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Abstract. Automatic estimation of the human pose enables many interesting ap-
plications and has therefore achieved much attention in recent years. One of the
most successful approaches for estimating unconstrained poses has been the pic-
torial structures framework. However, occlusions between interacting people is
a very challenging problem for methods based on pictorials structure as for any
other monocular pose estimation method. In this report we present work on a
multi-view approach based on pictorial structures that integrate low level infor-
mation from multiple calibrated cameras to improve the 2D pose estimates in each
view. The proposed method in shown to work under heavy occlusions but does
not improve the pose estimates in the non-occluded cases in it’s current form.

1 Introduction

Automatic estimation of the human pose enables many interesting applications and has
therefore achieved much attention in recent years. Accurate pose estimations can give a
good description of the actions being performed in a video and hence be used for e.g.,
automatic video surveillance, human-computer interaction or automatic video annota-
tion. In this report we present a method to do full body pose estimation by combining
information from multiple cameras to deal with the problem of occlusions between
people.

One of the most successful approaches for estimating unconstrained poses has been
the pictorial structures framework [7] which has been improved and extended in a num-
ber of works [2, 8, 18]. One of the main challenges for human pose estimation is the
inherent problem of occlusions, especially self occlusions, i.e. one body part occluding
another body part of the same person. Several methods have been proposed to deal with
this problem by modeling the self occlusions directly in the body model [19, 20] or by
utilizing a foreground mask and maximizing the area of foreground covered by body
parts [15].

The problem of occlusions increases when multiple people interact. [6] proposes a
multi-person pictorial structures model and estimate the front-to-back ordering of peo-
ple to find the probability of occlusions between people. [9] also addresses the problem
of occlusions by other foreground objects and propose to detect occluded body parts by
pruning the foreground mask into a mask of possible occlusions and then include these
detections in the inference process of the pictorial structures.
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All of these approaches use a single viewpoint to provide a 2D pose estimate but
severe occlusions will always cause problems for monocular methods in general. Com-
bining information from multiple cameras can help to solve this issue and a number of
multi-view methods for reconstruction of the human pose have been proposed in recent
years, based on for example visual hull [4, 12] or skeleton models [3, 5].

The multi-view methods range from carefully calibrated studio setups to surveil-
lance setups with the placement of the cameras determined by the environment. The
studio setups usually deal with human pose estimation in 3D and the cameras are ar-
ranged for that purpose specifically. [3–5, 12, 17] are examples of such methods and
[11] presents a representative multi-view data set for human pose estimation and action
recognition with references to related methods and data sets. The surveillance-like se-
tups utilize multiple overlapping views in unconstrained environments and these meth-
ods typically deal with the problem of tracking people through occlusions rather than
pose estimation, like in [10, 16, 21]. The video data in surveillance setups does rarely
cover the scenes as thoroughly as studio setups and the video is not specifically cap-
tured with pose estimation as a goal making it a difficult task. However, in this report
we present a method to combine information from multiple overlapping cameras in a
surveillance-like setup into 2D full body pose estimates thereby effectively dealing with
the problem of occlusions in single-view approaches.

Other approaches address a similar problem. [13] do full body pose estimation by
combining the body part likelihoods from two cameras in an iterative approach. [14] use
silhouette based shape matching in each view and then project the best mathing shape
models to the other views where a multi-view matching score is calculated. Our method
also integrates low level information, like the body part likelihoods, but we build on the
pictorial structures framework which has shown good results in single-view approaches
and we do the integration in a non-iterative way. The use of the pictorials structures
framework also means that we are not limited to a set of poses represented in a database
as in [14].

Our multi-view pose estimation process will not attempt to generate a 3D pose
estimate. Instead, our method will integrate information from multiple views to get
improved 2D pose estimations. There are no restrictions on the camera setup which fits
well with the typical surveillance scenario. The method will integrate information from
a variable number of cameras and does not require a person or a body part to be visible
in all cameras.

The rest of the report is organized as follows. First, section 2 gives a brief descrip-
tion of the single-view pictorial structures framework. Section 3 then describes the in-
tegration of pose estimation from multiple cameras. Section 4 presents results using
the proposed method which are discussed in section 5. Finally, section 6 concludes the
report.

2 Single-view pictorial structures framework

Our approach extends the single-view pose estimation method presented in [9] which
build on the pictorial structures framework of [18]. The single-view pose estimation
method in [9] will be summarized next.
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Fig. 1. Pictorial structure representation that models the human body.

The pose estimation is based on detections of individual body parts which are com-
bined into body configurations under kinematic constraints in a pictorial structures
framework. The body model contains ten body parts but only six types of body parts are
detected since left and right limbs are assumed to have the same appearance and shape.
The body part types are heads, torsos, upper arms, lower arms, upper legs, and lower
legs (see figure 1).

A robust background subtraction is first applied to limit the search space for body
parts to foreground regions. The body parts are detected using both person-specific ap-
pearance models and generic edge-based shape models. The two types of information
are combined with a dynamic weighting dependant on the local quality of the appear-
ance information.

The initialization of the appearance models is done by detecting isolated people in
a characteristic walking pose. The detection of body parts in the initialization process
is done only with edge-based detectors but constraining the initialization phase to one
characteristic pose ensures good detections despite the relatively weak detectors. Ini-
tialization can alternatively be done by clustering edge-based body part detections [18].
This requires a set of frames for initialization but does not require people to be in the
characteristic walking pose.

A set of pairwise kinematic constraints are applied to the individual body parts
detections. These are represented as a tree-structured model which allow for efficient
calculation of the posterior probabilities. At this stage the number of visible body parts
is unknown and a set of body configurations with one arm and one leg is drawn from
the posterior of the pictorial structure. The true modes of the posterior (representing the
poses of visible body parts) are then found using a mean shift approach to produce the
final pose estimate.

3 Multi-view pose integration

The body part detection of the single-view pose estimation method produces a probabil-
ity map for each type of body part. By combining these probability maps from multiple
cameras we will get a fusion of low level data that will ideally improve the results of
the inference in the tree-structured body model and the subsequent estimation of the
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final pose, especially when body part detections from one view are poor as a result of
occlusion. Figure 2 shows how our approach fits into the single-view approach.

To enable the integration of the body part probability maps we use calibrated cam-
eras. This allows us to calculate the projections of probability maps from different cam-
eras into a common world coordinate system (illustrated in figure 3). By sampling new
body parts from this 3D space and projecting them back to each view we get new
enhanced 2D body part probability maps. In essence, our multi-view pose estimation
method combines body part probability maps from multiple cameras and generates im-
proved probability maps for each camera. The rest of the pose estimation proceeds as
in the single-view method.

The body part probability maps are confined by the foreground masks which ensures
that the overlap between their projections in world coordinates is within a small volume.
However, when multiple people interact the foreground always contain more than one
person, so the foreground mask merely defines a region of interest and not the silhouette
of each person.

The probability maps express the probability of a body part given its 2D orientation.
When projecting these into 3D we would ideally want to know the third rotation angle
(out of the image plane) to ensure that the probabilities are only combined with the
corresponding 3D orientation from the other views. This is however not possible.One
may try to combine all possible 3D orientations for a given 2D orientation with all 2D
orientations in the other views. Rather than such a complex approach, we change rep-
resentation to joints instead of body parts, i.e., we transform each body part probability
map into two joint probability maps. For instance, upper arm probability map is trans-
formed into shoulder and elbow probability maps. By describing a body part by its two
end points we get the locations of the corresponding joints. Joint probability maps can
now be generated by letting the probability of both joints be the same as the probability
of the corresponding body part.

Fig. 2. A block diagram that shows how our approach fits into the single-view approach for com-
bining information from two cameras.
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Fig. 3. Probability maps from different viewpoints are combined by projecting them into a com-
mon world space (the illustration is not a correct perspective projection). The maps illustrate the
probabilities of arms and legs with dark blue corresponding to zero probability and red corre-
sponding to high probability.

The joint probabilities P (J) are independent of orientation (θ) so we take the max-
imum of body part probabilities P (Bp) over all orientations:

P (J |x, y) = max(P (Bp|x′, y′, θ)),∀θ (1)

where x and y are image coordinates of the joint and x′ and y′ are the image coordinates
of the corresponding body part center.

With known camera calibrations we can now project the non-zero joint probabil-
ities into the 3D world space where it will represent a volume. This volume can be
combined with the projections of probabilities of the same joint from other cameras.
The probabilities are added together where ever the volumes of the projections overlap.

The projection of joint probabilities corresponds to a cylindrical volumes in 3D. In
world space however, we want joints to be represented as spheres so we apply mean shift
clustering to divide the combined volume into a set of clusters, each cluster representing
a joint location, and the probability of that joint being the maximum probability of
points belonging to the cluster.

This process is done for each joint individually. The goal is however to generate
improved body part probability maps for each view, so at this stage we will connect top
and bottom joints to get a body part representation, for example, we connect a shoulder
joint (top joint) to an elbow joint (bottom joint) to get an upper arm sample. By back-
projecting many body part samples, we can approximate the corresponding probability
maps in each view.

Two joint-clusters are connected if the distance between them corresponds to the
length of the appropriate body part±20% of the length. Body part lengths are estimated
for each person in the initialization phase. The estimation is based on a set of standard
body part proportions that are scaled with the height of the person in the initialization
pose. The joint-cluster are furthermore only connected if the area between the cluster
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centers project back onto the foreground mask in all views. The second condition is
necessary to minimize the risk of connecting joints that do not correspond to real body
parts.

One sample is drawn from each connected cluster-pair and the probability of that
body part sample is the sum of the probabilities of the two joints. All these 3D body
part samples are projected back onto each view where they will be connected into body
configurations through inference in the tree-structured body model as in the single-view
approach. The final pose estimate is also found like in the single-view case, i.e. using a
mean shift approach to find the true modes of the posterior.

4 Results

This section presents the results of the preliminary tests of the proposed integration of
multiple views for pose estimation.

We test the method on a video sequence from the PETS 2009 data set [1]. The
data set provides video from eight calibrated cameras with people interacting in the
overlapping field of view of all cameras. We generate the pose estimation results from
two cameras using the single-view approach [9] and compare these results to the pose
estimates found by using the proposed integration of body part probability maps from
multiple views. Both sets of results use the same body part detection procedure. The
multi-view approach then integrates body part probability maps but then proceeds as in
the single-view approach. The comparison is based on a qualitative analysis of example
frames.

The single-view approach generally performs better in the non-occluded cases (fig-
ure 4 rows a and b). This will be discussed in the next section. The multi-view approach
performs better in the occluded cases (figure 4 rows c and d), especially under full oc-
clusion (figure 4 column 3).

The main effect of the proposed multi-view pose integration at this stage is the
ability to transfer a good pose estimate from one view into an improved pose estimate
in another view where the person is heavily occluded.

5 Discussion

A very important difference between the single-view approach and the presented multi-
view approach is the assumptions about body part proportions. The single-view ap-
proach assume fixed body part proportions in the image plane. The scale of a body
part is estimated during initialization, but after that the ratio of length to width is fixed.
This means that the single-view approach at this stage does not handle foreshortening
at all. The flexibility of the joints in the pictorial structures model and the mean shift
approach for finding the true modes of the posterior allow the single-view approach to
handle some foreshortening but not very much. When estimating the poses of walking
people this rarely becomes a problem but if a person were to for example point at some-
thing close to the camera the foreshortening would cause the single-view approach to
fail.
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Fig. 4. Comparison of the multi-view approach against the single-view approach. Rows a) and
c) show the results of pose estimation with the single-view approach. Rows b) and d) show the
results of pose estimation with the multi-view approach. Each column of the figure shows a frame
from two synchronized cameras.

The multi-view approach also assumes fixed body part proportions but in the 3D
world space and not in the image plane. This means that the multi-view approach can
handle the extreme foreshortening of a person pointing towards the camera as long as
another camera is capturing the arm without the foreshortening. By keeping the con-
strain on body part proportions from the single-view approach would limit the multi-
view approach from an interesting capability. The results show however that lifting the
constrain of body part proportions in the image plane significantly increases the noise
in the body part probability maps that are generated from back projections of the 3D
body parts. The connection of 3D joints into body parts does not necessarily result in
a body part corresponding to a sample from one of the views (this is what allow the
handling of extreme foreshortening). However, many joint-pairs correspond to a fore-
shortened body part in one view also when there is no real foreshortening resulting in
increased noise in the body part probability maps. This side effect significantly reduces
the performance of the multi-view pose integration, an effect that is seen clearly in the
non-occluded cases (figure 4 rows a and b).
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When people undergo heavy occlusion the single-view pose estimation tend to col-
lapse whereas the multi-view approach maintain a reasonable pose estimate. By com-
bining the pose estimation with a person tracker it would be possible to predict when
occlusions could occur and then rely on the single-view pose estimation in the non-
occluded cases and include the multi-view pose integration when occlusions occur.

6 Conclusion

This report presents a multi-view extension to the pose estimation method of [9] based
on the pictorial structures framework. Low level information about body part proba-
bilities from multiple cameras are combined in 3D world space by utilizing calibrated
cameras. The combined probabilities are projected back into each view to generate
improved 2D pose estimates. Preliminary results indicates that the proposed method
improves pose estimates under heavy occlusion compared to the single-view approach
but it performs worse when there is no occlusion.

A number of alternatives to individual steps in the method could be explored further.
The most interesting one would be to build the tree-structured body model in 3D rather
than in 2D and then do the whole pose estimation in 3D world space. This would allow
us to make much better use of the kinematic constraints and it would also result in
one joint pose estimate that can be back projected to each view instead of multiple
(possibly different) pose estimates in the different views. In terms of testing it would be
very interesting to see how the method performs when integrating more than two views.
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