performance is decreased by data-sizing, data 

quantity growth, and complexity. As a result, BP cannot carry out irregularly, and for 

DP demand forecasting, the environmental disturbances are recognized as a similar 

problem.  

 

 

3.2.3 DP Load forecasting and training method 

      A real-time data set have been used to forecast the DP demand based on proposed  

RNN to train, validate, and test the NARX network to predict the DP power request 

in operation conditions [38]. As a result, to evaluate the proposed method, data sets 

have been gathered from the load profile of a real DP ship included a weather forecast 

based on the Caspian sea state in January 2020.  Furthermore, the weather parameters 

that affect thrusters' power consumption due to ship movement from the desired 

position, such as wind speed and direction, wave height, and wave, are displayed in 

Table 3-1 and Figure 3-7. The optimization problem and optimal dispatch between 

generators and ESS in different sea circumstances are solved based on hourly weather 

changes and predicted DP power demand in PMS. Therefore, the average hourly data 

sets have been recorded each 2-min in the auto logging system in the DP operation 

period.  

 

Table 3-1. Parameters applied in LM-BP-based NARX [38]. 

 

   Descriptions          Parameters scales 

DP power (MW) ( , )y n t  LDP
 [0–7] 

wave height (m) 1( , )x n t
 1( , )hW n t

 [0–8] 

wave deg (Ө) 2 ( , )x n t
 2 ( , )VW n t

 
[0–360] 

wind speed (m/s) 3( , )x n t
 3( , )SW n t

 [0–20] 

wind deg (Ө) 4 ( , )x n t
 4 ( , )DW n t

 
[0–360] 

motion deg (Ө) 5 ( , )x n t
 

( , )D n t  [0–360] 

yaw deg (Ө) 6 ( , )x n t
 

( , )H n t  [0–360] 
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Figure 3-7. Historical weather and sea parameters, and ship movement for a month 

of operation [38]. 

        As a result, an accurate input parameter improves DP power prediction in sea 

disturbances with more precision. Moreover, in this study, historical data of the 

requested DP power from PMS has been used as the dynamic and nonlinear historical 

data sets to predict the hourly, daily, and weekly thruster's power consumption. Hence, 

The requested DP power dataset is studied, and the power profiles are classified on 

sea state. For this reason, an accurate variety of input parameters improve the forecast 

of DP demand at sea disturbances. Hence, to analyze thrusters consumption related to 

sea states, Table 3-2 illustrates the classified range of DP demand from PMS related 

to weather conditions. 

Table 3-2. The requested DP power from PMS in various sea states [38]. 

 

Descriptions  

DP demand (MW) 

 
Sea Conditions Wave (m) Wind (m/s) 

Calm-Slight [0–1.25] [0–5] [0–1] 

Moderate [1.5–3] [5–10] [1–3] 

Rough [3.25–5.5] [10–15] [3–5] 

High [5.5–9.5] [15–20] [5–7] 

         

        

       Corresponding to the data sets collected shown in Figure 3-7 and Table 3-2, a 

non-linear correlation between the hourly DP load profiles and sea conditions such as 
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wave and wind is observed. Consequently, the effect of sea disturbances on the DP 

demand is shown in Figures 3-8 and 3-9. Therefore, the hourly changes of wave and 

wind and ship movement parameters are used as external inputs (disorders) in (3-13) 

and (3-14) to increase the accuracy of the learning procedure and speed convergence 

of the NARX based on LM-BP for DP load prediction.  

 

 

Figure 3-8. Relationship between wave height and wind speed in the sea 

disturbances [38]. 

 

Figure 3-9. DP demand co-relationship with sea disturbances [38]. 
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      To validate and train the NARX as the proposed method, the equation (3-13) in 

section 3.2.2 is used to forecast one day lead DP power demand, where the actual DP 

power demand y(n,t) is defined at the time t and day n. Furthermore, according to the 

equation (3-14), ( , )y n t


is the NARX network output at time t and day n as the 

anticipated DP power where the adjusted weight vector w (n,t) and the NAF sigmoid 

f (u) are defined in the mathematical relation. Table 3-2 illustrates the sea disturbances 

related to Figure 3-7. The H(n,t), WV2(n,t), WD4(n,t), WS3(n,t), D(n,t), and Wh1(n,t) are 

specified as exterior inputs of x(n,t) at the time t and day n in (3-13) and (3-14) 

correspondingly. Delay Lines Tdy and Tdx values are used as inputs of the NARX 

network to train the weights vector based on the LM-BP algorithm, as shown in Figure 

3-10 [38].  

 

     Furthermore, for training and validating inputs and outputs, a toolbox related to 

deep learning in MATLAB is used to create the NARX network and compare it with 

other NN time series techniques such as NAR and TDL [62]. The percentage of the 

external inputs for training, validating, and testing is adjusted as 70%, 15%, and 15% 

correspondingly. In the next step, the neurons of the hidden layer are defined to 25 

numbers. In conclusion, to predict hourly, daily, and weekly DP power demand, time 

delay Tdy and Tdx are determined for hourly forecasting from 1 to 24, daily 24 to 72, 

and weekly 168. Furthermore, the training procedure is executed offline to forecast 

the thruster's power consumption. The learning process's performance is analyzed to 

validate and test the trained parameters related to thrusters' actual power consumption. 

The hourly STLP regression plots of the trained, validated, and tested data sets epochs 

have been reasonably successful as shown in Figures 3-11 and 3-12, where the 

training, validation, and test of the data sets approximately 99 and 98 percent at mean 

square error (MSE) 0.033 at epoch 7 for 13 iterations respectively. Moreover, the 

regression of the figures is defined similarly for each single learning process. 
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Figure 3-10. The NARX-LM-BP learning method in sea disturbances [38]. 
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Figure 3-11. Regression model of the LM-BP-NARX [38]. 

 
Figure 3-12. Performance of mean square error (MSE)  
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       Most of the training set's extensive data generate the output results at the first-

order line of the edge related to the best connection. Therefore, the correlation 

between real and anticipated power demand based on the NARX method presented in 

the target fitting line reveals that it can perform relatively well in the different sea 

conditions. In this study, the LM-NARX is evaluated with other NN based time series 

structures such as NAR, TDL via measurement indicators (MI). The error variance (

er ) and the mean absolute percentage error (MAPE) is defined in [38]:  

                                 
^

2

1

1
[ ( , ) ( , )]

N

er
i

y n t y n t
N




                       (3-15) 

                            

^

1

( , ) ( , )
1

100
( , )

N

i

y n t y n t

MAPE
N y n t



                   (3-16) 

3.2.4. Results  

      As a result, to evaluate the NARX method performance, three scenarios are 

proposed. Scenario A is considered the actual and forecasted DP power consumption 

in various sea conditions for a month of DP operation. Scenario B weekly thrusters 

power consumption is analyzed the average error percentage of prediction. Scenario 

C is assessed the hourly load forecasting with the peaks of thrusters power 

consumption and percentage error from rough to calm sea condition at the multiples 

of 24-h lags. Finally, the NARX performance results in different scenarios are 

evaluated with the other time series categories. 

 

3.2.4.1. Scenario A: DP power demand in sea disturbances 

       Sea disturbances influence the DP power demand from PMS for various hours 

and days of a month from calm -slight to rough and high conditions as shown in 

Figures (3-8) and (3-9), where the total peaks of thrusters power consumption in the 

diagram pattern occur between wild to high sea disturbances. Therefore to estimate 

power demand precisely,  the effective disturbances pattern is defined as the external 

input for training the NARX network, which the other time serious schemes have not 

this possibility during the learning process. Hence, the comparison of the proposed 

method with other NN-time series schemes for a month of DP operation is shown in 

Figure 3-13 as a critical specific DP power demand that provides an hourly 

autocorrelation function of predicted power demand.  
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Figure 3-13. The STLP comparison for a month of DP operation [38]. 

      The power consumption reasonably is lower in the calm-slight state than in the 

moderate situation. The results have been achieved based on MI performance as 

defined in equations (3-15) and (3-16) for 31 days of STLP in different sea conditions, 

where they have been categorized as inputs into the NARX model in Table 3-2. The 

comparison average error values of the er  and MAPE for predicting the requested 

DP power based on the NARX method with the NAR and TDL are shown in Figures 

(3-14) and (3-15) around 0.13 MW and 0.08%, respectively. The maximum error 

percentage of the requested DP power from PMS based on STLP is related to the TDL 

method nearby to 0.2 MW and 0.12%.  

Furthermore, the NAR method is performed more precisely compare with the TDL-

NN, where the MAPE and er error in Table 3-3 are defined around  0.11%  and 0.17 

MW. Nevertheless, due to the absence of sea distortion parameters as external inputs 

in NAR and TDL-NN during the offline network learning, the NARX method is more 

accurate than the other time series NN scheme. 

 

TDL-NN 
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Figure 3-14. The error variance er of STLP for a month of operation [38]. 

 

 

Figure 3-15. The error percentage of MAPE for the STLP in a month [38]. 
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Table 3-3. Comparison of predicted DP power demand in a month of operation [38]. 

 

Sea States 

NAR-NN NARX-NN TDL-NN 

er  

(MW) 

MAPE 

(er)   

(%) 

er  

(MW) 

MAPE 

(er) 

(%) 

er  

(MW) 

MAPE 

(er) 

(%) 

Calm sea 0.1 0.3 0.07 0.11 0.1 0.3 

Moderate sea 0.11 0.08 0.1 0.07 0.18 0.08 

Rough sea 0.33 0.07 0.2 0.05 0.35 0.08 

Extrem rough sea 0.15 0.02 0.12 0.018 0.15 0.02 

Average 0.17 0.11 0.13 0.08 0.2 0.12 

 

 

3.2.4.2. Scenario B: Weekly DP power demand in different sea states 

       In Scenario B, to forecast weekly load demand, the previous seven days with 

delayed of 7 × 24-h (168 h) and the past three days of sea distortion with delayed 24, 

48, and 72 of DP operation is applied in equations (3-13) and (3-14) as practical inputs 

during the NARX training method. The total number of inputs according to Table 3-

1 and neurons in hidden layers is regulated 7 and 25 correspondingly. While the 

NARX model learning process is implemented, it can predict the 24-hours power 

demand using the 24 hours weather forecast and motion sensors parameters, as shown 

in Tables 3-1 and 3-2. In Table 3-4, the average weekly DP power demand is analyzed, 

which changes in different sea conditions among the days of weeks in a month.  

      A strong relation is observed in thrusters power consumption on weekdays, where 

the power demand due to calm-slight sea conditions is less than the rough and high 

sea states. Therefore, the comparison average error values of the er  and MAPE for 

predicting the requested DP power based on the NARX method with the NAR and 

TDL are shown in Figures (3-16) and (3-17), approximately 0.12 MW and 0.12%. At 

the same time, the maximum error percentage of STLP for the DP demand is related 

to TDL nearby 0.19 MW and 0.18%, correspondingly. Moreover, the NAR network 

process is executed more precisely compare with the TDL as presented in Tables 3-4 

by er error  0.16 MW and MAPE of 0.17%. Nevertheless, due to the absence of sea 

distortion parameters as external inputs in NAR and TDL during the offline network 

learning, the NARX method is more accurate than the other time series NN scheme. 
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Figure 3-16. The error variance (  ) for weekly STLP in a month of DP operation 

[38]. 

 

Figure 3-17. The error percentage of (MAPE) for the weekly STLP in a month [38]. 
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Table 3-4. Comparison of weekly DP demand predicting in different sea states [38]. 

 

Week 

NARX-NN NAR-NN TDL-NN 

er  

(MW) 

MAPEer 

(%) 
er  

(MW) 

MAPEer 

(%) 
er  

(MW) 

MAPEer 

(%) 

1st 0.06 0.21 0.09 0.30 0.08 0.29 

2st 0.10 0.15 0.13 0.25 0.17 0.27 

3st 0.12 0.07 0.17 0.08 0.20 0.09 

4st 0.18 0.05 0.26 0.07 0.31 0.08 

Average 0.12 0.12 0.16 0.17 0.19 0.18 

 

 

3.2.4.3. Scenario C: Hourly DP power demand in different sea states  

       Finally, the NARX network can predict the hourly power consumption of 

thrusters for PMS to economically dispatch between DGs and ESS in sea disturbances. 

The requested DP power from PMS is classified into sea state patterns and hours in a 

DP operation. The matrix of weights vector is estimated at time intervals t and first 

day via using the earlier requested power dataset for each load sample in the equations 

(3-12), (3-13), and (3-14). Accordingly, the time delay Tdx and Tdy values are defined 

in [38] as time intervals 1 6 1 1(1, 1),..., (1, 2), (1, 1), (1, 2)x t x t y t y t    in the equation 

(3-14) to train the NARX network for hourly DP prediction based on sea disturbances 

(total seven inputs). Consequently, the average error values of the er and the MAPE 

for predicting the requested DP power based on  NARX and time series NN methods 

such as NAR and TDL-NN are compared in Figures (3-18) and (3-19). The hourly 

details of DP power demand prediction results in the MI performance are analyzed in 

Table 3-5. Accordingly, the maximum error percentage of STLP for thrusters power 

consumption is related to TDL-NN approximately 0.49 MW and 0.75%, respectively. 

Furthermore, compared with TDL-NN performance, the  NAR network's MAPE and 

er error are predicted more precisely around 0.43 MW and 0.65%, as presented in 

Table 3-5. As a result, MI's minimum performance percentage error belongs to the 

NARX method for forecasting 1 to 24 h lead thruster power demand by er error  0.12 

MW and MAPE of 0.18%. Hence, the proposed method is presented with high 

accuracy, reliability, and minimum error percentage to predict hourly DP demand 

compare with another NN-time series scheme [38]. Furthermore, the speed 

convergence of the training run-time of NARX with the other NN-time series is 

investigated in three scenarios to ensure that the proposed method's speed of learning 

processes has high performance. As a result, the NARX learning process is about 5.2 

seconds, less than the TDL-NN and NAR network, with a run time of around 6.65 

seconds and 208.5 seconds in scenario C, correspondingly. Similarly, results for other 

scenarios A and B can be observed in Table 3-6 [38]. 
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Figure 3-18. The error variance (  ) for hourly STLP of DP operation [38]. 

       

 
Figure 3-19. The error percentage of (MAPE) for hourly STLP[38]
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Table 3-5. Comparison of hourly DP demand prediction in different sea states[38] 

 

Hours 

    NARX-NN NAR-NN TDL-NN 

er  

(MW) 

MAPEer 

(%) 
er  

(MW) 

MAPEer 

(%) 
er  

(MW) 

MAPEer 

(%) 

1 0.03 0.04 0.08 0.12 0.27 0.42 

2 0.04 0.06 0.20 0.30 0.17 0.25 

3 0.33 0.50 0.24 0.37 0.34 0.51 

4 0.06 0.10 0.32 0.49 0.39 0.60 

5 0.10 0.16 0.36 0.54 0.02 0.02 

6 0.12 0.18 0.21 0.32 0.29 0.44 

7 0.04 0.07 0.32 0.48 0.44 0.66 

8 0.12 0.18 0.33 0.50 0.01 0.01 

9 0.01 0.01 0.45 0.68 0.50 0.77 

10 0.21 0.32 0.88 1.33 0.52 0.79 

11 0.04 0.06 0.29 0.44 2.07 3.14 

12 0.04 0.06 0.66 1.01 0.22 0.33 

13 0.17 0.26 0.48 0.73 0.61 0.93 

14 0.26 0.40 0.63 0.95 0.14 0.22 

15 0.10 0.14 0.63 0.95 0.43 0.66 

16 0.22 0.33 0.21 0.32 0.21 0.32 

17 0.18 0.27 0.17 0.26 0.12 0.18 

18 0.06 0.09 0.40 0.61 0.59 0.90 

19 0.01 0.01 0.78 1.18 0.24 0.37 

20 0.04 0.06 0.54 0.81 0.19 0.29 

21 0.00 0.00 0.39 0.59 0.48 0.72 

22 0.16 0.24 0.34 0.51 0.83 1.26 

23 0.15 0.23 1.18 1.80 0.97 1.48 

24 0.34 0.51 0.27 0.42 1.78 2.70 

Average 0.12 0.18 0.43 0.65 0.49 0.75 

 

Table 3-6. Training run-times in different scenarios methods[38] 

 

                Training time  

Scenarios No. 
NARX-NN NAR-NN TDL-NN 

Scenario A 1.069 1.556 3.154 

Scenario B 1.760 1.839 38.902 

Scenario C 5.223 6.652 208.526 
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CHAPTER 4. POWER MANAGEMENT 

SYSTEM 

      This chapter discusses the widespread use of the DP ship's power system, which 

the papers have been published in [11], [38], and [13]. This section also includes 

contributions of ESS to decrease GHG emissions and pick shavings. The proposed 

optimization method utilizes an interactive approach based on the GAMS and 

machine learning method to improve its computational performance. The proposed 

NARX method in Chapter 3 predicts DP power demand for PMS to minimize 

operating costs, limiting GHG emissions, and providing technical and operational 

constraints based on the GAMS algorithm. 

 

4.1 Methodology 

     The motivation for investigating progressive power management technologies 

have been developed efficiently and greener for all existing energy subsystems [2] 

and[5]. In this regard, due to its direct impact on increasing the efficiency of ships, an 

optimal energy management strategy has been used to obtain efficient operation from 

each power unit by economic dispatching to solve optimization problems [11],[6]. In 

a DP ship, power system reliability is crucial due to DP operation, which is equipped 

with propulsion systems and variable frequency drive (VFD) for the drilling system 

to operate successfully. Nevertheless, one of the most efficient solutions to ensure 

power quality and reliability is ESS for the DP shipboard system with the greater 

penetration of other distributed generations [5]. Furthermore, an ESS can significantly 

manage the DP and other dynamic demand and global DP ship power management in 

general by reducing the potential of main engines, which decreases operating costs 

[63],[64]. For instance, in [65], [66], [67], and [68], a lithium-ion battery ESS is 

assigned for hybrid power plants including diesel engines, ship hotels, and service 

load consumption to minimize fuel consumption and spinning reserve. 

 

      Another factor that has not been utilized sufficiently in DP ships, using ESS can 

significantly minimize operational cost, spinning reserve, fuel cost, and GHG 

emissions [7],[71]. The DP shipboard power system's target is to optimize the power 

generation and ESS by optimally adjusting ship motion and power generation with 

the possible economical cost using the optimal DGs operation point. These 

performance goals are subject to different technical solutions and operational 

constraints such as power balance, generators’ ramp rates, generators’ loading, 

minimizing up and downtimes, ship motion limitation, etc. It should be remarked that 
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the DP demand management and optimal power generation problems are respectively 

joined. Furthermore, the problem under study requires complex methods to solve the 

optimization problem that can meet the above challenges. In [11], an optimal solution 

is proposed using the particular swarm optimization (PSO) technique for a DP 

drillship to solve economic dispatch by considering six operational diesel generators 

with ramp rate limits. The proposed method shows high performance due to DGs' 

nonlinear features, such as non-smooth cost and generators ramp rate constraints in 

the drilling and DP operation. The PSO method is used to solve the DP ships' 

optimization and economic dispatch problem during the drilling operation [11]. 

However, by applying battery ESS and predicted power demand in different weather 

sea states, the PSO method was not reliable due to the low speed of convergence for 

large scale of the time intervals and non-smooth diesel generators cost function.  

 

       In this thesis, an efficient optimization model is performed for optimal economic 

dispatch with five diesel generators in the presence of a battery ESS (BESS) unit for 

a typical DP drill ship's power plant system. Hence,  the model is expressed as a multi-

objective boundary decision making with mixed-integer nonlinear programming 

(MINLP) optimization problems. The multi-objective function is also determined to 

minimize the sum of operational, emissions, and fuel costs appropriately annualized. 

Moreover, It Should be mentioned that the simulation and MINLP algorithms are 

performed in the GAMS as an advanced modeling system designed for solving 

optimization problems such as MINLP, non-linear (NLP), and linear programming 

(LP) as the main engine of optimization [70]. Furthermore, the baron solvers are used 

to enable the users to connect the capabilities of GAMS as high-level modeling 

software for solving objective functions with the ability of optimizers. As a result, the 

proposed optimization algorithm is executed in the GAMS modeling software. A 

typical DP drillship is selected for economically dispatching between DGs and BESS 

during the DP and drilling operations. The summary of the shipboard power system's 

technical specifications, power plant, and BESS is presented in Table 4-1 and Table 

4-2. The DP ship power plant is designed for five DGs of 3600KVA with nominal 

active power connected to propulsion load, drilling system, and hotel load by AC/DC 

and DC/AC converters. 

 

      Furthermore, two three-phase transformers for service, hotel load, and two 

transformers using the 3600 KVA as nominal power for drilling and DP operation 

propose several feeders and circuit breakers. Figure 4-1 expresses the schematic 

diagram of a typical DP drillship power generation and distribution system. In this 

simulation, DG power operates on generator limitations such as ramp rates, fuel, and 

emission cost-performance coefficients, as shown in Table 4-1[11]. 
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Figure 4-1. The schematic relationship diagram between the PMS and DPS[11]. 

Table  4-1. Generators' capacity and coefficients used for DP ship[11]. 

Unit 

No. 

min

i
P  

(MW) 

max

i
P  

(MW) 

  

($) 

  

($/MW) 

  

($/M𝑊2) 

URi                 

(MW/h) 

DRi

(MW/h) 

g1 0.75 3 230 7 0.007 0.8 0.8 

g2 0.75 3 230 10 0.0095 0.8 0.8 

g3 0.75 3 230 8.5 0.009 0.8 0.8 

g4 0.75 3 230 11 0.009 0.8 0.8 

g5 0.75 3 230 10.5 0.008 0.8 0.8 

Table  4-2. Battery capacity and coefficients used for DP ship 

 

 

 

 

 

 

 

Parameter Description Value 

( )
L

P t  Total load energy demand, 5903.54 MWh 

Opt

Sfoc
P  Fixed speed gen-sets optimal loading, 30-90% 

max

Bat
Ess  Maximum battery capacity 1.2 MWh (100%) 

min

Bat
Ess  Minimum battery capacity 200  KWh  (20%) 

max

Bdis
P & 

max

Bcha
P  Maximum discharge and charging rate 900 kW 

min

Bcha
P  Minimum battery charging rate 0 kW 

Bcha
  Battery charging efficiency 95% 

Bdcha
  Battery discharging efficiency 90% 

minB
SOC  Minimum battery sate of charging 20% 

maxB
SOC  Maximum battery sate of charging 100% 
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4.2. Problem descriptions 

       The problem definition is to identify the optimal operational planning and 

economic dispatch of MINLP optimization for the DP drillship power plant systems. 

Exclusively, for drilling and DP operation that has a higher priority to other consumers 

where the power demand in heavy operation condition imposed power limitation of 

generators. Therefore, the proposed hybrid power unit for each particular time of DP 

operation period must be estimated by the NARX model for PMS/EMS to dispatch 

economically between power plants. An optimal operation for power units is proposed 

for power demand for the DP system to maximize energy efficiency by using spinning 

reserve and generators limitation and BESS, which are contained ramp rate limits and 

state of charging (SOC) boundary respectively. 

   

 

4.2.1 Shipboard generators operation limitations 

       In the shipboard system, to solve the problem of economic dispatch for DP 

drillship generation units, it is assumed that generators' output is regulated 

immediately and efficiently. Practically, all DG units' operation range is bounded via 

their ramp rates to regularly limit the generation units' operation range. Hence, 

limitations of DGs setup are taken between the lower ramp (
i

LR ) and upper ramp rate 

(
i

UR ) boundaries of generators settings as follows [11]: 

   

                                                
, , 1

dg dg

i t i t i
P P LR


                                       (4-1) 

                                                
, 1 ,

dg dg

i t i t i
P P UR


                                       (4-2) 

                                                     ,min ,maxdg dg dg

i i i
P P P                                   (4-3) 

 

where the 
,

dg

i t
P  expresses output power, and the 

, 1

dg

i t
P


 previous output power of thi the 

generators. 

 

4.2.2 Generators and battery operation constraints 

      The optimization problem cost function of Ob is solved by considering the 

power balance, BESS, and generator limitations at the specific operational at time 

intervals, which can be represented as [11],[6]:  

 

                          , arg

1

, ,..., .
m

DG i Bdisch L Bch e

i

P P P P i l m


                          (4-4) 

                       
,min ,max

, , , , ,
max( , ) min( , )dg dg dg dg dg

i t i t i i t i t i t i
P P LR P P P UR                      (4-5)  

 
where the PL is the total demand included DP and drilling load profiles at operational 
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time intervals. Moreover, the 
B

P  is the active power of the battery and characterized 

by the maximum and minimum power rate in both discharging and charging stages, 

which  the  
Bch

P and 
Bdis

P  rates cannot be exceeded as the following equations [6]:  

 

                                            0
Bdis Bdismax

P P                                      (4-6) 

 

                                            0
Bch Bchmax

P P                                       (4-7) 

 

      The state of battery charging 
B

SOC at the time interval t is defined as maximum 

maxB
SOC and minimum 

minB
SOC values as following boundaries [7]:  

 

                              
min max

( ) ( ) ( )
B B B

SOC t SOC t SOC t                       (4-8) 

 

                           1 ( )( ) ( )
B B BB cha

SOC t SOC P ttt t              (4-9) 
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


 
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 

 


                              (4-10) 

 
 

where the Bdis  and Bcha are the discharging and charging efficiency, respectively. 

The 
B

SOC  efficiency in (4-9) depends on the battery's energy level, charging, and 

discharging at time intervals. The minimum and maximum values of the 
B

SOC  in (4-

8) are specified in the maximum permissible depth of BESS discharging as an 

estimated lifetime. According to PMS/EMS strategy, the battery 
B

SOC  must be fully 

charged initially to compensate for the DP demand during the drilling operation.  
 

 

4.2.3 Specific fuel oil consumption 

        

       In the presence of DP demand in the shipboard system, DGs operate under 

different operational conditions. Accordingly, the engines are not operated under the 

optimal loading conditions, in which the fuel consumption increases in different 

engine loading percentages [7]. Specific fuel oil consumption (SFOC) measures DGs' 

fuel efficiency and engine performance in loading percentage, producing power by 

consuming fuel  [71]. The DGs' operation in optimal points is analyzed based on the 

SFOC curve to improving engine performance and fuel consumption. Typically, the 
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optimal loading for the DGs scale is between 60 and 90% of the measured engine 

power. The engine operation in this range significantly reduces SFOC to minimum 

rates and maximum operational efficiency based on shop trial [71] as defined in Figure 

4-2. Hence, the SFOC is applied to measure the fuel consumption of shipboard 

engines. In this regard, there are various methods for estimating marine engines' fuel 

consumption to identify the quality of SFOC and GHG emissions factors that are 

crucial to assessing the fuel oil consumption and harmful gas emissions, respectively 

[71].  

 
 

 
 

Figure 4-2. The SFOC curve is based on the fixed speed gen-set operation 

 

 

       According to [7], it can be represented as a quadratic function by third-degree 

polynomial function between actual at ,Dgt jP  and the rated power 𝑃𝑛 of the DGs via 

curve fitting of engine loaded percentage values: 

 
 

, , ,

3 2

, 1,..., 1,...,
t j t j t jDg Dg Dg

t j
n n n

P P P g
Sfoc a b c d t n j m

P P P kwh

       
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                                                                                                                  (4-11) 

 

where a thi , b
thi , c thi and d are the coefficients of fuel emission of the thi power 

units used in (4-11) as: 0.22a   , 1.1b  , 1.2c   , 232d  . The fuel consumption 
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is defined by utilizing the power flow in the equations of (4-11) depends on the SFOC 

reference. Therefore, another crucial Ob function corresponded to the SFOC for 

minimizing the DGs fuel consumption (𝐹𝐶) is displayed in the discrete-time area as 

presented in [7]: 
 

  
,,

1 1

( . ) 1,..., 1,...,
t j

m n

t j Dg
t j

g
Total fuel consumption Sfoc P t t n j m

h 

 
      

 
     

                                                                                                             (4-12) 

 

where n is the number of DGs in the DP operation at Sfocn corresponds to the power 

delivered by all DGs in kW, and t is the time intervals between samples, and the sub-

index m is the number of the selection. Moreover, reducing DG emissions is a 

significant factor that several frameworks are introduced to estimate and calculate 

marine ships' emissions [9]. For this proposed, fuel consumption is essential to 

evaluate the emission rate during the DP operation. Hence, to solve the optimization 

problem using the proposed method, DGs' emission coefficients are considered in 

equation (4-12). Furthermore, to analyze the estimated carbon dioxide (CO2), sulfur 

oxides (SOX), and nitrogen oxides (NOX) emissions, as maximum emissions from 

the vessels, the equations (4-13) to (4-15) can be estimated as following [71]:  
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      The NOx emission factor 
XNOemf  is based on generated power to each engine 

given in g/kWh, and the total NOx mass is released in [g]. The amount of SOX and 

CO2 emission factors 
XSOemf and 

2COemf  are specified in [kg] per 1000kg of 

consumed fuel factors, so it depends on the mass of the fuel consumption. Depending 

on the amount of SOX emissions, the fuel's sulfur content is considered in the equation 

of (4-14) [71].   
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20 %
XSOemf sulfur mass   

 

       Furthermore, the mass of CO2 emitted into the environment is defined as the 

following equation [71]: 
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     By taking the above equations from (4-13) to (4-15) into the proposed method for 

solving the optimization problem and reducing fuel consumption and GHG emissions, 

results are presented in section 4.3. The reduction of fuel consumption and increasing 
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DG performance are obtained by running the engines at maximum load percentage, 

defined in Figure 4-2 and section 4.2.3 to estimate the SFOC to calculate the engine's 

fuel consumption. 

 

 

4.2.4 Objective functions 

       

      In this project, the main purpose of economic dispatching is to decrease the 

operational rate cost during the DP and drilling operation of a DP shipboard system 

above different restrictions. The entire cost function of diesel generators specified by 

equation (4-15) as the quadratic curve fitting that in the table (4-1), the generators' 

coefficients are presented [11]. 
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      The environmental dispatching of electric power plants concerns environmental 

pollution. The environmental pollutions produced by DGs as thermal units depend on 

the type of marine diesel fuel (HFO, MGO), which they used to generate electricity 

for the shipboard system as expressed in the equations (4-11) and (4-12). Hence, to 

minimize the total fuel consumption (TFC) as the principal objective function in (4-

12) and DGs operational cost function in (4-16), the optimization problem must be 

solved by multi-objective functions as: 

 

                                            cosMinOb Op t TFC                                (4-17)                                                            

4.3. Results 

 
       In this study, three cases are executed to evaluate the predicted demand, including 

the DP and drilling operations in the different sea states. The forecasted DP demand 

has been discussed relatively in chapter 3 [38]. In these cases, the DP ship operating 

phases are examined with PMS/EMS strategy based on the STLP performance 

strategy to forecast the DP load patterns in different sea conditions, as described in 

section 3.2.4. The hourly predicted power demand is evaluated for PMS/EMS  in 

environmental sea disturbances from calm to high and low to high DP operation in 

the presence of BESS. Concentrates on the hybrid AC/DC and DC/AC link, as shown 

in Figure 4-1, the BESS is equipped with the lithium NMC/LMO battery, and capacity 

of 1.2MWh, and the maximum depth of BESS discharging is assumed 90%. 

      The BESS is connected to the AC busbar via applying the bidirectional DC-DC, 

and DC/AC converter, where the BESS rated power is 900 KW. The dynamic loads 
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included the DP and drilling loads connected to DC link via DC/AC converter 

interface. The efficiency of converters in both AC and DC is defined as 98% of 

inverter and rectifier operation mode. Specifically, in the presence of dynamic loads 

linked to the DC busbar, the lowest rate of the AC/DC converter link voltage is 

imposed of 0.99 pu. In this case, when the PMS strategy is used to the shipboard power 

system with five generators in BESS's presence contrast to applying five generators 

without BESS, as shown in Figure 4-1.  

       An optimal PMS power reference is reduced fuel consumption and GHG 

emissions. Hence, the PMS produces suitable power references using BESS 

permission given to the DGs to operate at optimal values based on the SFOC curve 

expected from equation (4-11) related to the predicted load profile. Accordingly, the 

power references are optimized based on the multi-objective function (4-17) by 

considering DGs and BESS boundaries. An MINLP method is used in GAMS 

software to reduce fuel consumption and harmful emissions and peak shaving in 

BESS the optimum power setpoints. 

 

4.3.1 Case study A: Economic dispatch of generators with BESS based on 

predicted DP power demand in sea state for a month of operation 

      The result of Case (a) is evaluated to investigate the proposed method performance 

in the presence of BESS in different sea conditions based on predicted power demand 

by the NARX network in section 3.2.4.1. As a result, Figure 4-3 shows an optimal 

strategy has applied by PMS to prevent the blackout in the peak load in the period of 

400 to 500 hours due to high DP operation and compensates the oscillations of 

generators in the presence of BESS in Figure 4-4. Moreover, Figure 4-5 shows the 

hourly dispatch of BEES for different DP operations based on MINLP methods to 

produce optimal power generations between gen-sets.  

       Furthermore, it is observed that batteries charge DGs at their optimum operating 

point based on SFOC in Figure 4-2 and consume less fuel per unit of energy than 

conventional electric propulsion settings. Therefore, Figure 4-6 shows the optimal 

operation points in 188.3[g/kwh] and maximum efficiency of engine load percentage-

based SFOC surface changes between 70 to100 percent. Meanwhile, in BESS's 

absences, the optimal solution is infeasible, and generators are produced non-optimal 

power references, as shown in Figure 4-7. Hence, generators are operated in low 

efficiency based on the SFOC surface and change between 25 to100 percent of engine 

rate as illustrated in Figure 4-8. 
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Figure 4-3. Optimal operation of DP ship for predicted power demand integrated 

with BESS. 

 

 

Figure 4-4. Optimal power generation of  DGs based on BEES and MINLP methods. 

 

 



CHAPTER 4. POWER MANAGEMENT SYSTEM 

63 
 

 

Figure 4-5. The hourly dispatch of  BEES is based on MINLP methods for different 

DP operations. 

 

 

Figure 4-6. The SFOC curve is based on engine loading percentage for five gen-sets 

with BESS in a month of operation. 
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Figure 4-7.  Hourly power generation of  DGs without BESS and MINLP methods. 

 

 

Figure 4-8. The SFOC curve is based on engine loading percentage for five gen-sets 

without  BESS in a month of operation. 
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Figure 4-9. Total Fuel Consumption based on engine load percentage for case A. 

 

 

Figure 4-10.Total GHG emissions based on fuel Consumption for case A. 
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Table 4-3. Comparison of the proposed method in case A 

Case A Operation Cost [$] Fuel [t] 

GHG mass [t] 

CO2 SOX NOX 

Five generators+BESS 1009543 1715 5470 514 19.8 

Five generators 1008205 1750 5595 525 21.8 

 

      As a result,  by using BESS, the reduction of fuel consumption and GHG 

emissions are guaranteed, as shown in figures (4-9), (4-10), and Table (4-3). 

Therefore, batteries are considered a crucial option to compensate for the transient 

peak power due to sea disturbances and impacts on fuel emissions by reducing the 

quantity of fuel consumption. Concerning fuel consumption and GHG emissions, the 

proposed method for five gen-sets included BESS in the present study and compares 

it in BESS's absence. The results in Table 4-3 show that fuel consumption and GHG 

emission using BESS and NARX load prediction are roughly 2% reduced compared 

with five gen-sets factors in a month of operation. This methodology is achieved by 

creating optimal power reference among DGs and BESS and peak shaving of DGs via 

PMS in the DP operation. However, the total cost of operation is slightly increased by 

applying BESS. Still, the fuel consumption is reduced by approximately 35 tonnes per 

month, by the fuel price of 400 $ per tonne's to pay back the total BESS operation 

costs. 

4.3.2 Case study B: Weekly economic dispatch of generators with BESS 

based on predicted DP power demand. 

 

      The result of Case (b) is evaluated the predicted power demand based on section 

3.2.4.2 in hours of the week, and it is investigated the optimization solution in BESS's 

presence in different sea state sequence with the NARX method. Hence, Figure 4-11 

illustrates an optimal problem solution in which PMS is applied suitable strategy to 

avoid the risk of blackout during the peak load demand due to high DP operation in 

the period of 80 to 100 hours. The proposed method compensates for generators' 

oscillations in the presence of BESS in Figure 4-12. Furthermore, Figure 4-13 displays 

the hourly dispatching of  BEES in various DP operations based on MINLP methods 

to generate optimal power-sharing between gen-sets. Moreover, It has been 

demonstrated that batteries are charged DGs at their optimum operating points related 

to the SFOC curve in Figure 4-2 and consume less fuel per unit of energy than 

conventional electric propulsion settings. 

      Consequently, Figure 4-14 confirms that the optimal operation point is 

188.3[g/kwh], and the maximum efficiency of engine load percentage related to the 

SFOC surface changes is between 65 to100 percent. In contrast, while BESS is absent, 

the optimal solution is infeasible. Thus, generators are operated at low efficiency of 

the SFOC surface where the values are changed between 25 to100 percentage of 

engine rate as illustrated in Figure 4-15. 



CHAPTER 4. POWER MANAGEMENT SYSTEM 

67 
 

 

Figure 4-11. Optimal operation of DP ship for different power demands integrated 

with BESS. 

 

 

Figure 4-12. Optimal power generation of  DGs based on BEES and MINLP 

methods. 
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Figure 4-13. The hourly dispatch of  BEES based on MINLP methods for different 

DP operation 

 

 

Figure 4-14. The SFOC curve is based on engine loading percentage for five gen-

sets with BESS 
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Figure 4-15. The SFOC curve is based on engine loading percentage for five gen-

sets without BESS. 

 

Figure 4-16. Total Fuel Consumption is based on engine load percentage for case B. 
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Figure 4-17. Total GHG emissions based on fuel Consumption for case B. 

 

 

Table 4-4. Comparison of the proposed method in case B 

Case B Operation cost [$] Fuel[t] 

GHG mass [t] 

CO2 SOX NOX 

Five generators+BESS 215152 409.86 1311.5 122.1 5.1 

Five generators 215231 415.01 1323.6 124.5 5.2 

 

       

       As a result,  by integrating BESS to AC busbar, the reduction of fuel consumption 

and GHG emissions are guaranteed as shown in Figures (4-16), (4-17), and Table (4-

4). Consequently, batteries are performed a crucial role in compensating for the 

transient peak power caused by sea disturbances, affecting fuel emissions by reducing 

the quantity of fuel consumption. Regarding fuel consumption and GHG emissions, 

the proposed method based on MINLP is involved in BESS operation for a week 

(168h) in this study and compares it with BESS's absence. The results in Table 4-4 

show that fuel consumption and GHG emission by using BESS and NARX–NN load 

prediction are roughly 1.2% less than compared with five generators factor in a week 

of operation. This methodology is achieved because of manufacturing optimal power 

reference among DGs and BESS and peak shaving of DGs via PMS in the DP 

operation. However, the total cost of operation by applying BESS has been slightly 

more significant. Still, the GHG mass reduces by approximately 14 [t], and fuel-
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saving to 5.2 tonnes per week are guaranteed 400 $ per tonne's fuel price to pay the 

total BESS operation costs. 

 

4.3.3 Case study C: Operational planning with battery based on Hourly 

load forecasting in different sea conditions 
      

     The case (C) results are assessed based on predicted power demand by the NARX 

network in BESS in different sea conditions described in section 3.2.4.3. As a result, 

Figure 4-18 demonstrates an optimal PMS strategy by integrating BESS to avoid the 

blackout in the peak load in 13 to 18 hours due to high DP operation. While the total 

generated power could not compensate for the peak demand, BESS power is 

discharged to the AC busbar as shown in Figures 4-18,4-19 and 4-20 for damping 

generators power oscillations. Moreover, Figure 4-19 indicates the hourly dispatch of 

BEES for different DP operations based on MINLP methods to produce optimal 

power generations between gen-sets. 

 

 

 

Figure 4-18. Optimal operation of DP ship for different power demand based on 

BESS. 
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Figure 4-19. The hourly dispatch of  BEES is based on MINLP methods for 

different DP operations. 

 

 

Figure 4-20. Optimal power generation of  DGs with BEES and MINLP methods. 
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      Furthermore, it is detected that batteries are charged and discharged power to DGs 

at their optimal operating point based on SFOC in Figure 4-2. Therefore, BESS is 

charged while the DPS operates at low power demand and shift the engine operation 

point to maximum efficiency regions between 77 to100 percent. On the other hand, it 

discharges during high thruster's command force to consume less fuel per unit of 

energy than conventional electric propulsion settings. 

     As a result, Figure 4-21 shows the optimal operation points in 188.3[g/kwh], and 

the maximum efficiency of engine load percentage is 192[g/kwh] based on SFOC 

surface, which changes between 77 to100 percent. Meanwhile, in BESS's absences, 

the optimum solution is infeasible due to inconvenient produced power by generators 

as presented in Figure 4-22. Hence, generators are operated in the minimum energy 

efficiency between 190[g/kwh] to 206.5[g/kwh] based on the SFOC surface, which is 

changed between 25 to100 percent of engines ramp rate as illustrated in Figure 4-23. 

 

 

 
 

 

Figure 4-21. The SFOC curve is based on engine loading percentage for five gen-

sets with BESS. 
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Figure 4-22. Power generation of  DGs without BEES and MINLP methods. 

 

 
 

Figure 4-23. The SFOC curve is based on the engine load percentage for five gen-

sets without BESS. 



CHAPTER 4. POWER MANAGEMENT SYSTEM 

75 
 

 
Figure 4-24. Total Fuel Consumption is based on engine load percentage for case C 

 

 
Figure 4-25. Total GHG emissions based on fuel Consumption for case C 
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Table 4-5. Comparison of the proposed method in case C 

 

 

Case C 

 

Operation Cost [$] 

 

Fuel [t] 

GHG mass [t] 

CO2 SOX NOX 

Five generators+BESS 30920.97 62.3 199  18.1 0.72 

Five generators 30904.47 62.8 200.2 18.7 0.78 

       

      As a result,  by integrating BESS to AC busbar, the reduction of fuel consumption 

and GHG emissions are guaranteed as shown in figures (4-24), (4-25), and Table (4-

5). Therefore, batteries are executed a critical role in compensating the transient peak 

power caused by sea disturbances and effects on fuel emissions by reducing the 

quantity of fuel consumption. Regarding fuel consumption and GHG emissions, the 

proposed method based on MINLP has involved BESS operation for a day (24h) in 

this study and compares it with BESS's absence. The results in Table 4-5 show that 

fuel consumption and GHG emission by using BESS and NARX–NN load prediction 

is roughly 0.5 [t] less than compared with five generators factor in a day of operation. 

This methodology is achieved due to producing optimal power reference among DGs 

and BESS and peak shaving of DGs via PMS in the DP operation. However, the total 

cost of operation by applying BESS is enhanced. Still, the GHG reduction of 

approximately one [t] and fuel-saving to 0.8% per day is guaranteed by 400 $ per 

tonne's fuel price to pay back the total BESS operation costs. 
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CHAPTER 5. CONCLUSION AND 

FUTURE REMARKS 

     Conclusion 

      This Ph.D. thesis is focused on the PMS strategy for the maritime microgrid. This 

strategy is used to optimally manage power generations in BESS's presence for 

reducing GHG emissions and fuel oil consumption of offshore support vessels. A deep 

learning method is proposed to predict the DP power demand based on sea conditions 

to cover the objectives. For that reason, the expected power consumption of thrusters 

is forecasted for the PMS to compensate for the transient power demand in 

extraordinarily rough and sudden sea state changes. This progressed method enhances 

operational planning, optimizing engine performance to reduce fuel consumption and 

GHG emissions based on multi-objective functions that have been solved by nonlinear 

programming (MINLP) optimization problems. Therefore, this thesis is concluded in 

the following chapters:  

      Chapter 1 introduces a general overview of the hybrid DP ship power system, then 

briefly explains some of PMS's critical issues for economic dispatch and optimal unit 

power generation commitment during DPS operation in different sea conditions. 

Finally, it describes the Ph.D. thesis objectives and contributions.   

      Chapter 2 presents a literature review of different control strategies and DPS 

architecture to achieve progressive control precision and reduce ship motion due to 

sea disturbances. Moreover, it is studied the possible DP control methods and 

comperes the convenience DP controllers with different intelligence techniques to 

improve the operational safety and performance of the DP ship. Furthermore, this 

chapter elaborates on the PMS energy and cost efficiency to reduce fuel and GHG 

emissions in the DP vessels as an essential topic for future research. Hence, the PMS 

can control the power generations between the DGs and ESS in the DP operation. As 

a result, DPS's predicted thrusters' power consumption is provided for PMS with an 

effective optimization method such as the MILP algorithm. Hence, the PMS can be 

sure of DP demand in the prospect of operation conditions and optimal power 

generations. The requested DP power could be forecast via PMS based on the AI 

method and efficient optimization strategy. Consequently, it is essential to produce 

adequate energy in the shipboard power plants and increase power system stability 

during the DPS operation. For that reason, an advantaged control strategy is required 

for PMS to predict the thrusters' power consumption on the shipboard system. 
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       Chapter 3 presents by introducing the AI technology for load forecasting. The 

proposed method is applied in DPS to predict the thruster’s power consumption as an 

essential issue in DP ships. Hence, the PMS can be informed from DPS for optimal 

operation and economically dispatching between generators in different sea 

conditions. As a result, unpredicted power demand from PMS due to sudden weather 

changes and the DP operation is forecasted by an intelligent method. Hence, this 

chapter is introduced a deep learning method based on the NARX  for DPS to predict 

thrusters' power demand for PMS during repositioning accurately. This methodology 

can help the PMS perform optimal power-sharing between gen-sets and BESS in the 

complex decision-making process in all kinds of DP ships. Therefore, a recurrent 

network based on the NARX algorithm is suggested to forecast the STLP of DP power 

demand. In this method, a precise prediction of the DP power demand compensates 

for ship motion in sea disturbances. The NARX network delivers the necessary 

information of the future DP power demand to make better PMS decisions in sea 

disturbances. Accordingly, a Levenberg-Marquardt (LM-BP) based on the NARX is 

used to increase the learning process's accuracy in the environmental disturbances as 

external inputs of the ANN. Thus, this method is used to precisely estimate thrusters' 

power consumption, known as an environmentally sensitive load in the DP shipboard 

system. The proposed method is applied to forecast hourly, daily, and in a month of 

thrusters' power consumption as different scenarios based on sea conditions. As a 

result, The NARX model is studied on the DP ship model equipped with the thruster 

control system to keep vessel positioning in different sea conditions. The NARX 

technique is assessed with the typical time series-NN configurations, where the 

NARX method confirms considerable accuracy with the other prediction method in 

sea disturbances. 

       Chapter 4 introduces the optimization strategy and ESS, which is applied based 

on predicted DP demand in three different scenarios to increase the power generation 

system's efficiency. This advantaged method is combined PMS with DPS to exchange 

a precise data set with each other for improving operational planning of DP ships 

power plant. Hence, STLP scenarios are defined for load prediction in sea conditions, 

which can increase PMS accuracy to optimal power-sharing, economic dispatch and 

reduce fuel consumption during DP operation in the presence of BESS authorization. 

Furthermore, the generated optimal power setpoints produced by the PMS based on 

precisely forecasted thrusters power demand with NARX method in different 

scenarios prevent the risk of shutdown and shave the peak load in the presence of 

BESS. PMS's produced setpoint is given to the diesel generators (DGs) governor to 

adjust the network's power and frequency as the local controller. Accordingly, The 

optimized power references are produced by PMS based on the multi-objective 

functions by integrating DG and BESS limitations. Finally, To solve the optimization 

problem, the MINLP algorithm is performed in GAMS software to decrease total fuel 

consumption and GHG emissions in both DP and drilling operations. As a result, 

integrating the proposed optimization method and deep learning technique in ESS 

presence shows that DGs' have the highest performance based on SFOC, minimum 

fuel consumption, and CO2 emissions during the DP operational condition. 
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Chapter 5 is summarized the contributions of this thesis. 

 

     Future work 

 Investigate other ESS such as flywheels, supercapacitors, fuel cells, and shaft 

generator as the variable speed gen-set can potentially integrate with the 

existing power generators to increase energy efficiency. 

 Development of the DPS controller and PMS program based on python 

algorithms to execute practically in the real DP ships. 
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