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A Composite Failure Precursor for Condition
Monitoring and Remaining Useful Life Prediction

of Discrete Power Devices
Shuai Zhao, Member, IEEE, Shaowei Chen, Member, IEEE, Fei Yang, Student Member, IEEE, Enes Ugur, Student

Member, IEEE, Bilal Akin, Senior Member, IEEE, and Huai Wang, Senior Member, IEEE

Abstract—In order to prevent catastrophic failures in power
electronic systems, multiple failure precursors have been identi-
fied to characterize the degradation of power devices. However,
there are some practical challenges in determining the suitable
failure precursor which supports the high-accuracy prediction
of remaining useful life (RUL). This paper proposes a method
to formulate a composite failure precursor (CFP) by taking full
advantage of potential failure precursors, where CFP is directly
optimized in terms of the degradation model to improve the
prediction performance. The RUL estimations of the degradation
model are explicitly derived to facilitate the precursor quality
calculation. For CFP formulation, a genetic programming method
is applied to integrate the potential failure precursors in a
nonlinear way. As a result, a framework that can formulate a
superior failure precursor for the given RUL prediction model
is elaborated. The proposed method is validated with the power
cycling testing results of SiC MOSFETs.

Index Terms—Condition monitoring, power devices, genetic
programming, composite failure precursor, SiC MOSFETs, re-
maining useful life.

I. INTRODUCTION

POWER semiconductors have been extensively used in
transportation, renewable systems, and industrial automa-

tion, where unexpected failures may lead to safety issues or
operational losses. In order to minimize potential failures and
avoid costly shutdowns, reliability requirements have been
drastically increasing in power devices and systems [1]. As an
enabling approach, prognostics and health management (PHM)
has been proposed to guarantee the safety and reliability of the
power electronics so as to mitigate potential risks and prevent
unexpected failures.

To implement PHM, various condition monitoring (CM)
techniques have been developed to track the varying char-
acteristics of the power devices including power metal-
oxide-semiconductor field-effect transistors (MOSFETs) [2],
insulated-gate bipolar transistors (IGBTs) [3], [4], [5], [6],
and silicon carbide (SiC) MOSFETs [7], [8]. Effective CM
technique is essential to the identification of failure precursors,
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which are the basis for reliability analysis, lifetime estimation,
and remaining useful life (RUL) prediction [9], [10], [11].
For power MOSFETs, with an accelerated aging test (AAT)
performed on multiple power MOSFETs [11], it is observed
that the drain-to-source on-state resistance RDS(on) is one of the
remarkable failure precursors. With this precursor, a model
based on Kalman filter is implemented for RUL prediction.
Considering the implementation challenges and cost asso-
ciated with the RDS(on) monitoring during power converter
operation, a software frequency response analysis method is
proposed where the variation of RDS(on) is indirectly revealed
by the plant model response at the double pole frequency
[2]. Considering the difficulties in precise measurements, a
list of viable aging precursors including RDS(on), body diode
voltage drop VSD, parasitic capacitance (input capacitance Ciss,
output capacitance Coss, and reverse capacitance Crss), and gate
threshold voltage Vth, is reported in [12]. And the evolution of
Vth is modeled to estimate the RUL of switches. In [13], the
miller plateau voltage is identified as an aging precursor which
can support the online CM for power MOSFETs subjected to
gate oxide degradation. Using the failure precursor RDS(on), a
random sample consensus algorithm [14] is proposed to im-
plement the RUL prediction of power MOSFETs. For IGBTs,
the Mahalanobis distance calculated by the on-state collector-
emitter voltage VCE,on and the current ICE,on is applied to the
anomaly detection of IGBTs in [3], and VCE,on is applied to the
RUL prediction. The characteristic variations of discrete IG-
BTs due to package degradation triggered by thermal stress are
comprehensively investigated in [15]. Specifically, it analyzes
the potential failure precursors (PFPs) including saturation
voltage, gate threshold voltage, transfer capacitance, and gate
charge. Using the failure precursor VCE,on, a Gaussian process
regression method combining a Bayesian inference method [4]
is proposed for the RUL estimation. With the identified failure
precursor VCE,on, a computationally efficient algorithm based
on the Monte-Carlo simulation is developed in [9] to support
the real-time prediction of the RUL for IGBTs subjected
to wire bond failure. In addition, it also presents an RUL
prediction approach based on the time delay neural network
[10] to improve the prediction accuracy. For SiC MOSFETs,
the variations of the SiC MOSFETs electrical parameters are
investigated in [8] through the thermal cycling experiments to
assess their correlation with the device degradation. In [16],
a degradation model based on the non-homogeneous gamma
process is proposed to characterize the evolution of threshold
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voltage Vth of SiC MOSFETs and estimate its RUL. In addition
to the conventional parametric measurements such as on-state
resistance, threshold voltage, leakage currents, etc., a real-
time CM technique is developed in [7] by investigating the
switching characteristics of aged SiC devices.

It should be noted that mostly only a single failure precursor
is applied to the RUL prediction of power devices (e.g., the
VCE,on of IGBTs in [4], the Vth of SiC MOSFETs in [16], and
the RDS(on) of power MOSFETs in [11]). On the one hand, the
selection of the suitable failure precursor is mainly determined
as the one which shows an obvious variation during the device
aging, and the selection is challenging in the presence of a
group of potential failure precursors. Although the empirically
selected failure precursor can show a clear degradation trend
during the aging, the information contribution of this single
failure precursor will be quite limited for the RUL prediction.
Moreover, although these potential failure precursors can indi-
cate the degradation status of power MOSFETs and IGBTs, the
change of the precursor value can also be due to other external
factors including the environmental and operational conditions
(e.g., temperature, voltage, current, frequency, etc). The pre-
cursor accuracy is therefore affected by other noise factors,
such as measurement errors, circuit parasitic elements, etc.,
which will make the following RUL prediction less robust.
Thus, it is desirable to investigate the degradation behavior by
using the information of multiple potential failure precursors to
provide a comprehensive and robust reliability evaluation. On
the other hand, for practical applications, the RUL prediction
accuracy is further determined by the mutual adaptability of
the failure precursor and the selected RUL prediction model.
In most studies, the empirically selected failure precursor is
directly applied for a certain RUL prediction model while the
adaptability between the selected failure precursor and the
RUL prediction model has been seldom investigated. Thus,
it is necessary to develop a framework to leverage multiple
potential failure precursors for a composite failure precursor
(CFP) in terms of the selected RUL prediction model to
facilitate a highly accurate RUL estimation.

Motivated by the above discussions, this paper aims to
synthesize a group of potential failure precursors of power
devices to derive a composite failure precursor to improve
the RUL prediction performance. The degradation behavior of
power devices is driven by a stochastic degradation model with
a Bayesian updating mechanism. For the stochastic degrada-
tion model, the reliability characteristics are explicitly derived
to facilitate the evaluation of the RUL prediction perfor-
mance. By using the information fusion technique, the genetic
programming method is applied to formulate a composite
failure precursor where all the useful precursor information is
exploited to improve the prediction performance. The proposed
method is validated by a case study on SiC MOSFETs. The
contributions of this study are twofold: Firstly, the data fusion
method is applied to the condition monitoring of power devices
to improve the health evaluation performance. Secondly, in
most of the existing frameworks of data fusion-based RUL
prediction (e.g., [17], [18]), the data fusion is applied to opti-
mize the features of failure precursors, such as monotonicity,
trendability, etc. In these cases, the performance improvement

of the final prediction is heuristic. This issue is firstly proposed
in [19] and the direct optimization is suggested in terms
of the final prediction performance by combining the fusion
and the RUL prediction, and the respective advantages are
illustrated. Thus, from the methodology perspective, with the
explicitly derived RUL estimations, in this study the nonlinear
data fusion method and the degradation model are closely
interacted as an efficient prediction framework, where the
genetic programming is directly performed in terms of the final
prediction performance of the stochastic degradation model
instead of maximizing the favorable features of precursors.
As a result, the proposed method is more efficient.

The rest of this paper is organized as follows. Section
II describes the accelerated aging test experiment of SiC
MOSFETs and a group of potential failure precursors. Section
III presents an RUL prediction model with the reliability
characteristic calculation. In Section IV, a data fusion method
for the composite failure precursor formulation is presented. In
Section V, the performance of the developed composite failure
precursor is comprehensively illustrated and compared with
the potential failure precursors. Finally, conclusion is given in
Section VI.

II. ACCELERATED AGING TEST FOR POWER DEVICES

Due to the low leakage current superiority at the high
temperature, SiC power MOSFETs are very promising for
applications such as automotive powertrain, oil down-hole
tractors, etc. To obtain the device aging characteristics in a
reasonable period of time, power cycling test is a widely used
method. In the power cycling test, the device under test (DUT)
without the heat sink is actively heated up by injecting half of
the rated current and cooled down by forced air-cooling using
fans. Fig. 1 shows the customized setup for the accelerated
aging test experiment. This experiment setup supports a total
of seven devices subjected to accelerated aging simultaneously
where each device can be independently controlled. Note that
the 7th device is behind the DAQ system. Thermocouples are
directly attached to the metal tab of the device to measure
the device case temperature so as to monitor the variation
of the junction temperature, which is applied for a closed-
loop system for temperature regulation during the heating
and cooling stages. More details of the accelerated aging test
experiment can refer to [8].

The devices used in the test are generation-II SiC MOSFETs
(1.2kV/10A). For each power cycling in the AAT, devices
are injected with 4.5A constant current until its junction
temperature goes up to its upper limit 200◦C and then the
fan is triggered to cool down the device until the device
temperature falls to 30◦C. Note that the solution of obtaining
the junction temperature from the case temperature measured
by the thermocouples can be found in Section II in [8], where
the drain current during the junction temperature measurement
period keeps small and IR camera is periodically applied
to calibrate the temperature measurement accuracy. In the
experiment, each power cycling takes around 3 minutes, where
the heating lasts for 1 minute and the cooling lasts for 2
minutes. After every 250 cycles, the device is removed and
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Figure 1. Setup of the accelerating aging testing for multiple SiC MOSFETs.
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Figure 2. Procedures of power cycling and device characterization in AAT.

characterized by Keysight B1506A curve tracer at the ambient
temperature. The procedure details of the power cycling and
the device characterization are shown in Fig. 2. The CM data
of a total of seven devices are recorded, which last for 8
weeks. As a summary, a total of six electrical parameters
are monitored during the AAT including the input capacitance
Ciss, the output capacitance Coss, the reverse transfer capaci-
tance Crss, the drain-source on-state resistance RDS(on), the gate
threshold voltage VGS(th), and the diode forward voltage VSD.
The electrical parameters are measured after every 250 power
testing cycles until the end of the experiment, i.e., 10,000
cycles. The details of the failure mechanism analysis, the
original CM data, and the device decapsulation for the post-
experiment analysis can be found in [8]. In order to eradicate
the static deviations among the units and measurements caused
by manufacturing imperfections, sensor and analog-to-digital
converter tolerances, for each electrical parameter, the initial
value is subtracted and then the data are standardized [17].

For the RUL prediction, the time-to-failure of each device
is first determined. Generally, the device is considered as
properly operating during the first several CM periods, and the
performance degradation in such a period is almost negligible.
The CM information of these periods can be determined as
a health cluster. In this way, the cluster distance measure
of Mahalanobis distance [3] between the health cluster and
the following CM information will increase smoothly unless
a significant performance fluctuation occurs, which can be
considered as device failure. In this case, the device failure is
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0.315

0.32

R
D
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Figure 3. Evolution of RDS(on) and failure time determination for device #6.

determined when there is an abrupt change of the Mahalanobis
distance between the current CM information and the healthy
cluster, which is comprised of the CM information of the first
five CM times of each device. As a result, the failure times
of these seven devices are determined as 5250, 5000, 6250,
6500, 6750, 5750, 6250 cycles, respectively. As a result, the
dataset details are summarized in Table I. It can be seen that
the dataset consists of a total of 1044 data points.

Table I
DETAILS OF THE DATASET FROM THE POWER CYCLING EXPERIMENT OF

SIC MOSFETS

Device number 1 2 3 4 5 6 7

Number of potential
failure precursors 6 6 6 6 6 6 6

Number of observations 22 21 26 27 28 24 26

Number of data points of
each device 132 126 156 162 168 144 156

Total number of data
points of the dataset 1044

Generally, the RDS(on) is an effective precursor indicating
the device health status. When its degradation rate changes
from linear to exponential, i.e., an abrupt evolution stage, the
device performance will be quickly deteriorating and then will
run to failure. Therefore, in this case, the evolution of RDS(on)
of each device at the failure time is further checked to justify
the method for time-to-failure determination. The percentage
increases at the failure time are 2.19%, 1.45%, 1.48%, 1.82%,
2.31%, 1.98%, 2.09%, respectively. As an illustration, the
evolution of RDS(on) and the failure time determination for
device #6 is shown in Fig. 3. Such an agreement validates the
effectiveness of the time-to-failure determination method.

Fig. 4 shows the variations of six potential failure precursors
for a total of seven devices until the failure. It is worth
mentioning that these PFPs are dimensionless and possess no
physical unit due to the applied data preprocessing technique.
As can be seen, all the six PFPs show variations indicating the
device degradation with the power cycling progressing. For the
reliability evaluation, however, it is challenging to determine
the most suitable failure precursor from these PFPs and the
respective degradation model which can better facilitate the
RUL prediction. Moreover, the RUL prediction based on a
single failure precursor will be less accurate and less robust
to the external factors (e.g., the high-level heterogeneity of
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Figure 4. Multiple potential failure precursors throughout the accelerated
aging test.

Coss, the high-level noise of VSD). It is therefore beneficial to
propose a method which can not only mitigate the selection
issue of the failure precursor but also provide a superior per-
formance of RUL prediction by fully exploiting the multiple
potential failure precursors.

III. METHODOLOGY

In this section, a method is proposed to fully exploit the
condition monitoring information of power devices so as to
improve the performance of RUL prediction and the method
practicability. The framework of the proposed method is given
in Fig. 5, which is comprised of two parts, i.e., the part of
CFP development with the RUL prediction model, and the
part of the RUL prediction for a new power device subjected
to the condition monitoring. In the first part, a training dataset
from a batch of power devices is used to develop the CFP
by optimizing the RUL prediction error in terms of the RUL
prediction model. In the second part, with a Bayesian update
mechanism and the determined fusion formula of the CFP,
the degradation model is updated to its posterior given the
latest data of a new testing device. Using the posterior model,
the reliability characteristics including the RUL and the 95%
confidence interval (CI) can be obtained. Subsequently, a
stochastic degradation model is developed to provide a unified
basis for the calculation and the comparison of the RUL
prediction.

A. Stochastic Degradation Model Formulation

In order to evaluate the prediction performance of PFPs and
the CFP simultaneously, a stochastic degradation model facil-
itating a unified RUL prediction in terms of multiple failure
precursors is applied here. It is considered as the RUL pre-
diction model in the framework in Fig. 5. For the degradation
model formulation, considering the CM data characteristics of
SiC MOSFETs in Fig. 4 and the generality of the degradation
model, we follow [17], [19] and the references (e.g., Gebraeel,
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Figure 5. Framework of the proposed method.

2006; Liu et al., 2013) therein, and the degradation model
of the CM data xi,s,j for the sth precursor of device i at
monitoring time tj is formulated as

xi,s,j = κs + βi,s exp(αi,stj + εi,s(tj)−
σ2
s

2
), (1)

where i = 1, · · · ,M , s = 1, · · ·K, and j = 1, · · · , ni. M
denotes the number of devices, K denotes the number of
potential failure precursors, and ni denotes the number of
CM time points for device i. κs is the deterministic constant
for sth PFP for describing the sensor characteristic. βi,s and
αi,s are the random coefficients of the degradation model to
cover the device heterogeneity. εi,s(tj) is the measurement
noise variable which is normally distributed with mean 0
and variance σ2

s . For mathematical tractability and derivation
convenience of the reliability characteristics, the log transfor-
mation is applied to make (1) linear and the transformed CM
data Di,s,j is obtained as

Di,s,j = ln(xi,s,j − κs) = θi,s + αi,stj + εi,s(tj), (2)

where θi,s is defined as lnβi,s− σ2
s

2 . Without loss of generality,
the random parameters θi,s and αi,s are assumed to be jointly
distributed to cover the heterogeneity in the batch of devices
and follow a multivariate normal distribution as

Γi,s =
[
θi,s αi,s

]T ∼ N2 (µs0,Σ
s
0) , (3)

where µs0 is the mean vector and Σs
0 is the covariance

matrix. Given the degradation model, the failure criterion is
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determined subsequently. For the RUL prediction using sth

PFP, the remaining useful life l at the time tj is defined as the
first passage time when the degradation process Ds(t) exceeds
the failure threshold ws, i.e.,

l = inf {l : Ds(tj + l) ≥ ws | Ds,1:j} , (4)

where the CM sequence is D1:j = [D(t1), · · · , D(tj)]
T . ws

is the failure threshold for sth precursor which is assumed to
be normally distributed as ws ∼ N(ηs, ϑ

2
s), where ηs is the

mean and ϑ2s is the corresponding variance.

B. Parameter Estimation with Training Dataset

The training dataset consists of the CM data of a batch
of power devices. With the CM data of the training dataset,
the parameter estimation of the degradation model (2) is
formulated subsequently. In this case, the parameters of Γi,s
can be obtained as the prior to characterize the population
features of the devices in the training dataset. According to
regression theory, it can be estimated by fitting the degradation
path of each device with (2) as

Γ̃i,s =
(
ΨT
i Ψi

)−1
ΨT
i Di,s, (5)

where Ψi is defined as

Ψi =

[
1 · · · 1 · · · 1
t1 · · · tj · · · tni

]T
∈ Rni×2. (6)

Considering the properties of the multivariate normal distri-
bution, with algebraic manipulations, the statistics of Γi,s
including the mean µs0 and the covariance matrix Σs

0 can be
thus obtained [19] as

µs0 =
1

M

M∑
i=1

Γ̃i,s, (7)

and

Σs
0 =

1

M − 1

M∑
i=1

(
Γ̃i,s − µs0

)(
Γ̃i,s − µs0

)T
− (8)

1

M

M∑
i=1

(
Di,s −ΨiΓ̃i,s

)T (
Di,s −ΨiΓ̃i,s

)
ni − 2

(
ΨT
i Ψi

)−1
.

Subsequently, the variance of the noise term εi,s can be
estimated with (5) as

σ2
s =

1

M

M∑
i=1

(
Di,s −ΨiΓ̃i,s

)T (
Di,s −ΨiΓ̃i,s

)
ni − 2

. (9)

As a result, the parameters of the degradation model can
be explicitly estimated in the presence of the training dataset,
and the shared degradation features of a batch of devices can
be well characterized by the model with the prior parameters.

C. Parameter Update with Latest Data of Test Device

Once the prior parameters of Γi,s in the degradation model
are estimated, they are updated to the posterior with the
latest CM data obtained from the testing device. In this
way, the degradation model can be elaborately tailored and
individualized to the testing device subjected to the CM, which
will significantly improve the RUL prediction accuracy. The
parameter update is involved with Bayesian update mechanism
and it is beneficial to online applications. For the test device
i, denote Di,s,1:j as its CM history for precursor s up to
the CM time tj . With the properties of the multivariate
normal distribution, the posterior distribution of Γi,s given
the information Di,s,1:j is a multivariate normal distribution
as Γi,s | Di,s,1:j ∼ N2

(
µi,sp ,Σi,s

p

)
[17]. The mean and the

covariance matrix can be derived [19] as

µi,sp =

(
ΨT
i Ψi

σ2
k

+ (Σs
0)
−1
)−1(

ΨT
i Di,s,1:j

σ2
k

+ (Σs
0)
−1
µs0

)
,

(10)

and

Σi,s
p =

(
ΨT
i Ψi

σ2
k

+ (Σs
0)
−1
)−1

. (11)

In this way, the prior distribution with mean (7) and
covariance (8) of Γi,s is updated to the posterior one with
mean (10) and covariance (11). As a result, the degradation
model learned from the training dataset will be more specific
to the testing device.

D. Remaining Useful Life Prediction

With the degradation model (2), the formulations of the
RUL and the confidence interval are presented. It can be
seen that the CM data at the monitoring time tj+l given the
information Di,s,1:j is normally distributed with mean µi,s,j+l
and variance σ2

i,s,j+l, which can be estimated as

µ̃i,s,j+l = ψ(tj+l)µ
i,s
p , (12)

σ̃2
i,s,j+l = ψ(tj+l)Σ

i,s
p ψ(tj+l)

T + σ2
s , (13)

where ψ(t) is denoted as [ 1 t ]. Subsequently, with the
normal properties of the CM data and the failure threshold,
the cumulative distribution function (CDF) of RUL for the
device i using sth PFP given the CM data Di,s,1:j can be
developed [19] as

FLi,s|Di,s,1:j
(l) = P (Li,s ≤ l | Di,s,1:j)

=P (Di,s,j+l ≥ ws | Di,s,1:j)

=1− Φ

 ηs − µ̃i,s,j+l√
σ̃2
i,s,j+l + ϑ2s

 = 1− Φ (z(l)) , (14)

where Φ (·) is the CDF of the standard normal distribution,
and z(l) is defined as z(l) = (ηs − µ̃i,s,j+l)/

√
σ̃2
i,s,j+l + ϑ2s.

For online applications, the CM data of the testing device are
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monitored continuously. Incorporating the latest information
timely will increase the accuracy of RUL prediction. Thus,
it is necessary to extend (14) to the conditional CDF of RUL
given the latest CM data and the failure information. The CDF
of the RUL for device i using sth PFP conditioning on the fact
that the device does not fail at the monitoring time tj can be
derived [17], [19] as

P (Li,s ≤ l | Di,s,1:j , Li,s ≥ 0)

=
P (Li,s ≤ l | Di,s,1:j)− P (Li,s < 0 | Di,s,1:j)

P (Li,s ≥ 0 | Di,s,1:j)
(15)

=
Φ (z(0))− Φ (z(l))

Φ (z(0))
.

More details of the degradation model and its update
mechanism can be found in [19] and references (e.g., Gebraeel,
2006; Liu et al., 2013) therein. Another useful measure of
RUL is its probability density function (PDF). Subsequently,
taking the first derivative of (15), the PDF of the RUL can be
explicitly derived as

fLi,s|Di,s,1:j
(l | Di,s,1:j) = − 1

Φ (z(0))

d(Φ (z(l)))

dl
(16)

=
ϕ(z(l))

Φ (z(0))
(
σ̃2
i,s,j+l + ϑ2s

)(ψ′
(tj + l)µi,sp

√
σ̃2
i,s,j+l + ϑ2s

+

(ηs − µ̃i,s,j+l)

 ψ
′
(tj + l)Σi,s

p ψ
T (tj + l)

+ψT (tj + l)Σi,s
p

(
ψ

′
(tj + l)

)T


2
√
σ̃2
i,s,j+l + ϑ2s

)
,

where ϕ(·) denotes the PDF of standard normal distribution.
Due to the fact that the CDF of RUL is skewed, the estimate
of the RUL l̃i,s,j can be reasonably determined by making the
CDF of RUL (15) be equal to 0.5. Additionally, to evaluate
the prediction uncertainty, the lower limit c̃l and upper limit
c̃u of 95% confidence interval are considered and they can be
obtained by making the CDF of RUL (15) be equal to 0.025
and 0.975, respectively.

Note that the estimates of the RUL and the confidence
interval involve the inverse function of (15), which is com-
putationally extensive and is challenging for the further CFP
development. Thus, it is necessary to develop an explicit form
of the RUL estimates so as to make the framework more
efficient. Here, an approximation of the CDF of the standard
normal distribution Φ (·) is applied according to [20] as

Φ (x) ≈ 1

1 + exp(−1.702 · x)
, x ∈ R. (17)

Note that the absolute error of this approximation is less than
9.49× 10−3, which is sufficient and safe for our application.
With the algebra manipulations, the lp which can facilitate
P (Li,s ≤ lp | Di,s,1:j , Li,s ≥ 0) = p can be derived as

lp ≈

 (2ef − 2ηsf − b− c)+

g ·

√
(2ef − 2ηsf − b− c)2 − 4(f2 − d)·

(η2s − 2ηse+ e2 −A2σ2
s −A2ϑ2s − a)


2(f2 − d)

(18)

where A = ln ((exp(−1.702 · z(0)) + p) /(1− p)) /1.702,
µi,sp = [ e f ]T , g equals 1 if A ≥ 0 otherwise equals -
1, and a, b, c, d are variables such that

A2Σi,s
p =

[
a b
c d

]
. (19)

In this way, the estimated RUL, the lower limit, and the upper
limit of the 95% CI can be obtained efficiently by making p
be equal to 0.5, 0.025, and 0.975, respectively.

In this section, the RUL prediction model consisting of the
degradation model and the respective parameter estimation is
presented. The model is able to update adaptively to a specific
testing device by incorporating the latest CM data with the
Bayesian update mechanism. Note that the reliability charac-
teristics can be calculated with multiple failure precursors at
the same time. As a result, the RUL estimates can be efficiently
calculated to facilitate the following CFP development.

IV. COMPOSITE FAILURE PRECURSOR DEVELOPMENT

From the AAT in Section II, it can be seen that there are
multiple failure precursors indicating the degradation behavior
of SiC MOSFETs. Each failure precursor can only provide a
partial detail about the device degradation. As one of the rele-
vant applications of artificial intelligence in power electronics
[21], data fusion method is an effective tool to improve the
quality of condition monitoring of power devices by providing
richer insights. By aggregating a group of potential failure
precursors, a data fusion technique is applied in this section
to develop a composite failure precursor. In this way, the
developed CFP can be more suitable for the given RUL
prediction model compared to any of the individual PFP.

A. Fusion Objective

To improve the RUL prediction performance, various op-
timization objectives have been proposed to improve the
precursor features including monotonicity [17], trendability
[18], prognosability [18], etc. Note that these optimization ob-
jectives are intuitively formulated and heuristic. Even though
the prediction performance can be improved, the improvement
of final prediction performance is unpredictable and the con-
tribution of each desirable feature cannot be quantitatively
determined. Thus, the optimization and the fusion are in-
direct and inefficient. This fact is first put forward in [19]
and the indirect supervised learning is proposed for efficient
optimization, i.e., optimizations in terms of the final RUL
prediction performance, which makes the fusion more direct
and predictable.

Considering the proposed explicit form of RUL prediction
of the degradation model in (18), in this paper, the fusion
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Figure 6. Flowchart of GP algorithm and evolution procedures of the tree
structure.

objective is directly formulated in terms of the final prediction
performance, i.e., the mean absolute error (MAE) of RUL.
To assess the RUL prediction performance quantitatively, the
evaluations at every ten percent of the whole life cycle are
selected. Particularly, when using sth failure precursor, the
MAE of RUL is formulated with (18) as

MAEs =
1

9M

M∑
i=1

0.9∑
γ=0.1

∣∣∣l̃i,s,bγ·nic − li,s,bγ·nic

∣∣∣ , (20)

where bxc is the floor function which outputs the greatest
integer less than or equal to x, and γ = 0.1, 0.2, · · · , 0.9.
li,s,bγ·nic is the real RUL and l̃i,s,bγ·nic is the predicted one for
the device i. Note that (20) can be applied to the performance
evaluation for both the developed CFP and the PFPs. In this
way, the performance of the developed CFP and the PFPs can
be quantitatively compared.

B. Genetic Programming for Data Fusion

By leveraging each useful PFP information, the data fusion
is an effective technique for the development of CFP which
can better characterize the degradation progression [18], [22].
Regarding the data fusion technique, we are interested in 1)
determining the precursor candidates which should be incorpo-
rated into the fusion process, and 2) the nonlinear and flexible
aggregation method between the selected precursor candidates.
Genetic Programming (GP) can explore the implicit data
structure by maximizing the predefined objective. It is one of
the metaheuristic methods [23] in the applications of artificial
intelligence. Compared to other fusion methods, GP is able
to automatically select the relevant precursors from the group
of potential PFPs and determine their combination form in a
nonlinear way, with which the above two requirements can be
well served. Therefore, in our case GP is applied to develop
the CFP.

Generally, GP is a nonlinear optimization technique driven
by the Darwinian evolution idea. In GP, the individuals are

organized as syntax trees consisting of the allowed arithmetic
operators, i.e., addition, minus, times, divide, sine, cosine, log-
arithm, exponential, square root in our case, and the terminal
set, i.e., a group of PFPs. Each individual tree structure is
composed of multiple branches and a root node that acts as the
glue to connect the branches. The flowchart of GP algorithm
is given in Fig. 6, and the algorithm is performed as follows.
First, the initial population of trees is randomly generated.
When it is executed against the terminals, i.e., the PFPs, it will
produce numerical values, i.e., a possible CFP. An example
of the individual tree is also given in Fig. 6, where the tree
structure of the offspring for the mutation can be interpreted
as PFP5 × PFP6 + PFP4 − PFP3 × PFP1. Second, the quality
of the individual tree is evaluated with the fusion objective
(20) in our case. Note that the better individual tree with a
higher fusion objective will have a higher chance of producing
the children than the inferior individual trees. To guarantee
the population diversity, the tournament selection scheme is
applied in this case. Third, the evolution of the generation will
be implemented through crossover, mutation, and reproduction
with the predefined probabilities in order to find the individual
with a superior fitness, and the details are also shown in Fig. 6.
For the crossover, the procedure randomly selects the crossover
points in both of the parent trees, and then it will produce an
offspring tree by combining the copies of the subtree rooted
at the crossover point of the parent trees. For the mutation,
an offspring tree will be generated by connecting a copy of
the subtree rooted at the mutation point of a parent tree with
a randomly generated subtree. For the reproduction, based on
the evaluated fitness, the selected parent tree will be simply
inserted in the next generation. Note that the sum of the
probabilities in terms of the crossover, the mutation, and the
reproduction is 1. Fourth, the algorithm will be terminated
when the value of the fusion objective function (20) is not
increasing and its maximum value is obtained by at least one
individual.

More details of the GP algorithm can be found in [24]. As
a result, a CFP which can minimize the MAE of the RUL
prediction can be obtained by applying GP to the selected
candidate failure precursor from a group of PFPs and then
fusing them by performing a series of mathematical operations.

V. PERFORMANCE ILLUSTRATION AND COMPARISON

A. Developed Composite Failure Precursor

In this section, the proposed method is applied to the SiC
MOSFETs as an example for the method validation. The PFP
which shows a decreasing trend will be reversed to adapt to
the stochastic degradation model. Considering the size of the
PFPs, the population size in GP should be sufficiently large
for the population diversity, and it is determined as 300 in
our case. For the fusion objective (20) calculation, the cross
validation technique [9] is applied by changing the test device
one by one after the comparison scores are calculated for each
individual test device. Specifically, the first six SiC MOSFETs
devices are chosen as the training dataset and the #7 device as
the tested one. For the next iteration, the first training device is
shifted to the second training device and the second training
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device is shifted to the third and so on, until the first one
reaches the last training device. The test device will then be
rotated one by one for all seven SiC MOSFETs. Note that
the GP algorithm initializes the population randomly. Due to
the limited population size and the flexible nonlinear fusion,
each run is converged with a different optimal solution. Con-
sidering the prediction uncertainty is another critical measure
for performance evaluation, similar to (20), the prediction
uncertainty level is calculated with the mean width of the 95%
CI formulated as

Ws =
1

9M

M∑
i=1

0.9∑
γ=0.1

(
c̃ui,s,bγ·nic − c̃

l
i,s,bγ·nic

)
. (21)

As a result, the solutions of a total of 100 runs are obtained
and shown in Fig. 7. Note that the Pareto frontier is applied to
balance the prediction accuracy and the prediction uncertainty.
Meanwhile, considering the solution complexity, i.e., the size
of the tree structure, the final optimal CFP is determined as
xCFP = sin(RDS(on)) · cos(ln(VGS(th))). The respective MAE is
620 cycles and the mean width of 95% CI is 4291 cycles.

It can be seen that only the drain-source on-state resistance
RDS(on) and the gate threshold voltage VGS(th) are selected
from a total of six PFPs for the mathematical calculation
of CFP. Note that only the basic operations including times,
sine, cosine, and log are involved. These simple operations are
computationally efficient and there is no specific requirement
for the computation platform. It suggests that the developed
CFP can be implemented on the regular embedded platform
and is applicable to the in-situ health assessment. Note that
the developed CFP is a dimensionless precursor possessing
no specific physical meaning. As a result, Fig. 8 shows the
developed CFP for a total of seven devices.

Note that the proposed stochastic degradation model sup-
ports the RUL prediction in terms of multiple failure precur-

Table II
MAE OF RUL AND MEAN WIDTH OF THE 95% CI (UNIT IS CYCLE)

Ciss Coss Crss RDS(on) VGS(th) VSD CFP

RUL 3314 5477 2664 958 1426 5006 620

95% CI 13554 14732 12651 5125 7932 58108 4291
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Figure 9. Evolution of RUL and 95% CI using CFP for device #6.

sors simultaneously. Combined with the PFPs, the developed
CFP is considered as one of the multiple failure precursors
and applied to the model for performance evaluation. Table
II shows the MAE of RUL and the mean width of the 95%
CI for the PFPs and the developed CFP. As can be seen, the
MAE of RUL using the developed CFP is improved by 35.3%
((958-620)/958) compared to the best performance provided by
PFPs, i.e., 958 cycles by using RDS(on). Additionally, compared
to the best uncertainty performance provided by using the
RDS(on), the mean width of the 95% confidence interval is
reduced by 16.3% ((5125-4291)/5125) to 4291 cycles.

Next, in-situ RUL estimation for a specific test device
subjected to the CM is performed in order to further show the
superiority of the proposed method. As an illustration, device
#6 is randomly selected as the test device and the rest devices
are deployed as the training dataset. Fig. 9 shows the evolution
of the estimated RUL and the 95% CI for device #6 using the
CFP as the cycles progress. It can be seen that the predicted
RUL is quite close to the real one and the width of the 95%
CI is narrow.
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Figure 10. Evolution of RUL and 95% CI using RDS(on) for device #6.

Considering the RDS(on) is widely selected as the failure
precursor in various studies (e.g., [2], [12], [14]) and provides
the best performance among the PFPs, in this case the RDS(on)
is used as a benchmark to show the superiority of the proposed
CFP. Fig. 10 shows the evolution of RUL and 95% CI for
device #6 using RDS(on), and the performance comparison of
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Figure 11. Performance comparison of RUL and 95% CI using the RDS(on)
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the RUL and the 95% CI by using RDS(on) and the developed
CFP is given in Fig. 11. It can be seen that the estimated RUL
by using the RDS(on) is not quite close to the real RUL, even
near the end-of-life of the device. In addition, the width of the
95% confidence interval is quite large, which suggests that the
prediction uncertainty is high. While the prediction accuracy
and the uncertainty level by using the developed CFP is much
better. Note that the scales of z-axis of Fig. 9 and Fig. 10 are
the same. It can be seen that the PDF provided by the CFP
is more sharp than that of the RDS(on), which indicates the
better performance of the prediction uncertainty. Specifically,
Table III shows the details of the RUL prediction at multiple
monitoring times using the RDS(on) and the developed CFP. For
example, at CM time 4500 cycles, the estimated RUL is 2633
cycles with the 95% CI [505, 5309] using the RDS(on). Even the
95% CI covers the real RUL value, the width of the 95% CI,
i.e., 4804 cycles, and the absolute error, i.e., 1383 cycles, are
too large. While with the developed CFP, the estimated RUL
is calculated as 1539 cycles, which is quite close to the real
RUL 1250 cycles considering the CM period is 250 cycles.
Additionally, compared to the RDS(on), the 95% CI covers the
real RUL with a short width, i.e., 3166 cycles, which indicates
that a more accurate prediction result has been obtained.

Table III
MAE OF RUL AND 95% CI AT MULTIPLE MONITORING TIMES FOR
DEVICE #6 USING RDS(ON) AND DEVELOPED CFP (UNIT IS CYCLE)

CM Real Estimates with CFP Estimates with RDS(on)

Time RUL RUL 95% CI RUL 95% CI

2250 3500 4117 [2409, 6112] 4697 [2422, 7707]

2750 3000 3182 [1513, 5113] 3802 [1621, 6558]

3250 2500 2638 [998, 4526] 3399 [1222, 6094]

4000 1750 2144 [562, 3996] 3040 [871, 5697]

4500 1250 1539 [193, 3359] 2633 [505, 5309]

5000 750 1117 [85, 2834] 2121 [266, 4646]

B. Discussions

To further justify the proposed method, several suggestions
and considerations of the proposed method in practical ap-
plications are presented. First, note that the dataset obtained

from the power cycling test is aimed to the validation of the
proposed method. The temperature stress of the device under
the power cycling test is higher than the rated specifications
and multiple failure mechanisms are triggered during the test.
As an underlying assumption, the PFP variations due to the
different failure mechanisms are not separately investigated.
For example, the increase of the RDS(on) can be attributed to
both gate interface degradation and package related degra-
dation. As one of the future works, the considerations of
the failure mechanisms and the accessibility of the PFPs
will be incorporated into the CFP development to improve
the engineering practicability. Second, it is worth mentioning
that although an effective CFP is developed for the SiC
MOSFETs with dataset from the power cycling test, such
a CFP cannot be directly applied to SiC MOSFETs with
a different model type due to the inconsistent degradation
characteristics. For a different device model, the accelerated
aging test experiment needs to be performed accordingly to
generate the dataset for the degradation characteristics learning
with the proposed method. Moreover, the proposed method is
not limited to discrete power devices and can be extended to
power modules or converters, where the PFPs can be obtained
from the system-level electrical measurements. Third, it is
worth mentioning that this paper aims to provide an integrated
framework under which multiple potential failure precursors
of the power device can be efficiently fused and exploited. The
stochastic degradation model applied in this paper is capable of
modeling the multiple precursors simultaneously. In this way,
the RUL prediction performance in terms of each precursor
can be fairly compared to highlight the superiority of the
CFP. For practical applications, considering the degradation
characteristics of power device, the degradation model in
the framework can be flexibly replaced with other advanced
models, e.g., Gamma or Wiener models.

VI. CONCLUSIONS

This paper presents a composite failure precursor formu-
lation method for the condition monitoring and the RUL
prediction of SiC MOSFETs. By interacting with the RUL
prediction model directly, the genetic programming method
is applied to the nonlinear fusion of the potential failure
precursors to improve the RUL prediction performance. The
findings are experimentally validated using the aging data of
SiC MOSFETs exposed to power cycling tests. It is shown
that the developed composite failure precursor is able to
improve the RUL prediction accuracy by 35.3% and reduce
the prediction uncertainty by 16.3%, compared to the directly
measured physical failure precursors. With this approach, the
strenuous works of selecting the suitable failure precursor of
power devices and the respective degradation model can be
mitigated, and the available condition monitoring data can be
fully exploited to improve the RUL prediction performance.
Also, the proposed method provides an effective solution to
determine an efficient and pertinent failure precursor for other
PHM applications, e.g., anomaly detection and fault diagnosis.
This approach can be readily extended to other power devices,
power modules, and converters.
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