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Abstract: Numerical models have been used extensively in the design process of the TetraSpar
floating offshore wind turbine (FOWT) foundation to optimize and investigate the influence from a
number of structural and environmental conditions. In traditional offshore design, either the Morison
approach or a linear boundary element method (BEM) is applied to investigate the hydrodynamic
loads on a structure. The present study investigated and compared these two methods and evaluated
their applicability on the TetraSpar FOWT concept. Furthermore, a hybrid model containing load
contributions from both approaches was evaluated. This study focuses on motion response. In the
evaluation, hydrodynamic data from BEM codes are applied, while the commercial software package
OrcaFlex is utilized for time series simulations of the coupled structure. The investigation highlights
the difference between the modelling approaches and the importance of particularly drag and inertia
contributions. By optimizing the input coefficients, reasonable agreement between the models can
be achieved.

Keywords: floating offshore wind turbines; hydrodynamics; OrcaFlex; Morison; boundary element
method; numerical simulation; TetraSpar

1. Introduction

The wind energy sector is in continuous development and today, both offshore and
onshore wind have become commercially viable alternatives to conventional power gen-
eration. With increasing world-wide energy consumption, focus on climate change, and
many countries’ energy policies, the desire to expand the offshore wind energy sector is
particularly eminent and considered necessary to reach the climate goals [1–4]. In 2018,
the European Commission stated that Europe would need between 230 and 450 GW of
offshore wind power by 2050, with 450 GW corresponding to 30% of Europe’s expected
electricity demand [3]. Consequently, more wind energy farms need to be developed,
however, many of the offshore sites with the highest available wind energy resource and
the lowest levelized cost of energy (LCoE), are inaccessible to the conventional bottom-
fixed turbines, as the economical feasibility becomes undesirably low when reaching water
depths of ~50 m [5,6]. As a consequence, recent years have seen an extensive focus on the
development of floating offshore wind turbine (FOWT) technologies. When utilizing float-
ing foundations, water depths no longer form a limiting factor in selecting feasible wind
energy sites. For countries like, e.g., Norway, where most offshore wind sites are limited
by deep water depths, the floating technology currently forms a paramount potential for
expanding the renewable energy sector and tap further into the wind energy potential.
Similar considerations can be made for, e.g., the Mediterranean [6], which will also greatly
benefit from FOWTs.

According to WindEurope [6], Europe needs 100–150 GW of floating wind energy
in order for Europe to reach climate neutrality. At present, nearly 350 MW of FOWTs
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are planned to be online by 2022 and more than seven countries in Europe have the
ambition to develop their FOWT sector in the next decade [6]. Despite already being a
proven technology with 74 MW online, of which 62 MW is located in Europe, FOWT is
still challenged by higher LCoE [6]. WindEurope [6] currently estimates the LCoE for
floating wind to be ~200 EUR/MWh and predicts that with the technology development,
increased sector volume, and government policies, the LCoE will reach 50-65 EUR/MWh
by 2030. In comparison, conventional offshore wind was estimated to be in the range of
61–72 EUR/MWh in 2019 [7,8]. In general, both onshore and offshore wind energy have
seen an accelerated cost reduction in recent years, reaching a level far below the previously
expected value, and is expected to decline further by between 37 and 49% by 2050 [9].

In order for the FOWT technology to reach a fully commercial and economically
feasible stage, it is a strategical approach to ensure a design which is ready for a scalable
and industrialized production, which minimizes required work at the port of embarkation
and which eliminates the need for specialized vessels [10].

The TetraSpar FOWT foundation, as seen in Figure 1, has been designed based on
these criteria, solely relying on components that are highly industrialized and suitable for
mass production, with an already existing supply chain. The production takes place at
factories and the structure is assembled at ports by an already available workforce [10].
A TetraSpar 3.6 MW demonstrator has presently been manufactured and assembled in
Denmark, ready for deployment and with expected installation at the Norwegian coast
during 2021 [10,11].

Keel

Center column

Radial

Diagonal

Lateral

Figure 1. The TetraSpar FOWT foundation concept, with the naming of the various elements.

In addition to the apparent criteria needed for securing commercialization, the floating
foundation naturally needs to provide sufficient static and dynamic stability. The TetraSpar
foundation has been developed over several years, addressing both commercial and re-
search topics. The latter has been particularly focused on the dynamic response of the
concept. Several experimental campaigns have tested the coupled hydro- and aerodynamic
response [12–14], while numerical models have been used to test various design aspects
and response of the FOWT foundation [15–17].

The present paper investigated and compared the prevalent hydrodynamic models
used in the analysis and the investigation of the TetraSpar concept. Traditionally, a Morison
model [18] or a linear boundary element method (BEM) [19–22] is used to investigate the
loads on an offshore structure, therefore forming the basis of this study. These modelling
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approaches are recommended in most design standards such as DNVGL-OS-E301 [23],
DNVGL-RP-C205 [24], IEC TS 61400-3-2:2019 [25] and DNVGL-ST-0119 [26]. The appli-
cability of each model is highly dependent on the structure size and sea states, since the
Morison approach is applicable on slender structures, while the BEM approach should
be considered for larger structures where diffraction is dominant. The following sections
will describe the models in more detail. The different models were tested and investigated
widely, and combined into hybrid models in, e.g., [27] in order to include most hydrody-
namic effects. However, many higher order effects and phenomena such as wave slamming
are not included and need even more sophisticated models such as traditional CFD (com-
putational fluid dynamics) or SPH (smoothed particle hydrodynamics). This paper will
present the limitations of the Morison, BEM and hybrid models when investigating the
motion response of a FOWT and highlight the influence from various design choices. The
paper will focus on sea states relevant for the TetraSpar FOWT foundation, and investigate
the applicability of the different models on structures such as the TetraSpar.

The paper is structured with this introduction, followed by a description of the models
and cases. Section 3 presents, compares and discusses the results and is followed by
the concluding remarks. A more detailed description of the TetraSpar and its structure
can be found in [10].

2. Methodology

The TetraSpar FOWT foundation consists of 10 cylinders connected in the tetrahedral
shape illustrated in Figure 1. The figure also presents the naming of each element, while
Table 1 lists each of their corresponding diameters. The floating foundation is moored to
the seabed through three catenary lines composed of chain, rope and clump weights. The
system was designed to provide sufficient restoring force and natural frequencies well
below the investigated wave frequencies. More details on the structure and properties,
together with mooring parameters, can be found in [10].

Table 1. Definition of diameters of the foundation elements.

Element Diameter (m)

Center column 4.3
Lateral 4.1
Radial 3.5

Diagonal 2.0
Keel 4.3

For a complete design of the foundation, both operational and extreme conditions
are considered. While the operational conditions are more prevalent in the fatigue limit
state (FLS), the extreme events are often determined for mooring and power cable design
(maximum surge motions), together with rotor nacelle assembly (RNA) limits such as
maximum pitch and accelerations. The design cases have been selected based on expected
conditions for the deployment site of the TetraSpar foundations, and cover six operational
and four extreme cases, cf. Table 2. All waves are modelled as long crested 2D waves
with a Torsethaugen spectrum and a duration of three hours. Only one wave direction is
considered in the present study, aligned with one of the mooring lines.

2.1. Time Domain Solver: The OrcaFlex Software Package

For the simulation of the time domain response of a floating structure, many different
commercial software packages and in-house codes are available. One of the most widely
applied commercial tools is the OrcaFlex software package by Orcina [28,29]. The software
package is capable of solving the equations of motions (EoMs) and includes effects from
environmental loads, moorings and structural properties.
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When solving the time domain response of the hydrodynamic loads, OrcaFlex ap-
plies either a Morison or a BEM approach. The following subsections briefly present the
different approaches.

Table 2. Definition of environmental conditions for the 10 cases.

Case Significant Wave Peak Wave Peak Wave Water Depth,
Height, Hs (m) Period, Tp (s) Length, Lp (m) hd (m)

Operational, O1 0.4 3.40 18.1 220.0
Operational, O2 1.8 6.8 72.3 220.0
Operational, O3 2.5 7.8 94.4 220.0
Operational, O4 3.6 9.1 129.4 220.0
Operational, O5 5.7 10.9 185.7 220.0
Operational, O6 8.0 12.5 244.2 220.0

Extreme, E1 9.3 13.9 302.0 220.0
Extreme, E2 11.4 15.1 356.4 220.0
Extreme, E3 12.9 16.0 400.1 220.0
Extreme, E4 16.3 18.0 506.4 220.0

2.2. Morison Approach

In the Morison approach, the time varying loads are solved using the Morison equation
(Equation (1)) [18]. The equation is valid for slender structures, where the nominal width
(D) is small compared to the incoming wavelength. Hence, the presence of the body only
results in negligible interference with the surrounding wave field. The load can, therefore,
be expressed as a combination of a contribution from inertia and from drag:

FMorison = ρ Cm V u̇︸ ︷︷ ︸
FI

+
1
2

ρ CD A u |u|︸ ︷︷ ︸
FD

(1)

where ρ is the fluid density, Cm is the inertia coefficient (Cm = 1 + Ca, with Ca being the
added mass coefficient), V is the submerged volume of the body, u̇ is the fluid acceleration,
CD is the drag coefficient, A is the reference area and u is the fluid velocity. FI and FD
correspond to, respectively, the inertia and drag force contribution.

The inertia, drag and added mass coefficients can either be found from experimental
test or, e.g., CFD (computational fluid dynamics), but also found in design standard or
literature such as DNVGL-RP-C205 [24]. The chosen conservative values are defined in
Table 3, based on standard values. The same values are applied for all elements in the
structure and for all sea states. This choice will be discussed and investigated later in
the paper.

Table 3. Coefficients used in the Morison approach.

Coefficient Value

CD 1.05
Ca 1.0
Cm 2.0

In OrcaFlex, the TetraSpar foundation is modelled as a number of object (defined
as "Spar Buoys" in OrcaFlex), for which the equation is solved. Based on the loads and
mooring system, the time domain response of the coupled behaviour of the system is
simulated. The approach accounts for several contributions all presented in Table 4 and
described further in Section 2.4.1.
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2.3. Boundary Element Method (BEM) Approach

The BEM is based on linear potential theory, assuming linear waves with low steepness,
while also assuming small amplitude of motions of the floating body. The method is valid
for large structures and takes into account wave radiation, diffraction and inertia loads.
The BEM model does not account for any viscous effects [19–22,30].

First, the hydrodynamic coefficents are solved in a BEM code such as WAMIT [22],
OrcaWave [31] or Nemoh [30], with the first being used for this study. The frequency
dependent hydrodynamic coefficients are imported into OrcaFlex (defined as a “Vessel”
object), and the Cummin’s Equation is used to model the time domain behaviour [32].
Based on the BEM solver, both the first and second order wave effects can be taken into
account. OrcaFlex allows for use of Quadratic Transfer Functions (QTFs) for second order
effects but also the use of the more simple Newmann Approximation, which solves the
second order effects based on first order quantities [33].

2.4. Hybrid Modelling

As presented in the two previous subsections, the Morison approach is primarily
valid for slender structures, while the BEM approach is valid for larger structures. Both
approaches have limitations, e.g., Morison does not account for diffraction/radiation, while
BEM does not account for viscous drag.

As illustrated in Figure 2, different load regimes are dominant for the different compo-
nents of the TetraSpar. The most slender elements (the diagonals) are mostly dominated by
inertia and drag, even for the operational sea states, which have the shortest wavelengths.
For the largest element (the centre column), drag is not as dominant, and most sea states
are expected to be dominated by the inertia load contribution. For the smallest sea states,
diffraction is dominating. The values in the diagram are based on Hs and Lp, meaning that
even smaller waves will be present in each sea state, which will result in even more waves
in the diffraction region.

Figure 2. Sea states plotted against the dominating load regimes as defined in [20,34] for the most slender element (left)
and the largest (right).

In order to account for the combined effects, hybrid models have been introduced
in studies such as [27]. This type of model combines the BEM approach and the Morison
approach to account for more effects. The model takes its basis in the BEM approach and
uses all the quantities from this, while also adding the Morison drag contribution. The
inertia coefficient from the Morison approach is not included in order to limit the doubling
of inertia effects. By implementing this approach, dominant effects such as viscous damping
are included within the BEM model. The importance of this was highlighted in [27].
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2.4.1. Model Comparison

In the time domain simulation of the motion response, the following EoM is solved:

M(p, a) + C(p, v) + K(p) = F(p, v, t) (2)

where M(p, a) is the inertia load, C(p, v) is the damping load, K(p) is the stiffness load
and F(p, v, t) is the external load. p, v and a are the position, velocity and acceleration,
respectively, while t is the simulation time.

The different modelling approaches primarily affect inertia, damping and external
loads, while stiffnesses are similar among the models. For all types of modelling approaches
in this study, non-linear hydrostatic stiffness is applied and the same mooring system
is considered.

A comparison of the modelling of the different contributions in the three approaches
is presented in Table 4.

Table 4. Comparison of the included effects in each modelling approach.

Morison Approach BEM Approach Hybrid Approach

Inertia
Froude–Krylov 3 Instantaneous 3 Freq. dependent 3 Freq. dependent

submerged volume CFK(ω) CFK(ω)
Added mass 3 Constant Ca 3 Freq. dependent 3 Freq. dependent

CA(ω) CA(ω)
Diffraction 7 3 Freq. dependent 3 Freq. dependent

Cdi f f (ω) Cdi f f (ω)
Radiation 7 3 Freq. dependent 3 Freq. dependent

Cr(ω) Cr(ω)

Drag 3 Constant CD 7 3 Constant CD
Scaled to wet area Scaled to wet area

Damping
Linear 3 Constant, Cd,l 3 Freq. dependent 3 Freq. dependent

radiation damping radiation damping
Cr(ω) Cr(ω)

Quadratic 3 Viscous damping 7 3 Viscous damping
from CD from CD

Wave drift 3 From motion 3 From QTF 3 From QTF and
damping response motion response

Wave Drift 3 From CD and CM with 3 From QTF 3 From QTF and CD,
instantaneous area instantaneous area
and displaced volume and non-linear
Non-linear waves waves

Stiffness 3 Non-linear hydro- 3 Non-linear hydro- 3 Non-linear hydro-
static stiffness static stiffness static stiffness

The inertia load in all cases includes the Froude–Krylov force results from the undis-
turbed pressure field around the body [20]. For the BEM and hybrid approaches, this con-
tribution is included as a frequency-dependent coefficient, while in the Morison approach,
OrcaFlex estimates the force contribution from the wave kinematics and the instantaneous
submerged volume [29]. For large waves and body motions, this approach is therefore
expected to provide a better estimate, since the BEM cannot take this into account due to
its assumptions.
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Similarly, the added mass contribution is included in all approaches. For the Morison
approach, the contribution is included through a constant coefficient Ca, while the BEM
and hybrid model include frequency-dependent coefficients.

Diffraction and radiation are only included in the BEM and hybrid model as frequency
dependent coefficients.

The BEM model does not in itself include any viscous effects, and hence does not
provide any drag contribution. In the Morison approach, the drag contribution, as seen
from Equation (1), is included by use of a constant coefficient CD.

The BEM solves the linear radiation damping coefficients, which are also included in
the hybrid model. The Morison approach in OrcaFlex also allows for the specification of
a linear damping coefficient, which, however, was not considered in this study because
experimental data would be needed for tuning.

The quadratic viscous damping contribution arises from the drag, and hence in the
Morison and hybrid models, this contribution is included. Due to the lack of viscous effects
in the BEM model, no quadratic damping is present.

Wave drift damping arises from the second order low-frequency motions of the body
in the waves [35]. The BEM approach in OrcaFlex includes this effect by use of the QTF or
the Newman method [33]. In the Morison approach, the motion response of the structure
and the earlier mentioned coefficients result in some damping. Since the hybrid model
includes both the QTF term from the BEM approach and the drag coefficient from the
Morison approach, some doubling effect could potentially occur.

All three modelling approaches will result in a constant drift of the structure. In the
BEM approach, OrcaFlex uses the QTFs to model the effect, while the Morison approach
experience the drift due to several phenomena. Figure 3 shows how the non-linear waves
result in a larger fluid particle velocity at the wave crest compared to the velocity at the
trough. The drag force will, therefore, be larger when the wave crest passes the body,
compared to when the wave trough passes, also due to the fact that OrcaFlex accounts for
the instantaneous wetted area when calculating the total force. Consequently, a constant
drift in the wave direction will be seen. Similarly, since the Froude–Krylov is related to the
instantaneous submerged volume, non-linear waves result in a constant drift of the body.

ucrest

utrough

Wave crest

Wave trough

ucrest > utrough

V

V

Figure 3. Illustration of the difference in wave velocities over the surface-piercing elements. V indicates
the submerged volume.

2.5. Comparing the Modelling Approaches

In order to compare the three models, the sea states defined in Table 2 are simulated
as three hour time series and the resulting motion responses are compared. The following
section presents the results and discusses the influence of various parameters and relevant
changes to some of the input parameters.
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3. Results

In order to evaluate the response in each sea state for the three models, the most prob-
able maximum (MPM) is considered. In design standards such as DNVGL-OS-E301 [23],
this value is characterized as the design value for, e.g., mooring line tension. The MPM
value is calculated from:

MPM = µ + σ
√

2 ln n (3)

where µ is the mean value, σ is the standard deviation and n = T/Tz is the number of
peaks in the time series (T = 3 h is the time series duration and Tz is the mean up-crossing
period of the respective response).

Figure 4 presents the mean value of the surge displacement, which corresponds to the
mean wave drift value. As expected, the larger wavelengths (indicating the more extreme
sea states) result in larger mean displacements. Clearly, the BEM approach provides a
significantly lower value compared to the hybrid and Morison approaches. This deviation
increases with the wavelength and is primarily explained by the lack of drag loads in this
model. Considering Figure 2, this corresponds well with the fact that the larger sea states
are in the inertia and drag domain. The larger sea states are more non-linear than the
smaller sea states, and hence, the water particle velocity in the wave crest is larger than
in the wave trough (cf. Figure 3). This affects the drag-induced loads and this effect is
captured by both the hybrid and Morison model.

From Figure 4, it can also be seen that the Morison approach provides lower values
than the hybrid approach for the smaller sea states, but larger results for the more extreme
ones. Since the drag coefficients for these two models are identical, the main difference is
in the inertia loads. From Table 4 it is seen that the inertia loads in the Morison approach
account for the instantaneously displaced volume, which will mostly vary in the extreme
cases. Under operational conditions, drag is of less importance (cf. Figure 2), meaning
that the larger mean drift in the hybrid approach compared to the Morison arises from
differences in the included inertia and damping. Since the hybrid model accounts for
diffraction, this contribution might be of more importance under these conditions, while
the larger linear damping in the hybrid model from radiation might also induce larger
mean drift. The hybrid approach is based on the linear theory, with low steepness waves
and small amplitude motions. Consequently, larger inertia loads can be expected in the
Morison approach.

Figure 4. Mean value, µ, of the surge displacement, corresponding to the mean wave drift (left). The
right figure illustrates the relative difference with the hybrid model.
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Observing Figure 5, the standard deviation of motion results for three degrees of
freedom (DoFs) is shown: surge, heave and pitch. When considering the surge DoF, similar
tendencies are observed among the three models. For most cases, the BEM provides larger
standard deviation values, which to some extent can be explained from the much smaller
drift motion seen in Figure 4. When the system is less excursed, the restoring mooring
stiffness is much smaller, meaning that the body is expected to be more dynamic and
experience larger oscillations around the mean position.

It is evident that the smallest sea state provides a larger value for both the Morison and
BEM approaches compared to the hybrid model. Since the hybrid and Morison model both
have the same drag coefficient, some of the difference must be explained by the different
treatment of inertia loads. Furthermore, the drag coefficient will affect this result.

For the heave motion, the BEM and Morison approaches provide the largest results in
almost all cases. Again, the larger motions in the BEM model can be explained by a lower
mean drift. Since the hybrid model experiences more drag for the larger sea states where
drag becomes more dominant, the difference between these two models decreases. The
Morison model still experiences larger loads from the inertia coefficient, meaning larger
values compared to the hybrid model.

For the pitch DoF, the BEM and hybrid models are relatively similar, indicating a small
influence from drag on this DoF, while the Morison approach has a tendency to provide
smaller values, probably because the inertia coefficient in the Morison model only results
in minor pitch motion, and does not take into account the same effects as the hybrid and
BEM model.

Figure 5. Top: Standard deviation, σ of the surge (left), heave (middle) and pitch (right) DoF. The bottom figures illustrates
the relative difference with the hybrid model.
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The MPM values presented in Figure 6 are a result of the parameters in Figures 4 and 5
(cf. Equation (3)). However, since it is considered a design value, it is relevant to consider.
The BEM approach tends to provide less surge motion than the hybrid and Morison
approaches, while it provides more in heave and pitch. The Morison approach results in
the largest surge motions, but is smaller in heave (though approaches the same value for
larger sea states) and particularly in pitch.

From the MPM results, it is evident that the standard deviation provides a large
influence on the design value. Considering Equation (3), this is explained by the factor√

2 ln n. When there are large values of standard deviation, the design value increases
significantly. This also affects the relative difference between the models. Because of the
relatively good agreement between the standard deviations, the difference between MPM
values decreases. This is seen in Figure 6, where, e.g., the difference between MPM is
between −20% and +10% for Morison and between −5% and −20% for the BEM. The
standard deviation provides differences of less than 10% in most cases (except the smallest
sea states where differences of up to 100% are present), while the mean surge shows
differences of up to 90% for BEM and up to 40% for the Morison. This clearly indicates the
importance of the standard deviation on the design MPM value.

Figure 6. Top: Most probable maximum, MPM of the surge (left), heave (middle) and pitch (right) DoF. The bottom figures
illustrate the relative difference with the hybrid model.

From the previous figures, it is clear that the drag and inertia coefficients are highly
influencing the motions of the TetraSpar FOWT. Since no experimental data are available,
it is challenging to actually quantify which model provides the most reliable results. Due
to the high influence from drag seen in the results, it is, however, relevant to consider
it further.
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The drag coefficient is dependent on the Reynolds number, Re, defined in Equation (4) [24]:

Re =
ρ u L

µd
(4)

where L is the characteristic linear dimension, u is the relative flow velocity and µd is
the dynamic viscosity. The drag is dependent on both the dimensions of each element of
the TetraSpar and also the given sea state. The drag coefficient will not only vary for all
elements due to the variation in diameter (cf. Table 1), but will also vary for each sea states
due to the variations in wave kinematics and body motions, cf. Figure 7. Even within each
sea state, the drag coefficient will vary as a result of the irregular nature of the waves. In
Table 5, new drag coefficients are presented, taking into account the element diameter and
the wave particle velocity in a corresponding regular wave with wave height and period
similar to the Hs and Tp of the different sea states. Clearly, significantly lower values can
be applied compared to the initial value.

Figure 7. Drag coefficients as a function of the Reynolds number as defined in [24] for the largest (right) and smallest (left)
diameter. The dotted lines indicates the sea states.

Table 5. Updated drag coefficients applied for each element of the TetraSpar in the investigated
sea states.

Component O1 O2 O3 O4 O5 O6 E1 E2 E3 E4

Center column 0.42 0.60 0.63 0.65 0.67 0.67 0.67 0.67 0.67 0.67
Lateral 0.40 0.60 0.62 0.65 0.67 0.67 0.67 0.67 0.67 0.67
Radial 0.30 0.50 0.55 0.60 0.65 0.65 0.67 0.67 0.67 0.67

Diagonal 0.30 0.45 0.50 0.55 0.60 0.62 0.62 0.65 0.65 0.65

Original value 1.05(all elements)

Figure 8 presents the mean value of the surge motion with the updated drag coeffi-
cients from Table 5. When comparing to the original figure, it is clearly observed that the
mean wave drift is significantly reduced due to the lower drag loads on the structure. For
the most extreme case, where the drag contribution is large, a reduction of approximately
25% on the mean wave drift is achieved. The difference between the BEM and hybrid
model appears to have decreased slightly from a maximum of 90% to 85%, while the
difference between the Morison and the hybrid model has increased from a maximum of
30% to 40%. Since the hybrid model experiences wave drift from both the QTF and drag
contributions, the reduction in the drag coefficient possibly reduces the double effect, and



J. Mar. Sci. Eng. 2021, 9, 683 12 of 16

hence the reduction in drift in this model is largest, reducing the differences with the BEM
and increasing the differences with the Morison.

Figure 8. Mean value, µ, of the surge displacement with updated drag coefficients (left). The right
figure illustrates the relative difference with the hybrid model.

Comparing the standard deviation in Figure 9 of all the motion response of the three
investigated DoFs, a more outspoken reduction in differences is seen. The heave DoF presents
the same tendencies as before but the difference between the models has been reduced from
a maximum difference of 45% to approximately 35%. The reduction is largest for the BEM
model. A similar tendency can be observed for the pitch DoF. Here, the BEM and hybrid
approaches are very similar, while the Morison model still provides less motion response.
The surge DoF is significantly improved with approximately 10% difference between the
models in almost all sea states.

The agreement between the models indicates that the previous models most likely
caused overly large drag loads, resulting in the larger response. Since the mean surge drift
is now smaller, the induced loads from the mooring is also smaller and the stiffness lower,
also causing the oscillations of all DoF to be more similar between the models.

As a consequence of the results in Figures 8 and 9, the MPM results also present a
smaller difference between the three models compared to the original. This is observed in
all three DoFs.

Observing the relative difference of the surge motion in Figure 10, it is clear that the
Morison model provides larger values for the sea states with the shortest wavelengths,
compared to all the other models.

In the same way as for the drag coefficient, the dimensions of the elements in the
TetraSpar FOWT also determine the numerical value of the inertia coefficient. The value
also varies in the different sea states. Figure 11 illustrates Cm for the largest and the most
slender elements. The dotted lines indicate the investigated sea states. In most conditions,
the assumption of Cm = 2 is valid, but the smallest sea state (O1) results in a lower
Cm-coefficient for the largest element (the centre column) going from Cm = 2 to Cm = 1.7.

Changing the Cm coefficient only affects the Morison approach. The change is only
done for the centre column and only for the O1 sea state. Table 6 presents the influence of
the updated Cm-coefficient on the surge motion.
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Figure 9. Top: Standard deviation, σ, of the surge (left), heave (middle) and pitch (right) DoF with updated drag coefficients.
The bottom figures illustrates the relative difference with the hybrid model.

Figure 10. Top: Most probable maximum, MPM of the surge (left), heave (middle) and pitch (right) DoF with updated
drag coefficients. The bottom figures illustrate the relative difference with the hybrid model.
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Figure 11. Inertia coefficients, as defined in [24], for the smallest (left) and largest (right) element in the TetraSpar.

Table 6. Surge motion response for the three models with and without improved Cm. The relative
difference is with the hybrid approach.

Morison

Original Cm Updated Cm BEM Hybrid

Parameter Value Rel. diff. Value Rel. diff. Value Rel. diff. Value

µ (m) 0.052 0.72 0.052 0.72 0.071 0.99 0.072
σ (m) 0.103 2.86 0.070 1.94 0.044 1.22 0.036

MPM (m) 0.404 2.02 0.294 1.47 0.222 1.11 0.200

The motion response decreases with a reduced inertia coefficient, resulting in a smaller
difference between the approaches. In sea state O1, the diffraction and radiation (cf. Figure 2)
are dominant, meaning that the Cm value might not be applicable to this sea state. The presence
of radiation damping could potentially reduce the response even further, and might explain
the difference between the models in this sea state.

4. Discussion and Concluding Remarks

The present study investigated three different approaches for hydrodynamic mod-
elling of the motion responses of the TetraSpar FOWT foundation concept: a Morison,
a BEM and a hybrid approach. This study illustrated some of the differences between
the models and how these affected the motion responses. Mean surge motions were par-
ticularly affected by the model choice, however, some differences were observed in all
DoFs. This results from both the chosen hydrodynamic coefficients but also how the time
domain solver handles time varying submerged volume and the exposed drag area. Since
the results presented in this study have not been validated with experimental data, it is
not possible to quantify the reliability of any of the models, but in most design cases, a
conservative choice would be preferable. However, large motions (and corresponding
larger loads) also imply a larger cost of mooring, power cables and structure. Since design
standards require additional safety factors, a final design would require experimental data
to identify the most reliable model, and ensure that the cost does not increase unnecessarily.
Considering the eminent desire to reduce LCoE and utilize experience to improve reliability
and costs, applying experimental data in order to identify the best modelling approach is
highly relevant.

This study illustrated the importance of the inertia Cm and drag CD coefficients. Since
some sea states and wave components are drag dominated, while others are affected by
diffraction/radiation, a hybrid model would be desirable. In the hybrid model used in this
study, both the diffraction and radiation effects are considered while also accounting for
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the drag contribution. Drag coefficients should be specified according to the given sea state.
In the Morison approach in this study, the Cm contribution was scaled according to the
instantaneous submerged volume, which is not the case for the linear inertia contribution
from the BEM model. Combining the BEM and Cm coefficient could possibly be a benefit,
but would require experimental data for adjusting the coefficients. In this study, only Cm
was investigated, while, naturally, also the added mass coefficient Ca could be relevant to
investigate and optimize in future models.

Clearly, experimental data are critical and needed in order to validate and tune the
models. Nevertheless, by improving the fidelity of input parameters, the difference between
the models decreases. For future studies and investigations, the inclusion of currents and
wind loads could also prove a paramount influence and significantly change the response
of the structure and performance of the models.
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