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Abstract: Research highlights: The study enabled us to quantitatively assess ecosystem benefits and
trade-o�s, to characterize species as generalists or specialists, and findings suggest that producing
biomass for energy is more likely to serve multiple objectives if it is implemented in an integrated
production system. Background and Objectives: Biomass is one of the main and largest sources of
renewable energy. In Denmark, the production of biomass for energy is mainly based on timber
harvest residues from pre-commercial thinning of forest stands. However, there is an increasing
demand for bioenergy that require biomass to be grown specifically for energy purposes even
though the sustainability and climate change mitigation potential of bioenergy plantations have
recently been questioned in terms of food production, land use, land use change and terrestrial
carbon cycles. The overall objective of the research is to better understand the opportunities and
trade-o�s between di�erent woody and non-woody energy crops. Material and Methods: This study
assessed the ecosystem services of seven woody species and one perennial along a management
intensity continuum with a main focus on bioenergy production. Results: Results of the analysis
showed that there are complex interrelations between ecosystem services and significant di�erences
between species in providing those services. Conclusions: Species with a highest energy benefit
among assessed species were poplar and grand fir, while beech and oak proved the best in providing
biodiversity benefits.

Keywords: bioenergy; ecosystem services; tree species choice; production systems; multifunctionality

1. Introduction

In 2015, 55% of the European Union’s (EU) greenhouse gas (GHG) emissions originated from the
direct combustion of fossil fuels [1]. The demand for more sustainable solutions in providing energy
and maintaining energy security has increased the use of renewable energy greatly in recent decades.
From 1990 to 2015, the EU achieved an 11% reduction in GHG emission from the energy sector. By 2020,
the EU has a target of 20% renewable energy in the energy mix [2], and by 2030 the target is raised to
32%. Thus, the demand for renewable energy is expected to increase further.

According to the Intergovernmental Panel on Climate Change (IPCC) [3], bioenergy is the
renewable energy technology with the largest potential. Beringer, et al. [4] estimate that bioenergy
could potentially cover 13–22% of the World’s energy need by 2050, considering environmental and
agricultural constraints. Globally, so-called modern bioenergy generation (distributed heat, electricity
and biofuels) continues to increase. In 2016 biomass provided 13.1 EJ of heat to the industry and the
residential sector, and 555 TWh of bio-electricity was generated in 2017 [5].
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Bioenergy is expected to be a major contributor to reaching renewable energy targets in the EU [6],
as well as in Denmark [7]. In 2016, bioenergy contributed 61% of renewable energy production in
Denmark [8], and within bioenergy, solid biomass (straw, woody biomass, biodegradable waste and
bio-oil) made up 90% [8]. The consumption of woody biomass (chips, pellets, firewood and industrial
by-products) for electricity and heating increased by 57% from 2010 to 2016 [8]. This increase was partly
covered by the import of wood chips and pellets, suggesting that the current supply of biomass is
insu�cient to meet the demand. The primary source of the current supply of woody biomass is timber
harvest residues from pre-commercial thinning of forest stands [8]. Due to the increasing demand
and insu�cient resources of biomass, energy crops, grown specifically for their energy value, have
been promoted [9]. Fast-growing agricultural and forestry crops have gained a lot of research attention
during the last decade [3].

Willow (Salix sp.), silver grass (Miscanthus sp.) and poplar (Populus sp.) are among the most
promising perennial species to provide biomass resources in southern Scandinavia [10–22]. Intensive
production of energy crops is expected to ensure not only a renewable biomass resource, but also
to reduce the environmental impacts of land use [18]. Long-term sustainability and climate change
mitigation potential of bioenergy plantations have recently been questioned for its impact on food
production, land use, land use change and terrestrial carbon cycles [4,23,24].

As bioenergy plantations, regardless of the management system, compete for land, improved
instruments and regulations are needed in spatial planning [25] to balance ecological, economic and
social needs [26]. Assessing and mitigating the impacts of land use decisions on ecosystems is key
to sustaining human well-being [27], and therefore, there is a need to integrate such knowledge into
regional planning and decision-making processes [25,28–30]. Within a certain ecosystem, e.g., forests,
much research has focused on quantification of a single service being supplied and/or demanded.
However, in practice, ecosystems provide multiple and interacting services. Optimization relative to a
single service, e.g., biomass production could, therefore, lead to a decline of other desired services [31].
Understanding the trade-o�s and relationships between these services at di�erent spatial scales is,
therefore, necessary [29,31] to determine the most applicable species and management system for
biomass production for energy [32].

The overall objective of this study was to assess potential benefits and trade-o�s between the
environmental, economic and social aspects of biomass production for energy. The objective was met
by developing a multidimensional characterization of tree species grown partly for energy under
Danish/Nordic conditions. A herbaceous energy crop was included in the analysis for comparison.
To address the need for understanding the supply and interaction of ecosystem services within
bioenergy production at di�erent scales, this study takes a stand-level approach with a focus on species.
It is often argued, that ecosystem benefits and trade-o�s are best addressed on a landscape level [33,34],
and therefore, findings of this study provide input for decision support in forest management and
policy making on land use planning and landscape development.

2. Materials and Methods

The analytical approach applied in this study is illustrated in Figure 1. Characterization and
quantification of ecosystem services were carried out in 2018, based on scientific literature and
peer-viewed datasets.

The theoretical framework applied for characterizing species as energy crops build on the concept
of ecosystem services (ES). The concept has the capacity to assess the consequences of di�erent land
use decisions on multiple scales [27], allowing for comparison between di�erent silvicultural systems,
as well as woody and non-woody species. It provides a holistic picture and creates a common
ground for understanding, documenting and analyzing the socio-ecological interactions within the
landscape [27,29]. It is, therefore, a powerful tool to communicate the various ways of how di�erent
ecosystems contribute to human well-being [26], and how humans a�ect the availability and the quality
of their services. It also proves to be an adequate tool for addressing the challenges of landscape
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multi-functionality [35]. Balancing between economic, ecological and social goals comprise the core
challenge of contemporary sustainable forestry [36].
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Figure 1. Methodological framework and analytical approach of the study.

Selected ecosystem services are grouped according to a universal classification scheme used within
the EU (CICES) with an additional category of “supporting services” based on the Millennium Ecosystem
Assessment framework in order to include biodiversity into the analysis [37]. Biomass production
systems have significant potential in providing a number of di�erent goods and services [38], however,
the quantity and quality of these benefits are expected to be strongly dependent on management system
and the choice of species. ES indicators from each category were selected to explore opportunities for
multi-functional land use and sustainable production (Table 1), based on similar studies within forest
ecosystem services [27,36]. For each indicator and proxy, a specific quantitative measure is assigned
with a unit that allows cross-species comparison.

Table 1. Selection of ecosystem services included in the analysis, with their assigned indicators or
proxy along with their unit of measurement.

Category Ecosystem Service Indicators and Proxies Unit

provisioning biomass based energy productivity t ha�1 yr�1

biomass based energy energy yield GJ ha�1 yr�1

regulating climate regulation total carbon stock t C ha�1

climate regulation saved emission t C ha�1 yr�1

soil fertility minimum nitrogen requirement kg N ha�1 yr�1

soil fertility nitrogen use e�ciency Gradient
supporting biodiversity biodiversity score 1–20

biodiversity conservation potential %
cultural landscape land use intensity ha TJ�1

aesthetics aesthetic score 0–20
recreation recreation score 0–10
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The analysis is limited and biased towards the selection of ecosystem services quantified based on
the focus of the study. The spectrum of provisioning services provided by selected species is limited to
indicators related to bioenergy production, excluding the consideration of other provisioning services
that usually are included in similar studies (e.g., hunting or drinking water yield) [27,29,36].

2.1. Selected Species by Management Type

Production systems di�er greatly between non-woody and woody species, but also across
woody species, depending on silvicultural practices and rotation length. Species studied here are,
therefore, categorized into three management systems: Agriculture (AGR), short-rotation forestry or
short-rotation coppice (SRF/SRC) and long-rotation forestry (LRF).

Silver grass (Miscanthus sp.), originating from eastern Asia, has proven to be a good bioenergy crop
in temperate regions. It has a high yield even in a cooler climate combined with resistance to pest and
diseases [39]. As a perennial crop, it has a longer growing season and requires less agricultural input
(fertilization and pesticides) than conventional crops [39–41]. It has a high rate of carbon sequestration
in the soil, and overall lower environmental impact, and higher potential for biodiversity compared
to annual crops [39,42–45]. With C4 photosynthesis, it is about 30% more e�cient in solar energy
utilization than C3 plants [39]. Di�erent species and genotypes have been tested in Denmark since the
1990s in two experimental stations at Aarhus University [18–20,46].

Short-rotation coppice and forestry di�er in the method of regeneration. In coppice systems
reproduction is vegetative [47]. Compared to traditional forestry, short-rotation systems have shorter
harvest cycles with more frequent harvest interventions. Short-rotation systems are, therefore, suitable
for fast-growing pioneer genera, such as poplars (Populus sp.), willows (Salix sp.), alders (Alnus sp.), and
birches (Betula sp.). In this study, species of poplar and willow are included. Poplar species considered
best suited to Scandinavian/Baltic conditions are balsam poplars or hybrids (P. balsamifera, P. trichocarpa
and P. maximowiczii) [48]. They are in general light and nutrient demanding species, thriving on fresh,
well drained soils [47]. The rotation age of poplar, grown in silvicultural systems is usually 20–30 years,
with a possible thinning around 10–15 years depending on initial planting density [21]. Willow species
have various morphological forms, from which shrub willows (e.g., Salix viminalis) are used in biomass
plantations in Denmark, as they are best adapted to the northern European climate conditions [48].
The rotation age of willow is often 3–5 years, but in Denmark generally 2 or 3 years [12,14].

Long rotation or traditional forestry, refers to naturally or artificially regenerated coniferous or
deciduous stands, managed primarily for timber production [48]. In this study, the most common
conifer and broadleaved species in Danish forests are included: Grand fir (Abies grandis), Norway and
sitka spruce (Picea abies, P. sitchensis), as well as European beech (Fagus sylvatica) and pedunculate oak
(Quercus robur).

Norway spruce is a slow establishing, but fast-growing exotic species, with a rotation age generally
around 50–60 years [49]. Sitka spruce is an introduced species, native to western North America.
It grows more rapidly than Norway spruce, while its average rotation age is 50–55 years. Grand fir
is also an exotic species, native to the west coast of North America. It has become important in
Danish forestry, due to its high productivity, although its establishment requires care as it is prone to
low temperatures and deer browsing [49,50]. Oak and beech are native broadleaved species of high
economic importance in Denmark, although they establish and grow slower than conifers. Rotation age
is usually between 90–120 years for beech and 120–180 for oak, depending on management objectives
and soil type.

2.2. Data

2.2.1. Provisioning Services

One of the selected indicators for the provisioning of biomass-based energy is the productivity of
the selected genera within each management system. Productivity was quantified by the harvestable
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biomass yield of each genus. For silver grass, willow and poplar, biomass yield was calculated as the
average of mean annual yields reported in a number of studies in Denmark, and a south Swedish
study for poplar (Tables S1–S4). For long-rotation species, the latest findings of a robust study on
biomass production [51], which is based on a common garden experiment from 13 sites across Denmark,
was adopted. Productivity is reported in tones (of dry matter) per hectare per year (t ha�1 yr�1).
More information on the assessment of species productivity can be found in the SI, Section S2.

The other indicator for provisioning services, energy yield, was selected as a proxy for potential
revenue as the settlement price for bioenergy products (bale, powder, pellet, chips, chipboard, waste
or firewood) are most often given in relation to the heating value. The potential energy yield was
assessed via the best mean annual biomass yield, the utilization rate for energy purposes and the lower
heating value (LHV) of the di�erent species. Energy yield is expressed in Giga joules per hectare (GJ
ha�1). More detail on the assessment of energy yield can be found in the SI, Section S3.

Heating values corresponding to 0% moisture content are considered in case of all species to
make values comparable across species. Even though, in reality, it fluctuates according to the moisture
content (insu�ciently dried matter has a lower heating value), depending on the drying conditions,
methods and the time of harvest [47]. Furthermore, using the lower heating value is based on the
assumption that water vapor energy is not regained after biomass combustion [52]. In cases where
more e�cient technologies are used (e.g., combined heat and power plants and flue gas condensation),
the energy yield would be higher for all species and di�erences between the energy yield of species.

2.2.2. Regulating Services

Ecosystems, as natural carbon sinks, have the potential to mitigate climate change by sequestrating
carbon from the atmosphere through photosynthesis, and storing it [53,54]. In assessing the climate
change mitigation potential, the following carbon stocks were considered in accordance with IPCC
guidelines: Aboveground biomass, belowground biomass, deadwood, soil organic layer, and soil.
Fluctuations of the stored carbon in living aboveground biomass, due to age were omitted by assuming
a so-called normal forest, where each age class is equally represented. The average production of
biomass in a normal forest is, therefore, equal to the mean production per hectare over a rotation.
Values reported considers a best-case scenario using the best mean yield among assessed studies.
Values reflect a steady-state level as fluctuations of the stored carbon in these pools, due to harvesting
or conversion are excluded, since the e�ect of management on these pools has a long time-span, and
therefore, it is di�cult to document [55]. More detail on the assessment of carbon storage can be found
in the SI, Section S4.1.

Besides the natural potential of ecosystems to mitigate climate change, harvesting biomass from
ecosystems potentially also contributes to climate change mitigation through product substitution;
either fossil fuel substitution using biomass for energy generation, or substituting materials from
non-renewable sources using biomass for long-lived wood products (e.g., furniture or construction
material) [56]. Here, saved emissions consider fuel substitution from all species, and material
substitution from poplar and long-rotation forestry species according to the utilization model (Figure S2).
Only carbon dioxide (CO2) emissions were considered. Following IPCC guidelines [57], emissions from
biomass combustion were not accounted for. Supply chain emissions were included as a percentage of
the carbon content of the fuel. GHG savings from product substitution are assumed to 2.1:1 [58] (SI,
Section S4.2).

It is assumed that only stems and branches are harvested for bioenergy in all cases. Harvesting
leaves, stumps and roots as an attempt to maximize harvestable biomass yield, would result in a
lower heating e�ciency, since leaves and roots have inferior combustion characteristics, due to higher
ash and nutrient content) [59]. Higher nutrient content not only a�ect combustion quality, but the
extraction of nutrients from the ecosystem would also have serious consequences with regards to soil
fertility and nutrient cycling [60].
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Furthermore, quantified provisioning and regulating services are limited to the environmental
conditions and management described in studies. The best average annual yields were selected for
all species illustrating best-case scenarios, which, therefore, do not include variation, due to site or
management within species.

As biomass harvest removes nutrients taken up by the plants, net output of elements has to be
compensated to ensure long-term soil fertility, while at the same time aiming to avoid the increased
rate of leaching, due to an overload of nutrients. Here, it is assumed that the most important element
for the nutrient balance is nitrogen, as it plays a significant role in both plant growth and water quality.
Adopting the method of Miller [61], the e�ects of species on the nutrient budget and water quality
were assessed by the Minimum Nitrogen Requirement (MNR) and Nitrogen Use E�ciency (NUE) of
the selected species (see SI, Section S5 for details). Values reported are theoretical values, representing
a best-case scenario to provide a common basis for comparison across species [61]. Results of MNR are
representing a theoretical value that can only be interpreted with a proper scientific investigation of
other inputs and outputs of the nutrient budget.

2.2.3. Biodiversity

Non-tangible values like biodiversity are very hard to quantify and will always depend on how
they are defined and on what scale. Biodiversity, in its broadest definition, cannot be categorized
as an ecosystem service, rather a result of successful balancing between ecosystem services [37,62].
Consequently, the spectrum of scientific literature on biodiversity is very wide, inconsistent and often
contradictory, due to di�erences in definitions and interpretations of biodiversity. Here, ecosystem
biodiversity is assessed on three levels; genetic (�), habitat (ß), and landscape () using a score.
For genetic diversity, a binary score (0/1) is used, with 0 representing no genetic diversity. Habitat
biodiversity is scored in accordance with Filyushkina, et al. [63]. Biodiversity on landscape level is
scored from 0–3, based on the extent to which the dominance of a certain land use type in the landscape
increase or fragment core areas of habitats after Lindborg, et al. [64]. Finally, the scores for all three
levels were summed to get an overall score for biodiversity from 1–20, with the highest being the best
(SI, Section S6.1). As potential biodiversity in an ecosystem does not indicate whether the level of
biodiversity can be maintained over longer periods, a conservation potential is quantified. Scores were
adopted from Filyushkina, Strange, Löf, Ezebilo and Boman [63]. The quantification of biodiversity
and conservation potential is further described in the SI, Section S6.2.

While quantifying biodiversity holistically requires the use of proxies (scoring, rating and ranking)
to allow cross-comparison, it increases the degree of uncertainty as relationships are often not
well-understood and controversial even among scientists.

2.3. Cultural Services

In order to address the issue of land use and land scarcity, the land use intensity (LUI) was assessed.
Species with smaller LUI are considered to be more beneficial in a land use planning perspective.
Recreational values were assessed on a scale from 0–10. The assessment builds on expert ratings
of public preferences for di�erent management types, forest stand development phases and species
adopted from Edwards, et al. [65]. The aesthetics of the studied species was assessed considering
two factors: Visual impact and visual e�ect on di�erent landscape types. The higher, denser and
more monotone in colors a stand is, the less visually appealing it is, as it creates a “wall e�ect” [66].
On landscape level, scores for “scenic beauty” of di�erent landscape types were adopted from a
German study [66]. The visual e�ect of the di�erent land use types was evaluated for six di�erent
landscape types: Five types adopted from Boll, von Haaren and Rode [66], and a simplified urban
landscape based on preference studies on recreational aesthetics [67,68]. The assessment of cultural
services is further described in the SI, Section S7.
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2.4. Analysis

The analysis was carried out in two steps, first within and then between species. For both analyses,
simple statistical methods were applied. Interrelations between ecosystem services were assessed by
identifying pairwise mutual benefits and trade-o�s between ecosystem services. These positive-negative
interactions depend on whether the selected ecosystem service can be provided without excluding or
significantly reducing the capacity or quality of another service [30]. As these interactions can occur
on multiple spatial and temporal scales [35], it is important to note that this study only considers
bioenergy production systems with several di�erent species in a certain age/developmental phase.

Analysis of the relationship between di�erent ecosystem services was limited to the identification
of the positive/negative correlations and their degree, since the type of relationships between them
were not assessed. Therefore, direct conclusions cannot be drawn from the correlation coe�cient
analysis as it may hide non-linear relationships, depending on the di�erent transformations used.

The analysis identifies significant linear correlations, to avoid bias in the analysis of ecosystem
services between species. Pairwise Pearson’s correlation coe�cients (�) between all ecosystem services
were calculated as the quotient of the covariance and standard deviation of the two variables paired.

The correlation coe�cient only investigates linear relationships, and all values of ecosystem
services were transformed (log or fourth-root transformed) to minimize their variance [29]. The value
of the coe�cient ranges between �1 and +1, indicating mutual benefit in case of positive correlation
(� > 0) and trade-o� in case of negative values (� < 0). The relationship is considered to be strong and
appropriate for a co-linearity check between �0.70–1, moderate between �0.50–0.70, weak between
�0.30–0.50. The co-linearity check was carried out by assessing the goodness of fit (R2) of the linear
trend line of paired indicator values.

For the analysis of ecosystem services between species, overall benefits and trade-o�s were
calculated for each species using the method developed by Bradford and D’Amato [69], and adopted,
among others, by Dai, Wang, Zhu and Xi [31]. They define overall benefits as the “degree to which
multiple objectives are achieved” and trade-o�s as “the disparity in the level of achievement among
objectives” [69] p. 2). The overall benefit of a species was calculated as the average of benefits from
single objectives/indicators. The benefit of a specific species for a single indicator was calculated as
the relative deviation from the mean of all values measured across species (eq. 1). The benefit value
(B) ranges from 0 to 1 and can be interpreted as the percentage of a single species’ contribution to the
maximum benefit from a single indicator within each objective, relative to all species considered in the
study. Note that the maximum benefit refers to the most beneficial value of a given indicator (for LUI
and MNR these are the minimum values).

BA =
Aobs �Amin

Amax �Amin
(1)

where BA is the benefit of a specific species from a single ecosystem service indicator (A). Aobs is the
quantified value of the ES indicator for that specific species; Amin and Amax are the minimum and
maximum values of the ES indicator across all the assessed species.

The overall trade-o� was calculated by the simple root mean squared error (RMSE) of individual
benefits (Equation (2)).

RMSE =

sPn
i=1(Bi �Oi)

2

n
(2)

where B is the benefit of a specific species from a single ecosystem service indicator, calculated after
Equation (2); O is the overall benefit of a specific species, calculated as the average of benefits from
single indicators (B); and n is the number of indicators included in the study (11).

The overall benefit was calculated using a weight of 4, favouring energy production (base scenario)
reflecting the focus of this study. Alternative weights were applied to assess the sensitivity of species
choice against other objectives (Table 2).
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Table 2. Base and alternative scenarios and the applied weights to ecosystem service indicators.

Acronym Primary Objective(s) Indicator(s) Weighted Multiplier for the
Indicator(s) Benefit

Base scenario. ENERGY energy production saved emission 4
Alternative scenario1 ALL - all are equal -

Alternative scenario2 ECOENERGY
conservation with a

focus on energy
production

conservation potential and
Saved emission 4 and 2, respectively

Alternative scenario3 BIODIVERSITY conservation conservation potential 4

Alternative scenario4 ENERGY2 energy production with
a focus on conservation

saved emission and
conservation potential 4 and 2, respectively

3. Results

In line with the focus of this study, 11 indicators of four types of ecosystem services were assessed.
The relative benefit, based on normalized values of the assessments, of each species against the 11
indicators forms an ecosystem service benefit profile for each of the studied species (Figure 2).

From the 55 pairwise correlations of the 11 selected indicators, 27 are positive and 28 negative
(Table 3). The majority (48%) of the positive correlations are strong, while the majority (61%) of negative
correlations are weak, with only 14% of strong negative correlation. Most synergies were found
between indicators of regulating and cultural services, as well as supporting and cultural services with
67 and 33% being characterized strong, respectively.

As a result of the co-linearity check, a significant linear relationship was found in six cases among
the 13 significantly correlated indicators, with a very good fit to a linear trend line (R2 > 0.72) (Table 4).
Consequently, one from each co-linear indicator was ruled out, leaving six indicators from the initial 11
to be included in the final analysis between species.

Across all scenarios, beech was always, and poplar almost always among the top three species in
terms of overall benefits, however, they also carried along with high trade-o�s (Figure 3). In contrast,
the two spruce species were among the species with the lowest trade-o�s. In scenarios where energy
production was favored, grand fir proved to provide the highest overall benefits with the lowest overall
trade-o�s. In contrast, when biodiversity values were weighted high, the highest overall benefit was
achieved by beech, followed by oak and grand fir. It was, however, still grand fir that carried the
lowest degree trade-o�, while oak the highest.

The disparity of the overall benefits achieved in the di�erent scenarios within species is also the
highest for oak (standard deviation = 0.13), followed by silver grass (0.10), beech (0.10) and poplar
(0.09), while grand fir and willow had the lowest (0.04 and 0.05 respectively).

The 1:1 reference line in Figure 3 shows the hypothetic situation where, for all values-pairs, the
overall benefit equals the overall trade-o�. Species above the line; conifers, poplar and beech, are
considered to be more e�cient in terms of providing benefits from multiple objectives, as they come
with fewer trade-o�s. From species above the reference line, depending on the significance in the
di�erence between the overall benefits, the ones with the lowest trade-o�s are the most e�cient for
multiple objective management, realizing land use multi-functionality.

Compared to the 1:1 reference line, silver grass stayed below the line in all scenarios, meaning
that the trade-o�s outweigh the synergies no matter how ecosystem services are weighted. Silver grass
proved to be unsuitable to serve multiple objectives e�ciently, due to its specialist profile. In contrast,
the benefits of conifers, poplar and beech outweigh the trade-o�s in all scenarios, while willow and
oak shifted around the line, depending on which ecosystem service was favored.
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Table 3. Results of the pairwise correlation analysis between ecosystem services.

Transformation Log Log Log Log Log Log 4p Log Log 4p 4p

Productivity Best Energy
Yield

Total Carbon
Stock

Saved
Emissions MNR NUE Biodiversity Conservation

Potential LUI Recreation Aesthetics

productivity
best Energy

Yield
total carbon

stock
saved emission

mnr
nue

biodiversity
score

conservation
potential

lui
recreation

score
legend + strong modest weak none - strong modest weak none

Colour scheme: (+) Green = synergy; (�) red = trade-o�. Scale: Strong between �0.7 and �1; modest between �0.5 and 0.7; weak between �0.3 and 0.5; none between 0 and �0.3.
Transformation types are indicated in the top row. Indicators in bold were included in the analysis between species, while others were excluded, due to co-linearity with one of the
indicators already included.
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Table 4. Significant co-linearities with the goodness-of-fit for the linear trend line and the indicators
that have been ruled out from the analysis between species.

Significant Co-Linearity (>�0.7) R2 Ruled Out

Productivity - Saved emission 0.7214 Productivity
Best Energy Yield - Saved emission 0.9703 Best Energy Yield

Best Energy Yield- LUI 0.8200 Best Energy Yield
Saved emission- LUI 0.8016 LUI

MNR- NUE 0.9937 MNR
Biodiversity score - Aesthetics 0.8710 Biodiversity score

LUI = Land Use Intensity, MNR = Minimum Nitrogen Requirement, NUE = Nitrogen Use E�ciency.

Forests 2020, 11, 277 9 of 18 

Figure 2. Species’ ecosystem service benefit profiles with all the quantified indicators. Color code:
Blue = provisioning service; yellow = regulating services; green = supporting services; purple =

cultural services.
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4. Discussion

Understanding the interrelations between the di�erent ecosystem services within a species profile
is vital to explain the levels and changes of overall benefits and trade-o�s that enables the comparison
between species [69]. Despite the many positive and negative relations found between di�erent
services, representing the complexity, the results clearly demonstrate well-known trade-o�s between
management and nature [29,31,36,69]. As the intensity of management increases, services connected to
natural ecosystem processes and functions are suppressed. Interrelations between the di�erent types
of ecosystem services can be explained as an antagonistic relationship between intensive management
and nature.

Changes in the overall benefit and trade-o� rates lie behind the individual ecosystem service
profiles of species. Species with a widespread profile across the di�erent types of ecosystem services
(e.g., fir, spruces or willow) are likely to achieve the lowest degree of trade-o�. Since they already carry
a certain trade-o� within their profile (inherited trade-o�s), putting a weight on one objective will not
result in a significant shift along the trade-o� axis.

This degree of shifting is represented by the disparity, showing that some species are quite
generalists, while others are specialized to serve a specific objective. From the species above the
reference line, those with the lowest trade-o� are considered the most e�cient for land management
towards multiple objectives.

As a general pattern across species, it is shown that the more intense the production in a
management system, the more it limits the provision of other services. If ine�cient in providing
multiple services, a production-oriented system promotes functional segregation. Even though high
trade-o�s are also associated with biodiversity objectives, that would also mean certain functional
segregation in order to maximize the benefit (e.g., untouched forests or forest reserves) it is not exclusive
with other services to the same extent.

Biomass as an alternative to fossil fuels is much discussed in relation to the green energy transition
in Denmark. Carbon neutrality and sustainability is questioned, while concerns also surround the large
consumption, dependence on imported products (mainly wood pellets) and also the distortions of the
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Danish energy taxation system, related to state economic issues and inequality towards other types of
alternative energy resources (wind, solar and heat pumps) [70]. Regardless of the heated debate and
opposing opinions, it is generally accepted among politician, economist and scientist that biomass is
an alternative to fossil fuel (even if it is not the best) and that biomass was, is, and will be crucial for
displacing fossil fuels in Denmark at least until 2030, being the largest renewable energy resource [71].

On the other hand, other ambitious political targets are addressing the enhancement of biodiversity
in state forests. According to the new suggestions to the National Forest Plan of Denmark, it can be
realized by setting aside 20% of the total forested areas as untouched before 2030.

Producing biomass for energy is more likely to serve multiple objectives if it is implemented in
a polycultural and multi-objective production system (mixed stands of ex. poplar and LRF species).
It can also be true in the case of willow to some extent. The most e�cient species in providing high
energy benefits, while serving multiple objectives at the same time are poplar and the conifers (grand
fir, Norway spruce and Sitka spruce), with poplar providing lower biodiversity, but higher energy
benefits. Willow, on the other hand, might be more flexible to changes in management and climate,
considering the significantly shorter rotation age. This is also true for poplar compared to long-rotation
forestry species.

Focusing on biomass production, and therefore, intensifying production of, e.g., beech and oak
are not recommended as it would significantly suppress their potential to provide services related to
biodiversity and recreation, while their productivity cannot be enhanced enough to be a competitive
alternative to poplar or conifers [15,36,60]. Biomass production for energy with silver grass is only
recommended if willow (or any other species) is not available as an alternative. Since it has very low
overall benefits and even its productivity is not remarkable high compared to the alternative species.

The choice of species always depends on the management objective, defined by the owner/manager,
but also on profitability [72]. As an economic analysis was not included in this study, it cannot be
concluded that species with the highest energy benefit are the most profitable. Firstly, because revenue
from energy yield is not necessarily the only income and secondly because of the di�erences in
costs arising according to management [49]. The questions of how to optimize the management to
enhance the production potentials, while maintaining the provisioning of other services along with the
corresponding economic consideration for a given management alternative still remain.

Overall benefits and trade-o�s presented in this paper is limited to the chosen spatial scope
(stand-level). It is often argued that the spatial distribution of ecosystem services and e�ective balancing
between conflicting management options goes beyond stand/property borders and best addressed
within a forest or landscape [33,34,73]. While findings of this paper provide valuable knowledge and
input to decision making processes, it is noted, that stand-level approaches to optimize overall benefits
from ecosystem services may not be the most e�ective way.

5. Conclusions

This study has assessed the ecosystem services of seven woody species and one perennial along a
management intensity continuum with a main focus on bioenergy production in Denmark. Results of
the analysis between ecosystem service indicators showed that there are complex interrelations among
them originating partly from the antagonistic relationship between intensive, production-oriented
forest management and provision of diverse services connected to natural ecosystem processes and
functions. The ecosystem service profile species, based on individual benefits from all 11 indicators for
all four types of ecosystem services, clearly shows that there are significant di�erences between species
of di�erent management systems in providing goods and services in Nordic conditions. Comparison
between species in this study is limited to the specific species selected, based on the focus area (woody
biomass production for energy) and do not show the whole spectrum of solid bioenergy production.
Within this scope and area of the study, some species have proved to be very specialist (either for
production or nature conservation), while others are more generalist, providing moderately high
services of all types. Stand-level analysis between species showed that producing biomass for energy
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is more likely to serve multiple objectives, at the same time, if it is implemented in an integrated
production system. Species with the highest energy benefit among assessed species were poplar and
grand fir, while beech and oak were the best in providing biodiversity benefits in given conditions.

Findings presented here, indicate that the e�ect on ecosystem services of a specific choice of
species/management system should be assessed in the frame of overall benefits and trade-o�s from
multiple objectives. Meanwhile realizing that there is no best single solution for “having it all”, research
on individual responses of ecosystem services to a specific management type should be continued.
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