
Aalborg Universitet

Time For Stubborn Game Reductions

Bønneland, Frederik Meyer

DOI (link to publication from Publisher):
10.54337/aau429765826

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bønneland, F. M. (2021). Time For Stubborn Game Reductions. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau429765826

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.54337/aau429765826
https://vbn.aau.dk/en/publications/4fdd9a68-a8c4-4f21-97e9-8aa3356abfae
https://doi.org/10.54337/aau429765826

FR
ED

ER
IK

 M
EYER

 B
Ø

N
N

ELA
N

D
TIM

E FO
R

 STU
B

B
O

R
N

 G
A

M
E R

ED
U

C
TIO

N
S

TIME FOR STUBBORN GAME REDUCTIONS

BY
FREDERIK MEYER BØNNELAND

DISSERTATION SUBMITTED 2021

Time For Stubborn Game Reductions

Ph.D Dissertation

Frederik Meyer Bønneland

Dissertation submitted February, 2021

Dissertation submitted:	 February 2021

PhD supervisors: 	 Professor Jiri Srba
			 Aalborg University

			 Professor Kim Guldstrand Larsen
			 Aalborg University

PhD committee: 	 Professor Kristian Torp (chairman)
			 Aalborg University

			 Professor Karsten Wolf
			 University of Rostok

			 Professor Doron Peled
			 Bar Ilan University

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-907-7

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Frederik Meyer Bønneland

Printed in Denmark by Rosendahls, 2021

Abstract

Computers have grown to encompass almost every aspect of human life.
We expect that these systems operate seamlessly and without error, but
this can sometimes be unrealistic. While testing is widely used to provide
some assurance of fault-freeness, it is an incomplete approach that does
not guarantee the absence of errors. For safety-critical systems, we re-
quire fault-freeness to safely deploy them in the real world, supported by
formal methods such as model checking. However, high computational
complexity caused by the state-state explosion problem encumbers model
checking.

This thesis seeks to alleviate the state-space explosion and improve
model checking's practical applicability by extending the theory of static
partial order reductions to timed systems and games, and exploring or-
thogonal, complementary, and combined techniques.

Partial order reductions prune redundant interleavings of system ac-
tions. We extend static partial order reductions to timed systems by
exploiting urgent states where time cannot elapse. We develop partial
order reductions that preserves winning reachability strategies regard-
less of antagonistic environment actions. Lastly, we combine these two
techniques into a single framework for timed games. We ensure the tech-
niques are correct for general labelled transition systems, and instantiate
the techniques to Petri net variants to novelly show signi�cant time and
space reductions with limited overhead on a set of case studies.

Next, we re�ne structural reductions for Petri nets and compare it
with static partial order reductions. We show that the two technique are
synergistic and allows for verifying more model checking problems.

To improve both structural reductions and static partial order reduc-
tions, we extend state equations for Petri nets to formula simpli�cation
of CTL formulae. Simpli�cation signi�cantly increases the applicability
of both static partial order reductions and structural reductions on the
database of models from the 2017 Model Checking Contest.

iii

iv

Resume

Computere er en del af næsten alle aspekter af vores moderne liv. Vi
stoler på at disse systemer fungerer sømløst og uden fejl. Dette er dog
ikke sandt i praksis. Test bruges omfattende i industrien til at give
nogle garantier for fejlfrihed, men det er en ufuldstændig tilgang og kan
ikke garanterer at systemer er fejlfri. For sikkerhedskritiske systemer har
vi brug for stærkere garantier for at kunne sikkert indsætte dem i den
virkelige verden. Formelle metoder såsom model checking er en tilgang
til at give disse garantier. Problemet er at model checking er dyrt i
forhold til tid og plads på grund af tilstandsrum eksplosionen.

Denne afhandling ønsker at lindre eksplosionen og forbedre den prak-
tiske anvendelighed af model checking. Dette gøres ved at udvide statiske
partial order reduktioner og undersøge supplerende metoder. Partial or-
der reduktioner formindsker tilstandsrummet ved at fjerne over�ødige
sammen�etninger af samtidige system handlinger.

Vi udvider statiske partial order reduktioner til tidssystemer ved at
udnytte tidspressede tilstande og udvikler partial order reduktioner som
sikre at bevare vindende tilgængeligheds og sikkerheds strategier. Deru-
dover, så kombinerer vi disse to tilgange til en samlet metode for tidsind-
stillede spil. Vi beviser at vores methoder er korrekt for generelle mark-
eret transitions systemer, og viser på varianter af Petri nets væsentlige
tids- og hukommelsesbesparelser.

Vi for�ner strukturelle reduktioner for Petri nets og sammenligner
med statiske partial order reduktioner. Vi observere at de to metoder
forstærker hinanden og giver mulighed for at veri�cere �ere model check-
ing problemer.

Vi forbedre både strukturelle reduktioner og statiske partial order re-
duktioner ved at udvide tilstandsligninger for Petri nets til formelforen-
kling af CTL formler. Formelforenkling øger betydeligt anvendeligheden
af både statiske partial order reduktioner og strukturelle reduktioner. Vi
viser dette på en model database fra Model Checking Contest 2017.

v

vi

Contents

Abstract iii

Resume v

Preface ix

I Introduction 1

1 State-Space Reduction Example 7

1.1 Model . 7

1.2 Logic . 9

1.3 Static Partial Order Reductions 11

1.4 Structural Reductions 15

1.5 State Equations . 18

2 Contributions . 21

2.1 Timed Systems . 22

2.2 Games . 25

2.3 Timed Games . 28

2.4 Structural Reductions 31

2.5 Formula Simpli�cation 34

3 Conclusion . 37

References . 38

II Papers 53

A Start Pruning When Time Gets Urgent: Partial order

Reduction for Timed Systems 55

1 Introduction . 56

2 Partial Order Reduction for Timed Systems 61

vii

3 Timed-Arc Petri Nets . 63
4 Partial Order Reductions for Timed-Arc Petri Nets 68
5 Implementation and Experiments 71
6 Conclusion . 75
References . 76
Appendix . 81

B Stubborn Set Reduction for Two-Player Reachability

Games 89

C Stubborn Set Reduction for Timed Reachability and

Safety Games 91

D Stubborn Versus Structural Reductions for Petri Nets 93

1 Introduction . 94
2 Preliminaries . 96
3 Stubborn Reduction for Weighted Petri Nets with

Inhibitor Arcs . 100
4 Structural Reductions for Weighted Petri Nets with In-

hibitor Arcs . 107
5 Experimental Evaluation 119
6 Conclusion . 125
References . 126

E Simpli�cation of CTL Formulae for E�cient Model

Checking of Petri Nets 129

1 Introduction . 130
2 Preliminaries . 132
3 Logical Equivalence of Formulae 137
4 Formula Simpli�cation via State Equations 137
5 Implementation and Experiments 148
6 Conclusion . 153
References . 153
Appendix . 157

viii

Preface

Beyond a way to make a living and the PhD project as a career path,
it has o�ered me a lot more than what can be quanti�ed. It has o�ered
me self-realisation and a level of self-con�dence I have not experienced
before. For that, I am forever grateful for the opportunity.

I want to thank my supervisors Kim G. Larsen and Ji°í Srba for the
opportunity, their supervision, and for putting up with my awkwardness.

For the sparring and technical expertise, I want to thank my col-
leagues Marco and Peter in particular. I believe the work would have
been a lot less impressive without your help.

For their accommodation and collaboration during my external stay
at Uppsala University in the fall of 2019 I want to thank Bengt Jonsson,
Parosh A. Abdulla, Mohamed F. Atig, Konstantinos Sagonas, Sarbojit
Das, and the rest of the program veri�cation group.

For their support through good and bad, I want to thank my parents
Janna Bønneland and Torben Meyer Bønneland and my younger brother
Søren Meyer Bønneland. I am very grateful that my father was able to
see me obtain my masters degree. May he rest in peace.

I want to thank Mads Johannsen and Jakob Dyhr for the environment
they provided during the last semester of my master studies. I believe I
would not have been able to graduate in 2017 with a masters degree in
computer science without this support.

For being my friend since HTX in Aarhus, I want to thank Martin
Thøgersen. Even though we spend less time together when compared to
before the PhD days, I never grow tired of that time.

ix

x

Part I

Introduction

1

All aspects of modern society have rapidly been permeated by com-
puters since the inception of the �rst digital computers in the twentieth
century; from our production lines to our stovetops to our social interac-
tion. Due to this, and commonly to all systems, we want to ensure that
the systems adhere to their speci�cations and ideally are free of bugs and
unintended behaviour. For this purpose, the strenuous task of testing is
widely used in software development to ensure software conforms to their
speci�cation and detect the presence of bugs. However, while testing is
e�ective at systemically detecting the presence of bugs, it is unable to
prove the complete absence of bugs [46]. Many systems do not require
such a strong guarantee of bug-freeness, such as the Google File System
[59], where fault tolerance rather than fault-free is a central design choice.
In the instances where the cost and risk of failure exceed what is worth
or legal, fault-free behaviour is needed. In other words, safety-critical
systems where there is a real risk of monetary losses or human lives in
the case of errors, such as assembly lines or medical equipment.

Formal veri�cation [116, 125, 109] is the act of rigorously proving
that a system adheres to its speci�cation. Recently, formal methods and
veri�cation have been used by, for example, Amazon [104, 7] and Face-
book [31, 105] to verify the correctness of their massive and concurrent
systems. Model checking [10, 37, 113, 36, 34, 82, 4] is one such approach
to formal veri�cation where, typically, a transition system is exhaustively
generated and explored by a model checker program to prove that some
property is veri�ed. A transition system is a directed graph consisting
of states connected with (possibly labelled) edges. States correspond to
the possible con�gurations of the modelled system, and edges describe
the system's behaviour. The model checker derives the transition system
from a model that captures the system's behaviour. Examples of models
can range from an abstract representation of the system, such as a Petri
net [111] or a timed automaton [5, 86] to the source code of the system
itself [2, 3, 9].

However, several challenges limit the viability of model checking. The
modelling process itself can su�er from human errors, or the modelling
formalism is insu�ciently detailed. Even with an appropriate model, the
computational complexity and decidability results of model checking are
not encouraging [10, 50]. For example, consider a system that controls
the lights in a railway network where the objective is to ensure that
all trains reach their destinations safely. The actions of each light and
train are at most points in the system independent of each other, but

3

each possible interleaving of actions is a part of the transition system and
subject for exploration; a common situation when model checking is used
for distributed computing. Furthermore, it is appropriate that we model
this system as a real-time system that induces additional states for each
possible con�guration of time. Together this creates the so-called state

space explosion problem. The explosion is further worsened if the system
requires a detailed model to represent the problem correctly. Both timing
and the train driver's uncontrollable actions modelled as an antagonistic
opponent in a game have to be taken into account. This serves as the
main hindrance to the viability of model checking as the exploration
of the transition system becomes practically intractable. Approaches
such as randomised [85, 64] and statistical model checking [90, 19, 27,
44] can provide probabilistic guarantees, but not absolute guarantees of
bug-freeness which are required for safety-critical systems.

There have been several techniques suggested to alleviate the state-
space explosion problem, which can broadly be put into three categories;
symbolic methods, abstractions, and structural methods [34].

Symbolic methods [133, 135, 89, 66, 34] compress the state-space into
representative sets of states (symbolic states), provide e�cient operations
on these sets, and avoid explicitly generating any concrete states of the
state-space. Historically, binary decision diagrams (BBDs) [28, 29, 30]
have been closely coupled with symbolic methods and used in symbolic
veri�cation tools such as NuSMV [33] and libraries such as CUDD [123]
or BuDDy [40]. Di�erence bounded matrices (DBMs) [47, 14] have been
used by tools such as UPPAAL [87, 86] and KRONOS [45] to canonically
represent the symbolic states and e�ciently verify timed automata [5, 86]
with multiple clocks. Furthermore, clock di�erence diagrams (CDDs)
[88, 12] are also used by UPPAAL to ensure the symbolic states are
closed under set-union [13] when compared to DBMs. More recently,
SAT-based model checking [16, 68, 75, 124, 76, 132] and satis�ability
modulo theories (SMT) solvers [11, 32, 16] have grown popular using
e�cient SAT solvers to enhance veri�cation. An example of SAT-based
model checking includes bounded model checking [17], where a system is
generated up to some number of execution steps based on a property and
then passed to an SAT solver.

Abstractions [42] are approaches where a model is converted into
a new form, carrying over speci�c properties of the original model de-
pending on the given abstraction. Most notably, counter-example guided
abstraction re�nement (CEGAR) [42, 73, 55] is a popular algorithmic

4

abstraction method to model checking. An abstraction is re�ned based
on generated counter-examples s.t. the re�ned abstraction covers the
example. Eventually, either a true counter-example is generated, or ev-
ery counter-example has been exhausted, implying the original model is
veri�ed. Examples of CEGAR applications include ICE (Implications,
Counter-examples, and Examples) [54, 51, 55] which is a framework for
invariant synthesis, and Sara [135] which is a tool for checking the reach-
ability of Petri net markings. Interpolation is an approach for generating
counter-examples by generalising proofs [96, 67, 97, 98].

Structural methods make use of the structure of the system, either its
model or the derived transition system, to improve performance. Sym-

metry reductions [39, 49, 117] is a structural method that groups equiv-
alent states of the transition system into a single representative state.
Other structural methods include parametric veri�cation for proving cor-
rectness disregarding the number of processes in the system [6, 1, 77,
56], on-the-�y state-space exploration where the state-space is generated
lazily as the exploration proceeds [58, 41, 108, 128], or compositional

assume-guarantee reasoning where a global property is divided into sev-
eral smaller properties of smaller components or processes [115, 106, 84,
99, 74, 112, 93, 52, 78].

A family of structural methods that exploits independent actions are
partial order reductions [60, 107, 130, 53]. The fact that the pioneers of
the method Patrice Godefroid, Doron Peled, Antti Valmari, and Pierre
Wolper were awarded the CAV award at the 2014 edition of the Interna-
tional Conference on Computer-Aided Veri�cation [83] re�ects the im-
portance of partial order reductions. Since its conception in the nineties,
there have been several variations to partial order reductions. Examples
include stubborn sets [130, 127, 128], ample sets [107, 108], and persis-
tent sets [60, 53, 62, 63] as the major variations. While there are several
di�erences between these three approaches�such as stubborn sets al-
lowing for disabled actions while persistent sets do not�they all have in
common that they generate a representative subset of actions to consider
in each state that is su�cient to preserve the correctness of a given model
checking question.

Static partial order reductions refer to the classical approach to par-
tial order reductions [62, 130, 107, 119]. In this approach, we generate
the representative subset for a given state upon �rst visiting the state,
usually by overapproximation [80, 21, 22, 130]. Optimal reductions are
rare for static partial order reductions as only the syntax of the model

5

and the state itself are available to generate the subset. On the contrary,
this limitation allows us to compute the subsets in an on-the-�y man-
ner. Further analysis is usually counterproductive to the goal of making
model checking more tractable. Alternatively, it is possible to improve
static partial order reduction by reducing the model's complexity with
techniques such as structural reductions for Petri nets [100, 102, 69, 126],
or formula simpli�cation [21, 136].

In contrast, dynamic partial order reductions [53] have been shown
to generate optimal subsets [2, 3, 9]. In the dynamic paradigm, we add
actions to the representative subset of a state as the descendants of the
state are explored in a depth-�rst manner. Suppose an action leading
to an descendant is shown to be con�icting with (or dependent on) a
previously explored action. In that case, a backtracking point in the form
of an action in a representative subset is added to a common ancestor.
As the exploration backtracks to the state the subset is guaranteed to
be representative and optimal. It is optimal in the sense that we only
explore one trace from each class of Mazurkiewicz traces [95, 3]. This
comes at the cost of limiting the applicability to acyclic systems.

While partial order reductions operate on individual states of the
state space, structural reductions [100, 102, 69, 126] for Petri nets operate
on the model itself and its syntax. Structural reductions for Petri nets
consist of a set of rules s.t. if the precondition of a rule is satis�ed,
then several places, transitions, or tokens can be collapsed or pruned.
This results in a smaller model, but more importantly, a smaller and
more sparse state space. Furthermore, we can precompute the structural
reductions before the computationally heavy state-space exploration.

So far, we have primarily considered model checking and partial or-
der reduction of systems with full control of the system and without time
constraints. However, both of these aspects are important for us to cre-
ate an appropriate model. An example is the previously mentioned train
scheduling problem. For example, lights have to be manipulated with
certain timing constraints to avoid collisions, the lights are the control-
lable part, and the trains are the uncontrollable part. Respectively, this
corresponds to timed systems [5, 65, 20] and games [18].

Timed systems in distributed computing have the disadvantage that
time has a relevant e�ect on all actions of all system components as
a global synchroniser, practically making all actions dependent. This
was, until recently, re�ected historically in the limited practical success
of partial orders reductions for timed systems [15, 26, 131, 122, 92].

6

1. State-Space Reduction Example

In particular, this is true for static partial order reduction [15] as we
have no way to discern the e�ect of time from the vantage point of
a single state. Recently, static partial order reduction approaches for
timed automata with abstractions [66] and Timed-Arc Petri nets [24]
have shown promising practicability by exploiting urgency.

Games in model checking involve synthesising a strategy that guaran-
tees the property is satis�ed. In other words, in each state, the strategy
proposes a controllable action that ensures that the property is satis�ed
regardless of any possible uncontrollable action. For games, static partial
order reductions have not received much attention. Partial order reduc-
tions for modal µ-calculus [134, 114] allow us in general to preserve the
correctness of games. However, these reductions are general µ-calculus
preserving reductions that may preserve properties not required in the
game setting, limiting the reduction e�ectiveness. Recently, static par-
tial order reductions have begun to show promise for Petri net games
[25, 23] and parity games [103].

1 State-Space Reduction Example

In the following, we present an example of a Petri net model [111] and
how we can use partial order reductions in conjunction with structural
reductions [100, 102] and state equations [100, 101] for Petri nets. Petri
nets is a popular mathematical and graphical modelling formalism for
distributed systems [111]. This section is to provide intuition to the
central topics of models, state-space representations, independence, and
standard techniques for state-space reduction and veri�cation.

1.1 Model

We start with some fundamental de�nitions and notations. Let N0 =
N ∪ {0} be the set of natural numbers and 0.

De�nition 1 (Labelled Transition System). A Labelled Transition Sys-

tem (LTS) is a tuple T = (S, A,→) where S is a set of states, A is a

�nite set of actions, and → ⊆ S ×A× S is a transition relation.

Whenever (s, a, s′) ∈ → we write s
a−→ s′ and say that a is enabled at

s yielding s′ when executed. The set of enabled actions in a state s ∈ S
is given by en(s) = {a ∈ A | ∃s′ ∈ S. s a−→ s′}. If a is not enabled at s
then we say that a is disabled at s. If en(s) = ∅ then s is a deadlock.

7

For a sequence of actions w = a1a2 · · · an ∈ A∗ we write s
w−→ s′ if there

exists s1, . . . , sn−1, s
′ ∈ S s.t. s

a1−→ s1
a2−→ · · · an−→ s′.

De�nition 2 (Petri Net). A Petri Net is a tuple N = (P, T,W) where P
and T are �nite sets of places and transitions, respectively, s.t. P∩T = ∅,
and W : (P × T) ∪ (T × P)→ N0 is a weight function.

A marking M is a function M : P → N0 and M(N) denotes the
set of all markings for N . A Petri net N = (P, T,W) de�nes an LTS

T (N) = (S, A,→) where S =M(N), A = T , andM
t−→ M ′ whenever for

all p ∈ P we haveM (p) ≥W (p, t) andM ′(p) = M(p)−W (p, t)+W (t, p).

As an example of a model using a Petri net, consider Figure 1. The
circles are the places, and the rectangles are the transitions of the net.
The net progresses by transitions �ring, consuming tokens from all places
with an incoming arc and producing tokens to all places with an outgoing
arc. The number of tokens consumed and produced is given by the weight
function W . For example, the transition t1 consumes a single token from
the place p1, and produces a token at the p5 and p6 places each and two
tokens at the p2 place. A marking of a net is a possible allocation of
tokens to the places of the net. For example, for the marking M shown
in Figure 1 we have M (p1) = 1 and M (p2) = 0. Solid dots represent
tokens within places, and in the initial marking there is only one token
in the place p1.

•
p1 t1

p2

t2 t3p3

t4

p4

p5 t5 p6

2
2 2

Figure 1: Example of a system modelled as a Petri net

In Figure 2 we have the state-space of our Petri net model seen in
Figure 1 represented as a labelled transition system. The rectangles
are the states, and each state is a marking that is reachable from the

8

1. State-Space Reduction Example

p1 2p2p5p6

p2p3p5p6

2p22p6

2p3p5p6

p2p32p6

p2p4p5p6

2p32p6

p3p4p5p6

p2p42p6

p3p42p6

2p4p5p6

2p42p6

t4

t4

t1

t2

t2 t5

t3

t3

t5 t2

t2
t5

t3

t3

t3

t3

t2

t2
t5

t5

t5

Figure 2: The state-space of Figure 1 as a labelled transition system

initial marking, which corresponds to the state annotated with p1. The
annotation within states is the tokens of the markings, where for example,
2p2p5p6 denotes a marking where there are two tokens in p2, one token
in p5, and one token in p6. We label each edge with the name of the
appropriate transition.

1.2 Logic

The Petri net in Figure 1 is a model of a simple system where we initiate
two processes when the transition t1 is �red. The speci�cation of this
system is that it should be possible to reach a con�guration where both
processes terminate. We de�ne the termination condition as when there
are two tokens in both of the places p4 and p6. We can specify this as a
formula in the computation tree logic (CTL) [38].

Let AP be a set of atomic propositions and let v : S → 2AP be a
function s.t. v(s) denotes the the set of atomic propositions satis�ed in
s ∈ S. We �x the set of atomic propositions α ∈ AP for Petri nets as
follows [79, 8]:

α ::= t | e1 ./ e2

9

e ::= c | p | e1 ⊕ e2

where t ∈ T , c ∈ N0, ./∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}.
The function v for a marking M ∈M(N) is given as:

v(M) = {t ∈ T | t ∈ en(M)} ∪ {e1 ./ e2 | evalM (e1) ./ evalM (e2)}

where evalM (e) is an evaluation function s.t. evalM (c) = c, evalM (p) =
M(p) and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

As an example, we have a marking M ′ for the Petri net in Figure 1
where M ′(p2) = 2. The expression (p2 ∗ 2)− 1 evaluates to evalM ′((p2 ∗
2)−1) = 3 and we haveM ′ |= (p2 ∗2)−1 > 2 andM ′ 6|= (p2 ∗2)−1 > 3.

We present for simplicity and presentation purposes a subset of the
CTL syntax and semantics in the following de�nition (where α ∈ AP):

De�nition 3 (Computation Tree Logic). A (subset of a) computation

tree logic (CTL) formula is a formula ϕ with the following grammar:

ϕ ::= true | false | α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | EFϕ | E (ϕ1Uϕ2)

The semantics of a CTL formula ϕ is given as follows:

s |= true

s 6|= false

s |= α i� α ∈ v(s)

s |= ϕ1 ∧ ϕ2 i� s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 i� s |= ϕ1 or s |= ϕ2

s |= ¬ϕ i� s 6|= ϕ

s |= EFϕ i� ∃w ∈ A∗ s.t. s w−→ s′ and s′ |= ϕ

s |= E (ϕ1Uϕ2) i� ∃a1 · · · an ∈ A∗ s.t. s
a1−→ s1

a2−→ · · · an−→ s′ and

s′ |= ϕ2 and for all i, 1 ≤ i < n, we have si |= ϕ1

A reachability formula is a CTL formula EFϕ′ where ϕ′ can only
include conjunction, disjunction, negation, α, true, and false of the CTL
syntax and semantics.

As an example, for the initial marking M of Figure 2 consider the
CTL formula ϕ := E ((p1 = 1 ∨ p5 = 1)U (p5 = 1 ∧ p4 = 1)). We have
thatM |= ϕ is true due to the existence of the transition sequence t1t2t3.
First, we have to ensure that p1 = 1∨p5 = 1 is true until p5 = 1∧p4 = 1
becomes true. In the initial marking we have that p1 = 1 is true. After

10

1. State-Space Reduction Example

t1 is executed we remove the token p1 and instead place a token in p5
which ensures p5 = 1. Next, after �ring t2, we remove a token from p2
and produce a token in p3. If we executed t4 instead and produced two
tokens p4 then ϕ would not be satis�ed since we cannot remove tokens
from p4. Lastly, we execute t4 which places a token in p4, which ensures
p5 = 1 ∧ p4 = 1, and hence M |= ϕ.

Another speci�cation expressed in CTL says that eventually the
places p4 and p6 contains two tokens corresponds to the formula
ϕ := EF (p4 = 2) ∧ (p6 = 2). We read this as �there exists a run of the
system where eventually there are two tokens in p4 and two tokens in
p6�. From the marking shown in Figure 1 it is possible to �re the
transition sequence t1t4t5 to reach a marking which places exactly two
tokens in both p4 and p6, and ϕ is satis�ed. A formula such as
EF (p4 = 3) is not satis�ed since there does not exist a reachable
marking where p4 contains three tokens.

To verify our formulae, we have to traverse the LTS of Figure 2. This
traversal involves su�ciently exploring the reachable states of the LTS
until a state is found that veri�es our formula ϕ. In this case, the Petri
net in Figure 1 is a bounded net, which results in the �nite state-space
seen in Figure 2 and a �nite number of reachable states. However, it is
possible that the state-space of even a simple net can have an in�nite
number of possible reachable states. In general, even for bounded nets,
the state-space can be exponentially larger than the model it is derived
from. Therein lies the challenge central to this thesis: How can we reduce
the size of state-spaces?

1.3 Static Partial Order Reductions

We start with an introduction to the concept of conditional independence
[34, 61]. Let T = (S, A,→) be an LTS for the remainder of the section.

De�nition 4 (Conditional Independence [61]). A relation I ⊆ A×A×S
is a conditional independence relation if for all (a1, a2, s) ∈ I we have

the following:

� If a1 ∈ en(s) and s
a1−→ s′ then a2 ∈ en(s) i� a2 ∈ en(s′).

� If a1, a2 ∈ en(s) then s
a1a2−−−→ s′ and s

a2a1−−−→ s′.

If (a1, a2, s) ∈ I then we say that a1 and a2 are independent at s, and
otherwise they are dependent at s. The �rst condition states that two
independent actions cannot disable nor enable each other at s, and the

11

second condition states that executing independent actions in any order
results in the same state. In other words, they commute.

We note how the transition t5 is independent of any of the t2 and
t3 transitions. The actions of the two processes do not interfere with
the operation of the other. In Figure 1, we can see this as the places t5
consume a token from are disjoint from any place the other transitions
consume from. In Figure 2, we can see this as the distinctive diamond
shapes of the state-space. For example, from the state 2p2p5p6 �ring t2
and t5 in any order will always produce exactly the state p2p32p6 and
neither will disable nor enable the other from being �red. Intuitively,
independence implies that as long we explore one transition of a pair of
independent transitions, then the e�ect of the other transition is not lost
and can still be explored. In this speci�c case, the transitions t2 and t5 are
always independent in any conceivable marking since neither disable nor
enable the other. For each marking, we then de�ne a representative set of
actions to consider at that marking. For this purpose, we can either use
persistent sets [61], ample sets [107], or stubborn sets [130]. We present
for each of these approaches a basic de�nition. For persistent and ample
sets we assume the LTS T is deterministic, i.e. for a state s ∈ S and
action a ∈ A if s

a−→ s′ and s
a−→ s′′ then s′ = s′′.

De�nition 5 (Persistent Set [61]). A set pers(s) ⊆ en(s) at s ∈ S is

a persistent set of s i� for all a1, . . . , an ∈ A \ pers(s) s.t. s
a1−→ s1

a2−→
· · · an−→ sn we have an is independent in sn with respect to all transitions

in pers(s).

De�nition 6 (Ample Set [34]). A set amp(s) ⊆ en(s) at s ∈ S is a

ample set of s i� for all a1, . . . , an ∈ A s.t. s
a1−→ s1

a2−→ · · · an−→ sn
we have if an is dependent on some a ∈ amp(s) then there exists i,
1 ≤ i < n, s.t. ai ∈ amp(s).

De�nition 7 (Stubborn Set [130]). A set stub(s) ⊆ A at s ∈ S is a

stubborn set of s i� for all w ∈ (A \ stub(s))∗ and all a ∈ stub(s) if

s
wa−−→ s′ then we have s

aw−−→ s′.

Intuitively, all of these partial order reduction de�nitions appear sim-
ilar. Both persistent and ample sets use independence to de�ne pers(s)
and amp(s), while for stubborn sets, we de�ne the set stub(s) slightly
di�erently. Instead, stubborn actions can commute with any sequence
of non-stubborn actions. Furthermore, stubborn sets can include dis-
abled actions, while persistent and ample sets do not. Common for all

12

1. State-Space Reduction Example

three variants, we have that an action is explored at a state only if it is
both enabled and included in the persistent, ample, or stubborn set. We
annotate the transition relation → as −−→

pers
(and similarly for amp and

stub) and have (s, a, s′) ∈−−→
pers

if and only if a ∈ en(s) ∩ pers(s). If we

restrict the exploration of the state-space to −−→
pers

then this generates the

reduced state-space. We say that a state s′ is reachable from s if there
exists w ∈ A∗ s.t. s w−→ s′, and similarly it is reachable in the reduced

state-space if there exists w′ ∈ A∗ s.t. s w′−−→
pers

s′.

The empty set is trivially a valid persistent, ample, and stubborn
set for all of the above de�nitions. Therefore, we require additional
conditions that ensure non-emptiness and, more importantly, preserve
desired properties in the reduced state-space. As an example, we consider
the reachability preservation of all deadlock states. For persistent and
ample sets, it is su�cient to ensure that pers(s) and amp(s) are non-
empty if s is not a deadlock, i.e. if en(s) 6= ∅ then pers(s) 6= ∅ and
similarly for amp(s). We call such persistent and ample sets for non-
empty persistent and ample sets. For stubborn sets we require that if
en(s) is non-empty then stub(s) must include a key action.

De�nition 8 (Key Action [129]). An action a ∈ en(s)∩ stub(s) is a key
action of stub(s) for a state s ∈ S i� for all w ∈ (A \ stub(s))∗ where
s
w−→ s′ we have a ∈ en(s′).

In other words, a key action cannot be disabled by non-stubborn ac-
tions. We call stubborn sets that includes a key action for weak stubborn
sets. We now have the following theorem.

Theorem 1 (Deadlock Preservation [129]). Let s ∈ S be a state. For

all w ∈ A∗ s.t. s
w−→ s′ and en(s′) = ∅, if a reduced state-space is

generated with −−→
pers

where for all s′′ ∈ S we have pers(s′′) is a non-

empty persistent set then there exists w′ ∈ A∗ s.t. s w′−−→
pers

s′. Similarly

for non-empty ample sets and weak stubborn sets.

Interestingly, we do not preserve deadlocks with stubborn sets unless
key actions are included, while with persistent and ample sets, we pre-
serve deadlocks in every non-trivial case. This implies that the de�nition
above of stubborn sets is slightly weaker than persistent and ample sets
[129]. A variation of stubborn sets called strong stubborn sets, where
every enabled action in the stubborn set is required to be a key action,

13

corresponds to the above de�nitions of persistent and ample sets on de-
terministic systems (such as Petri nets) [60, 129]. However, for nondeter-
ministic systems, stubborn sets are suitable while persistent and ample
sets are not [129]. We prefer stubborn sets, and we consider it the chosen
static partial order variant hereon.

Next we give intuition and an example for how a stubborn set can be
generated for the marking 2p2p5p6 in Figure 2 with the formula EF (p4 =
2) ∧ (p6 = 2). We select an initial set of interesting [22] transitions that
have to be executed in order to reach a marking where (p4 = 2)∧(p6 = 2)
is satis�ed. This can, for example, be the set {t3, t4} since these are
the only transitions that increase the number of tokens in p4. We then
iteratively add the transitions that violate De�nition 7 to the set. We
add t2 because it can enable t3, which is exempli�ed by the executable
transition sequence t1t2t3 whereas t3t1t2 is not executable. We then
have that the set {t2, t3, t4} satis�es De�nition 7 and {t2, t3, t4} is a
stubborn set. Alternatively, the set {t5} is also a viable stubborn set for
this marking. For example, the transition t5 commutes with any possible
sequence consisting of any number of t2 and t3 transitions. The sequence
t2t3t2 followed by t5 is equivalent to the sequence t5 followed by t2t3t2 in
the sense that both leads to the same marking, and so on. It is therefore
su�cient to only explore t5 from the state 2p2p5p6 to cover all behaviour
of the transitions t2 and t3.

Starting from the initial marking we can generate stubborn sets for
states as we explore them. The space state can then be pruned as follows
in an on-the-�y manner. If there is an outgoing arc labelled with a
transition in the stubborn set, then explore it. Otherwise, we ignore it.
The dashed states and edges in Figure 3 are the states and edges that
we can prune using stubborn sets in this example. A total of �ve out of
thirteen states are pruned from the full state-space, resulting in a 38,5%
reduction.

As explained, stubborn sets are computed by iteratively adding tran-
sitions to a set of initially chosen transitions. These transitions are the
ones that are relevant to verifying whether a formula is satis�ed or not.
For example, for the formula ϕ := EF (p4 = 2) ∧ (p6 = 2) this corre-
sponds to the transitions t1, t3, t4, or t5, since they change the number
of tokens that the places p4 and p6 contain. These transitions are visible
[60, 110, 121, 107, 127, 81] with respect to ϕ since there exists a state
where �ring them changes the evaluation of the conjunction. Conversely,
every other transition is invisible. While including all visible transitions

14

1. State-Space Reduction Example

p1 2p2p5p6

p2p3p5p6

2p22p6

2p3p5p6

p2p32p6

p2p4p5p6

2p32p6

p3p4p5p6

p2p42p6

p3p42p6

2p4p5p6

2p42p6

t4

t4

t1

t2

t2 t5

t3

t3

t5 t2

t2
t5

t3

t3

t3

t3

t2

t2
t5

t5

t5

Figure 3: The pruned labelled transition system of Figure 2

in a stubborn set is su�cient to ensure veri�ability of reachability for-
mulae, it often leads to unnecessarily large stubborn sets. In Figure 1, if
we include all visible transitions in the stubborn set, then no reduction
is achieved at all. Instead, �ner subsets such as interesting sets or at-
tractor sets [80, 21, 22] are used, which are de�ned relative to a formula
and a marking. For the formula ϕ and the marking seen in Figure 3,
it is su�cient to include only the visible transitions of one side of the
conjunction in ϕ, for example, t1 and t3.

Therefore, the formula limits the e�ectiveness of static partial order
reductions. As the number of places in the formula increases, so does the
number of initially chosen transitions. This enables an alternative way
to improve state-space reductions by reducing the size and complexity
of formulae, as shown in the following Subsection 1.5.

1.4 Structural Reductions

Next, we show how structural reductions [22, 69] introduced by Murata
et. al [100, 102] can be used to reduce the size of Petri nets and enhance
the possible state-space reduction in conjunction with stubborn sets.

Let places(ϕ) denote the set of places that occurs in the formula

15

ϕ. For example, for the formula ϕ := EF (p4 = 2) ∧ (p6 = 2) we have
places(ϕ) = {p4, p6}. Structural reductions are enabled relative to a
reachability formula ϕ s.t. if we apply the reduction rule and remove
some places or transitions then we preserve the correctness of ϕ.

De�nition 9 (Structural Reduction Correctness). Let N = (P, T,W)
be a Petri net, M ∈ M(N) be a marking, and ϕ a reachability formula.

Let N ′ and M ′ be a modi�ed N and M after applying some structural

reduction rule. We say a structural reduction rule is correct with respect

to ϕ if M |= ϕ in N i� M ′ |= ϕ in N ′.

Figure 4a and 4b are examples of structural reduction rules from [22],
which are re�ned to consider weights when compared to the original rules
by Murata et al. [100, 102].

In Figure 4a we see the sequential place removal rule. The place p0
and transition t1 can be removed if t0 is the only transition with an
outgoing arc to p0, the only outgoing arc from p0 is to t1, and the only
incoming arc to t1 is from p0. Furthermore, in order to not change the
correctness of ϕ we must have that p0 /∈ places(ϕ) and either k · w = 1
or p′ /∈ places(ϕ) for all p′ ∈ {p ∈ P |W (t1, p) > 0}. If these conditions
are met then we can remove p0 and t1. Lastly, we update the weight
function for the outgoing arcs of t0, as seen in Figure 4a. Intuitively, the
rule removes temporarily storing tokens in p0.

In Figure 4b we see the parallel transition removal rule. The tran-
sition t0 can be removed if there exists t1 ∈ T and there exists k ∈ N
s.t. k > 0 and for all p ∈ P we have W (p, t0) = W (p, t1) · k and
W (t0, p) = W (t1, p) · k. Intuitively, if these conditions are met, we can
achieve the e�ect of t0 by �ring t1 exactly k times.

Theorem 2 (Correctness of Figure 4 [22]). The structural reduction

rules of Figure 4 are correct with respect to any reachability formula ϕ.

Next, we apply the structural reduction rules in Figure 4a and 4b to
our Petri net model in Figure 1. The place p3 is redundant in the sense
that together with the transitions t2 and t3 its only purpose is as an
intermediate place before the token is transferred from p2 arrives at p4.
Since there are no tokens in p3 to begin with and the number of trans-
ferred tokens is one, we can collapse the place and two transitions into
a single transition t′. This corresponds to the sequential place removal
rule in Figure 4a. This transition t′ consumes a single token from p2 and
produces a token at p4. Next, we notice that the transition t4 is now

16

1. State-Space Reduction Example

t0

t1

n m

p0

k · w

w

⇒ t0

k · n k ·m

(a) Sequential place removal rule

p1 p2

p3 p4

. . .

. . .

t0

w1 · k
w 2
· k

w3 · k
w
4 · k

t1

w
1

w2

w 3
w4

⇒

p1 p2

p3 p4

. . .

. . .

t1

w
1

w2

w 3

w4

(b) Parallel transition removal rule

Figure 4: Structural reduction rules

redundant due to the newly created transition t′. Both transfers tokens
from p2 to p4 where the only di�erence is the number of tokens. Since
the number of tokens moved by t4 is a multiple of the tokens moved by
t′, we can safely remove t4. This corresponds to the parallel transition
removal rule in Figure 4b. These reductions produce the Petri net seen in
Figure 5, which is the structurally reduced Petri net of Figure 1. One of
the more interesting features of structural reductions is that applying a
reduction may allow for the detection of a previously undetectable redun-
dancy, as was demonstrated in this example. This allows for iteratively
applying the reduction rules until no more reductions are possible.

The state-space of Figure 5 can be seen in Figure 6. As can be
observed, the e�ect of structural reductions has dramatically impacted

17

•
p1 t1

p2 t′ p4

p5 t5 p6

2

Figure 5: Structurally reduced Petri net of Figure 1

the size of the state-space. A total of six out of thirteen states have
been pruned from the full state-space, resulting in a 46,2% reduction.
Furthermore, the combination of structural reductions and static partial
order reductions is complementary to each other. With static partial
order reductions, we can prune two additional states. When compared
to Figure 3, a total of eight out of thirteen states are pruned from the
full state-space, resulting in a 61,5% reduction. This is a phenomenon
we will see more of as we delve deeper into this thesis's contributions.

p1 2p2p5p6

p2p3p5p6

2p22p6

2p4p5p6

p2p42p6

2p42p6

t1

t′

t5

t′

t5

t′

t5

t′

Figure 6: The state-space of Figure 5

Similarly to static partial order reductions, the formula limits the
e�ectiveness of and structural reductions. As the number of places in
the formula increases, the number of applicable structural reduction rules
decreases.

1.5 State Equations

We now introduce the state equations [100, 101] approach for falsifying
formulae. State equations is a Petri net overapproximation technique
for checking the impossibility of reaching a given marking using integer

18

1. State-Space Reduction Example

linear programming. We encode the reachability problem as an integer
linear program with the implication that if the marking is reachable,
then the integer linear program has a feasible solution.

Let us recall the basics of linear programming. Let X = {x1, . . . , xn}
bet a set of variables and let x = (x1 · · ·xn)T be a column vector. A
linear equation has the form c · x ./ k where ./∈ {=, <,≤, >,≥} is
the set of possible equalities and inequalities, k ∈ Z an integer, and
c = (c1 · · · cn) is a row vector of integer constants s.t. c1, . . . , cn ∈ Z. A
linear program LP is a �nite set of linear equations. A solution to LP
is a mapping u : X → R≥0 from variables to nonnegative real numbers.
Let u = (u(x1) · · ·u(xn))T be a column vector. A solution u is feasible if
for every linear equation c ·x ./ k ∈ LP we have c ·u ./ k is true, and we
say that LP is feasible. Alternatively, if u is a mapping from X to N0

then u is a feasible integer solution. Feasibility of a linear program can
be solved in polynomial time, while the existence of a feasible integer
solution is an NP-complete problem [120].

As a concrete example, consider if it is possible to reach a marking
of Figure 1 where the place p6 has three tokens, and every other place
has zero tokens. By inspection, it is clear that such a marking is not
reachable from the initial marking. However, this can be proven using
state equations.

Theorem 3 (State Equations [100]). Let N = (P, TW) be a Petri net

and M ,M ′ ∈ M(N) some initial and target markings of N . Let X =
{xt | t ∈ T} be a set of variables. We then have that if there exists

w ∈ T ∗ s.t. M
w−→ M ′, then the following system of equations has a

feasible solution over the variables X.

M(p) +
∑
t∈T

(W (t, p)−W (p, t))xt = M ′(p) for all p ∈ P

The variables correspond to the transitions of the Petri net in Fig-
ure 1. Each equation in the program corresponds to a place and con-
straints the number of times transitions can be �red. Assigning a number
to one of the variables abstractly models the number of times a transition
is �red. This is due to the (W (t, p) −W (p, t))xt part of the equations
that multiplies xt with the di�erence between the number of tokens pro-
duced and consumed at p.

Let M be the initial marking seen in Figure 1, and let M ′ be a
marking s.t. M ′(p6) = 3 and M ′(p1) = M ′(p2) = M ′(p3) = M ′(p4) =
M ′(p5) = 0. Writing the equations individually for M ′, we get the

19

following:

1− xt1 = 0 corresponds to place p1

2xt1 − xt2 − 2xt4 = 0 corresponds to place p2

xt2 − xt3 = 0 corresponds to place p3

xt3 + 2xt4 = 0 corresponds to place p4

xt1 − xt5 = 0 corresponds to place p5

xt1 + xt5 = 3 corresponds to place p6

This program does not have a feasible solution. The sixth equation
requires either xt1 or xt5 to be greater than one. At most, we can assign
the variable xt1 one; otherwise, the �rst equation is not satis�ed. There-
fore, we must have that xt5 is assigned two. Due to the �fth equation,
we have xt1 = xt5 , and the linear program is infeasible. We can infer
that the marking M ′ is unreachable from the initial marking in Figure 1.

•p1

t1

p2

p3

p4
t2

Figure 7: A Petri net state equations example

However, state equations are an overapproximation technique. A
feasible solution is a necessary condition for marking reachability [100],
but this does not imply that the marking is reachable. We can attempt
to �nd a feasible integer solution for more precision, but that is not an
exact approach either. Consider the Petri net show in Figure 7. We want
to check if it is possible to reach a marking where there is a token in p2
and zero tokens in every other place. This results in the following linear
program:

1− xt1 = 0 corresponds to place p1

xt1 = 1 corresponds to place p2

xt2 − xt1 = 0 corresponds to place p3

xt1 − xt2 = 0 corresponds to place p4

20

2. Contributions

Clearly, the integer solution xt1 = xt2 = 1 is a feasible solution to
this program but the place p2 can never be marked because the marking
in Figure 7 is a deadlock.

2 Contributions

With the notions of static partial order reductions, structural reduc-
tions, and state equations introduced in Sections 1.3, 1.4, and 1.5 we
now present how we use and extend upon these techniques. Speci�cally,
in this section, we present the papers and their contributions, which con-
stitute the remainder of this thesis. The following introduces the papers
and their details regarding authors and publication status:

A Start Pruning When Time Gets Urgent: Partial order Reduction for

Timed Systems. Published in the proceedings of the 30th Interna-

tional Conference on Computer Aided Veri�cation (CAV'2018) [24].
Authors: Frederik M. Bønneland, Peter G. Jensen, Kim G. Larsen,
Marco Muñiz, and Ji°í Srba.

B Stubborn Set Reduction for Two-Player Reachability Games. Invited
to a special issue of the journal of Logical Methods in Computer Sci-

ence which is accepted with minor revisions [25], and published in
the proceedings of the 30th International Conference on Concur-

rency Theory (CONCUR'2019) [23].
Authors: Frederik M. Bønneland, Peter G. Jensen, Kim G. Larsen,
Marco Muñiz, and Ji°í Srba.

C Stubborn Set Reduction for Timed Reachability and Safety Games.
Submitted for publication.
Authors: Frederik M. Bønneland, Peter G. Jensen, Kim G. Larsen,
Marco Muñiz, and Ji°í Srba.

D Stubborn Versus Structural Reductions for Petri Nets. Published in
a special issue of the Journal of Algebraic Methods in Programming,

volume 102 (2019) [22] and initially accepted for the 29th Nordic

Workshop on Programming Theory (NWPT'2017).
Authors: Frederik M. Bønneland, Jakob Dyhr, Peter G. Jensen,
Mads Johannsen, and Ji°í Srba.

21

E Simpli�cation of CTL Formulae for E�cient Model Checking of

Petri nets. Published in the proceedings of the 39th International

Conference on Application and Theory of Petri Nets and Concur-

rency (Petri'2018) [21].
Authors: Frederik M. Bønneland, Jakob Dyhr, Peter G. Jensen,
Mads Johannsen, and Ji°í Srba.

Henceforth, we use the respective letters to refer to each paper. Each
subsection corresponds to one of the featured papers and presents chal-
lenges within the �eld of model checking and how we contribute towards
these challenges.

2.1 Timed Systems

Static partial order reductions were a fundamental contribution when
it was initially developed in the nineties. However, practical applicabil-
ity has not been able to keep up as models become more complex and
detailed, including time. Timed models render all actions dependent if
not handled di�erently due to the existence of a clock as a global syn-
chroniser [15, 26, 131, 122, 92]. The modelling of time is essential for
formally verifying many classes of systems, such as reactive systems. In
this section, we present a theoretical framework and implementation of
static partial order reductions that have shown practical applicability in
timed systems.

In paperA we develop a framework that supports partial order reduc-
tions for timed systems in the form of general timed labelled transition
system. We focus on systems that exhibit urgent behaviour, which is a
common feature of many timed systems. Lastly, we showcase its practical
viability in model checking.

As an example, consider the Timed-Arc Petri net [65, 20] shown in
Figure 8. It is an altered version of the Petri net shown in Figure 1
that we have equipped with syntactic elements relating to time. We can
still represent its state-space as a timed labelled transition system by
including the real numbers as possible delay actions. Tokens are now
represented by their age. Delay actions progress the age of all tokens
in the net evenly. Initially, and when the net produces tokens, we give
tokens an age of 0. In the initial marking in Figure 8 we have a single
token in p1 of age 0. A place may have an invariant, such as p2, limit-
ing the age of tokens allowed in the place. Transitions may be urgent
such as t3 represented by a white inscribed circle within the rectangle.

22

2. Contributions

Furthermore, transitions may only accept to consume tokens which age
is within a certain interval, such as t5. Urgency occurs when either an
urgent transition is enabled or there exists a token in the net that is not
allowed to age due to the invariant of the place it is located in.

The speci�c marking shown in Figure 9 is the result of �ring t1,
delaying by 2, and then �ring t2 if the initial marking is as shown in
Figure 8. This marking is urgent both because t3 is enabled and there
is a token of age 2 in p2. In this case, our approach can reduce the
state-space by, for example, producing a stubborn set where we include
t3, but not t5.

0

p1 t1

p2

inv :≤ 2

t2 t3p3

t4

p4

p5 t5 p6

2
2 2

[2, 4]

Figure 8: Example of a system modelled as a Timed-Arc Petri net

p1 t1

2

p2

inv :≤ 2

t2 t3

0

p3

t4

p4

2

p5 t5

2

p6

2
2 2

[2, 4]

Figure 9: The derived marking if the sequence t12t2 is executed from the initial
marking in Figure 8

Next, we informally introduce our static partial order reduction ap-

23

proach to timed systems, such as the Timed-Arc Petri net shown in
Figure 8. On the general class of timed labelled transition systems, we
introduce partial order reductions conditions relating to time. We prove
that if a reduction satis�es our conditions and the classical conditions of
stubborn sets, then it preserves reachability for a given subset of states.
Central to the approach is the observation that if a state is urgent, we
can use classical partial order reduction rules for untimed systems freely.
If a state is not urgent, i.e. time is allowed to progress, then we do not
attempt to reduce the state-space from that state. This e�ectively re-
sults in a partial order reduction approach to timed systems that is not
slowed down due to handling the impact time has on the interaction of
independent actions.

We introduce new static partial order reduction conditions on a
general formalism of timed systems with either discrete or contin-
uous semantics. The novelty is that the conditions exploit urgent
behaviour, which is a common feature when modelling timed sys-
tems. We prove that the approach preserves the reachability of a
given set of target states.

Contribution 1

A theoretical result, while interesting, is insu�cient in the area of
partial order reductions since its purpose is to alleviate the practical
limitations of model checking. We instantiate our approach to the for-
malism of Timed-Arc Petri nets and develop an algorithm that exploits
the net's timing information to re�ne the reduction further. We show
that the algorithm is terminating and correct, and we implement it in
the model checking tool TAPAAL [43, 69]. Through several industrial
case studies, we demonstrate the practical viability of the approach.

We demonstrate our approach's practical applicability to partial
order reductions for timed systems on the formalism of Timed-
Arc Petri nets on an implementation in the model checking tool
TAPAAL. Our evaluation on industrial case studies shows ex-
ponential speed up in the best case, and in the worst case, the
slowdown is negligible.

Contribution 2

24

2. Contributions

Timed Systems Future Work. Potential future work is to relax the
requirement that prevents the reduction from being applied exclusively
in urgent states.

2.2 Games

Another example of a relevant modelling formalism is games. A game
consists of a controllable part and a part of the system that is either
uncontrollable or antagonistic. These are referred to respectively as the
controller and the environment. We designate a subset of states as goal
states. A controller strategy is a function that, given a state, returns
an enabled controllable action if one exists, and otherwise nothing. An
environment strategy is a function that either returns an enabled uncon-
trollable action or nothing. A controller strategy is a winning strategy

relative to a given state if following the strategy ensures we eventually
reach a goal state regardless of any action proposed by any possible en-
vironment strategy. If this is the case, then the state is said to be a
winning state Trivially, all goal states are winning states. If the game's
initial state is a winning state, then it is said to be a winning game. The
winning strategy synthesis problem is important for verifying reactive
systems with imperfect information or uncontrollable agents.

As an example of a game, consider the Petri net game shown in Fig-
ure 10. The only di�erence from Figure 1 is that we have partitioned
the transitions into controller and environment transitions. Transitions
represented as a solid rectangle are controller transitions, and transi-
tions with a white �lling are environment transitions. The two processes
initiated by t1 are now modelled as controllable and uncontrollable, re-
spectively. A state is a controller state if only controller transitions are
enabled, and similarly for environment transitions.

The literature on partial order reductions for game-theoretic for-
malisms is limited. Partial order reduction for the µ-calculus and the
temporal logics LTL and CTL [127, 94, 91, 57, 48, 134, 114] makes it
possible to encode the game semantics as a µ-calculus formula. Fur-
thermore, partial order reductions for parity games have been developed
[103]. However, similarly to timed systems, partial order reductions for
games have had limited practical results or generality.

In paper B we develop a framework that supports partial order re-
ductions for two-player reachability games in the form of general game
labelled transition systems. The two players referred to hereafter as the
controller and the environment, respectively, have opposing objectives

25

p1 t1

• •
p2

t2 t3p3

t4

p4

•
p5 t5

•
p6

2
2 2

Figure 10: Example of a system modelled as a Petri net game

in this game. The controller seeks a strategy that ensures that a state
from a subset of goal states is reached no matter the actions of the en-
vironment. In contrast, the environment wishes to �nd a strategy that
counters the controller.

We introduce distinct conditions for both the game participants that
are applied, together with the classical conditions of stubborn sets, when-
ever either player has exclusive control of the system. In other words,
we do not attempt to reduce the state-space in states where both players
have an enabled action. We call such states mixed states. If there is a
winning strategy for either participant of the game, then our conditions
also preserve the existence in the reduced game. This implies not only
that winning strategies for the controller are preserved but also winning
strategies for the environment.

We introduce a partial order reductions approach to a general
formalism of two-player games and present su�cient conditions
that preserve winning strategies for both participants in the game.
Furthermore, we show that the conditions can be relaxed in a non-
mixed game setting.

Contribution 3

We instantiate the framework to the formalism of Petri net games
and implement it in the model checking tool TAPAAL in conjunction
with its strategy synthesis algorithm [71, 72, 70]. Similarly to the work

26

2. Contributions

on timed systems, we want to achieve practical viability of our frame-
work. However, several of the introduced game-speci�c conditions can
require an expensive analysis of the net if we do it precisely. Striking the
right balance between analysis and approximations is fundamental for
bringing static partial order reduction techniques from their theoretical
frameworks to model checking's practical reality. To achieve practical
viability of our framework for Petri net games, we develop and show the
correctness of algorithms that overapproximate the aforementioned con-
ditions. We refer to paper B at the end of this thesis for details. We also
developed an overapproximation algorithm for preserving in�nite paths
of exclusive environment transitions [23]. However, this algorithm was
indeed discovered as redundant for the purpose of preserving winning
strategies [25].

We develop new overapproximation algorithms for preserving in-
�nite cycles and checking the feasibility of reaching a goal state.
In both cases we prove the algorithms are terminating and cor-
rect.

Contribution 4

We showcase the viability on several case studies that show signi�cant
to exponential speedups and memory savings. These case studies include,
among others, a train scheduling problem, work�ow models, and the
producer-consumer system reformulated as a Petri net game.

We implement the framework in the model checking tool
TAPAAL in conjunction with its strategy synthesis algorithm.
We demonstrate the practical applicability on several case stud-
ies that show signi�cant time and memory savings in the strategy
synthesis algorithm.

Contribution 5

Games Future Work. The requirement of not attempting to reduce
in mixed states can be too strict and should be relaxed. Consider the
previously informally introduced uncontrollable train game where trains
move around in a railway network while being directed by the controllable
lights. Naturally, any light's action is independent of any train that

27

is currently not at the part of the railway where the light is located.
However, our framework deems them dependent by default. To make
the best use of our partial order reduction technique, it requires model
creators to design their models with the technique in mind. This is not
favourable since it results in less natural models and hinders the options
available to modellers. Relaxing this condition will enable the reduction
to be useful on more natural and a larger quantity of models and make
the technique more seamless.

As a more concrete example of this problem, consider the Petri net
game seen in Figure 10. Despite how the controller and environment pro-
cess are always independent of each other, no reduction is possible at all.
This is because any pair of enabled independent transitions are controller
and environment transitions, respectively. Therefore, in any state where
reduction is possible, we default to include every enabled transition in
the stubborn set. This produces the entirety of the state-space seen in
Figure 3. Altering the model to make state-space reduction possible in-
volves removing the two processes' concurrency, practically linearising
the model, which is neither natural nor intuitive for the modeller.

2.3 Timed Games

As we have seen, timed systems and games are relevant modelling for-
malisms for correctly modelling reactive systems and the presence of
imperfect information and control. Naturally, a combination of timed
systems and games in the form of timed games is also relevant.

As an example, consider the Timed-Arc Petri net game in Figure 10.
A Timed-Arc Petri net game is a combination of the syntax for Timed-
Arc Petri nets and Petri net games as seen in Figure 9 and 10. We
partition all transitions into controller and environments stations, tokens
have an associated age that progresses evenly, and we can prevent time
from elapsing with place invariants and urgent transitions, etc.

Since the literature on static partial order reductions for timed sys-
tems and games are limited as discussed in Section 2.1 and 2.2, then this
scarcity carries over into timed games as well. In paper C of this thesis
we seek to change that. We combine the frameworks presented in paper
A and B into a uni�ed framework for timed games. On a high level, this
combination reduces to taking the union of the conditions developed in
the timed and game-theoretic setting, respectively. The main technical
correctness lemmas require non-trivial changes due to the introduction of
time into the game setting. In the untimed setting the correctness proof

28

2. Contributions

p1 t1

0

p2

t2 t3

0

p3

t4

p4

0

p5 t5

0

p6

2
2 2

[2, 4]

inv :≤ 2

Figure 11: Example of a system modelled as a Timed-Arc Petri net game

relies on König's lemma to ensure a game subject to a winning strategy
has a maximal depth before it reaches a goal state. The correctness proof
then proceeds by induction on the depth of a winning strategy. However,
with the addition of time, every non-urgent state can potentially have
in�nite branching due to time delays. This is the case with both discrete
and continuous time semantics. Therefore the maximal depth cannot be
ensured by König's lemma anymore. Furthermore, we prove that our
framework for preserving winning reachability strategies also preserves
winning safety strategies for both players, with minimal changes.

We nontrivially extend the correctness proof in the game-theoretic
setting to the combined time and game setting. We also further
re�ne the correctness proof in the untimed game setting to not
rely on the depth of winning strategies in its inductive argument.
We prove that in addition to reachability strategies we also pre-
serve winning safety strategies.

Contribution 6

We can combine the two techniques by interleaving the various pro-
cedures used to ensure the combined set of conditions. We do this on the
practical level of our chosen formalism of discrete-time Timed-Arc Petri
net games. The sets produced by each procedure can then be unioned
into a single set and iteratively made into the �nal stubborn set. Fur-
thermore, the introduction of time allows us to re�ne the overapproxi-
mation introduced for the game setting. This is due to the introduction

29

of syntactic elements from the timed setting, such as guards, invariants,
and clocks. Speci�cally, in the Timed-Arc Petri net formalism, if two
transitions consume tokens from a shared place, but the interval of the
accepted token ages is disjoint, then they can be determined to be in-
dependent. When transitions produce tokens, their initial clock value is
set to zero. Therefore, an in�nite sequence of exclusively environment
transitions has to accept zero ages tokens or self-supply appropriately
aged tokens. These are two possible re�nements possible in the timed
game setting. For more details we refer to paper C at the end of this
thesis.

We combine the frameworks we developed for the timed and game
settings into a uni�ed framework for timed games. We observe
that the combination allows for further re�nement of the stubborn
set generation for Timed-Arc Petri net games.

Contribution 7

We develop and prove the correctness of an algorithm for generating
winning strategy preservation for timed games instantiated to Timed-Arc
Petri net games. We implement the algorithm in the model checking tool
TAPAAL [43, 69], and perform an experimental evaluation on a set of
case studies. We observe increasing and potentially exponential time and
memory savings when reduction is possible as the cases scale to larger
instances.

We implement the combined framework in the model checking
tool TAPAAL.We show a promising experimental evaluation with
a potential for exponential time and memory savings as the case
studies scale to larger instances.

Contribution 8

Timed Games Future Work. Since the framework for timed games
is the product of combining two separate frameworks, then the stated
future work for our partial order reduction techniques for timed systems
and games also applies here. Going back to the problematic example
Figure 10 from the game setting, consider the altered model in Figure 11
with added syntactic elements relating to time. The speci�c marking

30

2. Contributions

shown in Figure 11 is an environment and urgent making. The marking
is an environment marking because the controller transition t5 is not
enabled due to the token's age in p5. The marking is urgent because the
urgent transition t3 is enabled. A reduction is possible since a stubborn
set which includes t3 but not t2 is a proper stubborn set. However,
this is one of the very few markings where reduction is possible in this
model. In most other cases, the marking is either non-urgent or mixed,
and we include every enabled transition in the stubborn set. Relaxing
the conditions for non-urgent and mixed states remains essential.

2.4 Structural Reductions

While static partial order reductions show great potential, there may
exist possible reductions that are not detected by partial order reductions
but are detected and pruned by structural reductions [100, 102, 69, 126]
in the context of Petri nets. This was shown in the introduction example
of Figures 1, 3, 5, and 6. Furthermore, the combination of the two
approaches are synergistic and allows for a greater reduction. In this
section, we introduce our contribution to the technique of structural
reductions.

•
p1 t1

p2

t2 t3p3

t4

p4

p5 t5 p6

2
2 2

Figure 12: A Petri net

In paper D we present a comparison of the static partial order re-
ductions and structural reductions for Petri net individually and the
interaction when they are combined. We introduce new structural re-
duction rules and re�ne all rules to take arc weights and inhibitor arcs
into account. In Section 1.4, we saw an example of structural reductions
collapsing places and transition to produce a smaller net. As an exam-

31

ple of an introduced structural reduction rule, consider the Petri seen
in Figure 12. Assume that the model checking formula we are verifying
is the reachability formula ϕ := EF (p6 = 2), i.e., we are only inter-
ested in if one of the processes can terminate. In this case, we can use
structural reductions to remove part of the Petri net irrelevant to verify
the formula. We do this iteratively, starting from the set of transitions
that can either increase or decrease the number of tokens in p6. This
corresponds to the set {t5}. This set is then iterated upon, adding all
the transitions that may enable any transition in the set. This itera-
tion occurs once, producing the set {t1, t5}, and a �xed point has been
reached. Lastly, all places that either occur in the formula or have an
outgoing arc to any discovered transitions are found. This corresponds
to the set {p1, p5, p6}. The rule proceeds as follows: any transition or
place not among the transitions and places found can safely be removed
while preserving correctness of ϕ. In Figure 12, the removed places and
transitions are p2, p3, p4, t2, t3, and t4. This results in the Petri net seen
in Figure 13. For the speci�cs of this procedure of this other structural
reduction rules, we refer to paper D at the end of this thesis

•
p1 t1

p2

t2 t3p3

t4

p4

p5 t5 p6

2
2 2

Figure 13: The Petri net from Figure 12 with all irrelevant places and transi-
tions removed given the formula EFp6 = 2

We formally prove the correctness of each structural reduction rule,
including the rule shown in Figure 13. We de�ne correctness with respect
to the reachability logic used in the model checking contest (MCC) for
the veri�cation of Petri nets [79, 8]. Every rule preserves the validity of
reachability formulae and a subset of the rules also preserves the validity
of deadlock reachability.

32

2. Contributions

We introduce new structural reduction rules and re�ne all the
rules to take arc weights and inhibitor arcs into account. We
formally prove the correctness of the structural reductions rules
for Petri net with respect to reachability and deadlock formulae.

Contribution 9

Every structural reduction rule is implemented in the model checking
tool TAPAAL [43, 69]. We compare the extended structural reductions
against static partial order reductions and their combination. We per-
form the evaluation using the Petri net models and formulae database
from the 2017 edition of the MCC [79]. Both techniques improve the
number of formulae that we can solve for all categories of formulae. How-
ever, the combination of the techniques further increases the number of
solved formulae. The evaluation indicates that while there is some over-
lap between the techniques, they still complement each other to form a
stronger uni�ed model checking procedure. Lastly, we compare on the
same set of models and formulae the implementation in TAPAAL against
the model checking tool LoLA [118, 136], the winner of the 2017 edition
of the MCC. The results show that the combination, together with the
pre-existing TAPAAL techniques, can solve more formulae than LoLA.

We show that the combination of static partial order reductions
and structural reductions are complementary of each other. We
observe that the combined techniques implemented in TAPAAL
result in solving more formulae than LoLA on the MCC'17
database of models and formulae.

Contribution 10

Structural Reductions Future Work. Potential future work includes
how structural reductions can be extended beyond standard Petri nets
and applied to formalisms such as coloured Petri nets, Timed-Arc Petri
nets, and Petri net games.

Furthermore, following the work of Thierry-Mieg [126], there are pos-
sibilities to develop more extensive structural reduction techniques by
balancing processing time versus e�ectiveness.

33

2.5 Formula Simpli�cation

As we discussed in Section 1.4, the e�ectiveness of static partial order
reductions and structural reductions can be limited not only by how the
model itself is constructed. Instead, the formula can be the limiting fac-
tor. The formula guides the model checking and the exploration of a
state-space. We perform most static partial order reductions relative to
this formula to ensure that we guarantee to the validity of the formula.
This comes in the e�ect of de�ning which actions are respectively visible
or invisible to the formula. In other words, an action is visible if its
execution from an arbitrary state may a�ect the formula. If an action
is determined to be visible, then we must eventually explore it. An-
other example is attractor sets [81, 80] or interesting sets [21, 22] which
are de�ned relative to a given state. While attractor sets and inter-
esting induces an additional overhead for each state during state-space
exploration, they perform in general better than just visible actions for
preserving reachability. In either case, the formula's size can result in a
majority of actions branded as visible or interesting, all of which must be
included. This hinders the e�ectiveness of static partial order reductions,
as each action added to the stubborn set may result in the addition of
dependent actions. For structural reductions, each place in the formula
is exempt from being a�ected, limiting the rules' applicability. Reducing
the formula size is then an orthogonal approach to improve both static
partial order reductions and structural reductions. This section intro-
duces a novel technique for reducing the complexity of model checking
of Petri nets on a semantic level.

In paper E we present techniques for reducing the size of compu-
tation tree logic (CTL) formulae for Petri nets, which we call formula
simpli�cation. This consists of two smaller techniques where a formula
is either veri�ed or rewritten based on the initial marking, and a larger
technique based on determining whether subformulae are satis�ed or not
using integer linear equations in the form of generalised state equations
[100, 101]. The result is an equivalent formula in terms of validity that
is smaller and simpler than the original formula. This improves the ef-
fectiveness of static partial order reductions and structural reductions
and the model checking procedure itself. In some cases, we can simplify
CTL formulae to a reachability formula that is signi�cantly easier to ver-
ify. Formula simpli�cations have previously been studied as part of the
veri�cation tool LoLA [118, 136]. However, we take the simpli�cation
further by recursively analysing each subformulae and its negation of the

34

2. Contributions

formula.

•
p1 t1

p2

t2 t3p3

t4

p4

p5 t5 p6

2
2 2

Figure 14: A Petri net

As an example of CTL formula simpli�cation, consider the Petri net
in Figure 14 with the CTL formula ϕ := E ((p5 ≤ 1)U (p4 = 2)). We
read this formula as �there exists a run of the system where there are
one or less tokens in p5 until there are two tokens in p4�. For the initial
marking seen in Figure 14 this formula is initially true since there are zero
tokens in p5. In Section 1.5 we saw how a reachability formula can be
proven false without exploring the state-space by using state equations
[100, 101]. Here our formula ϕ is a CTL formula, so we cannot use
the same approach to verify ϕ. Instead, we show how the subformula
p5 ≤ 1 can be reduced to true due to the impossibility of verifying the
negation. Furthermore, we show how a CTL formula can be simpli�ed
to a reachability formula. The negation of p5 ≤ 1 corresponds to p5 > 1
which results in the following (simpli�ed) integer linear program:

1− xt1 ≥ 0 corresponds to place p1

xt1 − xt5 > 1 corresponds to place p5

We can assign the variable xt1 at most the value one; otherwise, the
�rst equation is not satis�ed. The second equation needs xt1 to be at
least two or greater to be satis�ed. Therefore, the program is infeasible,
and it is impossible to reach a marking where p5 > 1 is satis�ed. This
implies that among the set of reachable markings from the initial marking
the formula p5 ≤ 1 is universally true, and we have ϕ is equivalent
to E ((true)U (p4 = 2)). This is equivalent to the reachability formula
EFp4 = 2, and we have simpli�ed a CTL formula to a much easier to

35

verify reachability formula where static partial order reductions are also
applicable. For more details, refer to paper E at the end of this thesis.

We develop techniques for reducing the size of CTL formulae for
Petri nets to improve the e�ectiveness of static partial order re-
ductions, structural reductions, and model checking CTL proper-
ties.

Contribution 11

Our formula simpli�cation technique is implemented in the model
checking tool TAPAAL [43, 69]. We extensively verify the e�ectiveness of
formula simpli�cation to reduce formula size and improving veri�cation
on the database of Petri net models and formulae from the 2017 edition
of the MCC [79]. We reduce 22% of all CTL formulae to either true or
false, respectively. Approximately half of all CTL formulae are reduced
to simpler to verify reachability formulae. The size of formulae, de�ned
as the number of nodes in the formula's parse tree, is reduced on average
in half for CTL formulae.

Lastly, we compare our TAPAAL implementation against LoLA [118,
136] and the tool Sara [135] using integer linear programs to verify for-
mulae without state-space exploration. In comparison to our formula
simpli�cation techniques, Sara is an exact technique for verifying formu-
lae using CEGAR [35]. If an iteration is inconclusive, then the integer
linear program is re�ned until the formulae can be determined to be
satis�ed or not. Sara is then executed in parallel with the veri�cation
engine of LoLA. We solve more formulae than Sara by reducing to ei-
ther true or false. If we follow simpli�cation with the veri�cation engine
of TAPAAL, then we also solve more formulae compared to both the
veri�cation engines of LoLA and Sara. For reachability formulae, Sara
outperforms our formula simpli�cation. However, followed by veri�ca-
tion using TAPAAL, we marginally solve more formulae than LoLA and
Sara.

Formula Simpli�cation Future Work. Similarly to the future work of
structural reductions in Section 2.4, future work includes how we can
apply formula simpli�cation to formalisms such as coloured Petri nets,
Timed-Arc Petri nets, and Petri net games. Another possibility is to
extend the technique to other temporal logics such as linear time logic.
Furthermore, an interesting approach is to employ the exact reachability
veri�cation of Sara for formula simpli�cation.

36

3. Conclusion

We show the e�ectiveness of formula simpli�cations on the
MCC'17 database of models and CTL and reachability formulae.
The experiments show that we can simplify a signi�cant amount
of CTL formulae to either true, false, or a reachability formula.
In comparison to LoLA+Sara, we solve more CTL formulae with
and without state-space exploration. We solve more reachability
formulae due to the bene�t of simpli�cation to static partial order
reductions and structural reductions.

Contribution 12

3 Conclusion

The work presented in this thesis improves the applicability of model
checking by extending existing technique and developing new novel ap-
proaches. This includes extending static partial order reductions to time
and game-theoretic formalisms, extending structural reductions for Petri
nets and showing its bene�t when combined with static partial order
reductions, and developing simpli�cation algorithms of CTL formulae.

We developed partial order reductions for timed systems and games
by �rst determining a set of conditions for general labelled transition
systems that preserves reachability and winning strategies for timed sys-
tems and games, respectively. We then instantiate these conditions to
a concrete modelling formalism by e�ciently overapproximating them,
speci�cally Timed-Arc Petri nets, Petri net games, and Timed-Arc Petri
net games. Notably, when combining the timed and game-theoretic set-
ting, we notice that the inclusion allows us to re�ne the overapproxi-
mation algorithms to generate better static partial order reduction sets.
Lastly, we showcase the practical viability of this approach on a set of
case studies.

We explored orthogonal approaches like structural reductions, for-
mula simpli�cations, and combinations thereof to complement static par-
tial order reductions. For static partial order reductions and structural
reductions, the two techniques synergistically improve each other, pro-
viding speedups and memory savings. Formula simpli�cations reduce
the number of places in formulae for Petri nets, signi�cantly improving
both static partial order reductions and structural reductions. Com-
bining these three techniques contributed to TAPAAL being compared

37

favourably to other competitive model checkers at the Model Checking
Contest (MCC) [8].

Future work. There are several possible directions for future work
besides the directions presented in Section 2. Dynamic partial order
reductions [53, 2, 3, 9] are promising to employ either separately or
complementary to static partial order reductions to solve subproblems.
The application of partial order reductions to statistical model checking
or systems with partial observability is also interesting. Lastly, it is
relevant to explore more combinations of di�erent formalisms, partial
order reductions, and other state-space reduction techniques to improve
veri�cation e�ectiveness.

References

[1] P.A. Abdulla et al. �General Decidability Theorems for In�nite-
State Systems�. In: Symposium on Logic in Computer Science.
LICS'96. IEEE, 1996, pp. 313�321. doi: 10.1109/LICS.1996.
561359.

[2] P.A. Abdulla et al. �Optimal Dynamic Partial Order Reduction�.
In: Symposium on Principles of Programming Languages. POPL
'14. Association for Computing Machinery, 2014, pp. 373�384.
doi: 10.1145/2535838.2535845.

[3] P.A. Abdulla et al. �Source Sets: A Foundation for Optimal Dy-
namic Partial Order Reduction�. In: Journal of the ACM 64.4
(2017). Association for Computing Machinery, pp. 1�49. doi: 10.
1145/3073408.

[4] R. Alur, C. Courcoubetis, and D. Dill. �Model-Checking for Prob-
abilistic Real-Time Systems�. In: Automata, Languages and Pro-

gramming. Vol. 510. LNCS. Springer Berlin Heidelberg, 1991,
pp. 115�126. doi: 10.1007/3-540-54233-7_128.

[5] R. Alur and D. Dill. �The Theory of Timed Automata�. In: Real-
Time: Theory in Practice. Vol. 600. LNCS. Springer Berlin Hei-
delberg, 1992, pp. 45�73. doi: 10.1007/BFb0031987.

[6] R. Alur, T.A. Henzinger, and M.Y. Vardi. �Parametric Real-Time
Reasoning�. In: Symposium on Theory of Computing. STOC'93.
Association for Computing Machinery, 1993, pp. 592�601. doi:
10.1145/167088.167242.

38

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3073408
https://doi.org/10.1145/3073408
https://doi.org/10.1007/3-540-54233-7_128
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1145/167088.167242

References

[7] Amazon. Amazon DynamoDB: Developer Guide.
http://smtlib.cs.uiowa.edu/. 2012.

[8] E. Amparore et al. �Presentation of the 9th Edition of the Model
Checking Contest�. In: Tools and Algorithms for the Construction
and Analysis of Systems. Vol. 11429. LNCS. Springer Interna-
tional Publishing, 2019, pp. 50�68. doi: 10.1007/978-3-030-
17502-3_4.

[9] S. Aronis et al. �Optimal Dynamic Partial Order Reduction with
Observers�. In: Tools and Algorithms for the Construction and

Analysis of Systems. Vol. 10806. LNCS. Springer International
Publishing, 2018, pp. 229�248. doi: 10.1007/978-3-319-89963-
3_14.

[10] C. Baier and J.P. Katoen. Principles of Model Checking. The MIT
Press, 2009. isbn: 026202649X, 9780262026499.

[11] C. Barrett and C. Tinelli. �Satis�ability Modulo Theories�. In:
Handbook of Model Checking. Springer International Publishing,
2018. Chap. 11, pp. 305�343. doi: 10.1007/978-3-319-10575-
8_11.

[12] G. Behrmann et al. �E�cient Timed Reachability Analysis Us-
ing Clock Di�erence Diagrams�. In: Computer Aided Veri�cation.
Vol. 1633. LNCS. Springer Berlin Heidelberg, 1999, pp. 341�353.
doi: 10.1007/3-540-48683-6_30.

[13] G. Behrmann et al. �UPPAAL Implementation Secrets�. In:
Formal Techniques in Real-Time and Fault-Tolerant Systems.
Vol. 2469. LNCS. Springer Berlin Heidelberg, 2002, pp. 3�22.
doi: 10.1007/3-540-45739-9_1.

[14] J. Bengtsson. �Clocks, DBMs and States in Timed Systems�. PhD
thesis. Faculty of Science and Technology, Uppsala University,
2002.

[15] J. Bengtsson et al. �Partial Order Reductions for Timed Systems�.
In: International Conference on Concurrency Theory. Springer
Berlin Heidelberg, 1998, pp. 485�500.

[16] A. Biere et al. �SAT-Based Model Checking�. In: Formal Models

and Semantics. Springer International Publishing, 2018. Chap. 10,
pp. 277�303. doi: 10.1007/978-3-319-10575-8_10.

39

http://smtlib.cs.uiowa.edu/
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/3-540-48683-6_30
https://doi.org/10.1007/3-540-45739-9_1
https://doi.org/10.1007/978-3-319-10575-8_10

[17] A. Biere et al. �Symbolic Model Checking without BDDs�. In:
Tools and Algorithms for the Construction and Analysis of Sys-

tems. Vol. 1579. LNCS. Springer Berlin Heidelberg, 1999, pp. 193�
2017. doi: 10.1007/3-540-49059-0_14.

[18] R. Bloem, K. Chatterjee, and B. Jobstmann. �Graph Games and
Reactive Synthesis�. In: Handbook of Model Checking. Springer
International Publishing, 2018. Chap. 17, pp. 921�962. doi: 10.
1007/978-3-319-10575-8_27.

[19] J. Bogdoll et al. �Partial Order Methods for Statistical Model
Checking and Simulation�. In: Formal Techniques for Distributed
Systems. Vol. 6722. LNCS. Springer Berlin Heidelberg, 2011,
pp. 59�74. doi: 10.1007/978-3-642-21461-5_4.

[20] T. Bolognesi, F. Lucidi, and S. Trigila. �From Timed Petri Nets
to Timed LOTOS�. In: Proceedings of the IFIP WG 6.1 Tenth

International Symposium on Protocol Speci�cation, Testing and

Veri�cation X. North-Holland Publishing Co., 1990, pp. 395�408.
doi: 10.5555/645833.670383.

[21] F.M Bønneland et al. �Simpli�cation of CTL Formulae for E�-
cient Model Checking of Petri Nets�. In: Application and Theory

of Petri Nets and Concurrency. Vol. 10877. LNCS. Springer In-
ternational Publishing, 2018, pp. 176�185. doi: 10.1007/978-3-
319-91268-4_8.

[22] F.M Bønneland et al. �Stubborn Versus Structural Reductions
for Petri nets�. In: Journal of Logical and Algebraic Methods in

Programming 102.1 (2019). Elsevier, pp. 46�63. doi: 10.1016/j.
jlamp.2018.09.002.

[23] F.M. Bønneland et al. �Partial Order Reduction for Reachabil-
ity Games�. In: International Conference on Concurrency The-

ory. Vol. 140. Leibniz International Proceedings in Informatics.
Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik, 2019, 23:1�
23:15. doi: 10.4230/LIPIcs.CONCUR.2019.23.

[24] F.M. Bønneland et al. �Start Pruning When Time Gets Urgent:
Partial Order Reduction for Timed Systems�. In: Computer Aided
Veri�cation. Vol. 10981. LNCS. Springer Berlin Heidelberg, 2018,
pp. 527�546. doi: 10.1007/978-3-319-96145-3_28.

[25] F.M. Bønneland et al. �Stubborn Set Reduction for Two-Player
Reachability Games�. In: arXiv preprint arXiv:1912.09875 (2019).

40

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-642-21461-5_4
https://doi.org/10.5555/645833.670383
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1007/978-3-319-96145-3_28

References

[26] H. Boucheneb, K. Barkaoui, and K. Weslati. �Delay-Dependent
Partial Order Reduction Technique for Time Petri Nets�. In: For-
mal Modeling and Analysis of Timed Systems. Vol. 8711. LNCS.
Springer International Publishing, 2014, pp. 53�68. doi: 10.1007/
978-3-319-10512-3_5.

[27] T. Brázdil et al. �Veri�cation of Markov Decision Processes Using
Learning Algorithms�. In: Automated Technology for Veri�cation

and Analysis. Vol. 8837. LNCS. Springer International Publishing,
2014, pp. 98�114. doi: 10.1007/978-3-319-11936-6_8.

[28] R.E. Bryant. �Graph-Based Algorithms for Boolean Function Ma-
nipulation�. In: IEEE Transactions on Computers C-35.8 (1986).
IEEE, pp. 677�691. doi: 10.1109/TC.1986.1676819.

[29] J.R. Burch et al. �Symbolic Model Checking: 1020 States and Be-
yond�. In: Information and Computation C-35.8 (1992). Elsevier,
pp. 142�170. doi: 10.1016/0890-5401(92)90017-A.

[30] J.R. Burch et al. �Zero-Suppressed BDDs and Their Applica-
tions�. In: International Journal on Software Tools for Technol-

ogy Transfer 3.2 (2001). Springer, pp. 156�170. doi: 10.1007/
s100090100038.

[31] C. Calcagno et al. �Moving Fast with Software Veri�cation�. In:
NASA Formal Methods. Vol. 9058. LNCS. Springer International
Publishing, 2015, pp. 3�11. doi: 10.1007/978-3-319-17524-
9_1.

[32] J. Christ, J. Hoenicke, and A. Nutz. �SMTInterpol: An Interpolat-
ing SMT Solver�. In: Model Checking Software. Vol. 7385. LNCS.
Springer Berlin Heidelberg, 2012, pp. 248�254. doi: 10.1007/
978-3-642-31759-0_19.

[33] A. Cimatti et al. �NuSMV 2: An OpenSource Tool for Symbolic
Model Checking�. In: Computer Aided Veri�cation. Vol. 2404.
LNCS. Springer Berlin Heidelberg, 2002, pp. 359�364. doi: 10.
1007/3-540-45657-0_29.

[34] E.M. Clark et al. Handbook of Model Checking. Springer Cham,
2018. isbn: N 978-3-319-10574-1,978-3-319-10575-8. doi:
10.1007/978-3-319-10575-8.

41

https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/s100090100038
https://doi.org/10.1007/s100090100038
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-10575-8

[35] E. Clarke et al. �Counterexample-Guided Abstraction
Re�nement�. In: Computer Aided Veri�cation. Vol. 1855. LNCS.
Springer Berlin Heidelberg, 2000, pp. 154�169. doi:
10.1007/10722167_15.

[36] E.M. Clarke and E.A. Emerson. �Characterizing Correctness
Properties of Parallel Programs Using Fixpoints�. In:
Automata, Languages and Programming. Vol. 85. LNCS.
Springer Berlin Heidelberg, 1980, pp. 169�181. doi:
10.1007/3-540-10003-2_69.

[37] E.M. Clarke and E.A. Emerson. �Design and Synthesis of Syn-
chronization Skeletons Ssing Branching Time Temporal Logic�.
In: Logics of Programs. Vol. 131. LNCS. Springer Berlin Heidel-
berg, 1982, pp. 52�71. doi: 10.1007/BFb0025774.

[38] E.M. Clarke, E.A. Emerson, and A.P. Sistia. �Automatic Veri�-
cation of Finite-State Concurrent Systems Using Temporal Logic
Speci�cations�. In: ACM Trans. Program. Lang. Syst. 8.2 (1986).
Association for Computing Machinery, pp. 244�263. doi: 10 .

1145/5397.5399.

[39] E.M. Clarke et al. �Exploiting Symmetry in Temporal Logic
Model Checking�. In: Formal Methods in System Design 9.1
(1996). Springer, pp. 77�104. doi: 10.1007/BF00625969.

[40] H. Cohen et al. BuDDy. https://sourceforge.net/projects/
buddy/.

[41] J.M. Couvreur. �On-the-�y Veri�cation of Linear Temporal
Logic�. In: Formal Methods. Vol. 1708. LNCS.
Springer Berlin Heidelberg, 1999, pp. 253�271. doi:
10.1007/3-540-48119-2_16.

[42] D. Dams and O. Grumberg. �Abstraction and Abstraction Re�ne-
ment�. In: Handbook of Model Checking. Springer International
Publishing, 2018. Chap. 13, pp. 385�419. doi: 10.1007/978-3-
319-10575-8_13.

[43] A. David et al. �TAPAAL 2.0: Integrated Development Environ-
ment for Timed-Arc Petri Nets�. In: Tools and Algorithms for the

Construction and Analysis of Systems. Vol. 7214. LNCS. Springer
Berlin Heidelberg, 2012, pp. 492�497. doi: 10.1007/978-3-642-
28756-5_36.

42

https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-10003-2_69
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/BF00625969
https://sourceforge.net/projects/buddy/
https://sourceforge.net/projects/buddy/
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-319-10575-8_13
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36

References

[44] A. David et al. �Uppaal SMC Tutorial�. In: International Journal
on Software Tools for Technology Transfer 17.4 (2015). Springer,
pp. 397�415. doi: 10.1007/s10009-014-0361-y.

[45] C. Daws et al. �The Tool KRONOS�. In: Hybrid Systems III.
Vol. 1066. LNCS. Springer Berlin Heidelberg, 1996, pp. 208�219.
doi: 10.1007/BFb0020947.

[46] E.W. Dijkstra. �The Humble Programmer�. In: Commun. ACM
15.10 (1972). Association for Computing Machinery, pp. 859�866.
doi: 10.1145/355604.361591.

[47] D.L. Dill. �Timing Assumptions and Veri�cation of Finite-State
Concurrent Systems�. In: Automatic Veri�cation Methods for Fi-

nite State Systems. Vol. 407. LNCS. Springer Berlin Heidelberg,
1990, pp. 197�212. doi: 10.1007/3-540-52148-8_17.

[48] E.A. Emerson. �Temporal and Modal Logic�. In: Formal Models

and Semantics. Elsevier, 1990. Chap. 16, pp. 995�1072. doi: 10.
1007/3-540-65306-6_20.

[49] E.A. Emerson, S. Jha, and D. Peled. �Combining Partial Or-
der and Symmetry Reductions�. In: Transactions on Petri Nets

and Other Models of Concurrency XI. Vol. 1217. LNCS. Springer
Berlin Heidelberg, 1997, pp. 19�34. doi: 10.1007/BFb0035378.

[50] J. Esparza. �Decidability and Complexity of Petri Net Problems
� An Introduction�. In: Lectures on Petri Nets I: Basic Models:

Advances in Petri Nets. Vol. 1491. LNCS. Springer Berlin Heidel-
berg, 1998, pp. 374�428. doi: 10.1007/3-540-65306-6_20.

[51] P. Ezudheen et al. �Horn-ICE Learning for Synthesizing Invari-
ants and Contracts�. In: Proc. ACM Program. Lang. 2.OOPSLA
(2016). Association for Computing Machinery, pp. 1�25. doi: 10.
1145/3276501.

[52] L. Feng et al. �Learning-Based Compositional Veri�cation for Syn-
chronous Probabilistic Systems�. In: Automated Technology for

Veri�cation and Analysis. Vol. 6996. LNCS. Springer Berlin Hei-
delberg, 2011, pp. 511�521. doi: 10.1007/978-3-642-24372-
1_40.

[53] C. Flanagan and P. Godefroid. �Dynamic Partial-Order
Reduction for Model Checking Software�. In: SIGPLAN Not.

40.1 (2005). Association for Computing Machinery, pp. 110�121.
doi: 10.1145/1047659.1040315.

43

https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/BFb0020947
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/BFb0035378
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1145/1047659.1040315

[54] P. Garg et al. �ICE: A Robust Framework for Learning Invari-
ants�. In: Advances in Petri Nets 1990. Vol. 8559. LNCS. Springer
International Publishing, 2014, pp. 69�87. doi: 10.1007/978-3-
319-08867-9_5.

[55] P. Garg et al. �Learning Invariants Using Decision Trees and Im-
plication Counterexamples�. In: SIGPLAN Not. 51.1 (2016). As-
sociation for Computing Machinery, pp. 499�512. doi: 10.1145/
2914770.2837664.

[56] S.M. German and A.P. Sistla. �Reasoning about Systems with
Many Processes�. In: Journal of the ACM 39.3 (1992). Association
for Computing Machinery, pp. 675�735. doi: 10.1145/146637.
146681.

[57] R. Gerth et al. �A Partial Order Approach to Branching Time
Logic Model Checking�. In: Information and Computation 150.2
(1999). Elsevier, pp. 132�152. doi: 10.1006/inco.1998.2778.

[58] R. Gerth et al. �Simple On-the-�y Automatic Veri�cation of Lin-
ear Temporal Logic�. In: Protocol Speci�cation, Testing and Ver-

i�cation XV. IFIPAICT. Springer Boston, 1995, pp. 3�18. doi:
10.1007/978-0-387-34892-6_1.

[59] S. Ghemawat, H. Gobio�, and S.T. Leung. �The Google File Sys-
tem�. In: ACM SIGOPS Operating Systems Review 37.5 (2003).
Association for Computing Machinery, pp. 29�43.

[60] P. Godefroid. Partial-Order Methods for the Veri�cation of Con-

current Systems: An Approach to the State-Explosion Problem.
Vol. 1032. LNCS. Springer Berlin Heidelberg, 1996. isbn: 978-3-
540-60761-8.

[61] P. Godefroid. �Re�ning Dependencies Improves Partial-Order
Veri�cation Methods (Extended Abstract)�. In: Computer Aided
Veri�cation. Vol. 697. LNCS. Springer Berlin Heidelberg, 1993,
pp. 438�449. doi: 10.1007/3-540-56922-7_36.

[62] P. Godefroid. �Using Partial Orders to Improve Automatic Ver-
i�cation Methods�. In: Computer Aided Veri�cation. Vol. 531.
LNCS. Springer Berlin Heidelberg, 1990, pp. 176�185. doi: 10.
1007/BFb0023731.

44

https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2914770.2837664
https://doi.org/10.1145/2914770.2837664
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/146637.146681
https://doi.org/10.1006/inco.1998.2778
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/BFb0023731

References

[63] P. Godefroid and P. Wolper. �Using Partial Orders for the E�-
cient Veri�cation of Deadlock Freedom and Safety Properties�. In:
Formal Methods in System Design 2.2 (1993). Springer, pp. 149�
164. doi: 10.1007/BF01383879.

[64] R. Grosu and S.A. Smolka. �Monte Carlo Model Checking�. In:
Tools and Algorithms for the Construction and Analysis of Sys-

tems. Vol. 3440. LNCS. Springer Berlin Heidelberg, 2017, pp. 271�
286. doi: 10.1007/978-3-540-31980-1_18.

[65] H.M. Hanisch. �Analysis of Place/Transition Nets With Timed
Arcs and Its Application to Batch Process Control�. In: Applica-
tion and Theory of Petri Nets. Vol. 691. LNCS. Springer Berlin
Heidelberg, 1993, pp. 282�299. doi: 10.1007/3-540-56863-8_52.

[66] H. Hansen et al. �Diamonds Are a Girl's Best Friend: Partial Or-
der Reduction for Timed Automata with Abstractions�. In: Com-
puter Aided Veri�cation. Vol. 8559. LNCS. Springer International
Publishing, 2014, pp. 391�406. doi: 10.1007/978-3-319-08867-
9_26.

[67] T.A. Henzinger et al. �Abstractions From Proofs�. In: SIGPLAN
Not. 39.1 (2004). Association for Computing Machinery, pp. 232�
244. doi: 10.1145/982962.964021.

[68] D. Jackson and M. Vaziri. �Finding Bugs with a Constraint
Solver�. In: SIGSOFT Softw. Eng. Notes 25.5 (2000).
Association for Computing Machinery, pp. 14�25. doi:
10.1145/347636.383378.

[69] J.F. Jensen et al. �TAPAAL and Reachability Analysis of P/T
Nets�. In: Transactions on Petri Nets and Other Models of Con-

currency XI. Vol. 9930. LNCS. Springer Berlin Heidelberg, 2016,
pp. 307�318. doi: 10.1007/978-3-662-53401-4_16.

[70] P.G. Jensen, K.G. Larsen, and J. Srba. �Discrete and Continu-
ous Strategies for Timed-Arc Petri Net Games�. In: International
Journal on Software Tools for Technology Transfer 20.5 (2018).
Springer, pp. 529�546. doi: 10.1007/s10009-017-0473-2.

[71] P.G. Jensen, K.G. Larsen, and J. Srba. �PTrie: Data Structure for
Compressing and Storing Sets via Pre�x Sharing�. In: Theoretical
Aspects of Computing. Vol. 7214. 10580. Springer International
Publishing, 2017, pp. 248�265. doi: 10.1007/978-3-319-67729-
3_15.

45

https://doi.org/10.1007/BF01383879
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/3-540-56863-8_52
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1145/982962.964021
https://doi.org/10.1145/347636.383378
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/s10009-017-0473-2
https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-67729-3_15

[72] P.G. Jensen, K.G. Larsen, and J. Srba. �Real-Time Strategy Syn-
thesis for Timed-Arc Petri Net Games via Discretization�. In:
Model Checking Software. Vol. 9641. 10580. Springer International
Publishing, 2016, pp. 129�146. doi: 10.1007/978-3-319-32582-
8_9.

[73] R. Jhala, A. Podelski, and A. Rybalchenko. �Predicate Abstrac-
tion for Program Veri�cation�. In: Handbook of Model Checking.
Springer International Publishing, 2018. Chap. 15, pp. 447�491.
doi: 10.1007/978-3-319-10575-8_15.

[74] C.B. Jones. �Tentative Steps toward a Development Method for
Interfering Programs�. In: ACM Trans. Program. Lang. Syst. 5.4
(1983). Association for Computing Machinery, pp. 596�619. doi:
10.1145/69575.69577.

[75] H. Kautz and B. Selman. �Planning as Satis�ability�. In: Euro-
pean Conference on Arti�cial Intelligence. ECAI'92. IEEE, 1992,
pp. 359�363. doi: 10.5555/145448.146725.

[76] H. Kautz and B. Selman. �Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search�. In: Conference on

Arti�cial Intelligence. Vol. 2. AAAI'96. AAAI Press, 1996,
pp. 1194�1201. doi: 10.5555/1864519.1864564.

[77] Y. Kesten et al. �Symbolic Model Checking With Rich Assertional
Languages�. In: Theoretical Computer Science 256.1-2 (2001). El-
sevier, pp. 93�112. doi: 10.1016/S0304-3975(00)00103-1.

[78] A. Komuravelli, C.S. Pasareanu, and E.M. Clarke. �Learning
Probabilistic Systems from Tree Samples�. In: Symposium on

Logic in Computer Science. LICS'12. IEEE, 2012, pp. 511�521.
doi: 10.1109/LICS.2012.54.

[79] F. Kordon et al. �MCC'2017 � The Seventh Model Checking Con-
test�. In: Transactions on Petri Nets and Other Models of Concur-

rency XIII. Vol. 11090. LNCS. Springer Berlin Heidelberg, 2018,
pp. 181�209. doi: 10.1007/978-3-662-58381-4_9.

[80] L.M. Kristensen, K. Schmidt, and A. Valmari. �Question-Guided
Stubborn Set Methods for State Properties�. In: Formal Methods

in System Design 29.3 (2006). Springer, pp. 215�251. doi: 10.
1007/s10703-006-0006-1.

46

https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/69575.69577
https://doi.org/10.5555/145448.146725
https://doi.org/10.5555/1864519.1864564
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1109/LICS.2012.54
https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1007/s10703-006-0006-1

References

[81] L.M. Kristensen and A. Valmari. �Improved Question-Guided
Stubborn Set Methods for State Properties�. In:
Application and Theory of Petri Nets. Vol. 1825. LNCS.
Springer Berlin Heidelberg, 2000, pp. 282�302. doi:
10.1007/3-540-44988-4_17.

[82] M. Kwiatkowska, G. Norman, and D. Parker. �Probabilistic Model
Checking: Advances and Applications�. In: Formal System Veri�-

cation: State-of the-Art and Future Trends. Springer International
Publishing, 2019, pp. 73�121. doi: 10.1007/978-3-319-57685-
5_3.

[83] M. Kwiatkowska et al. �2014 CAV Award Announcement�. In:
Formal Methods in System Design 48.3 (2016). Springer, pp. 149�
152. doi: 10.1007/s10703-016-0244-9.

[84] L. Lamport. �Proving the Correctness of Multiprocess Programs�.
In: IEEE Transactions on Software Engineering SE-3.2 (1977).
IEEE, pp. 125�143. doi: 10.1109/TSE.1977.229904.

[85] K.G. Larsen, D. Peled, and S. Sedwards. �Memory-E�cient Tac-
tics for Randomized LTL Model Checking�. In: Veri�ed Software.

Theories, Tools, and Experiments. Vol. 10712. LNCS. Springer In-
ternational Publishing, 2017, pp. 152�169. doi: 10.1007/978-3-
319-72308-2_10.

[86] K.G. Larsen, P. Pettersson, and W. Yi. �Model-Checking for
Real-Time Systems�. In: Fundamentals of Computation Theory.
Vol. 965. LNCS. Springer Berlin Heidelberg, 1995, pp. 62�88.
doi: 10.1007/3-540-60249-6_41.

[87] K.G. Larsen, P. Pettersson, and W. Yi. �Uppaal in a
Nutshell�. In: International Journal on Software Tools for

Technology Transfer 1.1+2 (1997). Springer, pp. 134�152. doi:
10.1007/s100090050010.

[88] K.G. Larsen et al. �Clock Di�erence Diagrams�. In: Nordic J. of

Computing 6.3 (1999). Publishing Association Nordic Journal of
Computing, pp. 271�298. doi: 10.5555/774455.774459.

[89] K.G. Larsen et al. �E�cient Veri�cation of Real-Time Systems:
Compact Data Structure and State-Space Reduction�. In:
Proceedings of Real-Time Systems Symposium. Vol. 6605. LNCS.
IEEE, 1997, pp. 14�24. doi: 10.1109/REAL.1997.641265.

47

https://doi.org/10.1007/3-540-44988-4_17
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/s10703-016-0244-9
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/978-3-319-72308-2_10
https://doi.org/10.1007/978-3-319-72308-2_10
https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1007/s100090050010
https://doi.org/10.5555/774455.774459
https://doi.org/10.1109/REAL.1997.641265

[90] A. Legay, B. Delahaye, and S. Bensalem. �Statistical Model
Checking: An Overview�. In: Runtime Veri�cation. Vol. 6418.
LNCS. Springer Berlin Heidelberg, 2010, pp. 122�135. doi:
10.1007/978-3-642-16612-9_11.

[91] A. Lehmann, N. Lohmann, and K. Wolf. �Stubborn Sets for Sim-
ple Linear Time Properties�. In: Application and Theory of Petri

Nets. Vol. 7347. LNCS. Springer Berlin Heidelberg, 2012, pp. 228�
247. doi: 10.1007/978-3-642-31131-4_13.

[92] J. Lilius. �E�cient State Space Search for Time Petri Nets�. In:
Electronic Notes in Theoretical Computer Science 18.1 (1998).
Elsevier, pp. 113�133. doi: 10.1016/S1571-0661(05)80254-3.

[93] S.W. Lin et al. �Learning Assumptions for CompositionalVeri-
�cation of Timed Systems�. In: IEEE Transactions on Software

Engineering 40.2 (2014). IEEE, pp. 137�153. doi: 10.1109/TSE.
2013.57.

[94] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and

Concurrent Systems. Springer-Verlag New York, 1992. isbn: 978-
0-387-97664-8,978-1-4612-6950-2. doi: 10.1007/978- 1- 4612-
0931-7.

[95] A. Mazurkiewicz. �Trace Theory�. In: Petri Nets: Applications and
Relationships to Other Models of Concurrency. Vol. 255. LNCS.
Springer Berlin Heidelberg, 1987, pp. 278�324. doi: 10.1007/3-
540-17906-2_30.

[96] K.L. McMillan. �Interpolation and Model Checking�. In: Hand-
book of Model Checking. Springer International Publishing, 2018.
Chap. 14, pp. 447�491. doi: 10.1007/978-3-319-10575-8_14.

[97] K.L. McMillan. �Interpolation and SAT-Based Model
Checking�. In: Computer Aided Veri�cation. Vol. 2725.
LNCS. Springer Berlin Heidelberg, 2003, pp. 1�13. doi:
10.1007/978-3-540-45069-6_1.

[98] K.L. McMillan and N. Amla. �Automatic Abstraction without
Counterexamples�. In: Tools and Algorithms for the Construction

and Analysis of Systems. Vol. 2619. LNCS. Springer Berlin Hei-
delberg, 2003, pp. 2�17. doi: 10.1007/3-540-36577-X_2.

[99] J. Misra. �Proofs of Networks of Processes�. In: IEEE Transac-

tions on Software Engineering SE-7.4 (1981). IEEE, pp. 417�426.
doi: 10.1109/TSE.1981.230844.

48

https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-31131-4_13
https://doi.org/10.1016/S1571-0661(05)80254-3
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1109/TSE.2013.57
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-36577-X_2
https://doi.org/10.1109/TSE.1981.230844

References

[100] T. Murata. �Petri Nets: Properties, Analysis and Applications�.
In: Proceedings of the IEEE 77.4 (1989). IEEE, pp. 541�580. doi:
10.1109/5.24143.

[101] T. Murata. �State Equation, Controllability, and Maximal Match-
ings of Petri Nets�. In: IEEE Transactions on Automatic Con-

trol 22.3 (1977). IEEE, pp. 412�416. doi: 10.1109/TAC.1977.
1101509.

[102] T. Murata and J. Koh. �Reduction and Expansion of Live and Safe
Marked Graphs�. In: IEEE Transactions on Circuits and Systems

27.1 (1980). IEEE, pp. 68�71. doi: 10.1109/TCS.1980.1084711.

[103] T. Neele, T.A.C. Willemse, and W. Wesselink. �Partial-Order Re-
duction for Parity Games with an Application on Parameterised
Boolean Equation Systems�. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Vol. 12079. LNCS. Springer
International Publishing, 2020, pp. 307�324. doi: 10.1007/978-
3-030-45237-7_19.

[104] C. Newcombe et al. �How Amazon Web Services Uses Formal
Methods�. In: Commun. ACM 58.4 (2015). Association for Com-
puting Machinery, pp. 66�73. doi: 10.1145/2699417.

[105] P.W. O'Hearn. �Continuous Reasoning: Scaling the Impact of
Formal Methods�. In: Symposium on Logic in Computer Science.
LICS'18. Association for Computing Machinery, 2018, pp. 13�25.
doi: 10.1145/3209108.3209109.

[106] S. Owicki and D. Gries. �Verifying Properties of Parallel Pro-
grams: An Axiomatic Approach�. In: Commun. ACM 19.1 (1969).
Association for Computing Machinery, pp. 279�285. doi: 10 .

1145/360051.360224.

[107] D. Peled. �All From One, One for All: On Model Checking Us-
ing Representatives�. In: Computer Aided Veri�cation. Vol. 697.
LNCS. Springer Berlin Heidelberg, 1993, pp. 409�423. doi: 10.
1007/3-540-56922-7_34.

[108] D. Peled. �Combining Partial Order Reductions With On-The-
Fly Model-Checking�. In: Formal Methods in System Design 8.1
(1996). Springer, pp. 39�64. doi: 10.1007/BF00121262.

[109] D. Peled. Software Reliability Methods. Springer-Verlag New York,
2001. isbn: 978-1-4419-2876-4, 978-0-387-95106-5. doi: 10.1007/
978-1-4757-3540-6.

49

https://doi.org/10.1109/5.24143
https://doi.org/10.1109/TAC.1977.1101509
https://doi.org/10.1109/TAC.1977.1101509
https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1007/978-3-030-45237-7_19
https://doi.org/10.1007/978-3-030-45237-7_19
https://doi.org/10.1145/2699417
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/360051.360224
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/978-1-4757-3540-6
https://doi.org/10.1007/978-1-4757-3540-6

[110] D. Peled. �Ten Years of Partial Order Reduction�. In: Computer
Aided Veri�cation. Vol. 1427. LNCS. Springer Berlin Heidelberg,
1998, pp. 17�28. doi: 10.1007/BFb0028727.

[111] C.A Petri. �Kommunikation mit Automaten�. In: Bonn, Institut
für lnstrumentelle Mathematik (1962).

[112] A. Pnueli. �In Transition From Global to Modular Temporal Rea-
soning about Programs�. In: Logics and Models of Concurrent

Systems. Vol. 13. NATO ASI. Springer Berlin Heidelberg, 1985,
pp. 123�144. doi: 10.1007/978-3-642-82453-1_5.

[113] J.P Queille and J. Sifakis. �Speci�cation and Veri�cation of Con-
current Systems in CESAR�. In: International Symposium on Pro-

gramming. Vol. 137. LNCS. Springer Berlin Heidelberg, 1982,
pp. 337�351. doi: 10.1007/BFb0025774.

[114] Y.S Ramakrishna and S.A. Smolka. �Partial-Order Reduction in
the Weak Modal Mu-Calculus�. In: International Conference on

Concurrency Theory. Vol. 1243. LNCS. Springer Berlin Heidel-
berg, 1997, pp. 5�24. doi: 10.1007/3-540-63141-0_2.

[115] W.P. Roever et al. Concurrency Veri�cation: Introduction to

Compositional and Noncompositional Methods. Vol. 54.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2001. isbn: 0-521-80608-9. doi:
10.1007/978-3-319-10575-8.

[116] J. Rushby. �Formal Methods and Their Role in the Certi�cation
of Critical Systems�. In: Safety and Reliability of Software Based

Systems. Springer London, 1997, pp. 1�42. doi: 10.1007/978-1-
4471-0921-1_1.

[117] K. Schmidt. �Integrating Low Level Symmetries into Reachabil-
ity Analysis�. In: Tools and Algorithms for the Construction and

Analysis of Systems. Vol. 5404. LNCS. Springer Berlin Heidelberg,
2000, pp. 315�330. doi: 10.1007/3-540-46419-0_22.

[118] K. Schmidt. �LoLA A Low Level Analyser�. In: Application and

Theory of Petri Nets. Vol. 1825. LNCS. Springer Berlin Heidel-
berg, 2000, pp. 465�474. doi: 10.1007/3-540-44988-4_27.

[119] K. Schmidt. �Stubborn Sets for Standard Properties�. In: Applica-
tion and Theory of Petri Nets. Vol. 1639. LNCS. Springer Berlin
Heidelberg, 1999, pp. 46�65. doi: 10.1007/3-540-48745-X_4.

50

https://doi.org/10.1007/BFb0028727
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-63141-0_2
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-1-4471-0921-1_1
https://doi.org/10.1007/978-1-4471-0921-1_1
https://doi.org/10.1007/3-540-46419-0_22
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-48745-X_4

References

[120] A. Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1998. isbn: 978-0-471-98232-6.

[121] S.F. Siegel. �Transparent Partial Order Reduction�. In: Formal
Methods in System Design 40.1 (2012). Springer, pp. 1�19. doi:
10.1007/s10703-011-0126-0.

[122] R.H. Sloan and U. Buy. �Stubborn Sets for Real-Time Petri
Nets�. In: Formal Methods in System Design 11.1 (1997).
Springer, pp. 23�40. doi: 10.1023/A:1008629725384.

[123] F. Somenzi. CUDD: CU Decision Diagram Package. http://web.
mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/

cuddIntro.html.

[124] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
�Combinational Test Generation Using Satis�ability�. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits

and Systems 15.9 (1996). IEEE, pp. 1167�1176. doi:
10.1109/43.536723.

[125] N.R. Storey. Safety Critical Computer Systems. Addison-Wesley,
1996. isbn: 0201427877.

[126] Y. Thierry-Mieg. �Structural Reductions Revisited�. In: Appli-
cation and Theory of Petri Nets and Concurrency. Vol. 12152.
LNCS. Springer International Publishing, 2020, pp. 303�323. doi:
10.1007/978-3-030-51831-8_15.

[127] A. Valmari. �A Stubborn Attack on State Explosion�. In: Formal
Methods in System Design 1.4 (1992). Springer, pp. 297�322. doi:
10.1007/BF00709154.

[128] A. Valmari. �On-The-Fly Veri�cation With Stubborn Sets�. In:
Computer Aided Veri�cation. Vol. 697. LNCS. Springer Berlin
Heidelberg, 1993, pp. 397�408. doi: 10.1007/3- 540- 56922-
7_33.

[129] A. Valmari. �Stubborn Set Intuition Explained�. In: Transactions
on Petri Nets and Other Models of Concurrency XII. Vol. 10470.
LNCS. Springer Berlin Heidelberg, 2017, pp. 140�165. doi: 10.
1007/978-3-662-55862-1_7.

[130] A. Valmari. �Stubborn Sets for Reduced State Space Generation�.
In: Advances in Petri Nets 1990. Vol. 483. LNCS. Springer Berlin
Heidelberg, 1991, pp. 491�515. doi: 10.1007/3-540-53863-1_36.

51

https://doi.org/10.1007/s10703-011-0126-0
https://doi.org/10.1023/A:1008629725384
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
http://web.mit.edu/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
https://doi.org/10.1109/43.536723
https://doi.org/10.1007/978-3-030-51831-8_15
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/3-540-56922-7_33
https://doi.org/10.1007/3-540-56922-7_33
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-53863-1_36

[131] I. Virbitskaite and E. Pokozy. �A Partial Order Method for the
Veri�cation of Time Petri Nets�. In: Fundamentals of Computa-
tion Theory. Vol. 1684. LNCS. Springer Berlin Heidelberg, 1999,
pp. 547�558. doi: 10.1007/3-540-48321-7_46.

[132] Y. Vizel, G. Weissenbacher, and S. Malik. �Boolean Satis�abil-
ity Solvers and Their Applications in Model Checking�. In: Pro-
ceedings of the IEEE 103.11 (2015). IEEE, pp. 2021�2035. doi:
10.1109/JPROC.2015.2455034.

[133] M. Wan and G. Ciardo. �Symbolic Reachability Analysis of Inte-
ger Timed Petri Nets�. In: SOFSEM 2009: Theory and Practice of

Computer Science. Vol. 1785. LNCS. Springer Berlin Heidelberg,
2000, pp. 595�608. doi: 10.1007/978-3-540-95891-8_53.

[134] B. Willems and P. Wolper. �Partial-Order Methods for Model
Checking: From Linear Time to Branching Time�. In: Symposium
on Logic in Computer Science. LICS'96. IEEE, 1996, pp. 294�303.
doi: 10.1109/LICS.1996.561357.

[135] H. Wimmel and K. Wolf. �Applying CEGAR to the Petri Net
State Equation�. In: Tools and Algorithms for the Construction

and Analysis of Systems. Vol. 6605. LNCS. Springer Berlin Hei-
delberg, 2011, pp. 224�238. doi: 10.1007/978-3-642-19835-
9_19.

[136] K. Wolf. �Petri Net Model Checking With Lola 2�. In: Application
and Theory of Petri Nets. Vol. 10877. LNCS. Springer Interna-
tional Publishing, 2018, pp. 351�362. doi: 10.1007/978-3-319-
91268-4_18.

52

https://doi.org/10.1007/3-540-48321-7_46
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1007/978-3-540-95891-8_53
https://doi.org/10.1109/LICS.1996.561357
https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1007/978-3-319-91268-4_18

Part II

Papers

53

Paper A

Start Pruning When Time Gets

Urgent: Partial Order Reduction

for Timed Systems

Frederik M. Bønneland, Peter G. Jensen,

Kim G. Larsen, Marco Muñiz, and Ji°í Srba

This paper has been published in:

Computer Aided Veri�cation, LNCS Vol. 10981,
pp. 527-546, 2018.

Abstract

Partial order reduction for timed systems is a challenging topic due to

the dependencies among events induced by time acting as a global syn-

chronization mechanism. So far, there has only been a limited success

in �nding practically applicable solutions yielding signi�cant state space

reductions. We suggest a working and e�cient method to facilitate stub-

born set reduction for timed systems with urgent behaviour. We �rst

describe the framework in the general setting of timed labelled transition

systems and then instantiate it to the case of timed-arc Petri nets. The

basic idea is that we can employ classical untimed partial order reduction

techniques as long as urgent behaviour is enforced. Our solution is im-

plemented in the model checker TAPAAL and the feature is now broadly

available to the users of the tool in its latest release from January 2018.

By a series of larger case studies, we document the bene�ts of our method

and its applicability to real-world scenarios.

1 Introduction

Partial order reduction techniques for untimed systems, introduced by
Godefroid, Peled, and Valmari in the nineties (see e.g. [6]), have since
long proved successful in combating the notorious state space explosion
problem. For timed systems, the success of partial order reduction has
been signi�cantly challenged by the strong dependencies between events
caused by time as a global synchronizer. Only recently�and moreover
in combination with approximate abstraction techniques�stubborn set
techniques have demonstrated a true reduction potential for systems
modelled by timed automata [22].

We pursue an orthogonal solution to the current partial order ap-
proaches for timed systems and, based on a stubborn set reduction [26,
38], we target a general class of timed systems with urgent behaviour.
In a modular modelling approach for timed systems, urgency is needed
to realistically model behaviour in a component that should be unob-
servable to other components [35]. Examples of such instantaneously
evolving behaviours include, among others, cases like behaviour detec-
tion in a part of a sensor (whose duration is assumed to be negligible)
or handling of release and completion of periodic tasks in a real-time
operating system. We observe that focusing on the urgent part of the
behaviour of a timed system allows us to exploit the full range of partial

56

1. Introduction

order reduction techniques already validated for untimed systems. This
leads to an exact and broadly applicable reduction technique, which we
shall demonstrate on a series of industrial case studies showing signi�-
cant space and time reduction. In order to highlight the generality of
the approach, we �rst describe our reduction technique in the setting of
timed labelled transition systems. We shall then instantiate it to timed-
arc Petri nets and implement and experimentally validate it in the model
checker TAPAAL [18].

Let us now brie�y introduce the model of timed-arc Peri nets and
explain our reduction ideas. In timed-arc Petri nets, each token is asso-
ciated with a nonnegative integer representing its age and input arcs to
transitions contain intervals, restricting the ages of tokens available for
transition �ring (if an interval is missing, we assume the default interval
[0,∞] that accepts all token ages). In Figure 1a we present a simple
monitoring system modelled as a timed-arc Petri net. The system con-
sists of two identical sensors where sensor i, i ∈ {1, 2}, is represented
by the places bi and mi, and the transitions si and ri. Once a token of
age 0 is placed into the place bi, the sensor gets started by executing the
transition si and moving the token from place bi to mi where the moni-
toring process starts. As the place bi has an associated age invariant ≤ 0,
meaning that all tokens in bi must be of age at most 0, no time delay
is allowed and the �ring of si becomes urgent. In the monitoring place
mi we have to delay one time unit before the transition ri reporting the
reading of the sensor becomes enabled. Due to the age invariant ≤ 1 in
the place mi, we cannot wait longer than one time unit, after which ri
becomes also urgent.

The places c1, c2 and c3 together with the transitions i1, i2 and t are
used to control the initialization of the sensors. At the execution start,
only the transition i1 is enabled and because it is an urgent transition
(denoted by the white circle), no delay is initially possible and i1 must be
�red immediately while removing the token of age 0 from c1 and placing a
new token of age 0 into c2. At the same time, the �rst sensor gets started
as i1 also places a fresh token of age 0 into b1. Now the control part of
the net can decide to �re without any delay the transition i2 and start
the second sensor, or it can delay one unit of time after which i2 becomes
urgent due to the age invariant ≤ 1 as the token in c2 is now of age 1.
If i2 is �red now, it will place a fresh token of age 0 into b2. However,
the token that is moved from c2 to c3 by the pair of transport arcs with
the diamond-shaped arrow tips preserves its age 1, so now we have to

57

0

c1 i1

inv:≤1

c2 i2

inv:≤2

c3
t

inv:≤0

b1
s1

inv:≤1m1

r1

inv:≤0

b2
s2

inv:≤1m2

r2

[0, 1] [2, 2]

[1, 1] [1, 1]

(a) TAPN model of a simple monitoring system

c1:0 c2:0+b1:0
i1

c2:0+m1:0

s1

c2:1+m1:1

1

c2:1

r1

c3:1+m1:1+b2:0

i2

c3:1+m1:1+m2:0

s2

c3:1+b2:0

i2

c3:1+m2:0

s2

r1

r1

c3:2+m2:1

1

c3:2

r2

c3:0+b1:0+b2:0

i2

c3:0+b1:0+m2:0

s2

c3:0+m1:0+b2:0

i2

s1

c3:0+m1:0+m2:0

s1

s2

c3:1+m1:1+m2:1

1

c3:1+m1:1

r2

c3:1+m2:1

r1

c3:1

r1

r2

1

t

(b) Reachable state space generated by the net in Figure 1a

Figure 1: Simple Monitoring System

wait precisely one more time unit before t becomes enabled. Moreover,
before t can be �red, the places m1 and m2 must be empty as otherwise
the �ring of t is disabled due to inhibitor arcs with circle-shaped arrow
tips.

In Figure 1b we represent the reachable state space of the simple
monitoring system where markings are represented using the notation
like c3 : 1 + b2 : 2 that stands for one token of age 1 in place c3 and
one token of age 2 in place b2. The dashed boxes represent the markings
that can be avoided during the state space exploration when we apply our
partial order reduction method for checking if the termination transition

58

1. Introduction

t can become enabled from the initial marking. We can see that the
partial order reduction is applied such that it preserves at least one path
to all con�gurations where our goal is reached (transition t is enabled)
and where time is not urgent anymore (i.e. to the con�gurations that
allow the delay of 1 time unit). The basic idea of our approach is to
apply the stubborn set reduction on the commutative diamonds where
time is not allowed to elapse.

Related Work. Our stubborn set reduction is based on the work of
Valmari et al. [26, 38]. We formulate their stubborn set method in the
abstract framework of labelled transition systems with time and add
further axioms for time elapsing in order to guarantee preservation of
the reachability properties.

For Petri nets, Yoneda and Schlinglo� [41] apply a partial order re-
duction to one-safe time Petri nets, however, as claimed in [37], the
method is mainly suitable for small to medium models due to a compu-
tational overhead, con�rmed also in [27]. The experimental evaluation
in [41] shows only one selected example. Sloan and Buy [37] try to im-
prove on the e�ciency of the method, at the expense of considering only
a rather limited model of simple time Petri nets where each transition
has a statically assigned duration. Lilius [27] suggests to instead use
alternative semantics of timed Petri nets to remove the issues related to
the global nature of time, allowing him to apply directly the untimed
partial order approaches. However, the semantics is nonstandard and
no experiments are reported. Another approach is by Virbitskaite and
Pokozy [40], who apply a partial order method on the region graph of
bounded time Petri nets. Region graphs are in general not an e�cient
method for state space representation and the method is demonstrated
only on a small bu�er example with no further experimental validation.
Recently, partial order techniques were suggested by André, Chatain and
Rodríguez for parametric time Petri nets [5], however, the approach is
working only for safe and acyclic nets. Boucheneb and Barkaoui [13, 12,
11] discuss a partial order reduction technique for timed Petri nets based
on contracted state class graphs and present a few examples on a proto-
type implementation (the authors do not refer to any publicly available
tool). Their method is di�erent from ours as it aims at adding timing
constrains to the independence relation, but it does not exploit urgent
behaviour. Moreover, the models of time Petri nets and timed-arc Petri
nets are, even on the simplest nets, incomparable due to the di�erent

59

way to modelling time.

The fact that we are still lacking a practically applicable method for
the time Petri net model is documented by a missing implementation
of the technique in leading tools for time Petri net model checking like
TINA [39] and Romeo [21]. We are not aware of any work on partial order
reduction technique for the class of timed-arc Petri nets that we consider
in this paper. This is likely because this class of nets provides even
more complex timing behaviour, as we consider unbounded nets where
each token carries its timing information (and needs a separate clock to
remember the timing), while in time Petri nets timing is associated only
to a priory �xed number of transitions in the net.

In the setting of timed automata [3], early work on partial order re-
duction includes Bengtsson et al. [8] and Minea [31] where they introduce
the notion of local as well as global clocks but provide no experimental
evaluation. Dams et al. [17] introduce the notion of covering in order to
generalize dependencies but also here no empirical evaluation is provided.
Lugiez, Niebert et al. [28, 33] study the notion of event zones (capturing
time-durations between events) and use it to implement Mazurkiewicz-
trace reductions. Salah, Bozga and Maler [36] introduce and implement
an exact method based on merging zones resulting from di�erent inter-
leavings. The method achieves performance comparable with the ap-
proximate convex-hull abstraction which is by now superseded by the
exact LU-abstraction [7]. Most recently, Hansen et al. [22] introduce a
variant of stubborn sets for reducing an abstracted zone graph, thus in
general o�ering overapproximate analysis. Our technique is orthogonal
to the other approaches mentioned above; not only is the model di�erent
but also the application of our reduction gives exact results and is based
on new reduction ideas. Finally, the idea of applying partial order reduc-
tion for independent events that happen at the same time appeared also
in [14] where the authors, however, use a static method that declares
actions as independent only if they do not communicate, do not emit
signals and do not access any shared variables. Our realization of the
method to the case of timed-arc Petri nets applies a dynamic (on-the-
�y) reduction, while executing a detailed timing analysis that allows us
to declare more transitions as independent�sometimes even in the case
when they share resources.

60

2. Partial Order Reduction for Timed Systems

2 Partial Order Reduction for Timed Systems

We shall now describe the general idea of our partial order reduction
technique (based on stubborn sets [26, 38]) in terms of timed transition
systems. We consider real-time delays in the rest of this section, as these
results are not speci�c only to discrete time semantics. Let A be a given
set of actions such that A ∩ R≥0 = ∅ where R≥0 stands for the set of
nonnegative real numbers.

De�nition 1 (Timed Transition System). A timed transition system is

a tuple (S, s0,−→) where S is a set of states, s0 ∈ S is the initial state,

and −→⊆ S × (A ∪R≥0)× S is the transition relation.

If (s, α, s′) ∈−→ we write s
α−→ s′. We implicitly assume that if s

0−→ s′

then s = s′, i.e. zero time delays do not change the current state. The set

of enabled actions at a state s ∈ S is de�ned as En(s)
def
= {a ∈ A | ∃s′ ∈

S. s
a−→ s′}. Given a sequence of actions w = α1α2α3 . . . αn ∈ (A∪R≥0)∗

we write s
w−→ s′ i� s

α1−→ . . .
αn−−→ s′. If there is a sequence w of length n

such that s
w−→ s′, we also write s −→n s′. Finally, let −→∗ be the re�exive

and transitive closure of the relation −→ such that s −→ s′ i� there is
α ∈ R≥0 ∪A and s

α−→ s′.

For the rest of this section, we assume a �xed transition system
(S, s0,−→) and a set of goal states G ⊆ S. The reachability problem,
given a timed transition system (S, s0,−→) and a set of goal states G, is
to decide whether there is s′ ∈ G such that s0 −→∗ s′.

We now develop the theoretical foundations of stubborn sets for timed
transition systems. A state s ∈ S is zero time if time can not elapse at s.
We denote the zero time property of a state s by the predicate zt(s) and

de�ne it as zt(s) i� for all s′ ∈ S and all d ∈ R≥0 if s
d−→ s′ then d = 0.

A reduction of a timed transition system is a function St : S → 2A. A
reduction de�nes a reduced transition relation −→

St
⊆−→ such that s

α−→
St

s′

i� s
α−→ s′ and α ∈ St(s) ∪ R≥0. For a given state s ∈ S we de�ne

St(s)
def
= A \ St(s) as the set of all actions that are not in St(s).

De�nition 2 (Reachability Conditions). A reduction St on a timed tran-

sition system (S, s0,−→) is reachability preserving if it satis�es the fol-

lowing four conditions.

61

(Z) ∀s ∈ S. ¬zt(s) =⇒ En(s) ⊆ St(s)

(D) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ =⇒ zt(s′)

(R) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. zt(s) ∧ s w−→ s′ ∧ s 6∈ G =⇒ s′ 6∈ G

(W) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. ∀a ∈ St(s). zt(s) ∧ s wa−−→ s′ =⇒ s

aw−−→ s′

Condition Z declares that in a state where a delay is possible, all en-
abled actions become stubborn actions. Condition D guarantees that in
order to enable a time delay from a state where delaying is not allowed,
a stubborn action must be executed, and similarly Condition R requires
the same should a goal state be reachable from a non-goal state. Finally,
Condition W allows us to commute stubborn actions with non-stubborn
actions. The following theorem shows that reachability preserving reduc-
tions generate pruned transition systems where the reachability of goal
states is preserved.

Theorem 1 (Minimum-Time Reachability Preservation). Let St be a

reachability preserving reduction satisfying Z, D, R and W. Let s ∈ S.
If s −→n s′ for some s′ ∈ G then also s −→

St

m s′′ for some s′′ ∈ G where

m ≤ n.

Proof. We proceed by induction on n. Base step. If n = 0, then s = s′

and m = n = 0. Inductive step. Let s0
α0−→ s1

α1−→ . . .
αn−−→ sn+1 where

s0 6∈ G and sn+1 ∈ G. Without loss of generality we assume that for all
i, 0 ≤ i ≤ n, we have αi 6= 0 (otherwise we can simply skip these 0-delay
actions and get a shorter sequence). We have two cases. Case ¬zt(s0):
by condition Z we have En(s0) ⊆ St(s0) and by the de�nition of −→

St
we

have s0
α0−→
St

s1 since α0 ∈ En(s0) ∪ R≥0. By the induction hypothesis

we have s1 −→
St

m s′′ with s′′ ∈ G and m ≤ n and m + 1 ≤ n + 1. Case

zt(s0): let w = α0α1 . . . αn and αi be such that αi ∈ St(s0) and for all
k < i holds that αk 6∈ St(s0), i.e. αi is the �rst stubborn action in w.
Such an αi has to exist otherwise sn+1 6∈ G due to condition R. Because
of condition D we get zt(sk) for all k, 0 ≤ k < i, otherwise αi cannot
be the �rst stubborn action in w. We can split w as w = uαiv with
u ∈ St(s0)

∗
. Since all states in the path to si are zero time, by W we

can swap αi as s0
αi−→ s′1

u−→ si
v−→ s′ with |uv| = n. Since αi ∈ St(s0) we

get s0
αi−→
St

s′1 and by the induction hypothesis we have s′1 −→
St

m s′′ where

s′′ ∈ G, m ≤ n, and m+ 1 ≤ n+ 1.

62

3. Timed-Arc Petri Nets

3 Timed-Arc Petri Nets

We shall now de�ne the model of timed-arc Petri nets (as informally
described in the introduction) together with a reachability logic and a few
technical lemmas needed later on. Let N0 = N∪{0} and N∞0 = N0∪{∞}.
We de�ne the set of well-formed closed time intervals as

∫ def
= {[a, b] |

a ∈ N0, b ∈ N∞0 , a ≤ b} and its subset
∫
inv def

= {[0, b] | b ∈ N∞0 } used in
age invariants.

De�nition 3 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is
a 9-tuple N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) where

� P is a �nite set of places,

� T is a �nite set of transitions such that P ∩ T = ∅,

� Turg ⊆ T is the set of urgent transitions,

� IA ⊆ P × T is a �nite set of input arcs,

� OA ⊆ T × P is a �nite set of output arcs,

� g : IA →
∫
is a time constraint function assigning guards (time

intervals) to input arcs s.t.

� if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

� w : IA ∪ OA → N is a function assigning weights to input and

output arcs,

� Type : IA ∪ OA → Types is a type function assigning a type to

all arcs where Types = {Normal , I} ∪ {Transport j | j ∈ N} such
that

� if Type(z) = I then z ∈ IA and g(z) = [0,∞],

� if Type((p, t)) = Transport j for some (p, t) ∈ IA then there is

exactly one (t, p′) ∈ OA such that Type((t, p′)) = Transport j,

� if Type((t, p′)) = Transport j for some (t, p′) ∈ OA then there

is exactly one (p, t) ∈ IA such that Type((p, t)) = Transport j,

� if Type((p, t)) = Transport j = Type((t, p′)) then w((p, t)) =
w((t, p′)),

� I : P →
∫ inv

is a function assigning age invariants to places.

63

Note that for transport arcs we assume that they come in pairs (for
each type Transport j) and that their weights match. Also for inhibitor
arcs and for input arcs to urgent transitions, we require that the guards
are [0,∞].

Before we give the formal semantics of the model, let us �x some
notation. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN.

We denote by •x
def
= {y ∈ P ∪ T | (y, x) ∈ IA ∪ OA, Type((y, x)) 6= I}

the preset of a transition or a place x. Similarly, the postset is de�ned

as x•
def
= {y ∈ P ∪ T | (x, y) ∈ (IA ∪ OA)}. We denote by ◦t

def
= {p ∈

P | (p, t) ∈ IA ∧ Type((p, t)) = I} the inhibitor preset of a transition t.

The inhibitor postset of a place p is de�ned as p◦
def
= {t ∈ T | (p, t) ∈

IA ∧ Type((p, t)) = I}. Let B(R≥0) be the set of all �nite multisets
over R≥0. A marking M on N is a function M : P −→ B(R≥0) where
for every place p ∈ P and every token x ∈ M(p) we have x ∈ I (p), in
other words all tokens have to satisfy the age invariants. The set of all
markings in a net N is denoted byM(N).

We write (p, x) to denote a token at a place p with the age x ∈ R≥0.
Then M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a
marking M with n tokens of ages xi in places pi. We de�ne the size of
a marking as |M | =

∑
p∈P |M(p)| where |M(p)| is the number of tokens

located in the place p. A marked TAPN (N,M0) is a TAPN N together
with an initial marking M0 with all tokens of age 0.

De�nition 4 (Enabledness). Let N = (P, T1, T2, Turg , IA,OA, g ,w ,
Type, I) be a TAPN. We say that a transition t ∈ T is enabled in a mark-

ing M by the multisets of tokens In = {(p, x1p), (p, x2p), . . . , (p, x
w((p,t))
p) |

p ∈ •t} ⊆M and Out = {(p′, x1p′), (p′, x2p′), . . . , (p′, x
w((t,p′))
p′) | p′ ∈ t•} if

� for all input arcs except the inhibitor arcs, the tokens from In sat-

isfy the age guards of the arcs, i.e.

∀p ∈ •t. xip ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

� for any inhibitor arc pointing from a place p to the transition t, the
number of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = I ⇒ |M(p)| < w((p, t))

� for all input arcs and output arcs which constitute a transport arc,

the age of the input token must be equal to the age of the output

64

3. Timed-Arc Petri Nets

token and satisfy the invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t))=Type((t, p′))=Transport j

⇒
(
xip = xip′ ∧ xip′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t))

� for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′))=Normal⇒xip′=0 for 1 ≤ i ≤ w((t, p′))

A given marked TAPN (N,M0) de�nes a timed transition system

T (N)
def
= (M(N),M0,−→) where the states are markings and the transi-

tions are as follows.

� If t ∈ T is enabled in a marking M by the multisets of tokens In
and Out then t can �re and produce the markingM ′ = (Mr In)]
Out where] is the multiset sum operator and r is the multiset

di�erence operator; we write M
t−→M ′ for this action transition.

� A time delay d ∈ N0 is allowed in M if

� (x+d) ∈ I(p) for all p ∈ P and all x ∈M(p), i.e. by delaying
d time units no token violates any of the age invariants, and

� if M
t−→ M ′ for some t ∈ Turg then d = 0, i.e. enabled urgent

transitions disallow time passing.

By delaying d time units in M we reach the marking M ′ de�ned

as M ′(p) = {x + d | x ∈ M(p)} for all p ∈ P ; we write M d−→ M ′

for this delay transition.

Note that the semantics above de�nes the discrete-time semantics as
the delays are restricted to nonnegative integers. It is well known that
for timed-arc Petri nets with nonstrict intervals, the marking reachability
problem on discrete and continuous time nets coincide [30]. This is, how-
ever, not the case for more complex properties like liveness that can be
expressed in the CTL logic (for counter examples that can be expressed
in CTL see e.g. [24]).

Reachability Logic and Interesting Sets of Transitions

We now describe a logic for expressing the properties of markings based
on the number of tokens in places and transition enabledness, inspired by

65

Formula ϕ AM (ϕ) AM (¬ϕ)

deadlock (•t)• ∪ •(◦t) for some t ∈ En(M) ∅

t
•p for some p ∈ •t where M(p) < w((p, t)) or
p• for some p ∈ ◦t where M(p) ≥ w((p, t))

(•t)• ∪ •(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)

e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M 6|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 1: Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅)

the logic used in the Model Checking Contest (MCC) Property Language
[25]. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN. The
formulae of the logic are given by the abstract syntax:

ϕ ::= deadlock | t | e1 ./ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

e ::= c | p | e1 ⊕ e2

where t ∈ T , ./ ∈ {<,≤,=, 6=, >,≥}, c ∈ Z, p ∈ P , and ⊕ ∈ {+,−, ∗}.
Let Φ be the set of all such formulae and let EN be the set of arithmetic
expressions over the net N . The semantics of ϕ in a markingM ∈M(N)
is given by

M |= deadlock if En(M) = ∅
M |= t if t ∈ En(M)

M |= e1 ./ e2 if evalM (e1) ./ evalM (e2)

assuming a standard semantics for Boolean operators and where
the semantics of arithmetic expressions in a marking M
is as follows: evalM (c) = c, evalM (p) = |M(p)|, and
evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

Let ϕ be a formula. We are interested in the question, whether
we can reach from the initial marking some of the goal markings from
Gϕ = {M ∈M(N) |M |= ϕ}. In order to guide the reduction such that
transitions that lead to the goal markings are included in the generated
stubborn set, we de�ne the notion of interesting transitions for a marking

66

3. Timed-Arc Petri Nets

Expression e incrM (e) decrM (e)

c ∅ ∅
p •p p•

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 ∗ e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 2: Increasing and decreasing transitions of expression e

M relative to ϕ, and we let AM (ϕ) ⊆ T denote the set of interesting
transitions. Formally, we shall require that whenever M

w−→ M ′ via a
sequence of transitions w = t1t2 . . . tn ∈ T ∗ whereM 6∈ Gϕ andM ′ ∈ Gϕ,
then there must exist i, 1 ≤ i ≤ n, such that ti ∈ AM (ϕ).

Table 1 gives a possible de�nition of AM (ϕ). Let us remark that the
de�nition is at several places nondeterministic, allowing for a variety of
sets of interesting transitions. Table 1 uses the functions incrM : EN →
2T and decrM : EN → 2T de�ned in Table 2. These functions take as
input an expression e, and return all transitions that can possibly, when
�red, increase resp. decrease the evaluation of e. The following lemma
formally states the required property of the functions incrM and decrM .

Lemma 1. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN

and M ∈ M(N) a marking. Let e ∈ EN and let M
w−→ M ′ where

w = t1t2 . . . tn ∈ T ∗.

� If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, such that

ti ∈ incrM (e).

� If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, such that

ti ∈ decrM (e).

We �nish this section with the main technical lemma, showing that
at least one interesting transition must be �red before we can reach a
marking satisfying a given reachability formula.

Lemma 2. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN,

let M ∈ M(N) be its marking and let ϕ ∈ Φ be a given formula. If

M 6|= ϕ and M
w−→M ′ where w ∈ AM (ϕ)

∗
then M ′ 6|= ϕ.

67

4 Partial Order Reductions for Timed-Arc Petri

Nets

We are now ready to state the main theorem that provides su�cient
syntax-driven conditions for a reduction in order to guarantee preserva-
tion of reachability. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a
TAPN, let M ∈ M(N) be a marking of N , and let ϕ ∈ Φ be a formula.
We recall that AM (ϕ) is the set of interesting transitions as de�ned ear-
lier.

Theorem 2 (Reachability Preserving Closure). Let St be a reduction

such that for all M ∈M(N) it satis�es the following conditions.

1 If ¬zt(M) then En(M) ⊆ St(M).

2 If zt(M) then AM (ϕ) ⊆ St(M).

3 If zt(M) then either

(a) there is t ∈ Turg ∩ En(M) ∩ St(M) where •(◦t) ⊆ St(M), or

(b) there is p ∈ P where I (p) = [a, b] and b ∈ M(p) such that

t ∈ St(M) for every t ∈ p• where b ∈ g((p, t)).

4 For all t ∈ St(M) \ En(M) either

(a) there is p ∈ •t such that |{x ∈ M(p) | x ∈ g((p, t))}| <
w((p, t)) and

� t′ ∈ St(M) for all t′ ∈ •p where there is p′ ∈ •t′ with
Type((t′, p)) = Type((p′, t′)) = Transport j and where

g((p′, t′)) ∩ g((p, t)) 6= ∅, and
� if 0 ∈ g((p, t)) then also •p ⊆ St(M), or

(b) there is p ∈ ◦t where |M(p)| ≥ w((p, t)) such that

� t′ ∈ St(M) for all t′ ∈ p• where M(p) ∩ g((p, t′)) 6= ∅.

5 For all t ∈ St(M) ∩ En(M) we have

(a) t′ ∈ St(M) for every t′ ∈ p• where p ∈ •t and g((p, t)) ∩
g((p, t′)) 6= ∅, and

(b) (t•)◦ ⊆ St(M).

Then St satis�es Z, D, R, and W.

68

4. Partial Order Reductions for Timed-Arc Petri Nets

t

t1

3p1

p2 t2[3, 7]

(a) Transitions t1 and t2 can disable
resp. inhibit the urgent transition t

2 5

p

inv:≤ 5

t1 t2
[2, 4] [5, 5]

(b) Transition t2 can remove the token
of age 5 from p

Figure 2: Cases for Condition 3

Let us now brie�y discuss the conditions of Theorem 2. Clearly, Con-
dition 1 ensures that if time can elapse, we include all enabled transitions
into the stubborn set and Condition 2 guarantees that all interesting
transitions (those that can potentially make the reachability proposition
true) are included as well.

Condition 3 makes sure that that if time elapsing is disabled then
any transition that can possibly enable time elapsing will be added to
the stubborn set. There are two situations how time progress can be
disabled. Either, there is an urgent enabled transition, like the transition
t in Figure 2a. Since t2 can add a token to p2 and by that inhibit
t, Condition 3a makes sure that t2 is added into the stubborn set in
order to satisfy D. As t1 can remove the token of age 3 from p1 and
hence disable t, we must add t1 to the stubborn set too (guaranteed by
Condition 5a). The other situation when time gets stopped is when a
place with an age invariant contains a token that disallows time passing,
like in Figure 2b where time is disabled because the place p has a token
of age 5, which is the maximum possible age of tokens in p due to the
age invariant. Since t2 can remove the token of age 5 from p, we include
it to the stubborn set due to Condition 3b. On the other hand t1 does
not have to be included in the stubborn set as its �ring cannot remove
the token of age 5 from p.

Condition 4 makes sure that an disabled stubborn transition can
never be enabled by a non-stubborn transition. There are two reasons
why a transition is disabled. Either, as in Figure 3a where t is disabled,
there is an insu�cient number of tokens of appropriate age to �re the
transition. In this case, Condition 4a makes sure that transitions that
can add tokens of a suitable age via transport arcs are included in the
stubborn set. This is the case for the transition t1 in our example, as
[2, 5] has a nonempty intersection with [4, 6]. On the other hand, t3 does
not have to be added. As the transition t2 only adds fresh tokens of age

69

t

2 3

p

t1

t2

t3

1 5p1

8p2

2 9p3

[4, 6]

[2, 5]:1

[7, 9]:1

:1

:1

(a) Transition t1 can transport well-
aged tokens into p and enable t

t

6 7

p

t1

t2

p1

p2

[6, 8]

[0, 4]

(b) Transition t1 can enable t by re-
moving tokens from p

Figure 3: Cases for Condition 4

t

4 7

p p′ t3

t1

t2

[2, 5]

[6, 8]

[0, 4]

(a) Stubborn transition t can disable both t2 and t3

Figure 4: Cases for Condition 5

0 to p via normal arcs, there is no need to add t2 into the stubborn set
either. The other reason for a transition to be disabled is due to inhibitor
arcs, as shown on the transition t in Figure 3b. Condition 4b makes sure
that t1 is added to the stubborn set, as it can enable t (the interval [6, 8]
has a nonempty intersection with the tokens of age 6 and 7 in the place
p). As this is not the case for t2, this transition can be left out from the
stubborn set.

Finally, Condition 5 guarantees that enabled stubborn transitions
can never disable any non-stubborn transitions. For an illustration, take
a look at Figure 4a and assume that t is an enabled stubborn transition.
Firing of t can remove the token of age 4 from p and disable t2, hence
t2 must become stubborn by Condition 5a in order to satisfy W. On
the other hand, the intervals [6, 8] and [2, 5] have empty intersection, so
there is no need to declare t1 as a stubborn transition. Moreover, �ring
of t can also disable the transition t3 due to the inhibitor arc, so we must
add t3 to the stubborn set by Condition 5b.

The conditions of Theorem 2 can be turned into an iterative satura-
tion algorithm for the construction of stubborn sets as shown in Algo-
rithm 1 and 2. When running this algorithm for the net in our running
example, we can reduce the state space exploration for �reability of the
transition t as depicted in Figure 1b. Our last theorem states that the

70

5. Implementation and Experiments

Algorithm 1: Construction of a reachability preserving stub-
born set
input : N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I),

M ∈M(N), ϕ ∈ Φ
output : St(M) ∩ En(M)

1 if ¬zt(M) then
2 return En(M);

3 Y := AM (ϕ);
4 if Turg ∩ En(M) 6= ∅ then
5 pick any t ∈ Turg ∩ En(M);
6 if t /∈ Y then

7 Y := Y ∪ {t};
8 Y := Y ∪ •(◦t);
9 else

10 pick any p ∈ P where I (p) = [a, b] and b ∈M(p)
11 forall t ∈ p• do
12 if b ∈ g((p, t)) then
13 Y := Y ∪ {t};

14 X := Saturate(Y);
15 return X ∩ En(M);

algorithm returns stubborn subsets of enabled transitions that satisfy
the four conditions of Theorem 1 and hence we preserve the reachability
property as well as the minimum path to some reachable goal.

Theorem 3. Algorithm 1 terminates and returns St(M) ∩ En(M) for

some reduction St that satis�es Z, D, R, and W.

5 Implementation and Experiments

We implemented our partial order method in C++ and integrated it
within the model checker TAPAAL [18] and its discrete time engine
verifydtapn [4, 10]. We evaluate our partial order reduction on a wide
range of case studies.

PatientMonitoring. The patient monitoring system [16] models a
medical system that through sensors periodically scans patient's vital
functions, making sure that abnormal situations are detected and re-

71

Algorithm 2: Saturate(Y)

1 X := ∅;
2 while Y 6= ∅ do
3 pick any t ∈ Y ;
4 if t /∈ En(M) then
5 if ∃p ∈ •t. |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) then
6 pick any such p;
7 forall t′ ∈ •p \X do

8 forall p′ ∈ •t′ do
9 if Type((t′, p)) = Type((p′, t′)) =

Transport j ∧ g((p′, t′)) ∩ g((p, t)) 6= ∅ then
10 Y := Y ∪ {t′};

11 if 0 ∈ g((p, t)) then
12 Y := Y ∪ (•p \X);

13 else

14 pick any p ∈ ◦t s.t. |M(p)| ≥ w((p, t));
15 forall t′ ∈ p• \X do

16 if M(p) ∩ g((p, t′)) 6= ∅ then
17 Y := Y ∪ {t′};

18 else

19 forall p ∈ •t do
20 Y := Y ∪ ({t′ ∈ p•|g((p, t)) ∩ g((p, t′)) 6= ∅} \X);

21 Y := Y ∪ ((t•)◦ \X);

22 Y := Y \ {t};
23 X := X ∪ {t};
24 return X;

ported within given deadlines. The timed-arc Petri net model was de-
scribed in [16] for two sensors monitoring patient's pulse rate and oxygen
saturation level. We scale the case study by adding additional sensors.
BloodTransfusion. This case study models a larger blood transfusion
work�ow [15], the benchmarking case study of the little-JIL language.
The timed-arc Petri net model was described in [9] and we verify that
the work�ow is free of deadlocks (unless all sub-work�ows correctly ter-
minate). The problem is scaled by the number of patients receiving a

72

5. Implementation and Experiments

Time (seconds) Markings ×1000 Reduction

Model NORMAL POR NORMAL POR %Time %Markings

PatientMonitoring 3 5.88 0.35 333 28 94 92
PatientMonitoring 4 22.06 0.48 1001 36 98 96
PatientMonitoring 5 80.76 0.65 3031 44 99 99
PatientMonitoring 6 305.72 0.85 9248 54 100 99
PatientMonitoring 7 5516.93 5.75 130172 318 100 100

BloodTransfusion 2 0.32 0.41 48 43 -28 11
BloodTransfusion 3 7.88 6.45 792 546 18 31
BloodTransfusion 4 225.18 109.30 14904 7564 51 49
BloodTransfusion 5 5256.01 1611.14 248312 94395 69 62

FireAlarm 10 28.95 14.17 796 498 51 37
FireAlarm 12 116.97 17.51 1726 526 85 70
FireAlarm 14 598.89 21.65 5367 554 96 90
FireAlarm 16 5029.25 29.48 19845 582 99 97
FireAlarm 18 27981.90 34.55 77675 610 100 99
FireAlarm 20 154495.29 41.47 308914 638 100 100
FireAlarm 80 > 2 days 602.71 - 1522 - -
FireAlarm 125 > 2 days 1957.00 - 2260 - -

BAwPC 2 0.21 0.41 19 16 -95 15
BAwPC 4 3.45 4.04 193 125 -17 35
BAwPC 6 23.01 17.08 900 452 26 50
BAwPC 8 73.73 39.29 2294 952 47 58
BAwPC 10 135.62 60.66 3819 1412 55 63
BAwPC 12 173.09 73.53 4736 1665 58 65

Fischer-9 3.24 2.37 281 233 27 17
Fischer-11 12.68 8.73 923 738 31 20
Fischer-13 42.52 28.53 2628 2041 33 22
Fischer-15 121.31 77.50 6700 5066 36 24
Fischer-17 313.69 198.36 15622 11536 37 26
Fischer-19 748.52 456.30 33843 24469 39 28
Fischer-21 1622.69 985.07 68934 48904 39 29

LynchShavit 9 3.98 3.31 282 234 17 17
LynchShavit 11 15.73 12.19 925 740 23 20
LynchShavit 13 51.08 37.97 2631 2043 26 22
LynchShavit 15 146.63 103.63 6703 5069 29 24
LynchShavit 17 384.52 258.09 15626 11540 33 26
LynchShavit 19 907.60 597.68 33848 24474 34 28
LynchShavit 21 2011.58 1307.72 68940 48910 35 29

MPEG2 3 13.17 15.43 2188 2187 -17 0
MPEG2 4 109.62 125.45 15190 15180 -14 0
MPEG2 5 755.54 840.84 87568 87478 -11 0
MPEG2 6 4463.19 5092.58 435023 434354 -14 0

AlternatingBit 20 9.17 9.51 617 617 -4 0
AlternatingBit 30 48.20 49.13 2804 2804 -2 0
AlternatingBit 40 161.18 162.94 8382 8382 -1 0
AlternatingBit 50 408.34 408.86 19781 19781 0 0

Table 3: Experiments with and without partial order reduction (POR)

73

blood transfusion. FireAlarm. This case study uses a modi�ed (due
to trade secrets) �re alarm system owned by a German company [20,
19]. It models a four-channel round-robin frequency-hopping transmis-
sion scheduling in order to ensure a reliable communication between a
number of wireless sensors (by which the case study is scaled) and a cen-
tral control unit. The protocol is based on time-division multiple access
(TDMA) channel access and we verify that for a given frequency-jammer,
it takes never more than three cycles before a �re alarm is communicated
to the central unit. BAwPC. Business Activity with Participant Com-
pletion (BAwPC) is a web-service coordination protocol from WS-BA
speci�cation [32] that ensures a consistent agreement on the outcome
of long-running distributed applications. In [29] it was shown that the
protocol is �awed and a correct, enhanced variant was suggested. We
model check this enhanced protocol and scale it by the capacity of the
communication bu�er. Fischer. Here we consider a classical Fischer's
protocol for ensuring mutual exclusion for a number of timed processes.
The timed-arc Petri net model is taken from [1] and it is scaled by the
number of processes. LynchShavit. This is another timed-based mutual
exclusion algorithm by Lynch and Shavit, with the timed-arc Petri net
model taken from [2] and scaled by the number of processes. MPEG2.

This case study describes the work�ow of the MPEG-2 video encoding
algorithm run on a multicore processor (the timed-arc Petri net model
was published in [34]) and we verify the maximum duration of the work-
�ow. The model is scaled by the number of B frames in the IBnP frame
sequence. AlternatingBit. This is a classical case study of alternating bit
protocol, based on the timed-arc Petri net model given in [23]. The pur-
pose of the protocol is to ensure a safe communication between a sender
and a receiver over an unreliable medium. Messages are time-stamped
in order to compensate (via retransmission) for the possibility of losing
messages. The case study is scaled by the maximum number of messages
in transfer.

All experiments were run on AMD Opteron 6376 Processors with
500 GB memory. In Table 3 we compare the time to verify a model
without (NORMAL) and with (POR) partial order reduction, the num-
ber of explored markings (in thousands) and the percentage of time and
memory reduction. We can observe clear bene�ts of our technique on
PatientMonitoring, BloodTransfusion and FireAlarm where we are both
exponentially faster and explore only a fraction of all reachable markings.
For example in FireAlarm, we are able to verify its correctness for all 125

74

6. Conclusion

sensors, as it is required by the German company [19]. This would be
clearly unfeasible without the use of partial order reduction.

In BAwPC, we can notice that for the smallest instances, there is
some computation overhead from computing the stubborn sets, how-
ever, it clearly pays o� for the larger instances where the percentages of
reduced state space are closely followed by the percentages of the veri�-
cation times and in fact improve with the larger instances. Fischer and
LynchShavit case studies demonstrate that even moderate reductions of
the state space imply considerable reduction in the running time and
computing the stubborn sets is well worth the extra e�ort.

MPEG2 is an example of a model that allows only negligible reduction
of the state space size, and where we observe an actual slowdown in the
running time due to the computation of the stubborn sets. Nevertheless,
the overhead stays constant in the range of about 15%, even for increasing
instance sizes. Finally, AlternatingBit protocol does not allow for any
reduction of the state space (even though it contains age invariants) but
the overhead in the running time is negligible.

We observed similar performance of our technique also for the cases
where the reachability property does not hold and a counter example can
be generated.

6 Conclusion

We suggested a simple, yet powerful and application-ready partial or-
der reduction for timed systems. The reduction comes into e�ect as
soon as the timed system enters an urgent con�guration where time can-
not elapse until a nonempty sequence of transitions gets executed. The
method is implemented and fully integrated, including GUI support, into
the open-source tool TAPAAL. We demonstrated its practical applica-
bility on several case studies and conclude that computing the stubborn
sets causes only a minimal overhead while providing large bene�ts for
reducing the state space in numerous models. The method is not spe-
ci�c to stubborn reduction technique only and it preserves the shortest
execution sequences. Moreover, once the time gets urgent, other clas-
sical (untimed) partial order approaches should be applicable too. Our
method was instantiated to (unbounded) timed-arc Petri nets with dis-
crete time semantics, however, we claim that the technique allows for
general application to other modelling formalisms like timed automata
and timed Petri nets, as well as an extension to continuous time. We are

75

currently working on adapting the theory and providing an e�cient im-
plementation for UPPAAL-style timed automata with continuous time
semantics.

Acknowledgements. We thank Mads Johannsen for his help with the
GUI support for partial order reduction. The work was funded by the
center IDEA4CPS, Innovation Fund Denmark center DiCyPS and ERC
Advanced Grant LASSO. The last author is partially a�liated with FI
MU in Brno.

References

[1] P.A. Abdulla and A. Nylén. �Timed Petri Nets and BQOs�. In:
Applications and Theory of Petri Nets. Vol. 2075. LNCS. Springer
Berlin Heidelberg, 2001, pp. 53�70. doi: 10.1007/3-540-45740-
2_5.

[2] P.A. Abdulla et al. �Using Forward Reachability Analysis for
Veri�cation of Timed Petri Nets�. In: Nordic J. of Computing

14.1 (2007). Publishing Association Nordic Journal of Comput-
ing, pp. 1�42. doi: 10.5555/1515784.1515785.

[3] R. Alur and D. Dill. �The Theory of Timed Automata�. In: Real-
Time: Theory in Practice. Vol. 600. LNCS. Springer Berlin Hei-
delberg, 1992, pp. 45�73. doi: 10.1007/BFb0031987.

[4] M. Andersen et al. �Veri�cation of Liveness Properties on Closed
Timed-Arc Petri Nets�. In: Mathematical and Engineering Meth-

ods in Computer Science. Vol. 7721. LNCS. Springer Berlin Hei-
delberg, 2013, pp. 69�81. doi: 10.1007/978-3-642-36046-6_8.

[5] E. André, T. Chatain, and C. Rodríguez. �Preserving Partial-
Order Runs in Parametric Time Petri Nets�. In: ACM Trans.

Embed. Comput. Syst. 16.2 (2016). Association for Computing
Machinery, pp. 1�26. doi: 10.1145/3012283.

[6] C. Baier and J.P. Katoen. Principles of Model Checking. The MIT
Press, 2009. isbn: 026202649X, 9780262026499.

[7] G. Behrmann et al. �Lower and upper bounds in zone-based ab-
stractions of timed automata�. In: International Journal on Soft-

ware Tools for Technology Transfer 8.3 (2006). Springer, pp. 204�
215. doi: 10.1007/s10009-005-0190-0.

76

https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.1007/3-540-45740-2_5
https://doi.org/10.5555/1515784.1515785
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/978-3-642-36046-6_8
https://doi.org/10.1145/3012283
https://doi.org/10.1007/s10009-005-0190-0

References

[8] J. Bengtsson et al. �Partial Order Reductions for Timed Systems�.
In: International Conference on Concurrency Theory. Springer
Berlin Heidelberg, 1998, pp. 485�500.

[9] C. Bertolini, Z. Liu, and J. Srba. �Veri�cation of Timed
Healthcare Work�ows Using Component Timed-Arc Petri Nets�.
In: Foundations of Health Information Engineering and Systems.
Vol. 7789. LNCS. Springer Berlin Heidelberg, 2013, pp. 19�36.
doi: 10.1007/978-3-642-39088-3_2.

[10] S.V. Birch et al. �Interval Abstraction Re�nement for
Model Checking of Timed-Arc Petri Nets�. In: Formal

Modeling and Analysis of Timed Systems. Vol. 8711. LNCS.
Springer International Publishing, 2013, pp. 237�251. doi:
10.1007/978-3-319-10512-3_17.

[11] H. Boucheneb and K. Barkaoui. �Reducing Interleaving Seman-
tics Redundancy in Reachability Analysis of Time Petri Nets�.
In: ACM Trans. Embed. Comput. Syst. 12.1 (2013). Association
for Computing Machinery, pp. 1�24. doi: 10.1145/2406336.
2406343.

[12] H. Boucheneb and K. Barkaoui. �Stubborn Sets for Time Petri
Nets�. In: ACM Trans. Embed. Comput. Syst. 14.1 (2015). Associ-
ation for Computing Machinery, pp. 1�25. doi: 10.1145/2680541.

[13] H. Boucheneb, K. Barkaoui, and K. Weslati. �Delay-Dependent
Partial Order Reduction Technique for Time Petri Nets�. In: For-
mal Modeling and Analysis of Timed Systems. Vol. 8711. LNCS.
Springer International Publishing, 2014, pp. 53�68. doi: 10.1007/
978-3-319-10512-3_5.

[14] M. Bozga et al. �The IF Toolset�. In: Formal Methods for the

Design of Real-Time Systems: International School on Formal

Methods for the Design of Computer, Communication, and Soft-

ware Systems. Vol. 3185. LNCS. Springer Berlin Heidelberg, 2004,
pp. 237�267. doi: 10.1007/978-3-540-30080-9_8.

[15] S.C. Christov et al. �A Benchmark for Evaluating Software Engi-
neering Techniques for Improving Medical Processes�. In: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering

in Health Care. SEHC'10. Association for Computing Machinery,
2010, pp. 50�56. doi: 10.1145/1809085.1809092.

77

https://doi.org/10.1007/978-3-642-39088-3_2
https://doi.org/10.1007/978-3-319-10512-3_17
https://doi.org/10.1145/2406336.2406343
https://doi.org/10.1145/2406336.2406343
https://doi.org/10.1145/2680541
https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-319-10512-3_5
https://doi.org/10.1007/978-3-540-30080-9_8
https://doi.org/10.1145/1809085.1809092

[16] F. Cicirelli, A. Furfaro, and L. Negro. �Model checking time-
dependent system speci�cations using Time Stream Petri Nets
and UPPAAL�. In: Applied Mathematics and Computation 218.16
(2012). Elsevier, pp. 8160�8186. doi: 10.1016/j.amc.2012.02.
018.

[17] D. Dams et al. �Partial-order Reduction Techniques for Real-time
Model Checking�. In: Formal Aspects of Computing 10.5 (1998).
Springer, pp. 469�482. doi: 10.1007/s001650050028.

[18] A. David et al. �TAPAAL 2.0: Integrated Development Environ-
ment for Timed-Arc Petri Nets�. In: Tools and Algorithms for the

Construction and Analysis of Systems. Vol. 7214. LNCS. Springer
Berlin Heidelberg, 2012, pp. 492�497. doi: 10.1007/978-3-642-
28756-5_36.

[19] S. Feo-Arenis et al. �Ready for Testing: Ensuring Conformance
to Industrial Standards Through Formal Veri�cation�. In: Formal
Aspects of Computing 28.3 (2016). Springer, pp. 499�527. doi:
10.1007/s00165-016-0365-3.

[20] S. Feo-Arenis et al. �The Wireless Fire Alarm System: Ensur-
ing Conformance to Industrial Standards through Formal Veri-
�cation�. In: Formal Methods. Vol. 8442. LNCS. Springer Berlin
Heidelberg, 2014, pp. 307�318. doi: 10.1007/978-3-319-06410-
9_44.

[21] G. Gardey et al. �Romeo: A Tool for Analyzing Time Petri
Nets�. In: Computer Aided Veri�cation. Vol. 3576. LNCS.
Springer Berlin Heidelberg, 2005, pp. 418�423. doi:
10.1007/11513988_41.

[22] H. Hansen et al. �Diamonds Are a Girl's Best Friend: Partial Or-
der Reduction for Timed Automata with Abstractions�. In: Com-
puter Aided Veri�cation. Vol. 8559. LNCS. Springer International
Publishing, 2014, pp. 391�406. doi: 10.1007/978-3-319-08867-
9_26.

[23] L. Jacobsen et al. �Veri�cation of Timed-Arc Petri Nets�. In: SOF-
SEM 2011: Theory and Practice of Computer Science. Vol. 6543.
LNCS. Springer Berlin Heidelberg, 2011, pp. 46�72. doi: 10 .

1007/978-3-642-18381-2_4.

78

https://doi.org/10.1016/j.amc.2012.02.018
https://doi.org/10.1016/j.amc.2012.02.018
https://doi.org/10.1007/s001650050028
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/s00165-016-0365-3
https://doi.org/10.1007/978-3-319-06410-9_44
https://doi.org/10.1007/978-3-319-06410-9_44
https://doi.org/10.1007/11513988_41
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/978-3-319-08867-9_26
https://doi.org/10.1007/978-3-642-18381-2_4
https://doi.org/10.1007/978-3-642-18381-2_4

References

[24] P.G. Jensen, K.G. Larsen, and J. Srba. �Discrete and Continu-
ous Strategies for Timed-Arc Petri Net Games�. In: International
Journal on Software Tools for Technology Transfer 20.5 (2018).
Springer, pp. 529�546. doi: 10.1007/s10009-017-0473-2.

[25] F. Kordon et al. Complete Results for the 2016 Edition of the

Model Checking Contest. http://mcc.lip6.fr/2016/results.
php.

[26] L.M. Kristensen, K. Schmidt, and A. Valmari. �Question-Guided
Stubborn Set Methods for State Properties�. In: Formal Methods

in System Design 29.3 (2006). Springer, pp. 215�251. doi: 10.
1007/s10703-006-0006-1.

[27] J. Lilius. �E�cient State Space Search for Time Petri Nets�. In:
Electronic Notes in Theoretical Computer Science 18.1 (1998).
Elsevier, pp. 113�133. doi: 10.1016/S1571-0661(05)80254-3.

[28] D. Lugiez, P. Niebert, and S. Zennou. �A Partial Order Seman-
tics Approach to the Clock Explosion Problem of Timed Au-
tomata�. In: Tools and Algorithms for the Construction and Anal-

ysis of Systems. Vol. 2988. LNCS. Springer Berlin Heidelberg,
2004, pp. 296�311. doi: 10.1007/978-3-540-24730-2_24.

[29] A.P. Marques et al. �Model-Checking Web Services Business Ac-
tivity Protocols�. In: International Journal on Software Tools for

Technology Transfer 15.2 (2013). Springer, pp. 125�147. doi: 10.
1007/s10009-012-0231-4.

[30] J.A. Mateo, J. Srba, and M.G. Sørensen. �Soundness of Timed-
Arc Work�ow Nets in Discrete and Continuous-Time Semantics�.
In: Fundamenta Informaticae 140.1 (2015). IOS Press, pp. 89�
121. doi: 10.3233/FI-2015-1246.

[31] M. Minea. �Partial Order Reduction for Model Checking of Timed
Automata�. In: International Conference on Concurrency Theory.
Vol. 1664. LNCS. Springer Berlin Heidelberg, 1999, pp. 431�446.
doi: 10.1007/3-540-48320-9_30.

[32] E. Newcomer and I. Robinson. Web Services Business Activity

(WS-BusinessActivity) Version 1. http://docs.oasis-open.

org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-

os.html. 2009.

79

https://doi.org/10.1007/s10009-017-0473-2
http://mcc.lip6.fr/2016/results.php
http://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1016/S1571-0661(05)80254-3
https://doi.org/10.1007/978-3-540-24730-2_24
https://doi.org/10.1007/s10009-012-0231-4
https://doi.org/10.1007/s10009-012-0231-4
https://doi.org/10.3233/FI-2015-1246
https://doi.org/10.1007/3-540-48320-9_30
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-spec-os.html

[33] P. Niebert and H. Qu. �Adding Invariants to Event Zone Au-
tomata�. In: Formal Modeling and Analysis of Timed Systems.
Vol. 4202. LNCS. Springer Berlin Heidelberg, 2006, pp. 290�305.
doi: 10.1007/11867340_21.

[34] F.L. Pelayo et al. �Applying Timed-Arc Petri Nets to Improve
the Performance of the Mpeg-2 Encoding Algorithm�. In: Interna-
tional Multimedia Modelling Conference. MMM'04. IEEE, 2004,
pp. 49�56. doi: 10.1109/MULMM.2004.1264966.

[35] M. Perin and J. Faure. �Coupling Timed Plant and Controller
Models With Urgent Transitions Without Introducing
Deadlocks�. In: 17th International Conference on Emerging

Technologies & Factory Automation. ETFA'12. IEEE, 2012,
pp. 1�9. doi: 10.1109/ETFA.2012.6489682.

[36] R.B. Salah, M. Bozga, and O. Maler. �On Interleaving in Timed
Automata�. In: International Conference on Concurrency Theory.
Vol. 4137. LNCS. Springer Berlin Heidelberg, 2006, pp. 465�476.
doi: 10.1007/11817949_31.

[37] R.H. Sloan and U. Buy. �Stubborn Sets for Real-Time Petri
Nets�. In: Formal Methods in System Design 11.1 (1997).
Springer, pp. 23�40. doi: 10.1023/A:1008629725384.

[38] A. Valmari. �Stubborn Set Intuition Explained�. In: Transactions
on Petri Nets and Other Models of Concurrency XII. Vol. 10470.
LNCS. Springer Berlin Heidelberg, 2017, pp. 140�165. doi: 10.
1007/978-3-662-55862-1_7.

[39] F. Vernadat and B. Berthomeiu. �Time Petri Nets Analysis with
TINA�. In: Third International Conference on the Quantitative

Evaluation of Systems. QEST'06. IEEE, 2006, pp. 123�124. doi:
10.1109/QEST.2006.56.

[40] I. Virbitskaite and E. Pokozy. �A Partial Order Method for the
Veri�cation of Time Petri Nets�. In: Fundamentals of Computa-
tion Theory. Vol. 1684. LNCS. Springer Berlin Heidelberg, 1999,
pp. 547�558. doi: 10.1007/3-540-48321-7_46.

[41] T. Yoneda and B. Schlinglo�. �E�cient Veri�cation of Parallel
Real�Time Systems�. In: Formal Methods in System Design 11.2
(1997). Springer, pp. 187�215. doi: 10.1023/A:1008682131325.

80

https://doi.org/10.1007/11867340_21
https://doi.org/10.1109/MULMM.2004.1264966
https://doi.org/10.1109/ETFA.2012.6489682
https://doi.org/10.1007/11817949_31
https://doi.org/10.1023/A:1008629725384
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1007/3-540-48321-7_46
https://doi.org/10.1023/A:1008682131325

A. Proof of Lemma 1

A Proof of Lemma 1

Proof. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN and

M ∈ M(N) a marking. Let e ∈ EN and let M
w−→ M ′ where w =

t1t2 . . . tn ∈ T ∗. The proof proceeds by structural induction on e. We
only show the incr cases as it is analogous to decr .

e = c: Trivial

e = p: We here prove that if for all i ∈ [1, n] we have ti 6∈ incrM (p)
then we have that evalM (p) ≥ evalM ′(p), which implies Lemma 1
for this case. We know •p ⊆ incrM (p) by Table 2. Therefore for all
i ∈ [1, n] we have ti 6∈ •p and we must have that |M(p)| ≥ |M ′(p)|
and evalM (p) ≥ evalM ′(p), since ti cannot increase the number of
tokens in p as it would otherwise contradict the de�nition of •p.

e = e1 + e2: In Table 2 we see that incrM (e) = incrM (e1)∪ incrM (e2).
By the induction hypothesis we know evalM (e1) < evalM ′(e1) and
evalM (e2) < evalM ′(e2), and therefore also evalM (e) < evalM ′(e)
since we have evalM (e) = evalM (e1) + evalM (e2) < evalM ′(e1) +
evalM ′(e2) = evalM ′(e).

e = e1− e2: In Table 2 we see that incrM (e) = incrM (e1)∪ decrM (e2).
By the induction hypothesis we know evalM (e1) < evalM ′(e1) and
evalM (e2) > evalM ′(e2), and therefore also evalM (e) < evalM ′(e)
since we have evalM (e) = evalM (e1) − evalM (e2) < evalM ′(e1) −
evalM ′(e2) = evalM ′(e).

e = e1∗e2: We know evalM (e) < evalM ′(e) and incrM (e) = incrM (e1)∪
decrM (e1) ∪ incrM (e2) ∪ decrM (e2) due to Table 2. If for all
i ∈ [1, n] we have ti /∈ incrM (e) then evalMe1 = evalM ′(e1) and
evalM (e2) = evalM ′(e2) and therefore evalM (e) = evalM ′(e). Since
evalM (e) < evalM ′(e) we must have that there exists i, 1 ≤ i ≤ n,
such that ti ∈ incrM (e).

B Proof of Lemma 2

Proof. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPN, M ∈
M(N) be a marking, and ϕ ∈ Φ a given formula. Assume that M 6|= ϕ.
The proof proceeds by structural induction on ϕ.

81

ϕ = deadlock : IfM 6|= ϕ then there exists t ∈ En(M) s.t. (•t)•∪•(◦t) ⊆
AM (ϕ). To disable t we have to �re a transition t′ ∈ (•t)•∪•(◦t) to
either remove or add tokens that will disable or inhib t, respectively.
Since (•t)• ∪ •(◦t) ⊆ AM (ϕ) we have M ′ 6|= ϕ.

ϕ = t: If M 6|= ϕ then t /∈ En(M). Either there exists p ∈ •t s.t.
|M(p)| < w((p, t)) and we have to �re some t′ ∈ •p to enable t,
or there exists p ∈ ◦t s.t. |M(p)| ≥ w((p, t)) and we have to �re
some t′′ ∈ p• to enabled t. Since •p ⊆ AM (ϕ) or p• ⊆ AM (ϕ),
respectively, we have M ′ 6|= ϕ.

ϕ = e1 < e2: IfM 6|= ϕ then evalM (e1) ≥ evalM (e2). Since decrM (e1)∪
incrM (e2) ⊆ AM (ϕ) we know evalM (e1) ≥ evalM ′(e1) and
evalM (e2) ≤ evalM ′(e2) because of Lemma 1, and therefore M ′ 6|=
ϕ.

ϕ = e1 > e2: IfM 6|= ϕ then evalM (e1) ≤ evalM (e2). Since incrM (e1)∪
decrM (e2) ⊆ AM (ϕ) we know evalM (e1) ≤ evalM ′(e1) and
evalM (e2) ≥ evalM ′(e2) because of Lemma 1, and therefore M ′ 6|=
ϕ.

ϕ = ϕ1 ∧ ϕ2: If M 6|= ϕ then there exists i ∈ {1, 2} s.t. M 6|= ϕi. We
know AM (ϕi) ⊆ AM (ϕ) which by the induction hypothesis implies
M ′ 6|= ϕi. By the semantics of ϕ we also have that M ′ 6|= ϕ.

ϕ = ϕ1 ∨ ϕ2: If M 6|= ϕ then M 6|= ϕ1 and M 6|= ϕ2. We know
AM (ϕ1) ∪ AM (ϕ2) ⊆ AM (ϕ) which by the induction hypothesis
implies M ′ 6|= ϕ1 and M ′ 6|= ϕ2. By the semantics of ϕ we also
have that M ′ 6|= ϕ.

ϕ = ¬t: If M 6|= ϕ then t ∈ En(M). To disable t we have to �re at least
one transition t′ ∈ (•t)• ∪ •(◦t) to either remove or add tokens that
will disable or inhib t, respectively. Since (•t)•∪ •(◦t) ⊆ AM (ϕ) we
have M ′ 6|= ϕ.

The remaining cases and negation cases are analogous.

C Proof of Theorem 2

Proof. We shall argue that any reduction St satisfying the conditions of
the theorem has the properties Z, D, R, and W.

� (Z): Follows from Condition 1.

82

C. Proof of Theorem 2

� (R): Follows from Lemma 2 and Condition 2.

� (D): LetM ∈M(N) be a marking and w ∈ St(M)
∗
s.t. M

w−→M ′.
We will show that if zt(M) then zt(M ′).

Assume that zt(M). Since zt(M) there are two cases: Turg ∩
En(M) 6= ∅ or there is p ∈ P where I (p) = [a, b] and b ∈M(p).

In the �rst case (Figure 2a), there is t ∈ Turg ∩ En(M) ∩ St(M)
and •(◦t) ⊆ St(M) due to Condition 3a. For any p ∈ •t and
p′ ∈ ◦t we have that |{x ∈ M(p) | x ∈ g((p, t))}| ≥ w((p, t)) and
|M(p′)| < w((p′, t)). Due to Condition 5a we know for all t′ ∈ p•
that t′ ∈ St(M) if g((p, t) ∩ g((p, t′)) 6= ∅. Therefore we have

|{x ∈M ′(p) | x ∈ g((p, t))}| ≥ w((p, t)) since w ∈ St(M)
∗
. Due to

•(◦t) ⊆ St(M) in Condition 3a w cannot add any tokens to p′ since

w ∈ St(M)
∗
and we have that |M ′(p′)| < w((p′, t)). This implies

zt(M ′).

In the second case (Figure 2b), there is p ∈ P where I (p) = [a, b]
and b ∈M(p). Due to Condition 3b for all t ∈ p• where b ∈ g((p, t))
we have that t ∈ St(M). Therefore t can never occur in w since

w ∈ St(M)
∗
and we must have that b ∈ M ′(p), implying that

zt(M ′).

� (W): Let M,M ′ ∈ M(N) be markings, t ∈ St(M), and w ∈
St(M)

∗
. We will show that if M

wt−→M ′ then M
tw−→M ′.

Let Mw ∈ M(N) be a marking s.t. M
w−→ Mw. By contradiction

assume that t /∈ En(M). Then t is disabled in M because there is
p ∈ •t such that |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) or there is
p ∈ ◦t such that |M(p)| ≥ w((p, t)). In the �rst case (Figure 3a),
due to Condition 4a all the transitions that can add tokens that are
in the guard g((p, t)) to p are included in St(M). Since w ∈ St(M)

∗

this implies that |{x ∈ Mw(p) | x ∈ g((p, t))}| < w((p, t)) and

t /∈ En(Mw) contradicting our assumption that Mw
t−→ M ′. In the

second case (Figure 3b), due to Condition 4b all the transitions that
can remove at least one token from p are included in St(M). Since

w ∈ St(M)
∗
this implies that |Mw(p)| ≥ w((p, t)) and t /∈ En(Mw),

again contradicting our assumption that Mw
t−→M ′. Therefore we

must have that t ∈ En(M).

Since t ∈ En(M) there is Mt ∈ M(N) s.t. M
t−→ Mt. We have to

show thatMt
w−→M ′ is a possible execution sequence. For the sake

83

of contradition, assume that this is not the case. Then there must
exist a transition t′ that occurs in w that became disabled because t
was �red. There are two cases: t removed one or more tokens from
a shared pre-place p ∈ •t ∩ •t′ where g((p, t)) ∩ g((p, t′)) 6= ∅ or t
added one or more tokens to a place p ∈ t•∩◦t′ (both in Figure 4a).
In the �rst case, due to Condition 5a all the transitions that can
remove tokens that are in the guard g((p, t)) from p are included

in St(M), implying that t′ ∈ St(M). Since w ∈ St(M)
∗
such a t′

cannot exist. In the second case, due to Condition 5b we know
that (t•)◦ ⊆ St(M), implying that t′ ∈ St(M). Since w ∈ St(M)

∗

such a t′ cannot exist. Therefore we must have that Mt
w−→ M ′

and can conlude with M
tw−→ M ′ as requested. We note here that

the execution sequences wt and tw must lead to the same marking
as the order of transition �rings does not impact the reachable
marking.

This completes the proof of the theorem.

D Proof of Theorem 3

Proof. Termination: If ¬zt(M) then we terminate in line 2. If AM (ϕ) =
∅ or no transitions are added to Y in line 5-8 or in line 11-13 then
Y = ∅, we never enter the while-loop in Algorithm 2, and we terminate.
Otherwise Y 6= ∅ and we enter the while-loop in Algorithm 2. Notice
that X ∩ Y = ∅ is always the case in the execution of Algorithm 2. We
never remove transitions from X after they have been added. Therefore,
since in line 23 a new transition is added to X at the end of each loop
iteration, the loop can iterate at most once for each transition. Since
T is �nite by the TAPN de�nition, the loop iterates a �nite number of
times, and we terminate.

Correctness: It was shown that the construction in Theorem 2 satis-
�es Z, D, R, and W. It is therefore su�cient to show that Algorithm 1
replicates the construction. Notice that every transition that is added
to Y is eventually added to X in line 23 in Algorithm 2 and returned in
line 15. Let t ∈ Y .

Condition 1: If ¬zt(M) then we return En(M) in line 2.

Condition 2: We have AM (ϕ) ⊆ Y in line 3.

Condition 3a: In line 5 we pick any t ∈ En(M) ∩ Turg , and in line 7
we have t ∈ Y and in line 8 we have •(◦t) ⊆ Y .

84

E. User Manual for Partial Order Reduction in TAPAAL

Condition 3b: In line 10 we pick a p where there exist b ∈ M(p)
s.t. I (p) = [a, b], and in line line 11-13 we add all the t ∈ p• where
b ∈ g((p, t)) to Y .

Condition 4a: In line 5 and 6 in Algorithm 2 we pick a p ∈ •t s.t. |{x ∈
M(p) | x ∈ g((p, t))}| < w((p, t)). In line 7 through 10 in Algorithm 2 we
iterate through the relevant transport arcs and add them to Y . We check
for 0 ∈ g((p, t)) in line 11 in Algorithm 2 and add •p to Y in line 12.

Condition 4b: In line 14 in Algorithm 2 we pick any p ∈ ◦ s.t.
|M(p)| ≥ w((p, t)). In line 15 through 17 in Algorithm 2 we iterate
over all t′ ∈ p• not already in X, and if t′ is able to remove a token from
p it is added to Y .

Condition 5a: In line 19 and 20 in Algorithm 2 for all p ∈ •t and all
t′ ∈ p• we add t′ to Y if t′ /∈ X and g((p, t)) ∩ g((p, t′)) 6= ∅.

Condition 5b: In line 21 in Algorithm 2 we add the transitions of
(t•)◦ that are not already in X to Y .

E User Manual for Partial Order Reduction in

TAPAAL

The newest release 3.4.0 of the model checker TAPAAL includes the
implementation of discrete-time partial order reduction for timed-arc
Petri nets. It is available as precompiled binaries for Windows, Mac,
and Linux operating systems at: http://www.tapaal.net/download.
It requires Java run-time environment installed on the machine. At the
bottom of the download page, one can obtain also the zip �le
partial-order-experiments.zip with all .xml model �les for the case
studies described in Section 5.

In Figure 5 we display a screenshot of TAPAAL 3.4.0 graphical user
interface. To open a �le, such as the FireAlarm-12 case study as seen in
Figure 5, select the File dropdown menu, followed by the Open option,
and then navigate to the appropriate directory and open the .xml model
�le. In the main work space in Figure 5, we see the sensor1_4ch com-
poment of the FireAlarm-12 model. The net can be modi�ed using the
toolbox menu at the top of the screen below the window options. Man-
ual simulation mode can be enabled by selecting the green �ag in the
toolbox menu. Veri�cation can be done by adding, or editing an existing
query, in the Queries section of the interface, where the edit option is
highlighted by the cursor in Figure 5. Selecting edit will open the query
con�guration window for the query "No More Than 3 Misses" as seen in

85

http://www.tapaal.net/download

Figure 5: The TAPAAL GUI.

Figure 6.

In this window it is possible to edit queries, such as choosing or
changing a quanti�cation, adding logical connectives such as conjunc-
tion, and predicates seen in the upper half of Figure 6, and selecting
various options to customize the veri�cation of the query seen in the
lower half of Figure 6, such as search strategy, traces, etc. Make sure
to select the "Advanced View" in order to see the veri�cation options.
Now various veri�cation optimization techniques can be utilized to assist
the veri�cation engine, such as symmetry reductions and PTries. Among
these, there is the discrete partial order reduction implementation which
in Figure 6 corresponds to the "Use stubborn reduction" checkbox op-
tion highlighted with an ellipse. It is currently enabled in the displayed
query dialog. Selecting the "Save and Verify" option saves any changes
made to the custimization of the query and begins the veri�cation of the
query using the veri�cation engine. The output of the verifcation can be
seen in Figure 7.

Figure 7 shows the output of verifying the query both with and with-

86

E. User Manual for Partial Order Reduction in TAPAAL

Figure 6: Enabling and disabling partial order reduction

out enabling the partial order reduction, seen in Figure 7a and Figure 7b,
respectively. Both cases agree that the property described by the query
is satis�ed, and show some statistics of the veri�cation. A total of 526106
markings was explored to verify the property with partial order reduc-
tion enabled, and a total of 1726988 markings was explored to verify it
with partial order reduction disabled. Both correspond to the numbers
seen in Table 3 for the FireAlarm-12 case study. The veri�cation time is
not the same due to being run on di�erent machines.

87

(a) Partial order reduction enabled (b) Partial order reduction disabled

Figure 7: Veri�cation result dialog

88

Paper B

Stubborn Set Reduction for

Two-Player Reachability Games

Frederik M. Bønneland, Peter G. Jensen,

Kim G. Larsen, Marco Muñiz, and Ji°í Srba

This paper has been accepted for:

Special issue of the journal Logical Methods in Computer
Science.

This paper has also previously been published in
International Conference on Concurrency Theory,

Leibniz International Proceedings in Informatics Vol.
140, pp. 23:1-23:15, 2019.

90

Paper C

Stubborn Set Reduction for Timed

Reachability and Safety Games

Frederik M. Bønneland, Peter G. Jensen,

Kim G. Larsen, Marco Muñiz, and Ji°í Srba

This paper has been submitted for publication.

92

Paper D

Stubborn Versus Structural

Reductions for Petri Nets

Frederik M. Bønneland, Jakob Dyhr, Peter G. Jensen,

Mads Johannsen, and Ji°í Srba

This paper has been published in:

Journal of Logical and Algebraic Methods in
Programming, Vol. 102(1), pp. 46-64, 2019.

Abstract

Partial order and structural reduction techniques are some of the most

bene�cial methods for state space reduction in reachability analysis of

Petri nets. This is among others documented by the fact that these tech-

niques are used by the leading tools in the annual Model Checking Contest

(MCC) of Petri net tools. We suggest improved versions of a partial or-

der reduction based on stubborn sets and of a structural reduction with

additional new reduction rules, and we extend both methods for the appli-

cation on Petri nets with weighted arcs and weighted inhibitor arcs. All

algorithms are implemented in the open-source veri�cation tool TAPAAL

and evaluated on a large benchmark of Petri net models from MCC'17,

including a comparison with the tool LoLA (the last year winner of the

competition). The experiments document that both methods provide sig-

ni�cant state space reductions and, even more importantly, that their

combination is indeed bene�cial as a further nontrivial state space reduc-

tion can be achieved.

1 Introduction

Model checking of large distributed and concurrent systems is often lim-
ited in its applicability due to the state space explosion problem. Compo-
nents in concurrent systems may independently perform actions without
being in con�ict with other components, forcing an explicit state space
analysis to explore every possible interleaving of the actions and hence
creating an explosion in the number of executable action sequences. Petri
nets are a popular formalism for modelling of concurrent systems [12],
however, due to the state space explosion problem, essentially all inter-
esting questions about their behaviour, including the reachability and
coverability problems, are EXPSPACE-hard (see e.g. [4]).

Despite the discouraging complexity results, numerous techniques
have been developed to improve the feasibility of reachability analysis,
including methods based on reducing the state space by eliminating the
interleaving in independent components (see e.g. [5, 1]). The focus of
our work is on two such techniques: structural reductions [11] and stub-
born set reductions [17], both applied to and evaluated on the model
of weighted Petri nets with inhibitor arcs. Structural reductions prepro-
cess the Petri net model by collapsing redundant places and transitions,
while preserving the validity of the model checking question. The idea

94

1. Introduction

is that a smaller number of places and transitions in a net can help to
reduce the degree of concurrency and eliminate some unnecessary inter-
leavings. In partial order reductions, like e.g. stubborn set reduction,
we identify transitions that are independent of each other and the or-
der of their execution does not in�uence the model checking property
in question. This can be considered as another method that can, in an
on-the-�y manner, reduce the number of possible interleavings of inde-
pendent actions. Both structural and stubborn reductions can be in a
straightforward way combined, however, to the best of our knowledge,
the e�ect of this combination has not previously been studied in detail.

We perform a comparative study of the e�ects of the two types of
state space reduction techniques and their combination. For our ex-
periments, we use the database of nets and reachability queries from the
annual Model Checking Contest (MCC) [8] and conclude that while both
techniques are clearly bene�cial for the performance of the reachability
analysis, the combination of the two methods demonstrates yet another
degree of performance improvements. Apart from this experimental eval-
uation, we make several technical contributions to stubborn and struc-
tural reductions applied to the model of Petri nets. Both techniques are
extended to work for the reachability logic used in MCC, while allowing
us to use weighted arcs as well as weighted inhibitor arcs. In particular,
the stubborn set reduction as well as the structural reduction were re�ned
to take weighted arcs into account, in order to minimize the size of the
state space that is necessary to explore for a given reachability query.
In stubborn reduction, we re�ne the computation of dependencies be-
tween transitions so that instead of the traditional comparison of presets
and postsets of places, we utilize a more detailed analysis of the increas-
ing/decreasing e�ect of a transition on a given place. All techniques are
proved correct and implemented in the model checker TAPAAL [3]. The
experiments are encouraging as the improved techniques in their combi-
nation allow us to solve more reachability queries from MCC'17 [8] than
the model checker LoLA [21], the last year winner in the reachability
category.

Related work The stubborn reduction technique is related to and
based upon the seminal work on stubborn sets by Valmari et al. [16, 14,
9, 17, 15]. This includes write up/down sets [17], the closure procedure
[9], and attractor sets [14]. We contribute by adding support for inhibitor
arcs, extending the technique to a reachability logic used in MCC and

95

presenting a di�erent formulation of stubborn sets for reachability in
the general setting of labelled transition systems. Further analysis dur-
ing the generation of stubborn sets can help to generate more optimal
(smaller) stubborn sets, which can be done e.g. by extracting terminal
strongly connected components from the derived transition dependency
graph [16]. We choose to use instead heuristic methods for the genera-
tion of stubborn sets as they have smaller computational overhead and
achieve better performance in our experiments.

Structural reductions of Petri nets were studied by Murata et al. [11,
10] with the main focus on preserving liveness, safety, and boundedness.
The reduction rules were recently extended to include weighted nets with
inhibitor arcs while preserving the reachability of cardinality queries [6].
We contribute by increasing the applicability of the four rules presented
in [6] and re�ning them for the use with weighted arcs so that a more
signi�cant net reduction can be achieved compared to [6]. Moreover, we
introduce �ve new reduction rules, allowing us to reduce the size of the
input net even further.

Stubborn sets are also an important state space reduction technique
used in the tool LoLA [21] that we compare against to in our experiments.
Their stubborn set implementation have several approaches to reacha-
bility analysis, utilising up/down sets and terminal strongly connected
components [9] to mention some. Approaches using terminal strongly
connected components can present some performance problems due to
concurrent cycles of invisible (or non-interesting) transitions, forcing
the method to sometimes explore the full parallel composition [18, 19].
Remedies to this have been explored in the form of frozen actions [18],
removing transitions from consideration if they are tagged as frozen. Be-
sides LoLA's take on stubborn sets [14], their tool includes several other
reduction and veri�cation improvements such as symmetry reduction [13]
and Counter Example Guided Abstraction Re�nement (CEGAR) [20],
however, LoLA does not employ structural reductions. Our experiments
document that the re�ned and combined application of our stubborn
and structural reduction techniques becomes competitive in performance
compared with the tool LoLA.

2 Preliminaries

A labelled transition system (LTS) is a tuple G = (S, A,→) where S is
a set of states, A is a set of actions (or labels), and → ⊆ S ×A× S is a

96

2. Preliminaries

transition relation. We write s
a−→ s′ whenever (s, a, s′) ∈ → and say that

a is enabled in s. The set of all enabled actions in a state s is denoted
en(s). A state s is a deadlock if en(s) = ∅. We write s −→ s′ whenever
there is an action a such that s

a−→ s′. We inductively extend the relation
a−→ to sequences of transitions w ∈ A∗ such that s

ε−→ s and s
wa−−→ s′ if

s
w−→ s′′ and s′′

a−→ s′. We write s −→n s′ if there is w ∈ T ∗ of length n
such that s

w−→ s′, and we write s −→∗ s′ if s −→n s′ for some n ≥ 0.

The reachability problem is, given an LTS G = (S, A,→), an initial
state s ∈ S, and a set of goal states G ⊆ S, to decide whether there is
s′ ∈ G s.t. s −→∗ s′.

Petri Nets

Let N0 = N ∪ {0} be the set of natural numbers including 0. Let N∞ =
N ∪ {∞} be the set of natural numbers including in�nity.

De�nition 1 (Petri Net with Inhibitor Arcs). A Petri net is a tuple

N = (P, T,W , I) where P and T are �nite and disjoint sets of places

and transitions, W : (P × T) ∪ (T × P) → N0 is a weight function for

regular arcs, and I : (P × T) → N∞ is a weight function for inhibitor

arcs.

A marking M on N is a function M : P → N0, where M(p) denotes
the number of tokens in place p. The set of all markings of a Petri net
N is written as M(N). Let M0 ∈ M(N) be a given initial marking of
N .

A Petri net N = (P, T,W , I) de�nes an LTS G(N) = (S, A,→)
where S =M(N) is the set of all markings, A = T is the set of labels,

and M
t−→ M ′ whenever for all p ∈ P we have M(p) < I((p, t)) and

M(p) ≥W ((p, t)) such that M ′(p) = M(p)−W ((p, t)) + W ((t, p)).

Example 1. An example of a Petri net is given in Figure 1a. We use the
standard notation and denote places by circles, transitions by squares and
the dots represent tokens in the initial marking. The weights of all arcs
are implicitly �xed to 1, the only exception being the arc from p3 to t3
that requires two tokens in order to �re t3. The arrow from p5 to t3 with
cirle head-tip is an inhibitor arc (again with the default weight 1) and it
inhibits the enabledness of t3 as soon as p5 contains at least one token.
The labelled transition system (containing only markings reachable from
the initial one) is depicted in Figure 1b. Here the notation e.g. 2p1p4
represents the initial marking with two tokens in p1 and one token in p4.

97

The net contains lots of interleavings and the markings in dashed
boxes are those that can be disregarded once we apply our stubborn set
reduction for verifying the reachability of a marking with at least two
tokens in the place p3. In Figure 1c we display a reduced net where the
place p1 and transition t1 are removed. This structural reduction pre-
serves the reachability of the goal marking and we can see that the reach-
able state space gets signi�cantly reduced as demonstrated in Figure 1d.
An application of a stubborn set reduction on top of the structural re-
duction allows for an even greater state space reduction, as showed by
the dashed boxes which can be removed by stubborn set reduction during
the state space search of the reduced net. The details of these methods
are explained in the remainder of this paper.

Let us �rst �x some useful notation. For a place or transition x, we
denote the preset of x as •x = {y |W ((y, x)) > 0}, and the postset of x
as x• = {y |W ((x, y)) > 0}. For a place p we de�ne the increasing preset
of p, containing all transitions that increase the number of tokens in p,
as +p = {t ∈ •p | W ((t, p)) > W ((p, t))}, and similarly the decreasing

postset of p as p− = {t ∈ p• |W ((t, p)) <W ((p, t))}. For a transition t,
we denote the inhibitor preset of t as ◦t = {p | I((p, t)) <∞}, and for a
place p, we denote the inhibitor postset of p as p◦ = {t | I((p, t)) <∞}.
For a set X of either places or transitions, we extend the notation as
•X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•, and similarly for the other operators.
In order to syntactically de�ne the set of goal states G for the reacha-

bility problem on Petri nets, we use the reachability logic from the Model
Checking Contest [8]. The syntax of the logic is as follows:

ϕ ::= true | false | α |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

α ::= t | e1 ./ e2

e ::= c | p | e1 ⊕ e2

where t ∈ T , c ∈ N0, ./ ∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ·}.
The evaluation of an arithmetical expression e in a markingM is de�ned
as evalM (c) = c, evalM (p) = M(p) and evalM (e1 ⊕ e2) = evalM (e1) ⊕
evalM (e2). The semantics of a reachability formula ϕ in a marking M is
given in Figure 2.

Formulae that do not use any atomic predicate t for transition �ring
and no predicate deadlock are called cardinality formulae and formulae
that avoid the use of e1 ./ e2 and deadlock are called �reability formulae.
The formula deadlock is called the deadlock formula.

98

2. Preliminaries

t4

p5t3p3

2
t2

p2

t5
•

p4

• •

p1t1

(a) A Petri net (the arc from p5 to t3 is the inhibitor arc and the weight of the arc
from p3 to t3 is 2; all other arcs have the default weight 1)

2p1p4

2p1p5

p1p2p4

p1p2p5 2p2p5

2p2p4

p1p3p5

p1p3p4 p2p3p4

p2p3p5

2p3p4

2p3p5

p4

p5t4

t4

t4

t1

t1

t4

t2

t2

t5

t1

t1

t1

t2

t2

t5

t5

t1 t2 t3

t4

t2t2

t4

t4

(b) Reachable state space for the net from Figure 1a (the dashed boxes are removed
by a possible stubborn set reduction preserving the reachability of ϕ = p3 ≥ 2)

t4

p5t3p3

2
t2

• •p2

t5
•

p4

(c) Petri Net from Figure 1a after the application of structural reductions which
removed the place p1 and transition t1 while preserving the property ϕ = p3 ≥ 2

2p2p4 p2p3p4 2p3p4 p4

2p2p5 p2p3p5 2p3p5 p5

t2 t2 t3

t4t4

t2 t2

t4 t4t5t5

(d) Reachable state space for the net from Figure 1c (the dashed boxes are removed
by a possible stubborn set reduction preserving the reachability of ϕ = p3 ≥ 2)

Figure 1: Combination of stubborn and structural reductions

99

M |= true

M 6|= false

M |= t i� t ∈ en(M)

M |= e1 ./ e2 i� evalM (e1) ./ evalM (e2)

M |= deadlock i� en(M) = ∅
M |= ϕ1 ∧ ϕ2 i� M |= ϕ1 and M |= ϕ2

M |= ϕ1 ∨ ϕ2 i� M |= ϕ1 or M |= ϕ2

M |= ¬ϕ i� M 6|= ϕ

Figure 2: Semantics of formulae

3 Stubborn Reduction for Weighted Petri Nets

with Inhibitor Arcs

We shall now introduce a general idea of a reduction on an LTS that
reduces the size of the state space and later instantiate it to the case of
Petri nets with inhibitor arcs. A reduction can be seen as a �lter that,
for each state, speci�es a subset of actions that are su�cient to explore
in order to reach a state satisfying a given reachability formula.

De�nition 2 (Reduced Transition Relation). Let G = (S, A,→) be an

LTS. A reduction of the transition system G is a function St : S → 2A.
A reduced transition relation is a relation −→

St
⊆ → such that s

a−→
St

s′ i�

s
a−→ s′ and a ∈ St(s).

Let G = (S, A,→) be an LTS, s ∈ S a state, and St a reduction of
G. Let St(s) = A\St(s) be the set of all actions not in St(s). We de�ne
the following propertyW of a reduction that guarantees that any action
in St(s) commutes with respect to actions from St(s).

W For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if s

wa−−→ s′ then
s
aw−−→ s′.

Reductions that satisfy W are called (weak) semistubborn reduc-
tions [17]. In the rest of the paper, we say that St(s) is the stubborn

set of s and that an action a ∈ St(s) is a stubborn action in s.

100

3. Stubborn Reduction for Weighted Petri Nets with Inhibitor Arcs

Let G = (S, A,→) be an LTS and G ⊆ S a set of goal states. For
a reduction St to preserve the reachability of a goal state, we de�ne the
following su�cient condition on St.

R For all s ∈ S, if s 6∈ G and s
w−→ s′ where w ∈ St(s)∗ then s′ 6∈ G.

Condition R states that if we start in a non-goal state, the execution
of non-stubborn transitions cannot reach any goal state in G. Hence
it ensures that at least one stubborn action must be executed in order
to reach a goal state. Any reduction that satis�es Conditions W and R
also guarantees the preservation of reachability as stated by the following
theorem.

Theorem 1 (Reachability Preservation). Let G = (S, A,→) be an LTS

and let G ⊆ S be a set of goal states. Let St be a reduction of G satisfy-

ing W and R and let s ∈ S. If s −→n s′ for some s′ ∈ G then s −→
St

m s′′

for some s′′ ∈ G where m ≤ n.

Proof. Let w ∈ A∗ be a transition sequence such that s
w−→ s′ for some

s′ ∈ G. The proof proceeds by induction on the length of w. Base case:
If |w| = 0 then s = s′ ∈ G and the claim trivially holds.
Inductive case: Let |w| > 0. If s ∈ G then the claim immediately holds
as in the base case. If s 6∈ G then by R we then get that at least one
transition in w must belong to St(s), otherwise it is impossible that

s′ ∈ G. Hence we can divide w into vau where v ∈ St(s)∗ and a ∈ St(s).
Condition W now implies the existence of sa such that s

a−→ sa
vu−→ s′.

If sa ∈ G, the length of the path from s0 to sa is less than or equal
to |w| and we are done. Otherwise, by the induction hypothesis we get
that sa −→

St

m s′′ for some s′′ ∈ G where m ≤ |vu|. This together with

s
a−→
St

sa gives that s −→
St

m+1 s′′ where s′′ ∈ G such that m + 1 ≤ |w| as
requested.

In the following subsection, we shall instantiate this general frame-
work to the case of Petri nets, taking a particular care to account for
weights on arcs in order to construct the smallest possible stubborn sets.

Stubborn Set Reduction of Petri Nets

Let N = (P, T,W , I) be a �xed Petri net and ϕ a reachability formula.
We are interested in the question, whether we can reach from the initial

101

ϕ AM (ϕ) AM (¬ϕ)

deadlock t ∪ (•t)− ∪ +(◦t) for some t ∈ en(M) ∅

t
+p for some p ∈ •t where M(p) < w((p, t)) or
p− for some p ∈ ◦t where M(p) ≥ I((p, t))

(•t)− ∪ +(◦t)

e1 < e2 decrM (e1) ∪ incrM (e2) AM (e1 ≥ e2)
e1 ≤ e2 decrM (e1) ∪ incrM (e2) AM (e1 > e2)

e1 > e2 incrM (e1) ∪ decrM (e2) AM (e1 ≤ e2)
e1 ≥ e2 incrM (e1) ∪ decrM (e2) AM (e1 < e2)

e1 = e2
decrM (e1) ∪ incrM (e2) if evalM (e1) > evalM (e2)
incrM (e1) ∪ decrM (e2) if evalM (e1) < evalM (e2)

AM (e1 6= e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2) AM (e1 = e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M 6|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

Table 1: Interesting transitions of ϕ (assuming M 6|= ϕ, otherwise AM (ϕ) = ∅)

Expression e incrM (e) decrM (e)

c ∅ ∅
p +p p−

e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 · e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 2: Increasing and decreasing transitions of expression e

marking some of the goal markings from Gϕ = {M ∈ M(N) |M |= ϕ}.
We �rst de�ne the notion of interesting transitions AM (ϕ) ⊆ T for a
marking M relative to ϕ such that whenever M

w−→M ′ via the sequence
of transitions w = t1t2 . . . tn ∈ T ∗ where M 6∈ Gϕ and M ′ ∈ Gϕ, then
there must exist i, 1 ≤ i ≤ n, such that ti ∈ AM (ϕ).

Table 1 gives the de�nition of AM (ϕ). The de�nition is at several
places nondeterministic, allowing for a variety of sets of interesting transi-
tions. Table 1 uses the functions incrM : EN → 2T and decrM : EN → 2T

de�ned in Table 2, where EN is the set of all arithmetic expressions that
can be constructed for the net N . These functions, given an expression e,
return all transitions that can possibly increase resp. decrease the eval-
uation of e. Formally, the required properties of the functions incrM (e)
and decrM (e) are summarized in the next lemma.

Lemma 1. Let e be an arithmetic expression, let M,M ′ ∈ M(N), and
let w = t1t2 . . . tn ∈ T ∗ be such that M

w−→M ′.

� If evalM (e) < evalM ′(e) then there is i, 1 ≤ i ≤ n, s.t. ti ∈

102

3. Stubborn Reduction for Weighted Petri Nets with Inhibitor Arcs

incrM (e).

� If evalM (e) > evalM ′(e) then there is i, 1 ≤ i ≤ n, s.t. ti ∈
decrM (e).

Proof. The proof follows from the de�nition of the functions by a
straightforward structural induction on e.

Let us by AM (ϕ) denote the set T rAM (ϕ) of non-interesting transi-
tions. We can now formulate a lemma stating that at least one interesting
transition must be executed before we can reach a goal marking.

Lemma 2. Let N = (P, T,W , I) be a Petri net, M ∈M(N) a marking,

ϕ a reachability formula, and w ∈ AM (ϕ)
∗
a sequence of non-interesting

transitions. If M 6|= ϕ and M
w−→M ′ then M ′ 6|= ϕ.

Proof. Let N = (P, T,W , I) be a Petri net, M ∈ M(N) be a marking,
and ϕ a given formula. Assume that M 6|= ϕ. The proof proceeds by
structural induction on ϕ.

ϕ = deadlock : If M 6|= ϕ then there exists a t ∈ en(M) s.t. t ∪
(•t)− ∪ +(◦t) ⊆ AM (ϕ). To disable t we have to �re a transition
t′ ∈ (•t)− ∪ +(◦t) to either remove or add tokens that will disable
or inhibit t, respectively. Since (•t)− ∪ +(◦t) ⊆ AM (ϕ) we have
M ′ 6|= ϕ as the selected transition t is still enabled.

ϕ = t: If M 6|= ϕ then t /∈ en(M). Either there exists p ∈ •t such
that M(p) < w(p, t) and we have to �re some transition from +p
to enable t, or there exists p ∈ ◦t such that M(p) ≥ I(p, t) and we
have to �re some transition from p− to enable t. Since +p ⊆ AM (ϕ)
or p− ⊆ AM (ϕ), we get that M ′ 6|= ϕ.

ϕ = e1 < e2: IfM 6|= ϕ then evalM (e1) ≥ evalM (e2). Since decrM (e1)∪
incrM (e2) ⊆ AM (ϕ) we know that evalM (e1) ≤ evalM ′(e1) as well
as evalM (e2) ≥ evalM ′(e2) because of Lemma 1, and therefore
M ′ 6|= ϕ.

ϕ = e1 > e2: IfM 6|= ϕ then evalM (e1) ≤ evalM (e2). Since incrM (e1)∪
decrM (e2) ⊆ AM (ϕ) we know that evalM (e1) ≥ evalM ′(e1) as well
as evalM (e2) ≤ evalM ′(e2) because of Lemma 1, and therefore
M ′ 6|= ϕ.

103

ϕ = ϕ1 ∧ ϕ2: If M 6|= ϕ then there exists i ∈ {1, 2} s.t. M 6|= ϕi. We
know that AM (ϕi) ⊆ AM (ϕ) which by the induction hypothesis
implies M ′ 6|= ϕi. By the semantics of conjunction we also have
that M ′ 6|= ϕ.

ϕ = ϕ1 ∨ ϕ2: If M 6|= ϕ then M 6|= ϕ1 and M 6|= ϕ2. We know that
AM (ϕ1) ∪ AM (ϕ2) ⊆ AM (ϕ) which by the induction hypothesis
implies M ′ 6|= ϕ1 and M ′ 6|= ϕ2. By the semantics of disjunction
we also have that M ′ 6|= ϕ.

ϕ = ¬t: If M 6|= ϕ then t ∈ en(M). To disable t we have to �re at least
one transition from (•t)−∪+(◦t) to either remove or add tokens that
will disable or inhibit t, respectively. Since (•t)− ∪ +(◦t) ⊆ AM (ϕ)
we have M ′ 6|= ϕ.

The remaining cases and negation cases are analogous.

Lemma 2 allows us to satisfy Property R of Theorem 1 by including
all interesting transitions in the stubborn set. Ensuring Property W

is achieved by including further transitions according to the following
theorem.

Theorem 2 (Reachability Preserving Closure). Let N = (P, T,W , I) be
a Petri net, ϕ a formula, and St a reduction of G(N) such that for all

M ∈M(N) the following conditions hold.

1 We have AM (ϕ) ⊆ St(M).

2 For all t ∈ St(M), if t /∈ en(M) then

� there is p ∈ •t s.t. M(p) < w(p, t) and +p ⊆ St(M), or

� there is p ∈ ◦t s.t. M(p) ≥ I(p, t) and p− ⊆ St(M).

3 For all t ∈ St(M), if t ∈ en(M) then

� for all p ∈ •t where t ∈ p− we have p• ⊆ St(M), and

� for all p ∈ t• where t ∈ +p we have p◦ ⊆ St(M).

Then St satis�es W and R.

Proof. From Condition 1 we know that AM (ϕ) ⊆ St(M) and hence
Property R holds for St by Lemma 2. We will now argue that St satis�es
PropertyW. LetM ∈M(N) be a marking, t ∈ T a transition such that

104

3. Stubborn Reduction for Weighted Petri Nets with Inhibitor Arcs

t ∈ St(M), and w ∈ St(M)
∗
a transition sequence of non-stubborn

transitions. We want to show that if M
wt−→M ′ then also M

tw−→M ′.
Let Mw ∈ M(N) be a marking such that M

w−→Mw. Let us assume
for the sake of contradiction that t /∈ en(M). Then either (i) there
exists p ∈ •t such that M(p) < w(p, t) or (ii) there is p ∈ ◦t where
M(p) ≥ I(p, t). In case (i) we get by Condition 2 that all transitions that

can increase the number of tokens in p are stubborn. Since w ∈ St(M)
∗

this implies that Mw(p) < w(p, t) and t /∈ en(Mw), contradicting our

assumption that Mw
t−→ M ′. In case (ii) we get by Condition 2 that

all transitions that can decrease the number of tokens in p are stubborn.
Since w ∈ St(M)

∗
this implies that alsoMw(p) ≥ I(p, t) and t /∈ en(Mw),

again contradicting our assumption that Mw
t−→ M ′. Therefore we can

conclude that t ∈ en(M).

Since t ∈ en(M) there is Mt ∈ M(N) such that M
t−→ Mt. We also

have to show that Mt
w−→M ′. For the sake of contradiction, assume that

this is not the case. Then there must exist a transition t′ that occurs
in w and that became disabled because t was �red before the sequence
w. There are two cases how this can happen: (i) either t decreased the
number of tokens in a shared pre-place p ∈ •t∩ •t′ (ii) or t increased the
number of tokens in a place p ∈ t• ∩ ◦t′. In case (i), due to Condition 3,
we know that for all p ∈ •t if t ∈ p− then p• ⊆ St(M), implying that

t′ ∈ St(M). Since w ∈ St(M)
∗
such a t′ cannot exist in w. In case (ii),

due to Condition 3, we know that for all p ∈ t• if t ∈ +p then p◦ ⊆ St(M),

implying that t′ ∈ St(M). Since w ∈ St(M)
∗
such a t′ cannot exist in

w either. Hence the sequence w is executable from Mt and because the
�rings of wt and tw from M both reach a unique marking, we conclude

with M
tw−→M ′ as requested.

In Algorithm 3 we now provide, based on Theorem 2, a pseudocode
for a construction of a reachability preserving stubborn set that satis�es
W and R for a given marking M and a reachability formula ϕ.

Theorem 3. Algorithm 3 terminates and computes a reduction St sat-
isfying W and R.

Proof. For the proof of termination, we �rst notice the while-loop invari-
antX∩Y = ∅. At the end of each iteration of the while-loop, we move one
transition from Y into X and this can happen only �nitely many times
(there are �nitely many transitions) before the set Y becomes empty
and the algorithm terminates. For the correctness argument, we notice

105

Algorithm 3: Construction of a reachability preserving stub-
born set
input : Net N = (P, T,W , I), M ∈M(N) and a formula ϕ
output : Stubborn set St(M) such that St satis�es W and

R

1 X := ∅; Y := AM (ϕ);
2 while Y 6= ∅ do
3 pick any t ∈ Y ;
4 if t 6∈ en(M) then
5 if ∃p ∈ •t such that M(p) < w(p, t) then
6 pick any p ∈ •t such that M(p) < w(p, t);
7 Y := Y ∪ (+p \X);

8 else

9 pick any p ∈ ◦t such that M(p) ≥ I(p, t);
10 Y := Y ∪ (p− \X);

11 else

12 foreach p ∈ •t do
13 if t ∈ p− then
14 Y := Y ∪ (p• \X);

15 foreach p ∈ t• do
16 if t ∈ +p then
17 Y := Y ∪ (p◦ \X);

18 Y := Y \ {t};
19 X := X ∪ {t};
20 return X;

106

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

that Algorithm 3 replicates exactly the closure operations described in
Theorem 2 and guarantees that all conditions of Theorem 2 are met at
the termination of the algorithm.

Finally, we want to point out that there is nondeterminism in both
generating the interesting set of transitions and applying the stubborn
set closure. For the interesting set of transitions, this is whenever we re-
solve the deadlock or the �reability predicate, and in case of conjunction
where none of the conjuncts hold in the given marking. For the stub-
born set closure, there is a nondeterministic choice whenever we have
to select either a disabling or inhibiting place for a disabled transition.
As documented by practical examples, we often prefer to construct the
smallest possible stubborn set in order to reduce the reachable state space
(though this does not in general guarantee the smallest state space as
demonstrated in [16]). In our implementation of Algorithm 3, we per-
form the nondeterministic choices such that they minimize the number
of newly added transitions to the set Y . In particular, for the nondeter-
minism in lines 6 and 9 of Algorithm 3, we experienced that selecting
places such that their preset is already included in the closure greatly
improves performance. In general, we only apply a heuristic approach
to resolve the nondeterministic choices as our experiments showed that
the computational overhead of �nding a minimal stubborn set can be
signi�cant.

4 Structural Reductions for Weighted Petri Nets

with Inhibitor Arcs

After re�ning the stubborn set reduction for the case of weighted Petri
nets with inhibitor arcs, we shall now focus also on adapting the struc-
tural reduction techniques for this class of nets. In what follows, we
extend the standard structural reduction rules as presented e.g. in [10]
so that they allow to more e�ciently reduce weighted nets (with inhibitor
arcs). We also add �ve additional reduction rules in order to further re-
duce the size of the input net.

Let N = (P, T,W , I) be a �xed Petri net. We shall �rst notice that
all formulae involving the �reability predicate t ∈ T can be rewritten
into an equivalent cardinality formula

p0 ≥ w(p0, t) ∧ · · · ∧ pn ≥ w(pn, t) ∧ p′0 < I(p′0, t) ∧ · · · ∧ p′m < I(p′m, t)

107

where •t = {p0, . . . , pn} and ◦t = {p′0, . . . , p′m}. It is thus su�cient in the
remainder of this section to consider only cardinality formulae. We will,
at the end of this section, also discuss the correctness of the presented
rules in relation to the deadlock formulae.

The rules presented in this section assume that p(ϕ) denotes the set
of all places that occur in the cardinality formula ϕ such that

p(true) = p(false) = p(c) = ∅
p(p) = {p}

p(¬ϕ) = p(ϕ)

p(ϕ1 ∨ ϕ2) = p(ϕ1 ∧ ϕ2) = p(ϕ1) ∪ p(ϕ2)

p(e1 ./ e2) = p(e1 ⊕ e2) = p(e1) ∪ p(e2) .

In each structural reduction rule, we �x some places and transitions that
satisfy given preconditions and perform updates that can change the
weight function and remove places and/or transitions (including all their
connected arcs). Let us now give a general de�nition of correctness of
a given rule X (where X is one of the rules A to I), stating that the
reachability of a given cardinality formula ϕ is preserved.

De�nition 3 (Correctness of Rule X). Let N = (P, T,W , I) be a Petri

net and M0 ∈ M(N) its initial marking. Let N ′ = (P ′, T ′,w ′, I ′) and

M ′0 ∈ M(N ′) be the modi�ed N and M0 after applying once Rule X for

a cardinality formula ϕ. We say that Rule X is correct for a cardinality

formula ϕ if there exists M ∈ M(N) s.t. M0 −→∗ M and M |= ϕ if and

only if there exists M ′ ∈M(N ′) s.t. M ′0 −→∗ M ′ and M ′ |= ϕ.

Lemma 3. Rule A in Figure 3 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule A. We shall argue that Rule A is correct. First, we de�ne an
equivalence relation ≡A⊆ M(N) ×M(N ′) such that M ≡A M ′ if and
only if

� M ′(p) = M(p) for all p ∈ P \ {p0, p1, . . . , pk}, and

� M ′(p) = M(p) +M(p0) · w(t0, p) for all p ∈ {p1, . . . , pk}.

Let us �rst realize that M |= ϕ i� M ′ |= ϕ whenever M ≡A M ′. This
follows from Precondition A4 and the de�nition of ≡A. Moreover, due
to Update UA1 we also have M0 ≡A M ′0. Our lemma then follows from
the next two properties. Let M ≡A M ′ then

108

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

p0

n m

p1 pk

t0
1

wkw1

· · ·

⇒

p1

n · w1

m
· w

1

pk

n
· w

k
m · wk

· · ·

Precondition Update

Fix p0, t0 where t•0 = {p1, . . . , pk}
s.t.

A1) •t0 = {p0} and w(p0, t0) = 1.

A2) p•0 = {t0} and p0 6∈
{p1, . . . , pk}

A3) p◦0 = p◦1 = . . . = p◦k = ◦t0 = ∅

A4) {p0, p1, . . . , pk} ∩ p(ϕ) = ∅

UA1) For all p ∈ {p1, . . . , pk}
change the initial marking s.t.
M ′0(p) := M0(p) + M0(p0) ·
W (t0, p)

UA2) For all t ∈ T \ {t0} and all p ∈
{p1, . . . , pk} set W ′(t, p) :=
W (t, p0) ·W (t0, p) +W (t, p)

UA3) Remove p0 and t0.

Figure 3: Rule A: Sequential Transition Removal

P1) if M
t−→ M1 then either M1 ≡A M ′ or M ′

t−→ M ′1 s.t. M1 ≡A M ′1,
and

P2) if M ′
t−→M ′1 then M

tn0 t−−→M1 for some n ∈ N0 s.t. M1 ≡A M ′1.

Let us �rst argue for Property P1. There are two cases.

� Case t = t0: We want to show that M1 ≡A M ′. For all p ∈
P \ {p0, p1, . . . , pk} we clearly have M ′(p) = M1(p) as �ring t0
only changes the number of tokens in p0, p1, . . . , pk. By Precondi-
tion A1 we observe that �ring of t0 removes one token from p0 and
adds w(t0, p) tokens to p, for all p ∈ {p1, . . . , pk}. Hence by our as-
sumption thatM ≡A M ′ and the de�nition of ≡A we haveM ′(p) =
M(p)+M(p0) ·w(t0, p) = M(p)+w(t0, p)+(M(p0)−1) ·w(t0, p) =
M1(p) +M1(p0) ·w(t0, p) for all p ∈ {p1, . . . , pk}. This means that

109

M ′(p) = M1(p)+M1(p0) ·w(t0, p) for all p ∈ {p1, . . . , pk}, implying
that M1 ≡A M ′ as required.

� Case t 6= t0: We want to show thatM ′
t−→M ′1 such thatM1 ≡A M ′1.

As M ≡A M ′ implies that M(p) ≤ M ′(p) for all p ∈ {p1, . . . , pk}
then together with A2 and A3 we get that t ∈ en(M ′) and we

can �re it such that M ′
t−→ M ′1. For all p ∈ P \ {p0, p1, . . . , pk}

we can easily notice that M1(p) = M ′1(p). Once t is �red from
M ′, we get by UA2 that for all p ∈ {p1, . . . , pk} we have M ′1(p) =
M ′(p) + w ′(t, p) = M ′(p) + w(t, p0) · w(t0, p) + w(t, p). Because
M ≡A M ′ we know that for all p ∈ {p1, . . . , pk} also M ′(p) =
M(p) + M(p0) · W (t0, p). By substituting this to the equation
above, we getM ′1(p) = M(p)+M(p0) ·w(t0, p)+w(t, p0) ·w(t0, p)+
w(t, p) = M(p) +w(t, p) + (M(p0) +w(t, p0)) ·w(t0, p) = M1(p) +
M1(p0) · w(t0, p) which implies that M1 ≡A M ′1 as required.

Finally, let us �nish the proof by arguing for Property P2. LetM ≡A
M ′ and we want to show that ifM ′

t−→M ′1 then we can �re the transition
t0 fromM several times followed by the transition t and reach a marking
M1 such thatM1 ≡A M ′1. Clearly t 6= t0 as the transition t0 was removed
in N ′. Due to Precondition A1 we can �re t0 in the marking M exactly
M(p0) times so that we reach a marking with no tokens in p0 andM(p0)·
w(t0, p) additional tokens in each place p ∈ {p1, . . . , pk}, so that they now
contains exactlyM ′(p) tokens. Now t must be enabled as we assume that
it is enabled in M ′ and after �ring t, we reach a marking M1 such that
M1 ≡A M ′1.

Lemma 4. Rule B in Figure 4 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule B. We shall argue that Rule B is correct. First, we de�ne an
equivalence relation ≡B⊆ M(N) ×M(N ′) such that M ≡B M ′ if and
only if M ′(p) = M(p) + bM(p0)/w(p0, t1)c ·w(t1, p) for all p ∈ P \ {p0}.

Let us �rst realize thatM |= ϕ i�M ′ |= ϕ wheneverM ≡B M ′. This
follows from Precondition B4, B5, and the de�nition of ≡B. Moreover,
due to Update UB1 we also have M0 ≡B M ′0. Our lemma then follows
from the next two properties. Let M ≡B M ′ then

P1) if M
t−→ M1 then either M1 ≡B M ′ or M ′

t−→ M ′1 s.t. M1 ≡B M ′1,
and

110

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

t0

t1

n m

p0

k · w

w

⇒ t0

k · n k ·m

Precondition Update

Fix p0 and t0, t1 where t0 6= t1 s.t.

B1) •p0 = {t0}, p•0 = {t1}, •t1 =
{p0}

B2) w(t0, p0) = k ·w(p0, t1) for k ≥
1

B3) p◦0 = ◦t0 = ◦t1 = ∅

B4) p0 6∈ p(ϕ)

B5) p◦ = ∅ and p 6∈ p(ϕ)
for all p ∈ t•1

UB1) For all p ∈ P r {p0}
set M ′0(p) = M0(p) +
bM0(p0)/w(p0, t1)c · w(t1, p)

UB2) For all p ∈ P r {p0} set
w ′(t0, p) = w(t0, p) + k ·
w(t1, p)

UB3) Remove p0 and t1.

Figure 4: Rule B: Sequential place removal

P2) if M ′
t−→M ′1 then M

tn1 t−−→M1 for some n ∈ N0 s.t. M1 ≡B M ′1.

Let us �rst argue for Property P1. There are three cases.

� Case t = t1: We want to show that M1 ≡B M ′. For all p ∈
P \ ({p0} ∪ t•1) we clearly have M ′(p) = M1(p) as �ring of t1 only
changes the number of tokens in p0 and places in t•1. By Precondi-
tions B1 and B2 we notice that �ring of t1 removes w(p0, t1) tokens
from p0 and adds w(t1, p) tokens to p, for all p ∈ t•1. Is it now easy
to observe that M1 ≡B M ′.

� Case t = t0: We want to show that M1 ≡B M ′1 where M ′
t0−→ M ′1.

Observe that in the reduced net we have that w ′(t, p) = w(t, p) +

111

k ·w(t1, p) by Update UB2 for all p ∈ t•1, which corresponds to also
�ring t1 a total of k times. As before, we can see that M1 ≡B M ′1.

� Case t ∈ T r {t1, t0}: As M ≡B M ′ we know that M(p) ≤ M ′(p)

for all p ∈ t•1 and thanks to B5, we notice that whenever M
t−→M1

then also M ′
t−→M ′1 and clearly M1 ≡B M ′1.

Let us �nish the proof by arguing for Property P2. LetM ≡B M ′ and we

want to show that if M ′
t−→ M ′1 then we can �re from M the transition

t1 several times, followed by the transition t and reach a marking M1

such that M1 ≡B M ′1. Indeed, once we �re t1 exactly bM(p0)/w(p0, t1)c
times, the number of tokens in all places p ∈ t•1 becomes equal to M ′(p)
and thanks to B3 we can now �re t and reach a marking M1 such that
M1 ≡B M ′1.

Lemma 5. Rule C in Figure 5 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule C. We shall argue that Rule C is correct. Due to Precondition C3
we can see that M(p0) ≥ M(p1) · k for every M such that M0 −→∗ M .
Now any transition t ∈ p•0 enabled from the marking M in the net with
the place p0 removed is also enabled in the original net and vice versa.
Hence any marking M reachable from M0 has a corresponding marking
M ′ reachable from M ′0 such that M(p) = M ′(p) for all p ∈ P r {p0}
and vice versa. By C1 and C2 we can now conclude that M |= ϕ i�
M ′ |= ϕ.

Lemma 6. Rule D in Figure 6 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule D. We shall argue that Rule D is correct. Obviously, M0 = M ′0
since Rule D does not change token counts in places. Moreover, from
Precondition D2 it follows that the behaviour of t0 can be replicated by
�ring t1 exactly k times. Let M0

w−→ M such that M |= ϕ and let w′

be w with all occurrences of t0 replaced by tk1. From the observation

above and by D1 we get that in the net N ′ we have M ′0
w′−→ M ′ such

that M = M ′ and hence M ′ |= ϕ. The other direction is trivial as any
behaviour of N ′ can be directly mimicked by N .

112

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

p0

w1 · k

w2 · k

p1

w1

w2

⇒ p1

w1

w2

Precondition Update

Fix p0, p1 where p0 6= p1 s.t.

C1) p◦0 = p◦1 = ∅

C2) p0 6∈ p(ϕ)

C3) there is k ≥ 1 such that

(a) M0(p0) ≥M0(p1) · k
(b) W (t, p0) ≥W (t, p1) ·k for all t ∈

•p0

(c) W (p0, t) ≤W (p1, t) ·k for all t ∈
p•0

UC1) Remove p0.

Figure 5: Rule C: Parallel place removal

Lemma 7. Rule E in Figure 7 is correct for any cardinality formula ϕ.

Proof. Observe that by Preconditions E1 and E2 the transition t0 is
never enabled in any reachable marking from M0 as M0(p0) < w(p0, t0)
and +p0 = ∅. Hence removing t0 does not the change behaviour of N .
Moreover, should the place p0 become isolated after the removal of t0, it
can be removed too by UE1, provided that it is not used in the formula
ϕ and it is not connected to any inhibitor arc.

Lemma 8. Rule F in Figure 8 is correct for any cardinality formula ϕ.

Proof. By F3 we know that p0
− = ∅ and M(p0) ≥ w(p0, t) for all t ∈ T .

Hence the number of tokens in p0 can never drop and p0 never disables

113

p0 p1

p2 p3

. . .

. . .

t0

w1k
w 2
k

w3k w
4 k

t1

w
1

w2

w 3
w4

⇒

p0 p1

p2 p3

. . .

. . .

t1

w
1

w2

w 3

w4

Precondition Update

Fix t0, t1 where t0 6= t1 s.t.

D1) ◦t0 = ◦t1 = ∅

D2) there is k ≥ 1 s.t. for all p ∈ P

(a) W (p, t0) = W (p, t1) · k
(b) W (t0, p) = W (t1, p) · k

UD1) Remove t0.

Figure 6: Rule D: Parallel transition removal

any transition connected to it. Due to Precondition F1 and F2 it is
so safe to remove the place p0 without changing the behaviour of the
net.

Lemma 9. Rule G in Figure 9 is correct for any cardinality formula ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule G. We shall argue that Rule G is correct. By G2 and G3 we get
that t0 /∈ +p for all p ∈ P , and t0 /∈ p− for all p ∈ p(ϕ). Hence the �ring
of t0 does not change the number of tokens in any place that appears
in ϕ and can only preserve or decrease the number of tokens in any
other connected place. Let M0

w−→ M in N and let w′ be w with all
occurrences of t0 removed. By G1 and the previous argument, we get

that alsoM ′0
w′−→M ′ and clearlyM(p) = M ′(p) for all p ∈ p(ϕ), implying

114

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

t0

<w p0

w
⇒

<w p0

Precondition Update

Fix p0 and t0 s.t.

E1) M0(p0) < w(p0, t0)

E2) w(t, p0) ≤ w(p0, t) or M0(p0) <
w(p0, t)
for all t ∈ T

UE1) If p•0 = {t0}, p◦0 = ∅
and p0 /∈ p(ϕ) then re-
move p0.

UE2) Remove t0.

Figure 7: Rule E: Dead transition removal

t

≥w p0

≥w w

⇒
t

Precondition Update

Fix p0 s.t.

F1) p◦0 = ∅

F2) p0 6∈ p(ϕ)

F3) w(t, p0) ≥ w(p0, t) and M0(p0) ≥ w(p0, t) for all
t ∈ T

UF1) Remove
p0.

Figure 8: Rule F: Redundant place removal

that M |= ϕ i� M ′ |= ϕ. The other direction where M ′0 −→∗ M ′ in N ′ is
trivial as the same marking M ′ can be reached also from M0 in N .

115

p

t0

≥w w ⇒ p

Precondition Update

Fix t0 s.t.

G1) ◦t0 = ∅ and p◦ = ∅ for all p ∈ •t0

G2) t•0 ⊆ •t0

G3) for all p ∈ •t0 we have either

� W (p, t0) = W (t0, p), or

� W (p, t0) > W (t0, p) and p 6∈ p(ϕ)

UG1) Remove t0.

Figure 9: Rule G: Redundant transition removal

Lemma 10. Rule H in Figure 10 is correct for any cardinality formula

ϕ.

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. LetN ′ andM ′0 be the net and the initial marking after one application
of Rule H. We shall argue that Rule H is correct. Let us de�ne ≡H⊆
M(N) ×M(N ′) such that M ≡H M ′ if and only if M(p) = M ′(p) for
all p ∈ P r {p0, p1} and M ′(p1) = M(p1) +M(p0). By Precondition H4
we know that M |= ϕ i� M ′ |= ϕ whenever M ≡H M ′.

Let M0
w−→ M such that M |= ϕ. Let w′ be w with all occurrences

of t0 removed. Due to the construction of the updated net and UH4,

together with Precondition H3 we know that also M ′0
w′−→ M ′ such that

M ≡H M ′, giving us M ′ |= ϕ.

For the other direction, letM ′0
w′−→M ′ such thatM ′ |= ϕ. We want to

�nd a sequence w such thatM0
w−→M andM ≡H M ′, which implies that

M |= ϕ. We prove this by induction on the length of w′. The base case

follows from UH4. Let M ′0
w′−→ M ′

t−→ M ′1 and assume by the induction

hypothesis that M0
w−→M for some w such that M ≡H M ′. Clearly, if t

116

4. Structural Reductions for Weighted Petri Nets with Inhibitor Arcs

p0

p1

t0 t1 ⇒
p1

t1

Precondition Update

Fix di�erent p0, p1, t0, t1 s.t.

H1) •t0 = t•1 = {p0}

H2) •t1 = t•0 = {p1}

H3) p◦0 = p◦1 = ◦t0 = ◦t1 = ∅

H4) p0 /∈ p(ϕ), p1 /∈ p(ϕ)

H5) w(p0, t0) = w(t0, p1) =
w(p1, t1) = w(t1, p0) = 1

UH1) w ′(t, p1) = w(t, p1) + w(t, p0) for all t ∈
T

UH2) w ′(p1, t) = w(p1, t) + w(p0, t) for all t ∈
T

UH3) w ′(t1, p1) = w ′(p1, t1) = 1

UH4) M ′0(p1) = M0(p1) +M0(p0)

UH5) Remove t0.

UH6) Remove p0.

Figure 10: Rule H: Simple cycle removal

is enabled from M then we let M
t−→ M1 and reach a marking M1 such

that M1 ≡H M ′1. If t is not enabled from M then we can rearrange the
tokens in the places p0 and p1 by �ring the transitions t0 and t1 so that
we reach a marking where t becomes enabled (this is possible due to the
construction of the net N ′). After �ring t we get a marking M1 such
that M1 ≡H M ′1 and we are done with the inductive argument.

Finally, we present a slightly di�erent structural reduction rule that
in one run computes a set of places and transitions that are safe to remove
for the validity of a given cardinality formula ϕ. This Rule I is given in
Algorithm 4.

Lemma 11. Rule I in Algorithm 4 is correct for any cardinality formula

ϕ.

117

Algorithm 4: Rule I: Removal of irrelevant places and transi-
tions
input : A net N = (P, T,W , I), initial marking M0, and a

cardinality formula ϕ.
output : A reduced net N ′ and its initial marking M ′0.

1 X := ∅; Y :=
⋃

p∈p(ϕ)
p− ∪ +p;

2 while Y 6= ∅ do
3 pick any t ∈ Y ;
4 Y := Y ∪ (+(•t) \X);

5 Y := Y ∪ ((◦t)− \X);
6 Y := Y \ {t};
7 X := X ∪ {t};
8 Let P ′ = •X ∪ ◦X ∪ p(ϕ).
9 Let T ′ = X.
10 Modify N by removing all places P r P ′ and all transitions

T r T ′.
11 Let N ′ be the modi�ed net and let M ′0(p) = M0(p) for all p ∈ P ′.
12 return N ′ and M ′0

Proof. Assume a given net N , a marking M0, and a cardinality formula
ϕ. Let N ′ andM ′0 be the net and the initial marking after the application
of Rule I (Algorithm 4). Let P ′ and T ′ be the set of places and transitions
in the net N ′, respectively. We shall argue that Rule I is correct. Let us
�rst de�ne a relation ≡I⊆ M(N) ×M(N ′) such that M ≡I M ′ if and
only if

� M(p) = M ′(p) for all p ∈ p(ϕ),

� M(p) ≤M ′(p) for all p ∈ •T ′, and

� M(p) ≥M ′(p) for all p ∈ ◦T ′.

Let M ≡I M ′. Then clearly M |= ϕ i� M ′ |= ϕ due to the de�nition of
≡I and the fact that p(ϕ) ⊆ P ′. Moreover, trivially also M0 ≡I M ′0.

Let M ≡I M ′. We will show that if M
t−→M1 then either M ′

t−→M ′1
such that M1 ≡I M ′1, or M1 ≡I M ′. There are two cases to consider.

� Case t ∈ T ′. Due to the second and third condition in the de�nition
of ≡I , we know that t is also enabled in the marking M ′ and we

118

5. Experimental Evaluation

can �re M ′
t−→ M ′1. After �ring t both from M and M ′ we clearly

preserve all three conditions of ≡I and M1 ≡I M ′1.

� Case t 6∈ T ′. We want to argue that M1 ≡I M ′. We notice that
Algorithm 4 returns a net where +(•T ′) ⊆ T ′ and (◦T ′)− ⊆ T ′.
Hence �ring of t 6∈ T ′ in the net N cannot increase the number
of tokens in any place from •T ′ and cannot decrease the number
of tokens in any place from ◦T ′. Moreover, the �ring of t cannot
change the number of tokens in p(ϕ) as p− ∪ +p ⊆ T ′ for every
p ∈ p(ϕ). As a result, all three conditions of de�nition ≡I are met
and we can conclude that M1 ≡I M ′.

For the other direction, we notice that N ′ is a subnet of N . Hence
whenever M ′0

w−→M ′ then also M0
w−→M such that M ≡I M ′.

We can now summarize the correctness of the structural rules for any
given cardinality formula in the following theorem. Moreover, we also
notice that all rules, except for G and I, preserve also the presence of
a reachable deadlock marking. An application of Rule G can create a
deadlock in the modi�ed net and Rule I can both create new deadlocks
as well as remove existing deadlocks.

Theorem 4. Rules A to I are correct for any given cardinality formulae.

Rules A to F and H are moreover correct also for the deadlock formula.

5 Experimental Evaluation

We implemented the stubborn set reduction and structural reduction
rules in the veri�cation engine verifypn [6] (source code is available at
code.launchpad.net/~verifypn-cpn/verifypn/struct_vs_stub) as a
part of the model checking tool TAPAAL [3]. Our experiments are ex-
ecuted using the database of Petri net models and reachability queries
from MCC'17 [8]. For each model (there are in total 438 Petri nets, in-
cluding the known and surprise nets) there are three categories of queries:
reachability cardinality (RC), reachability �reability (RF) and reachabil-
ity deadlock (RD). In the RC and RF category there are 16 queries for
each model and in RD there is only a single query. In some tables, we
further subdivide the queries into RC+, RF+ and RD+ whenever there
exists evidence (�nite trace) proving the property and into RC�, RF�

119

code.launchpad.net/~verifypn-cpn/verifypn/struct_vs_stub

Number of solved queries

Queries Base Stub Struct StubStruct

RC 7008 3733 4807 4794 5325

RF 7008 4864 5503 5403 5820

RD 438 288 344 333 367

Total 14454 8885 10654 10530 11512

Table 3: Number of queries solved by each algorithm

and RD� where the whole state space must be explored before the va-
lidity of the property can be established. All of the above experiments
were run on AMD Opteron 6376 processors with a 14 GB memory limit.

Comparison of Stubborn vs. Structural Reduction

In Table 3 we can see the number of queries solved by each algorithm
(we set a 20 minute timeout for RC and RF, and a 1 hour timeout
for RD). Here Base stands for the standard TAPAAL without stub-
born and structural reductions, Stub adds to Base the stubborn set
reduction, and Struct adds to Base the structural reductions. Finally,
StubStruct stands for the engine that �rst applies structural reductions
while preprocessing the nets and then uses the stubborn set reduction
during the state-space search. In all cases, we use the heuristic search
strategy implemented in TAPAAL. The practical applicability of both
the stubborn and structural reduction is clear as each method indepen-
dently allows to solve more than 1600 supplementary queries. However,
more interestingly, the combination of both methods solves 858 addi-
tional queries compared to Stub and 982 additional queries compared
to Struct. This demonstrates, even though the two methods both re-
duce the concurrency present in the model, they are not con�icting with
each other and it is bene�cial to apply them both during model checking.

A detailed pairwise comparison of the methods is presented in Ta-
ble 4. For each query, an algorithm gets a point relative to another
algorithm, as follows. Exclusive: answers the query while the oppo-
nent algorithm does not provide any answer. Time: answers the query
at least 50% faster, disregarding queries that are solved in less than 10
seconds by both algorithms. Memory: answers the query by using at
least 50% less peak memory. If an algorithm solves a query exclusively,
it also gets a point in the time and memory comparison. As already dis-
cussed, the addition of stubborn and structural reduction signi�cantly

120

5. Experimental Evaluation

Base vs Stub

exclusive time memory

RC+ 33 336 97 553 52 627

RC� 5 776 6 901 5 913

RF+ 16 490 78 867 41 948

RF� 5 170 7 248 5 256

RD+ 2 4 8 12 6 11

RD� 0 52 0 68 0 69

SUM 61 1828 196 2649 109 2824

(a)

Base vs Struct

exclusive time memory

RC+ 11 304 97 578 40 571

RC� 0 768 0 907 0 904

RF+ 12 367 133 739 37 723

RF� 0 184 0 286 0 279

RD+ 0 1 8 5 0 7

RD� 0 42 0 52 0 53

SUM 23 1666 238 2567 77 2537

(b)

Base vs StubStruct

exclusive time memory

RC+ 13 470 96 797 43 854

RC� 5 1140 6 1308 5 1318

RF+ 19 657 142 1122 52 1195

RF� 4 322 5 453 4 454

RD+ 2 4 12 9 6 13

RD� 0 77 0 93 0 94

SUM 43 2670 261 3782 110 3928

(c)

Stub vs Struct

exclusive time memory

RC+ 149 139 325 342 346 264

RC� 266 263 336 330 346 315

RF+ 256 137 537 332 527 263

RF� 105 124 149 180 163 166

RD+ 4 3 16 9 7 7

RD� 25 15 37 25 39 25

SUM 805 681 1400 1218 1428 1040

(d)

Stub vs StubStruct

exclusive time memory

RC+ 10 164 91 392 38 322

RC� 0 364 35 460 0 473

RF+ 18 182 151 431 47 382

RF� 0 153 0 229 0 232

RD+ 0 0 8 5 0 2

RD� 0 25 0 36 0 37

SUM 28 888 285 1553 85 1448

(e)

Struct vs StubStruct

exclusive time memory

RC+ 21 185 42 306 39 402

RC� 7 374 22 528 7 570

RF+ 29 312 54 503 58 611

RF� 10 144 13 219 10 254

RD+ 3 4 6 7 7 8

RD� 0 35 0 49 0 51

SUM 70 1054 137 1612 121 1896

(f)

Table 4: Algorithms comparison (7008 queries in RC and RF and 438 queries
in RD)

improves the veri�cation of Base as indicated in Table 4a and 4b. In
both cases, Base still provides some exclusive answers. For Stub this is
the case as there are nets where the stubborn sets include almost all en-
abled transitions, meaning that the construction of stubborn sets leaves
us only with an overhead. In the case of Struct there are only a few
exclusive answers and only for the cases where there exists a witness
trace. Due to the changed structure of the net after the reduction, the
search strategy gets modi�ed and in 23 cases Base was lucky to �nd the
witness trace faster even though the state space is larger. Clearly, the
combination of stubborn and structural reduction computes the largest
number of exclusive answers as shown in Figure 4c. The comparison of
Stub and Struct in Table 4d shows a slightly higher number of exclusive
answers when only stubborn set reduction is used, which is re�ected also
by the points for the time and memory comparison. The advantage of

121

Rule applications (×1000) % Reduction

Disabled Rule A B C D E F G H I Trans+Places

A 0 5557 115 10760 121 705 5294 598 8 38.9686

B 6613 0 181 11279 120 812 6086 624 11 42.9040

C 6594 1 0 11279 120 757 5957 624 10 42.4008

D 6318 1 129 0 120 733 5712 669 10 30.3359

E 6610 1 180 11279 0 825 6082 624 11 41.9651

F 6503 1 674 10727 250 0 6012 622 11 41.9089

G 6471 1 36 14879 104 664 0 636 15 39.9450

H 6598 1 129 11212 120 757 2824 0 6 37.2231

I 7213 1 199 11712 611 1648 8755 631 0 40.3852

None 6613 1 181 11279 120 812 6074 624 11 42.9053

Table 5: Number of applications of reductions rules (10 minutes timeout)

the combination of both methods, compared to an independent use of
each one, is documented by a high number of new exclusive answers in
Tables 4f and 4e. Some exclusive answers are lost when combining both
techniques, but as this is the case mainly for the queries with a witness
trace. As before, we contribute this to the modi�ed search strategy after
combining the two methods.

The reason why the combination of the two techniques is indeed ben-
e�cial seems to be twofold: (i) in preprocessing a net by applying �rst the
structural reduction, the size of the net usually decreases considerably
and this implies less overhead and fewer dependencies when (on-the-�y)
computing the stubborn sets, on the other hand (ii) structural reduc-
tions remove only the behaviour that is detectable statically (without
the knowledge of the actual marking) whereas stubborn reduction com-
putes the pruning of the state-space dynamically by considering also the
given marking that we are exploring.

We also remark that our re�nement of the stubborn set method via
the increasing/decreasing presets/postsets of places demonstrates an av-
erage reduction in running time by 13% (measured without the employ-
ment of other reduction techniques). On some nets there is not any
noticeable improvement while e.g. on the model RAFT-PT we achieve
a speedup of 98% (average over all instances of the model).

Comparison of Di�erent Structural Reduction Rules

As we provided a number of new or extended rules for structural reduc-
tion, we investigate their potential applicability in Table 5 across the
whole database of models from MCC'17. In the last row of the table,

122

5. Experimental Evaluation

we show the total number of times (in thousands) each rule was applied
across all models in all categories. We also disable the application of
each single rule and investigate how it in�uences the applicability of the
remaining rules. The most obvious dependency is between rules A and
B that can to a large degree substitute each other, in particular in the
situations where a net contains a longer sequential chain of transition
�rings. As in our implementation rule A is applied (as long as possible)
before we proceed to reduce by rule B, less than one thousand applica-
tions of rule B are observed. However, if rule A is disabled (the �rst row
in the table) then rule B is applied approximately 5557.000 times. An-
other dependency is between the rules G and H. As seen the table, if rule
H is disabled then the applicability of rule G drops considerably to 2824
thousands of applications, caused by the fact that rule H is creating new
transition loops that rule G can remove (provided that the preconditions
are satis�ed). Otherwise the remaining rules are frequently used with
rules D and G being the most applicable ones. The only exception is
rule I. Due to the di�erent nature of this rule, we achieve a considerable
reduction e�ect on several nets but in general as soon as rule I is applied
once on a given net and query, it is unlikely that more than a few further
applications become possible.

Finally, we run an experiment with di�erent orders in which the re-
duction rules are applied. We enumerated all possible rule permutations
and executed them on all models and a selected reachability cardinality
query. In one day, 252 nets completed the reductions under all given
permutations. In 228 nets the size of the reduced net did not depend on
the order of application of the reduction rules and only in 24 nets there
was a smaller di�erence in the size of the reduced net. The reduction
order used in our experiments was not the optimal one in only 10 cases.

Comparison with LoLA

Finally, we also compare the performance of our tool with LoLA [21], the
winner of the MCC'17 competition in the reachability category. We use
the current development snapshots of LoLA (based on version 2.0) and
Sara (based on version 1.14)�in MCC'17 LoLA was running in parallel
with Sara. Here we use the same rules as above for awarding points,
but we run two parallel processes (three in the RD-category) for each
tool. For RC and RF we run LoLA using (i) �stateequation=alone

which calls the tool Sara and (ii) �stateequation=none which calls the
standard engine of LoLA. For RD we run LoLA using (i) �symmetry

123

Solved queries

Queries TAPAAL LoLA

RC 7008 6640 6568

RF 7008 6376 6321

RD 438 377 364

Total 14455 13392 13253

Table 6: Comparison between TAPAAL and LoLA

TAPAAL vs LoLA

exclusive time memory

RC+ 51 202 150 647 221 693

RC� 235 12 554 47 691 65

RF+ 98 266 159 1346 381 826

RF� 207 19 314 150 362 47

RD+ 4 20 43 29 39 53

RD� 30 1 48 9 62 7

SUM 625 520 1268 2228 1756 1691

Table 7: Pairwise score comparison between TAPAAL and LoLA

�symmtimelimit=300 �stubborn=tarjan, with (ii) �symmetry
�symmtimelimit=300 �findpath=alone and with (iii) �symmetry
�symmtimelimit=300 �siphondepth=10 �siphontrap=alone as sugges-
ted by LoLA developers as the recommended strategy for the tool. For
our tool in the RC and RF categories we use in parallel (i) the default
options and (ii) -tar enabling a trace abstraction re�nement method
based on [2]. For RD we run our tool in parallel using (i) the default
options, (ii) -tar and (iii) �siphon-trap 3600 �siphon-depth 10. We
terminate the parallel computation as soon as the fastest thread �nishes
its computation.

Table 6 proves that after implementing the stubborn and structural
reductions in TAPAAL, we can solve a higher number of reachability
queries than the tool LoLA. More precisely we can answer 139 additional
queries over all three categories. A detailed comparison performed in
Table 7 reveals that while LoLA is better in answering queries that have
a witness trace, TAPAAL achieves a signi�cant margin on the queries
where the whole state space must be searched. We contribute this to
improved and extended structural reduction rules suggested in this paper.

124

6. Conclusion

Moreover, LoLA runs in parallel the tool Sara that uses advanced state
equations techniques instead of the explicit state space search, resulting
in about 1000 extra points where LoLA solved the query faster. On the
other hand, TAPAAL is showing a slightly better performance in terms
of memory usage, likely due to the employment of the PTrie [7] data
structure for storing the explored state space.

6 Conclusion

We described the stubborn set and structural reduction techniques for
the use on reachability queries on weighted Petri nets with inhibitor arcs.
The stubborn set reduction was �rst presented on general labelled tran-
sition systems and then specialized for the application on Petri nets. We
extended the technique to deal with inhibitor arcs as well as re�ning its
performance to take weighted arcs into account. Similarly, we extended
some of the classical structural reduction rules to nets with weighted
arcs and inhibitor arcs and suggested a number of additional reductions
rules, while demonstrating their applicability on the nets from the an-
nual model checking contest. Both techniques were proved correct and
experimentally evaluated.

Our main conclusion is�while it may intuitively seem as contra
productive to employ both stubborn and structural reductions at the
same time as they both target similar phenomena in order to restrict
concurrency�that the combination of the techniques is clearly bene�-
cial and the possible overhead when computing the reductions pays o�.
As a result, we have an e�cient implementation of our veri�cation en-
gine that is now part of the open source model checker TAPAAL, and
our engine, in all three reachability subcategories, solves more queries
than LoLA, the last year winner of the model checking contest.

In our future work, we plan to add a support for colored Petri nets
and extend the techniques discussed in this paper so that they can be
applied directly on colored nets before their unfolding into P/T nets.

Acknowledgements We would like to thank Karsten Wolf and
Torsten Liebke from Rostock University for providing us with the
development snapshot of the latest version of LoLA and Sara and for
their help with setting up their tool and answering our questions. The
work was funded by the center IDEA4CPS, Innovation Fund Denmark
center DiCyPS and ERC Advanced Grant LASSO. The last author is

125

partially a�liated with FI MU, Brno.

References

[1] C. Baier and J.P. Katoen. Principles of Model Checking. The MIT
Press, 2009. isbn: 026202649X, 9780262026499.

[2] F. Cassez, P.G. Jensen, and K.G. Larsen. �Re�nement of Trace
Abstraction for Real-Time Programs�. In: Reachability Problems.
Vol. 10506. LNCS. Springer International Publishing, 2017,
pp. 42�58. doi: 10.1007/978-3-319-67089-8_4.

[3] A. David et al. �TAPAAL 2.0: Integrated Development Environ-
ment for Timed-Arc Petri Nets�. In: Tools and Algorithms for the

Construction and Analysis of Systems. Vol. 7214. LNCS. Springer
Berlin Heidelberg, 2012, pp. 492�497. doi: 10.1007/978-3-642-
28756-5_36.

[4] J. Esparza. �Decidability and Complexity of Petri Net Problems
� An Introduction�. In: Lectures on Petri Nets I: Basic Models:

Advances in Petri Nets. Vol. 1491. LNCS. Springer Berlin Heidel-
berg, 1998, pp. 374�428. doi: 10.1007/3-540-65306-6_20.

[5] P. Godefroid. Partial-Order Methods for the Veri�cation of Con-

current Systems: An Approach to the State-Explosion Problem.
Vol. 1032. LNCS. Springer Berlin Heidelberg, 1996. isbn: 978-3-
540-60761-8.

[6] J.F. Jensen et al. �TAPAAL and Reachability Analysis of P/T
Nets�. In: Transactions on Petri Nets and Other Models of Con-

currency XI. Vol. 9930. LNCS. Springer Berlin Heidelberg, 2016,
pp. 307�318. doi: 10.1007/978-3-662-53401-4_16.

[7] P.G. Jensen, K.G. Larsen, and J. Srba. �PTrie: Data Structure for
Compressing and Storing Sets via Pre�x Sharing�. In: Theoretical
Aspects of Computing. Vol. 7214. 10580. Springer International
Publishing, 2017, pp. 248�265. doi: 10.1007/978-3-319-67729-
3_15.

[8] F. Kordon et al. Complete Results for the 2017 Edition of the

Model Checking Contest. http://mcc.lip6.fr/2017/results.
php.

126

https://doi.org/10.1007/978-3-319-67089-8_4
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-662-53401-4_16
https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-67729-3_15
http://mcc.lip6.fr/2017/results.php
http://mcc.lip6.fr/2017/results.php

References

[9] L.M. Kristensen, K. Schmidt, and A. Valmari. �Question-Guided
Stubborn Set Methods for State Properties�. In: Formal Methods

in System Design 29.3 (2006). Springer, pp. 215�251. doi: 10.
1007/s10703-006-0006-1.

[10] T. Murata. �Petri Nets: Properties, Analysis and Applications�.
In: Proceedings of the IEEE 77.4 (1989). IEEE, pp. 541�580. doi:
10.1109/5.24143.

[11] T. Murata and J. Koh. �Reduction and Expansion of Live and Safe
Marked Graphs�. In: IEEE Transactions on Circuits and Systems

27.1 (1980). IEEE, pp. 68�71. doi: 10.1109/TCS.1980.1084711.

[12] C.A Petri. �Kommunikation mit Automaten�. In: Bonn, Institut
für lnstrumentelle Mathematik (1962).

[13] K. Schmidt. �Integrating Low Level Symmetries into Reachabil-
ity Analysis�. In: Tools and Algorithms for the Construction and

Analysis of Systems. Vol. 5404. LNCS. Springer Berlin Heidelberg,
2000, pp. 315�330. doi: 10.1007/3-540-46419-0_22.

[14] K. Schmidt. �Stubborn Sets for Standard Properties�. In: Applica-
tion and Theory of Petri Nets. Vol. 1639. LNCS. Springer Berlin
Heidelberg, 1999, pp. 46�65. doi: 10.1007/3-540-48745-X_4.

[15] A. Valmari. �A Stubborn Attack on State Explosion�. In: Formal
Methods in System Design 1.4 (1992). Springer, pp. 297�322. doi:
10.1007/BF00709154.

[16] A. Valmari. �Stubborn Set Intuition Explained�. In: Transactions
on Petri Nets and Other Models of Concurrency XII. Vol. 10470.
LNCS. Springer Berlin Heidelberg, 2017, pp. 140�165. doi: 10.
1007/978-3-662-55862-1_7.

[17] A. Valmari. �Stubborn Sets for Reduced State Space Generation�.
In: Advances in Petri Nets 1990. Vol. 483. LNCS. Springer Berlin
Heidelberg, 1991, pp. 491�515. doi: 10.1007/3-540-53863-1_36.

[18] A. Valmari, M. Hague, and I. Potapov. �Stubborn Sets with
Frozen Actions�. In: Reachability Problems. Vol. 7454. LNCS.
Springer International Publishing, 2017, pp. 160�175. doi:
10.1007/978-3-319-67089-8_12.

[19] A. Valmari and W. Vogler. �Fair Testing and Stubborn Sets�. In:
Model Checking Software. Vol. 9641. LNCS. Springer International
Publishing, 2016, pp. 225�243. doi: 10.1007/978-3-319-32582-
8_16.

127

https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1007/3-540-46419-0_22
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-319-67089-8_12
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16

[20] H. Wimmel and K. Wolf. �Applying CEGAR to the Petri Net
State Equation�. In: Tools and Algorithms for the Construction

and Analysis of Systems. Vol. 6605. LNCS. Springer Berlin Hei-
delberg, 2011, pp. 224�238. doi: 10.1007/978-3-642-19835-
9_19.

[21] K. Wolf and M. Koutny. �Running LoLA 2.0 in a Model Checking
Competition�. In: Transactions on Petri Nets and Other Models

of Concurrency XI. Vol. 9930. LNCS. Springer Berlin Heidelberg,
2016, pp. 274�285. doi: 10.1007/978-3-662-53401-4_13.

128

https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-662-53401-4_13

Paper E

Simpli�cation of CTL Formulae for

E�cient Model Checking of Petri

Nets

Frederik M. Bønneland, Jakob Dyhr, Peter G. Jensen,

Mads Johannsen, and Ji°í Srba

This paper has been published in:

Application and Theory of Petri Nets and Concurrency,
LNCS Vol. 10877, pp 143-163, 2018.

Abstract

We study techniques to overcome the state space explosion problem in

CTL model checking of Petri nets. Classical state space pruning ap-

proaches like partial order reductions and structural reductions become

less e�cient with the growing size of the CTL formula. The reason is

that the more places and transitions are used as atomic propositions in a

given formula, the more of the behaviour (interleaving) becomes relevant

for the validity of the formula. We suggest several methods to reduce the

size of CTL formulae, while preserving their validity. By these methods,

we signi�cantly increase the bene�ts of structural and partial order reduc-

tions, as the combination of our techniques can achive up to 60 percent

average reduction in formulae sizes. The algorithms are implemented in

the open-source veri�cation tool TAPAAL and we document the e�ciency

of our approach on a large benchmark of Petri net models and queries

from the Model Checking Contest 2017.

1 Introduction

Model checking [6] of distributed systems, described in high-level for-
malisms like Petri nets, is often a time and resource consuming task�
attributed mainly to the state space explosion problem. Several tech-
niques like partial order and symmetry reductions [16, 21, 19, 23, 22]
and structural reductions [14, 18, 17] were suggested for reducing the
size of the state space of a given Petri net in need of exploration to
verify di�erent logical speci�cations. These techniques try to prune the
searchable state space and their e�ciency is to a high degree in�uenced
by the type and size of the logical formula in question. The larger the
formula is and the more atomic propositions (querying the number of to-
kens in places or the �reability of certain transitions) it has, the less can
be pruned away when exploring the state space and hence the e�ect of
these techniques is reduced. It is therefore desirable to design techniques
that can reduce the size of a given logical formula, while preserving the
model checking answer. For practical applicability, it is important that
such formula reduction techniques are computationally less demanding
than the actual state space search.

In this paper, we focus on the well-known logic CTL [5] and describe
three methods for CTL formula simpli�cation, each preserving the logical
equivalence w.r.t. a the given Petri net model. The �rst two methods

130

1. Introduction

rely on standard logical equivalences of formulae, while the third one
uses state equations of Petri nets and linear programming to recursively
traverse the structure of a given CTL formula. During this process, we
identify subformulae that are either trivially satis�ed or impossible to
satisfy, and we replace them with easier to verify alternatives. We provide
an algorithm for performing such a formula simpli�cation, including the
traversal though temporal CTL operators, and prove the correctness of
our approach.

The formula simpli�cation methods are implemented and fully inte-
grated into an open-source model checker TAPAAL [10] and its untimed
veri�cation engine verifypn [14]. We document the performance of our
tool on the large benchmark of Petri net models and CTL queries from
the Model Checking Contest 2017 (MCC'17) [15]. The data show that
for CTL cardinality queries, we are able to achieve on average 60% of
reduction of the query size and about 34% of queries are simpli�ed into
trivial queries true or false, hence avoiding completely the state space
exploration. For CTL �reability queries, we achieved 50% reduction
of the query size and about 10% of queries are simpli�ed into true or
false. Finally, we compare our simpli�cation algorithm with the one im-
plemented in the tool LoLA [25], the winner of MCC'17 in the several
categories including the CTL category, documenting a noticeable perfor-
mance margin in favour of our approach, both in the number of solved
queries purely by the CTL simpli�cation as well as when CTL veri�cation
follows the simpli�cation process. For completeness, we also present the
data for pure reachability queries where the tool Sara [24] (run parallel
with LoLA during MCC'17) performs counterexample guided abstraction
re�nement and contributes to a high number (about twice as high as our
tool) of solved reachability queries without the need to run LoLA's state
space exploration. Nevertheless, if we also include the actual veri�cation
after the formula simpli�cation, TAPAAL now moves 0.4% ahead of the
combined performance of LoLA and Sara.

Related work. Traditionally, the conditions generated by the state
equation technique [17] express linear constraints on the number of times
the events can occur relative to other events of the system, and form a
necessary condition for marking reachability. State equations were used
in [14] as an over-approximation technique for preprocessing of reach-
ability formulae in earlier editions of the model checking contest. As
the technique can be often inconclusive, extensions of state equations

131

were studied e.g. in [11] where the authors use traps to increase pre-
cision of the method, or in [8] where the state equation technique is
extended to liveness properties. State equations, as a necessary condi-
tion for reachability, were also used in other application domains like
concurrent programming [1, 2]. Our work further extends state equa-
tions to full CTL logic and improves the precision of the method by a
recursive evaluation of integer linear programs for all subformulae, while
employing state equations for each subformula and its negation. State
equations were also exploited in [20] in order to guide the state space
search based on a minimal solution to the equations. This approach is
orthogonal with ours as it essentially de�nes a heuristic search strategy
that in the worst case must explore the whole state space. More recently,
the state equation technique was also applied to the coverability problem
for Petri nets [4, 12].

Formula rewriting techniques (in order to reduce the size of CTL
formulae) are implemented in the tool LoLA [25]. The tool performs
formula simpli�cation by employing subformula rewriting rules that in-
clude a subset of the rules described in Section 3. LoLA also employs the
model checking tool Sara [24] that uses state equations in combination
with Counter Example Abstraction Re�nement (CEGAR) to perform
an exact reachability analysis, being able to answer both reachability
and non-reachability questions and hence it is close to being a complete
model checker. Sara shows a very convincing performance on reacha-
bility queries, however, in the CTL category, we are able to simplify to
true or false almost twice as many formulae, compared to the combined
performance of Sara and LoLA.

2 Preliminaries

A labelled transition system (LTS) is a tuple G = (S, A,→) where S is
a set of states, A is a set of actions (or labels), and → ⊆ S ×A× S is a
transition relation. We write s

a−→ s′ whenever (s, a, s′) ∈ → and say that
a is enabled in s. The set of all enabled actions in a state s is denoted
en(s). A state s is a deadlock if en(s) = ∅. We write s −→ s′ whenever
there is an action a such that s

a−→ s′.

A run starting at s0 is any �nite or in�nite sequence s0
a0−→ s1

a1−→
s2

a2−→ · · · where s0, s1, s2, . . . ∈ S, a0, a1, a2 · · · ∈ A and (si, ai, si+1) ∈ →
for all respective i. We use Π(s) to denote the set of all runs starting at
the state s. A run is maximal if it is either in�nite or ends in a state that

132

2. Preliminaries

is a deadlock. Let Πmax (s) denote the set of all maximal runs starting

at the state s. A position i in a run π = s0
a0−→ s1

a1−→ s2
a2−→ · · · refers to

the state si in the path and is written as πi. If π is in�nite then any i,
0 ≤ i, is a position in π. Otherwise 0 ≤ i ≤ n where sn is the last state
in π.

We now de�ne the syntax and semantics of a computation tree logic

(CTL) [7] as used in the Model Checking Contest [15]. Let AP be a set
of atomic propositions. We evaluate atomic propositions on a given LTS
G = (S, A,→) by the function v : S → 2AP so that v(s) is the set of
atomic propositions satis�ed in the state s ∈ S.

The CTL syntax is given as follows (where α ∈ AP ranges over
atomic propositions):

ϕ ::= true | false | α |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | AXϕ | EXϕ |
AFϕ | EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E (ϕ1Uϕ2)

We use ΦCTL to denote the set of all CTL formulae. The semantics of
a CTL formula ϕ in a state s ∈ S is given in Table 1. We do not use
only the minimal set of CTL operators because the query simpli�cation
tries to push the negation as far as possible to the atomic predicates.
This signi�cantly improves the performance of our on-the-�y CTL model
checking algorithm and allows for a more re�ned query rewriting.

We can now de�ne weighted Petri nets with inhibitor arcs. Let N0 =
N∪{0} be the set of natural numbers including 0 and let N∞ = N∪{∞}
be the set of natural numbers including in�nity.

De�nition 1 (Petri net). A Petri net is a tuple N = (P, T,W , I) where
P and T are �nite disjoint sets of places and transitions, W : (P × T)∪
(T ×P)→ N0 is the weight function for regular arcs, and I : (P ×T)→
N∞ is the weight function for inhibitor arcs.

A marking M on N is a function M : P → N0 where M(p) denotes
the number of tokens in the place p. The set of all markings of a Petri
net N is written asM(N). Let M0 ∈ M(N) be a given initial marking

of N .
A Petri net N = (P, T,W , I) de�nes an LTS G(N) = (S, A,→)

where S =M(N) is the set of all markings, A = T is the set of labels,

and M
t−→ M ′ whenever for all p ∈ P we have M(p) < I((p, t)) and

M(p) ≥W ((p, t)) such that M ′(p) = M(p)−W ((p, t)) +W ((t, p)). We

inductively extend the relation
t−→ to sequences of transitions w ∈ T ∗

such that M
ε−→ M and M

wt−→ M ′ if M
w−→ M ′′ and M ′′

t−→ M ′. We

133

s |= true

s 6|= false

s |= α i� α ∈ v(s)

s |= deadlock i� en(s) = ∅
s |= ϕ1 ∧ ϕ2 i� s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 i� s |= ϕ1 or s |= ϕ2

s |= ¬ϕ i� s 6|= ϕ

s |= AXϕ i� s′ |= ϕ for all s′ ∈ S s.t. s −→ s′

s |= EXϕ i� there is s′ ∈ S s.t s −→ s′ and s′ |= ϕ

s |= AFϕ i� for all π ∈ Πmax (s) there is a position i in π

s.t. πi |= ϕ

s |= EFϕ i� there is π ∈ Πmax (s) and a position i in π

s.t. πi |= ϕ

s |= AGϕ i� for all π ∈ Πmax (s) and for all positions i in π

we have πi |= ϕ

s |= EGϕ i� there is π ∈ Πmax (s) s.t. for all positions i in π

we have πi |= ϕ

s |= A(ϕ1Uϕ2) i� for all π ∈ Πmax (s) there is a position i in π s.t.

πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

s |= E (ϕ1Uϕ2) i� there is π ∈ Πmax (s) and there is a position i in π

s.t. πi |= ϕ2 and for all j, 0 ≤ j < i, we have πj |= ϕ1

Table 1: Semantics of CTL formulae

134

2. Preliminaries

• •w

m2

m1s1
•i1 f1

s2

•i2 f2

wait sync

2

2

2

Figure 1: A Petri net modelling two synchronizing processes

write M −→∗ M ′ if there is w ∈ T ∗ such that M
w−→M ′. By reach(M) =

{M ′ ∈ M(N) | M −→∗ M ′} we denote the set of all markings reachable
from M .

Example 1. Figure 1 illustrates an example of a Petri net where places
are drawn as circles, transitions as rectangles, regular arcs as arrows with
the weight as labels (default weight is 1 and arcs with weight 0 are not
depicted) and inhibitor arcs are shown as circle-headed arrows (again
the default weight is 1 and arcs with weight ∞ are not depicted). The
dots inside places represent the number of tokens (marking). The initial
marking in the net can be written by i1i32w denoting one token in i1, one
token in i3 and two tokens in the place w. The net attempts to model two
processes that aim to get exclusive access to �ring either the transition f1
or f2 (making sure that they cannot be enabled concurrently). Once the
�rst process decides to enable transition f1 by moving the token from i1
to m1, the second process is not allowed to place a token into m2 due to
the inhibitor arc connection m1 to s2. However, as there is no inhibitor
arc in the order direction, it is possible to reach a deadlock in the net by
performing i1i22w

s2−→ i1m2w
s1−→ m1m2.

Finally, we �x the set of atomic propositions α (α ∈ AP) for Petri
nets as used in the MCC Property Language [15]:

α ::= t | e1 ./ e2

e ::= c | p | e1 ⊕ e2

135

where t ∈ T , c ∈ N0, ./ ∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}.
The evaluation function v for a marking M is given as v(M) = {t ∈ T |
t ∈ en(M)} ∪ {e1 ./ e2 | evalM (e1) ./ evalM (e2)} where evalM (c) = c,
evalM (p) = M(p) and evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

Formulae that do not use any atomic predicate t for transition �ring
and deadlock are called CTL cardinality formulae and formulae that
avoid the use of e1 ./ e2 and deadlock are called CTL �rability formulate.
Formulae of the form EFϕ or AGϕ where ϕ does not contain any other
temporal operator are called reachability formulae, and as for CTL can
be subdivided into the reachability cardinality and reachability �reability

category.

Example 2. Consider the Petri net in Figure 1 and the reachability �re-
ability formula EF (f1 ∧ f2) asking whether there is a reachable marking
that enables both f1 and f2. By exploring the (�nite) part of the LTS
reachable from the initial marking i1i22w, we can conclude that i1i22w 6|=
EF (f1 ∧ f2). However, the slightly modi�ed query EFAX (f1 ∧ f2)
holds in the initial marking as a deadlocked marking m1m2 can be
reached, and due to the de�nition of the universal next modality we
have m1m2 |= AX (f1 ∧ f2). Another example of a cardinality formula
is E (w ≥ 2 U m2 = 1) asking if there is a computation that marks the
placem2 and before it happens, w must contain at least two tokens. This
formula holds in the initial marking by �ring the transition s2.

We shall �nish the preliminaries by recalling the basics of linear
programming. Let X = {x1, x2, . . . , xn} be a set of variables and let
x = (x1, x2, . . . , xn)T be a column vector of the variables. A linear equa-

tion is of the form c · x ./ k where ./ ∈ {=, <,≤, >,≥}, k ∈ Z is an
integer, and c = (c1, c2, . . . , cn) is a row vector of integer constants. An
integer linear program LP is a �nite set of linear equations. An (integer)
solution to LP is a mapping u : X → N0 from variables to natural num-
bers such that for every linear equation (c · x ./ k) ∈ LP , the column
vector u = (u(x1) u(x2) · · ·u(xn))T satis�es the equation c · u ./ k. We
use EXlin to denote the set of all integer linear programs over the variables
X .

An integer linear program with a solution is said to be feasible. For
our purpose, we only consider feasibility and we are not interested in the
optimality of the solution. The feasibility problem of integer linear pro-
grams is NP-complete [11, 26], however, there exists a number of e�cient
linear program solvers (we use lp_solve in our implementation [3]).

136

3. Logical Equivalence of Formulae

3 Logical Equivalence of Formulae

Before we give our method for recursive simpli�cation of CTL formu-
lae via the use of state equations in Section 4, we �rst introduce two
other formula simpli�cation techniques. The �rst method utilizes the
initial marking and the second method uses universally valid formulae
equivalences. For the rest of this section, we assume a �xed Petri net
N = (P, T,W , I) with the initial marking M0.

For the �rst simpli�cation, let us de�ne in Table 2 the function
Ω : ΦCTL → {true, false, ?} that checks if a given formula is trivially
satis�able in the initial marking M0. Note that we generalize the binary
conjunctions and disjunctions to n-ary operations as it corresponds to
the implementation in our tool. The correctness of this simpli�cation is
expressed in the following theorem.

Theorem 1 (Initial Rewrite). Let ϕ be a CTL formula such that Ω(ϕ) 6=
?. Then M0 |= ϕ if and only if Ω(ϕ) = true.

For the second simpli�cation, we establish a recursively de�ned
rewrite-function ρ : ΦCTL → ΦCTL given in Table 3 and 4 that is based
on logical equivalences for the CTL quanti�ers. In the de�nition of ρ,
we assume that the n-ary operators ∨ and ∧ are associative and
commutative. The correctness is captured in the following theorem.

Theorem 2 (Equivalence Rewriting). Let M ∈M(N) be a marking on

N . Then M |= ϕ if and only if M |= ρ(ϕ).

4 Formula Simpli�cation via State Equations

We will now describe the main ingredients of our formula simpli�cation
algorithm. It is based on a recursive decent on the structure of the for-
mula, checking whether its subformulae and their negations can possibly
hold in some reachable marking (here we use the state equation [11,
17] approach) and then propagating back this information through the
Boolean and temporal operators.

We use state equations to identify universally true or false subfor-
mulae, similarly as e.g. in [14]. The main novelty is that we extend
the approach to deal with arbitrary arithmetical expressions and repeat-
edly solve linear programs for subformulae of the given property so that
more signi�cant simpli�cations can be achieved (we try to solve the state
equations both for the subformula and its negation). As a result, we can

137

Ω(true) = true

Ω(α) = M0 |= α

Ω(AXϕ) =

{
true if M0 |= deadlock

? otherwise

Ω(false) = false

Ω(deadlock) = M0 |= deadlock

Ω(EXϕ) =

{
false if M0 |= deadlock

? otherwise

Ω(¬ϕ) =


true if Ω(ϕ) = false

false if Ω(ϕ) = true

? otherwise

Ω(ϕ1 ∧ · · · ∧ ϕn) =


true if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = true

false if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = false

? otherwise

Ω(ϕ1 ∨ · · · ∨ ϕn) =


true if there exists i, 1 ≤ i ≤ n, s.t. Ω(ϕi) = true

false if for all i, 1 ≤ i ≤ n, we have Ω(ϕi) = false

? otherwise

Ω(EGϕ) = Ω(AGϕ) =

{
false if Ω(ϕ) = false

? otherwise

Ω(EFϕ) = Ω(AFϕ) =

{
true if Ω(ϕ) = true

? otherwise

Ω(E (ϕ1Uϕ2)) = Ω(A(ϕ1Uϕ2)) =


true if Ω(ϕ2) = true

false if Ω(ϕ1) = Ω(ϕ2) = false

? otherwise

Table 2: Simpli�cation rules for a given initial marking M0

138

4. Formula Simpli�cation via State Equations

ρ(α) = α

ρ(EGϕ) = ρ(¬AFρ(¬ϕ))

ρ(EXϕ) = EX ρ(ϕ)

ρ(ϕ1 ∧ · · · ∧ ϕn) = ρ(ϕ1) ∧ · · · ∧ ρ(ϕn)

ρ(deadlock) = deadlock

ρ(AGϕ) = ρ(¬EFρ(¬ϕ))

ρ(AXϕ) = AX ρ(ϕ)

ρ(ϕ1 ∨ · · · ∨ ϕn) = ρ(ϕ1) ∨ · · · ∨ ρ(ϕn)

ρ(¬ϕ) =



ϕ′ if ρ(ϕ) = ¬ϕ′

AX ρ(¬ϕ′) if ρ(ϕ) = EXϕ′

EX ρ(¬ϕ′) if ρ(ϕ) = AXϕ′

ρ((¬ϕ1) ∧ · · · ∧ (¬ϕn)) if ϕ = ϕ1 ∨ · · · ∨ ϕn
ρ((¬ϕ1) ∨ · · · ∨ (¬ϕn)) if ϕ = ϕ1 ∧ · · · ∧ ϕn
¬ρ(ϕ) otherwise

ρ(EFϕ) =



¬deadlock if ρ(ϕ) = ¬deadlock

EFϕ′ if ρ(ϕ) = EFϕ′

ρ(EFϕ′) if ρ(ϕ) = AFϕ′

ρ(EFϕ2) if ρ(ϕ) = E (ϕ1Uϕ2)

ρ(EFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ(EFϕ1 ∨ · · · ∨ EFϕn) if ρ(ϕ) = ϕ1 ∨ · · · ∨ ϕn
EFρ(ϕ) otherwise

Table 3: Equivalence rewriting of CTL formulae, Part 1

t1
• • ••

p

2

2

t2
3

2

Figure 2: Example Petri net and initial marking for formula simpli�cation

139

ρ(AFϕ) =



¬deadlock if ρ(ϕ) = ¬deadlock

EFϕ′ if ρ(ϕ) = EFϕ′

AFϕ′ if ρ(ϕ) = AFϕ′

ρ(AFϕ2) if ρ(ϕ) = A(ϕ1Uϕ2)

ρ((EFϕ2) ∨ (AFϕ1)) if ρ(ϕ) = ϕ1 ∨ EFϕ2

AFρ(ϕ) otherwise

ρ(A(ϕ1Uϕ2)) =



¬deadlock if ρ(ϕ2) = ¬deadlock

ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(AFϕ2) if ρ(ϕ1) = ¬deadlock

EFϕ3 if ρ(ϕ2) = EFϕ3

AFϕ3 if ρ(ϕ2) = AFϕ3

ρ((EFϕ4) ∨A(ϕ1Uϕ3)) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

A(ρ(ϕ1)U ρ(ϕ2) otherwise

ρ(E (ϕ1Uϕ2)) =



¬deadlock if ρ(ϕ2) = ¬deadlock

ρ(ϕ2) if ρ(ϕ1) = deadlock

ρ(EFϕ2) if ρ(ϕ1) = ¬deadlock

EFϕ3 if ρ(ϕ2) = EFϕ3

ρ((EFϕ4) ∨ E (ϕ1Uϕ3) if ρ(ϕ2) = ϕ3 ∨ EFϕ4

E (ρ(ϕ1)U ρ(ϕ2) otherwise

Table 4: Equivalence rewriting of CTL formulae, Part 2

140

4. Formula Simpli�cation via State Equations

simplify more formulae into the trivially valid ones (true) or invalid ones
(false) or we can signi�cantly reduce the size of the formulae which can
then speed up the state space exploration.

Consider the Petri net in Figure 2 with the initial markingM0, where
M0(p) = 4. The state equation for the reachability formula EF p ≥ 5
(can the place p be marked with at least �ve tokens) over the variables
xt1 and xt2 (representing the number of transition �rings of t1 and t2
respectively) looks as

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt ≥ 5

which in our example translates to 4+0 ·xt1−1 ·xt2 ≥ 5. The inequality
clearly does not have a solution in nonnegative integers, hence we can
conclude without exploring the state space that EF p ≥ 5 does not hold
in the initial marking. Moreover, consider now the formula EF (p ≥
5) ∨ (p = 2 ∧ p ≤ 7). By recursively analyzing the subformulae, we can
conclude using the state equations that p ≥ 5 cannot be satis�ed in any
reachable marking, hence the formula simpli�es to EF (p = 2 ∧ p ≤
7). Moreover, by continuing the recursive decent and looking at the
subformula p ≤ 7, we can determine by using state equations, that its
negation p > 7 cannot be satis�ed in any reachable marking. Hence p ≤ 7
is universally true and the formula further simpli�es to an equivalent
formula EF p = 2 for which we have to apply conventional veri�cation
techniques.

In what follows, we formally de�ne our formula simpli�cation pro-
cedure and extend it to the full CTL logic so that e.g. the formula
EF AX p ≥ 5 simpli�es to the reachability formula EF deadlock for
which we can use specialized algorithms for deadlock detection (e.g. us-
ing the siphon-trap property [13]) instead of the more expensive CTL
veri�cation algorithms. Even if a CTL formula does not simplify to a
pure reachability property, the reduction in the size of the CTL formula
has still a positive e�ect on the e�ciency of the CTL veri�cation algo-
rithms as the state space grows with the number of di�erent subformulae.

Simpli�cation Procedure

Let N = (P, T,W , I) be a �xed Petri net with the initial marking M0

and ϕ a given CTL formula. Before we start, we assume that the formula
ϕ has been rewritten into an equivalent one by recursively applying the

141

rewriting rules in Table 5. Clearly, these rules preserve logical equiva-
lence and they push the negation down to either the atomic propositions
or in front of the existential or universal until operators. Moreover, the
�reability predicate for a transition t is rewritten to the equivalent car-
dinality formula.

ϕ rewritten ϕ

t p1 ≥W (p1, t) ∧ · · · ∧ pn ≥W (pn, t) ∧
p1 < I(p1, t) ∧ · · · ∧ pn < I(pn, t)
where P = {p1, p2, . . . , pn}

e1 6= e2 e1 > e2 ∨ e1 < e2
e1 = e2 e1 ≤ e2 ∧ e1 ≥ e2
¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ∧ ¬ϕ2

¬AXϕ EX¬ϕ
¬EXϕ AX¬ϕ
¬AFϕ EG¬ϕ
¬EFϕ AG¬ϕ
¬AGϕ EF¬ϕ
¬EGϕ AF¬ϕ

Table 5: Rewriting rules

Let EXlin be the set of all integer linear programs over the set of vari-
ables X = {xt | t ∈ T}. Let LPS ⊆ EXlin be a �nite set of integer
linear programs. We say that LPS has a solution, if there exists a linear
program LP ∈ LPS that has a solution.

We will now de�ne a simpli�cation function that, for a given formula
ϕ ∈ ΦCTL, produces a simpli�ed formula and two sets of integer linear
programs. The function is of the form

simp : ΦCTL → ΦCTL × 2E
X
lin × 2E

X
lin

and we write simp(ϕ) = (ϕ′,LPS ,LPS) when the formula ϕ is simpli�ed
to an equivalent formula ϕ′, and where the following invariant holds:

� ifM |= ϕ for someM reachable fromM0 then LPS has a solution,
and

� ifM 6|= ϕ for someM reachable fromM0 then LPS has a solution.

142

4. Formula Simpli�cation via State Equations

Algorithm 5: Simplify e1 ./ e2

1 Function simp(e1 ./ e2)
2 if e1 is not linear or e2 is not linear then

3 return (e1 ./ e2, {{0 ≤ 1}}, {{0 ≤ 1}})
4 LPS ← {{const(e1) ./ const(e2)}}
5 LPS ← {{const(e1) ./ const(e2)}}
6 if {LP ∪ BASE | LP ∈ LPS} has no solution then

7 return simp(false)

8 else if {LP ∪ BASE | LP ∈ LPS} has no solution then

9 return simp(true)
10 else

11 return (e1 ./ e2,LPS ,LPS)

In order to de�ne the simpli�cation function, we use the function
merge : 2E

X
lin × 2E

X
lin → 2E

X
lin that combines two set of integer linear pro-

grams and is de�ned as merge (LPS 1,LPS 2)= {LP1 ∪ LP2 | LP1 ∈
LPS 1, LP2 ∈ LPS 2}. Finally, let BASE denote the integer linear pro-
gram with the following equations

M0(p) +
∑
t∈T

(W (t, p)−W (p, t)) · xt ≥ 0 for all p ∈ P

that ensures that any solution to BASE must leave a nonnegative number
of tokens in every place of N .

First, we postulate simp(true) = (true, {{0 ≤ 1}}, ∅), simp(false) =
(false, ∅, {{0 ≤ 1}}), and simp(deadlock) = (deadlock , {{0 ≤ 1}}, {{0 ≤
1}}) and these de�nitions clearly satisfy our invariant.

Algorithm 6: Simplify ¬ϕ
1 Function simp(¬ϕ)

2 (ϕ′,LPS ,LPS)← simp(ϕ)
3 if ϕ′ = true then
4 return simp(false)

5 if ϕ′ = false then
6 return simp(true)

7 return (¬ϕ′,LPS ,LPS)

143

Algorithm 5 describes how to simplify the atomic predicates, where
the function const takes as input an arithmetic expression e and returns
one side of the linear equation as follows:

const(c) = c

const(p) = M0(p) +
∑
t∈T

(W (t, p)−W (p, t)) · xt

const(e1 + e2) = const(e1) + const(e2)

const(e1 − e2) = const(e1)− const(e2)

const(e1 · e2) = const(e1) · const(e2).

In the algorithm we let ./ denote the dual operation to ./, for example >
becomes≤ and≥ becomes<. There is a special case that we must handle
here. If in either of the expressions e1 or e2 we have a multiplication
that includes more than one place (i.e. the expression is not linear) then
we would return a nonlinear program that cannot be solved by linear
program solvers. To handle this situation, if either side of the comparison
in nonlinear, we return the formula unchanged and two singleton sets of
linear programs {{0 ≤ 1}} that trivially have a solution (any variable
assignment is a solution to the linear program 0 ≤ 1) and hence satisfy
our invariant.

The simpli�cation of negation ¬ϕ is given in Algorithm 6. It �rst
recursively computes the simpli�cation ϕ′ of ϕ and if the answer is con-
clusive then the negated conclusive answer is returned, otherwise we
return ¬ϕ′ and swap the two sets of linear programs.

In Algorithm 7 we show how to simplify conjunctions and disjunc-
tions of formulae. We give the simpli�cation function for n-ary operators
to mimic the implementation closely. We present both conjunction and
disjunction in the same pseudocode in order to clarify the symmetry
in handling the Boolean connectives. The algorithm recursively simpli-
�es the subformulae and one by one adds the simpli�ed formulae into
the resulting proposition ϕ′, unless a conclusive answer (true/false) can
be given immediately or the subformula can be omitted. Note that for
conjunction we merge the current LPS and LPS i returned for the subfor-
mula ϕi as if the conjunction is satis�ed in some reachable marking then
there must be an LP ∈ LPS and an LPi ∈ LPS i such that LP ∪LPi has
a solution. Symmetrically, we do the merge also for disjunction and the
negated sets of linear programs. Finally, we check whether the created
systems of linear programs have solutions and in the negative cases we
can sometimes draw a conclusive answer.

144

4. Formula Simpli�cation via State Equations

Algorithm 7: Simplify ϕ1♦ . . .♦ϕn for ♦ ∈ {∧,∨}
1 Function simp(ϕ1♦ . . .♦ϕn)
2 Let ϕ′ be an empty formula.
3 if ♦ = ∧ then
4 LPS ← {{0 ≤ 1}}; LPS ← ∅
5 if ♦ = ∨ then
6 LPS ← ∅; LPS ← {{0 ≤ 1}}
7 for i := 1 to n do

8 (ϕ′i,LPS i,LPS i)← simp(ϕi)
9 if ♦ = ∧ and ϕ′i = false then
10 return simp(false)

11 if ♦ = ∧ and ϕ′i 6= true then
12 ϕ′ ← ϕ′ ∧ ϕ′i
13 LPS ← merge(LPS ,LPS i)

14 LPS ← LPS ∪ LPS i

15 if ♦ = ∨ and ϕ′i = true then
16 return simp(true)

17 if ♦ = ∨ and ϕ′i 6= false then
18 ϕ′ ← ϕ′ ∨ ϕ′i
19 LPS ← LPS ∪ LPS i
20 LPS ← merge(LPS ,LPS i)

21 if ϕ′ is empty formula and ♦ = ∧ then
22 return simp(true)

23 if ϕ′ is empty formula and ♦ = ∨ then
24 return simp(false)

25 if ♦ = ∧ and {LP ∪ BASE | LP ∈ LPS} has no solution

then

26 return simp(false)

27 if ♦ = ∨ and {LP ∪ BASE | LP ∈ LPS} has no solution

then

28 return simp(true)

29 return (ϕ′,LPS ,LPS)

145

Algorithm 8: Simplify QXϕ where Q ∈ {A,E}
1 Function simp(QXϕ)

2 (ϕ′,LPS ,LPS)← simp(ϕ)
3 if Q = A and ϕ′ = true then
4 return simp(true)

5 if Q = A and ϕ′ = false then
6 return simp(deadlock)

7 if Q = E and ϕ′ = true then
8 return simp(¬deadlock)

9 if Q = E and ϕ′ = false then
10 return simp(false)

11 return (QXϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

Algorithm 9: Simplify QPϕ where QP ∈ {AG ,EG ,AF ,EF}
1 Function simp(QPϕ)

2 (ϕ′,LPS ,LPS)← simp(ϕ)
3 if ϕ′ = true then
4 return simp(true)

5 if ϕ′ = false then
6 return simp(false)

7 return (QPϕ′, {{0 ≤ 1}}, {{0 ≤ 1}})

Simpli�cation of the next operators is given in Algorithm 8. It is
worth noticing that for certain situations, the next operator can be re-
moved and replaced with the deadlock proposition (and hence possibly
change the CTL formula into a reachability formula). If none of the sim-
pli�cation cases applies, we return the next operator with the simpli�ed
formula together with two sets of linear programs with trivial solutions
in order to satisfy our invariant. Similarly, the simpli�cation of the unary
CTL temporal operators is given in Algorithm 9.

Finally, in Algorithm 10 we present the simpli�cation of binary CTL
temporal operators. Here we �rst simplify ϕ2 and see if we can draw
some straightforward conclusions. If this is not the case, we also simplify
ϕ1 and if it evaluates to true or false, we can either reduce the binary
temporal operator into a unary one or completely remove the unary

146

4. Formula Simpli�cation via State Equations

Algorithm 10: Simplify Q(ϕ1Uϕ2) where Q ∈ {A,E}
1 Function simp(Q(ϕ1Uϕ2))

2 (ϕ′2,LPS 2,LPS 2)← simp(ϕ2)
3 if ϕ′2 = true then
4 return simp(true)

5 if ϕ′2 = false then
6 return simp(false)

7 (ϕ′1,LPS 1,LPS 1)← simp(ϕ1)
8 if ϕ′1 = true then
9 return (QFϕ′2, {{0 ≤ 1}}, {{0 ≤ 1}})

10 if ϕ′1 = false then

11 return (ϕ′2,LPS 2,LPS 2)

12 return (Q(ϕ′1Uϕ
′
2), {{0 ≤ 1}}, {{0 ≤ 1}})

operator, respectively.

Example 3. Consider again the net from Example 2. We can simplify
the formula EFAX (f1∧f2) as follows. Let X = {xs1 , xs2 , xf1 , xf2 , xsync}
be the variables. Using the rewriting rules from Table 5 we have that
EFAX (f1 ∧ f2) is equivalent to EFAX (m1 ≥ 1∧w ≥ 1∧m2 ≥ 1). The
linear equations LPS generated by Algorithm 5 and 7 are as follows.

xs1 − xf1 ≥ 1

2 + xf1 + xf2 − xs1 − xs2 ≥ 1

xs2 − xf2 ≥ 1

We do not include BASE here, as the equations above are already unfea-
sible (have no integer solution). This follows from the observation that
the �rst and third equation imply that xs1 > xf1 and xs2 > xf2 , respec-
tively, and this contradicts the second equation 2+xf1 +xf2 > xs1 +xs2 .
Therefore, Algorithm 7 simpli�es EFAX (f1 ∧ f2) to EFAX false and by
Algorithm 8, we simplify it further to EFdeadlock . No further reduction
is possible, however, we simpli�ed a CTL formula into a simple reachabil-
ity formula for which we can now use specialized algorithms for deadlock
detection.

We conclude this section with a theorem stating the correctness of
the simpli�cation, meaning that for simp(ϕ) = (ϕ′,LPS ,LPS) we have

147

M0 |= ϕ if and only if M0 |= ϕ′. In order to do so, we prove a stronger
claim that allows us to formally introduce the invariant on the sets of
linear programs returned by the function simp.

Theorem 3 (Formula Simpli�cation Correctness). Let N = (P, T,W , I)
be a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL

formula. Let simp(ϕ) = (ϕ′,LPS ,LPS). Then for all markings M ∈
M(N) such that M0

w−→M holds:

1. M |= ϕ i� M |= ϕ′

2. if M |= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to

LP

3. if M 6|= ϕ then there is LP ∈ LPS such that ℘(w) is a solution to

LP

where ℘(w) is a solution that assigns to each variable xt the number of

occurrences of the transition t in the transition sequence w.

5 Implementation and Experiments

The formula simpli�cation techniques are implemented in C++ in the
verifypn engine [14] of the tool TAPAAL [10] and distributed in the
latest release at www.tapaal.net. The source code is available at code.
launchpad.net/verifypn.

After parsing the PNML model and the formula, TAPAAL applies
sequentially the simpli�cation procedures as depicted in Figure 3, where
we �rst attempt to restructure the formulae to a simpler form using ρ
followed by the application of Ω. After this, the main simp procedure
is called. The simpli�cation can create a formula where additional ap-
plications of ρ and Ω are possible and can further reduce the formula
size. After the simpli�cation is completed, TAPAAL applies structural
reductions to the model, removing or merging redundant transitions and
places as described in [14]. The engine now proceeds as follows.

1. If the formulae is of the form EFdeadlock then siphon-trap analysis
is attempted, followed by normal explicit-state veri�cation in case
of an inconclusive answer.

2. If the formulae falls within pure reachability category (EFϕ or
¬EFϕ, where ϕ does not contain further temporal operators), then

148

www.tapaal.net
code.launchpad.net/verifypn
code.launchpad.net/verifypn

5. Implementation and Experiments

XML parser

PNML + XML formulae

ρ

Ω

simp

ρ

Ω

Structural reduction

CTL veri�cation

CTL

Siphon-trap analysis

EF deadlock

Reachability veri�cation

with stubborn reduction

Reachability Feasible

Not satis�ed

Infeasible

Satis�ed or not satis�ed

Figure 3: TAPAAL tool-chain and control �ow

we call a specialized reachability engine that uses stubborn set
reduction.

3. For the general CTL formula, the veri�cation is performed via a
translation to a dependency graph and performing on-the-�y com-
putation of its minimum �xed-point assignment as described in [9].

Implementation Details of the Simpli�cation Procedure

During implementation and subsequent experimentation, we discovered
that the construction of linear programs for large models can be both
time and memory-consuming. In particular, the merge-operation causes
a quadratic blowup both in the size and the number of linear programs.
To remedy this, we have implemented a �lazy� construction of the linear
programs�similar to lazy evaluation known from functional program-
ming languages. Instead of computing the full set of linear programs
up front, we simply remember the basic linear programs and the tree
of operations making up the merged or unioned linear program. Using
this construction, we then extract a single linear program on demand,

149

CTL Cardinality

Algorithm Solved % Solved Reachability % Reachability % Reduction

Ω 117 2.3 1834 36.6 27.2
ρ 7 0.1 1437 28.7 24.1
simp 1437 28.7 2425 48.4 45.7
all 1724 34.4 2993 59.8 60.3

CTL Fireability

Ω 194 3.9 1701 34.0 27.1
ρ 0 0.0 1319 26.3 30.0
simp 255 5.1 1422 28.4 11.0
all 495 9.9 2022 40.4 49.7

Table 6: Formula simpli�cation for CTL cardinality and �reability

and thus avoid the up-front time and memory overhead of computing
the merge and union operations at the call time.

Experimental Setup

To evaluate the performance of our approach, we conduct two series of
experiments on the models and formulae from MCC'17 [15]. First, we
investigate the e�ect of the three di�erent simpli�cation methods pro-
posed in this paper along with their combination as depicted in Figure 3.
In the second experiment we compare the performance of our simpli�-
cation algorithms to those used by LoLA, the winner of MCC'17. We
also conduct a full run of the veri�cation engines after the formula sim-
pli�cation in order to assess the impact of the simpli�cation on the state
space search. All experiments were run on AMD Opteron 6376 Proces-
sors, restricted to 14 GB of memory on 313 P/T nets from the MCC'17
benchmark. Each category contains 16 di�erent queries which yields a
total of 5008 executions for a given category.

Evaluation of Formula Simpli�cation Techniques

We compare the performance of Ω, ρ and simp functions along with their
combined version referred to as all (applying sequentially ρ, Ω, simp, ρ
and Ω). The execution of each simpli�cation was limited to 20 minutes
per formula (excluding the model parsing time) and a timeout for �nding
a solution to a linear program using lp_solve [3] was set to 120 seconds.

150

5. Implementation and Experiments

CTL Simpli�cation Only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 1724 34 236 5 904 18
Fireability 495 10 173 3 488 10
Total 2219 22 409 4 1392 14

CTL Simpli�cation Followed by Veri�cation

Cardinality 4232 85 3634 73 3810 76
Fireability 3712 74 3663 73 3690 74
Total 7944 79 7297 73 7500 75

Table 7: Tool comparison on CTL formulae

Table 6 reports the numbers (and percentages) of formulae that were
solved (simpli�ed to either true or false), the number of formulae con-
verted from a complex CTL formula into a pure reachability formula and
the average formula reduction in percentages (where the formula size be-
fore and after the reductions is measured as a number of nodes in its
parse tree).

We can observe that the combination of our techniques simpli�es
about 34% of cardinality queries and 10% of �reability queries into true
or false, while a signi�cant number of queries are simpli�ed from CTL
formula into pure reachability problems (60% of cardinality queries and
40% of �reability ones). The average reduction in the query size is 60%
for cardinality and 50% for �reability queries. The results are encourag-
ing, though the performance on �reability formulae is considerably worse
than for cardinality formulae. The reason is that �reability predicates
are translated into Boolean combinations of cardinality predicates and
the expanded formulae are less suitable for the simpli�cation procedures
due to their increased size. This is also re�ected by the time it took to
compute the simpli�cation. For CTL cardinality, half of the simpli�ca-
tions terminate in less than 0.05 seconds, 75% simpli�cations terminate
in less than 0.98 seconds and 90% of simpli�cations terminate in less
than 9.46 seconds. The corresponding numbers for CTL �reability are
0.22 seconds, 13.70 seconds and 538.34 seconds.

Comparison with LoLA

We compare the performance of our tool-chain, presented in Figure 3,
with the tool LoLA [25] and the combination of LoLA and its linear

151

Reachability Simpli�cation Only

TAPAAL LoLA LoLA+Sara

Solved % Solved Solved % Solved Solved % Solved

Cardinality 2256 45 277 6 3734 75
Fireability 1073 21 296 6 2880 58
Total 3329 33 573 6 6614 66

Reachability Simpli�cation Followed by Veri�cation

Cardinality 4638 93 3734 75 4628 92
Fireability 4402 88 2880 58 4372 87
Total 9040 90 6614 66 9000 90

Table 8: Tool comparison on reachability formulae

program solver Sara [24] that uses the CEGAR approach. In the CTL
simpli�cation experiment, we allow 20 minutes for formula simpli�cation
(excluding the net parsing time) and count how many solved (simpli�ed
to true or false) queries each tool computed1. For CTL veri�cation,
we allow the tools �rst simplify the query and then proceed with the
veri�cation according to the best setup the tools provide, again with a
20 minute timeout excluding the parsing time. We run LoLA and Sara
in parallel (in their advantage), each of them having 20 minute timeout
per execution. The results are presented in Table 7. We can observe that
in simpli�cation of CTL cardinality formulae, we are able to provide an
answer for 34% of queries while the combination of LoLA and Sara solves
only 18% of them. The performance on the CTL �reability simpli�cation
is comparable. If we follow the simpli�cation with an actual veri�cation,
TAPAAL solves in total 79% of queries and LoLA with Sara 75%. As
a result, TAPAAL with the new query simpli�cation algorithms now
outperforms the CTL category winner of the last year.

For completeness, in Table 8, we also include the results for the
simpli�cation and veri�cation of reachability queries, even though our
method is mainly targeted towards CTL formulae. We can notice that
thanks to Sara, a fully functional model checker implementing the CE-
GAR approach, LoLA in combination with Sara solves twice as many
queries by simpli�cation as we do. However, once followed by the actual
veri�cation (and due to our simpli�cation technique that signi�cantly

1We use the current development snapshots of LoLA (based on version 2.0) and
Sara (based on version 1.14), kindly provided by the LoLA and Sara development
team.

152

6. Conclusion

reduces formula sizes), both tools now show essentially comparable per-
formance with a small margin towards TAPAAL, solving 40 additional
formulae.

6 Conclusion

We presented techniques for reducing the size of a CTL formula inter-
preted over the Petri net model. The motivation is to speed up the state
space search and to provide a bene�cial interplay with other techniques
like partial order and structural reductions. The experiential results�
compared with LoLA, the winner of MCC'17 competition�document
a convincing performance for simpli�cation of CTL formulae as well as
for CTL veri�cation. The techniques were not designed speci�cally for
the simpli�cation of reachability formulae, hence the number of solved
reachability queries by employing only the simpli�cation is much lower
than that by the specialized tools like Sara (being in fact a complete
model checker). However, when combined with the state space search
followed after the formula simpli�cation, the bene�ts of our techniques
become apparent as we now solve 40 additional formulae compared to
the combined performance of LoLA and Sara.

The simpli�cation procedure is less e�cient for CTL �reability
queries than for CTL cardinality queries. This is the case both for our
tool as well as LoLA and Sara. The reason is that we do not handle
�reability predicates directly and unfold them into Boolean combination
of cardinality predicates. This often results in signi�cant explosion in
query sizes. The future work will focus on overcoming this limitation
and possibly handling the �reability predicates directly in the engine.

Acknowledgements. We would like to thank Karsten Wolf and
Torsten Liebke from Rostock University for providing us with the
development snapshot of the latest version of LoLA and for their help
with setting up the tool and answering our questions. The last author
is partially a�liated with FI MU, Brno.

References

[1] G.S Avrunin, U.A. Buy, and J.C. Corbett. �Integer Programming
in the Analysis of Concurrent Systems�. In: Computer Aided Veri-

153

�cation. Vol. 575. LNCS. Springer Berlin Heidelberg, 1992, pp. 92�
102. doi: 10.1007/3-540-55179-4_10.

[2] G.S. Avrunin et al. �Automated Analysis of Concurrent Systems
With the Constrained Expression Toolset�. In: IEEE Transactions

on Software Engineering 17.11 (1991). IEEE, pp. 1204�1222. doi:
10.1109/32.106975.

[3] M. Berkelaar, K. Eikland, and P. Notebaert. lpsolve: Open Source

(Mixed-Integer) Linear Programming System. http://lpsolve.
sourceforge.net/5.5/. 2004.

[4] M. Blondin et al. �Approaching the Coverability Problem Contin-
uously�. In: Tools and Algorithms for the Construction and Analy-

sis of Systems. Vol. 9636. LNCS. Springer Berlin Heidelberg, 2016,
pp. 480�496. doi: 10.1007/978-3-662-49674-9_28.

[5] E.M. Clarke and E.A. Emerson. �Design and Synthesis of Syn-
chronization Skeletons Ssing Branching Time Temporal Logic�.
In: Logics of Programs. Vol. 131. LNCS. Springer Berlin Heidel-
berg, 1982, pp. 52�71. doi: 10.1007/BFb0025774.

[6] E.M. Clarke, E.A. Emerson, and J. Sifakis. �Model Checking: Al-
gorithmic Veri�cation and Debugging�. In: Commun. ACM 52.11
(2009). Association for Computing Machinery, pp. 74�84. doi:
10.1145/1592761.1592781.

[7] E.M. Clarke, E.A. Emerson, and A.P. Sistia. �Automatic Veri�-
cation of Finite-State Concurrent Systems Using Temporal Logic
Speci�cations�. In: ACM Trans. Program. Lang. Syst. 8.2 (1986).
Association for Computing Machinery, pp. 244�263. doi: 10 .

1145/5397.5399.

[8] J.C. Corbett and G.S. Avrunin. �Using Integer Programming to
Verify General Safety and Liveness Properties�. In: Formal Meth-

ods in System Design 6.1 (1995). Springer, pp. 97�123. doi: 10.
1007/BF01384316.

[9] A.E. Dalsgaard et al. �Extended Dependency Graphs and E�-
cient Distributed Fixed-Point Computation�. In: Application and

Theory of Petri Nets. Vol. 10258. LNCS. Springer Berlin Heidel-
berg, 2017, pp. 139�158. doi: 10.1007/978-3-319-57861-3_10.

154

https://doi.org/10.1007/3-540-55179-4_10
https://doi.org/10.1109/32.106975
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/BF01384316
https://doi.org/10.1007/BF01384316
https://doi.org/10.1007/978-3-319-57861-3_10

References

[10] A. David et al. �TAPAAL 2.0: Integrated Development Environ-
ment for Timed-Arc Petri Nets�. In: Tools and Algorithms for the

Construction and Analysis of Systems. Vol. 7214. LNCS. Springer
Berlin Heidelberg, 2012, pp. 492�497. doi: 10.1007/978-3-642-
28756-5_36.

[11] J. Esparza and S. Melzer. �Veri�cation of Safety Properties Using
Integer Programming: Beyond the State Equation�. In: Interna-
tional Journal on Software Tools for Technology Transfer 16.2
(2000). Springer, pp. 159�189. doi: 10.1023/A:1008743212620.

[12] T. Ge�roy, J. Leroux, and G. Sutre. �Occam's Razor Applied to
the Petri Net Coverability Problem�. In: Reachability Problems.
Vol. 9899. LNCS. Springer International Publishing, 2016, pp. 77�
89. doi: 10.1007/978-3-319-45994-3_6.

[13] M. Hack. Analysis of Production Schemata by Petri Nets. Tech.
rep. 1972.

[14] J.F. Jensen et al. �TAPAAL and Reachability Analysis of P/T
Nets�. In: Transactions on Petri Nets and Other Models of Con-

currency XI. Vol. 9930. LNCS. Springer Berlin Heidelberg, 2016,
pp. 307�318. doi: 10.1007/978-3-662-53401-4_16.

[15] F. Kordon et al. Complete Results for the 2017 Edition of the

Model Checking Contest. http://mcc.lip6.fr/2017/results.
php.

[16] L.M. Kristensen, K. Schmidt, and A. Valmari. �Question-Guided
Stubborn Set Methods for State Properties�. In: Formal Methods

in System Design 29.3 (2006). Springer, pp. 215�251. doi: 10.
1007/s10703-006-0006-1.

[17] T. Murata. �Petri Nets: Properties, Analysis and Applications�.
In: Proceedings of the IEEE 77.4 (1989). IEEE, pp. 541�580. doi:
10.1109/5.24143.

[18] T. Murata and J. Koh. �Reduction and Expansion of Live and Safe
Marked Graphs�. In: IEEE Transactions on Circuits and Systems

27.1 (1980). IEEE, pp. 68�71. doi: 10.1109/TCS.1980.1084711.

[19] K. Schmidt. �Integrating Low Level Symmetries into Reachabil-
ity Analysis�. In: Tools and Algorithms for the Construction and

Analysis of Systems. Vol. 5404. LNCS. Springer Berlin Heidelberg,
2000, pp. 315�330. doi: 10.1007/3-540-46419-0_22.

155

https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1023/A:1008743212620
https://doi.org/10.1007/978-3-319-45994-3_6
https://doi.org/10.1007/978-3-662-53401-4_16
http://mcc.lip6.fr/2017/results.php
http://mcc.lip6.fr/2017/results.php
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1007/s10703-006-0006-1
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1007/3-540-46419-0_22

[20] K. Schmidt. �Narrowing Petri Net State Spaces Using the State
Equation�. In: Fundamenta Informaticae 47.3-4 (2001). IOS Press,
pp. 325�335.

[21] K. Schmidt. �Stubborn Sets for Standard Properties�. In: Applica-
tion and Theory of Petri Nets. Vol. 1639. LNCS. Springer Berlin
Heidelberg, 1999, pp. 46�65. doi: 10.1007/3-540-48745-X_4.

[22] A. Valmari. �Stubborn Set Intuition Explained�. In: Transactions
on Petri Nets and Other Models of Concurrency XII. Vol. 10470.
LNCS. Springer Berlin Heidelberg, 2017, pp. 140�165. doi: 10.
1007/978-3-662-55862-1_7.

[23] A. Valmari. �Stubborn Sets for Reduced State Space Generation�.
In: Advances in Petri Nets 1990. Vol. 483. LNCS. Springer Berlin
Heidelberg, 1991, pp. 491�515. doi: 10.1007/3-540-53863-1_36.

[24] H. Wimmel and K. Wolf. �Applying CEGAR to the Petri Net
State Equation�. In: Tools and Algorithms for the Construction

and Analysis of Systems. Vol. 6605. LNCS. Springer Berlin Hei-
delberg, 2011, pp. 224�238. doi: 10.1007/978-3-642-19835-
9_19.

[25] K. Wolf and M. Koutny. �Running LoLA 2.0 in a Model Checking
Competition�. In: Transactions on Petri Nets and Other Models

of Concurrency XI. Vol. 9930. LNCS. Springer Berlin Heidelberg,
2016, pp. 274�285. doi: 10.1007/978-3-662-53401-4_13.

[26] L.A. Wolsey and G.L. Nemhauser. Integer and Combinatorial Op-
timization. John Wiley & Sons, 1999. isbn: 978-0-471-35943-2.

156

https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/978-3-662-55862-1_7
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/978-3-662-53401-4_13

F. Proof of Theorem 1

F Proof of Theorem 1

Proof. The proof proceeds by structural induction on ϕ.

ϕ = true: Trivial.

ϕ = false: Trivial.

ϕ = α: Trivial.

ϕ = deadlock : Trivial.

ϕ = ϕ1 ∧ · · · ∧ ϕn: For all i ∈ {1, . . . , n}, we know by the structural
induction hypothesis that if Ω(ϕi) 6= ? then M0 |= ϕi i� Ω(ϕi) =
true. Assume that Ω(ϕ) 6= ? is true. We need to show the following
two implications: (1) ifM0 |= ϕ1∧· · ·∧ϕn then Ω(ϕ1∧· · ·∧ϕn) =
true, and (2) if Ω(ϕ1 ∧ · · · ∧ ϕn) = true then M0 |= ϕ1 ∧ · · · ∧ ϕn.

� Implication (1): Assume M0 |= ϕ1 ∧ · · · ∧ ϕn. Then for all
i ∈ {1, . . . , n} we must have that M0 |= ϕi. Assume for
the sake of contradiction that there exists i ∈ {1, . . . , n} s.t.
Ω(ϕi) = false. Then by the induction hypothesis we have
M0 6|= ϕi, which is a contradiction. Therefore we must have
Ω(ϕi) 6= false for all i ∈ {1, . . . , n}, and from the de�nition
of Ω(ϕ) in Table 2 we have Ω(ϕ) 6= false. By assumption we
have Ω(ϕ) 6= ?, leaving only Ω(ϕ1 ∧ · · · ∧ ϕn) = true as the
conclusion.

� Implication (2): Assume Ω(ϕ) = true. Then we have Ω(ϕi) =
true for all i ∈ {1, . . . , n}, from the de�nition of Ω(ϕ) in
Table 2. Due to the induction hypothesis we have M0 |= ϕi
for all i and M0 |= ϕ1 ∧ · · · ∧ϕn follows from the semantics of
ϕ1 ∧ · · · ∧ ϕn.

ϕ = ϕ1 ∨ · · · ∨ ϕn: This case is analogous to the conjunction case.

ϕ = AXϕ′: Assume that Ω(ϕ) 6= ? is true. Since we by assumption
have Ω(ϕ) 6= ?, and Ω(ϕ) = false can never occur due to the
de�nition of Ω(ϕ) in Table 2, we must have M0 |= deadlock and
Ω(AXϕ′) = true. If M0 |= deadlock then M0 |= AXϕ′ trivially
follows from the semantics of AXϕ′. We therefore have M0 |=
AXϕ′ i� Ω(AXϕ′) = true follows.

ϕ = EXϕ′: This case is analogous to the AXϕ′ case.

157

ϕ = EGϕ′: By structural induction we have if Ω(ϕ′) 6= ? then M0 |= ϕ′

i� Ω(ϕ′) = true. Assume that Ω(ϕ) 6= ? is true. Since we by
assumption have Ω(ϕ) 6= ?, and Ω(ϕ) = true can never occur due
to the de�nition of Ω(ϕ) in Table 2, we must have Ω(ϕ′) = false
and Ω(EGϕ′) = false. Due to the induction hypothesis we have
M0 6|= ϕ′, and M0 6|= EGϕ′ follows from the semantics of EGϕ′.
We therefore have M0 |= EGϕ′ i� Ω(EGϕ′) = true follows.

ϕ = AGϕ′: This case is analogous to the EGϕ′ case.

ϕ = EFϕ′: By structural induction we have if Ω(ϕ′) 6= ? then M0 |= ϕ′

i� Ω(ϕ′) = true. Assume that Ω(ϕ) 6= ? is true. Since we by
assumption have Ω(ϕ) 6= ?, and Ω(ϕ) = false can never occur due
to the de�nition of Ω(ϕ) in Table 2, we must have Ω(ϕ′) = true
and Ω(EFϕ′) = true. Due to the induction hypothesis we have
M0 |= ϕ′, and M0 |= EFϕ′ follows from the semantics of EFϕ′.
We therefore have M0 |= EFϕ′ i� Ω(EFϕ′) = true follows.

ϕ = AFϕ′: This case is analogous to the EFϕ′ case.

ϕ = E (ϕ1Uϕ2): For all i ∈ {1, 2} by structural induction we have if
Ω(ϕi) 6= ? thenM0 |= ϕi i� Ω(ϕi) = true. Assume that Ω(ϕ) 6= ? is
true. We need to show the following two implications: (1) if M0 |=
E (ϕ1Uϕ2) then Ω(E (ϕ1Uϕ2)) = true, and (2) if Ω(E (ϕ1Uϕ2)) =
true then M0 |= E (ϕ1Uϕ2).

� Implication (1): Assume M0 |= E (ϕ1Uϕ2). Since we by
assumption have Ω(ϕ) 6= ?, there are two additional cases
from the de�nition of Ω(ϕ) in Table 2: Ω(ϕ2) = true or
Ω(ϕ1) = Ω(ϕ2) = false. Assume for the sake of contra-
diction Ω(ϕ1) = Ω(ϕ2) = false is true. Then from the in-
duction hypothesis we have M0 6|= ϕ1 and M0 6|= ϕ2, im-
plying M0 6|= E (ϕ1Uϕ2) from the semantics of E (ϕ1Uϕ2).
This contradicts our assumption that M0 |= E (ϕ1Uϕ2), and
leaves us only with the �rst case Ω(ϕ2) = true. We have
Ω(E (ϕ1Uϕ2)) = true trivially follows from the de�nition of
Ω(ϕ) in Table 2.

� Implication (2): Assume Ω(E (ϕ1Uϕ2)) = true. Then we have
Ω(ϕ2) = true from the de�nition of Ω(ϕ) in Table 2. Due
to the induction hypothesis we have M0 |= ϕ2, and M0 |=
E (ϕ1Uϕ2) follows from the semantics of E (ϕ1Uϕ2).

158

G. Proof of Theorem 2

ϕ = A(ϕ1Uϕ2): This case is analogous to the E (ϕ1Uϕ2) case.

G Proof of Theorem 2

Proof. The proof is by structural induction on ϕ. As a sketch, we will
here prove the correctness of the rules for EFϕ and Eϕ1Uϕ2. The proofs
for the other rules are analogous.

ϕ = EFϕ′: By structural induction we have M |= ϕ′ i� M |= ρ(ϕ′).
We need to show the following two implications: (1) if M |= EFϕ′

then M |= ρ(EFϕ′), and (2) if M |= ρ(EFϕ′) then M |= EFϕ′.

� Implication (1): Assume M |= EFϕ′. Then there exists M ′ ∈
M(N) s.t. M −→∗ M ′ and M ′ |= ϕ′. Due to the induction
hypothesis we have M ′ |= ρ(ϕ′). There are now 6 cases given
by the de�nition of ρ(EFϕ′) in Table 3. The otherwise case
is trivial due to the induction hypothesis.

� Case ρ(ϕ′) = ¬deadlock : If M ′ |= ¬deadlock then we
must also have M |= ¬deadlock , as M −→∗ M ′ and
en(M) 6= ∅.

� Case ρ(ϕ′) = EFϕ′′: There exists M ′′ ∈ M(N) s.t.
M ′ −→∗ M ′′ and M ′′ |= ϕ′′. Since we have M −→∗ M ′
andM ′ −→∗ M ′′ we must also haveM −→∗ M ′′ is the case,
implying that M |= EFϕ′′ is true.

� Case ρ(ϕ′) = AFϕ′′: Clearly there exists M ′′ ∈ M(N)
s.t. M ′ −→∗ M ′′ andM ′′ |= ϕ′′ by the semantics of AFϕ′′.
Since we have M −→∗ M ′ and M ′ −→∗ M ′′ we must also
have M −→∗ M ′′ is the case, implying that M |= EFϕ′′ is
true.

� Case ρ(ϕ′) = E (ϕ1Uϕ2): Clearly there exists M ′′ ∈
M(N) s.t. M ′ −→∗ M ′′ and M ′′ |= ϕ2 by the semantics
of E (ϕ1Uϕ2). Since we have M −→∗ M ′ and M ′ −→∗ M ′′
we must also have M −→∗ M ′′ is the case, implying that
M |= EFϕ2 is true.

� Case ρ(ϕ′) = A(ϕ1Uϕ2): Clearly there exists M ′′ ∈
M(N) s.t. M ′ −→∗ M ′′ and M ′′ |= ϕ2 by the semantics
of A(ϕ1Uϕ2). Since we have M −→∗ M ′ and M ′ −→∗ M ′′

159

we must also have M −→∗ M ′′ is the case, implying that
M |= EFϕ2 is true.

� Case ρ(ϕ′) = ϕ1 ∨ · · · ∨ ϕn: Due to the semantics of
ϕ1 ∨ · · · ∨ ϕn there exists i s.t. 1 ≤ i ≤ n and M ′ |= ϕi.
From M ′ |= ϕi we have M |= EFϕi, and M |= EFϕ1 ∨
· · ·∨EFϕn follows trivially from disjunction introduction.

� Implication (2): Assume M |= ρ(EFϕ′). There are 6 cases
given by the de�nition of ρ(EFϕ′) in Table 3. The otherwise
case is trivial due to the induction hypothesis.

� Case ρ(ϕ′) = ¬deadlock : Trivially we have that M |=
¬deadlock implies M |= EF¬deadlock by the semantics
of ϕ.

� Case ρ(ϕ′) = EFϕ′′: Trivially we have that M |= EFϕ′′

implies M |= EFEFϕ′′ by the semantics of ϕ.

� Case ρ(ϕ′) = AFϕ′′: By the induction hypothesis ifM |=
ρ(AFϕ′′) then we have M |= AFϕ′′. Trivially we have
thatM |= AFϕ′′ impliesM |= EFAFϕ′′ by the semantics
of ϕ.

� Case ρ(ϕ′) = E (ϕ1Uϕ2): By the induction hypothesis
if M |= ρ(E (ϕ1Uϕ2)) then we have M |= E (ϕ1Uϕ2).
Trivially we have that M |= E (ϕ1Uϕ2) implies M |=
EFE (ϕ1Uϕ2) by the semantics of ϕ.

� Case ρ(ϕ′) = A(ϕ1Uϕ2): By the induction hypothesis
if M |= ρ(A(ϕ1Uϕ2)) then we have M |= A(ϕ1Uϕ2).
Trivially we have that M |= A(ϕ1Uϕ2) implies M |=
EFA(ϕ1Uϕ2) by the semantics of ϕ.

� Case ρ(ϕ′) = ϕ1∨· · ·∨ϕn: By the induction hypothesis if
M |= ρ(EFϕ1 ∨ · · · ∨ EFϕn) then we have M |= EFϕ1 ∨
· · · ∨EFϕn. Due to the semantics of EFϕ1 ∨ · · · ∨EFϕn
there exists i s.t. 1 ≤ i ≤ n and M |= EFϕi. There
exists M ′ ∈ M(N) s.t. M −→∗ M ′ and M ′ |= ϕi. By
disjunction introduction we haveM ′ |= ϕ1∨· · ·∨ϕn, and
M |= EF (ϕ1 ∨ · · · ∨ ϕn) follows since M −→∗ M ′.

ϕ = E (ϕ1Uϕ2): By structural induction we have M |= ϕ1 i� M |=
ρ(ϕ1) and M |= ϕ2 i� M |= ρ(ϕ2). We need to show the following
two implications: (1) if M |= E (ϕ1Uϕ2) then M |= ρ(E (ϕ1Uϕ2)),
and (2) if M |= ρ(E (ϕ1Uϕ2)) then M |= E (ϕ1Uϕ2).

160

G. Proof of Theorem 2

� Implication (1): Assume M |= E (ϕ1Uϕ2). Then there exists
π ∈ Πmax (M) and a position i s.t. πi |= ϕ2 and for all j ∈
{0, . . . , i − 1} we have πj |= ϕ1. There are 5 cases given by
the de�nition of ρ(E (ϕ1Uϕ2)) in Table 3. The otherwise case
is trivial due to the induction hypothesis.

� Case ρ(ϕ2) = ¬deadlock : If πi |= ¬deadlock then we must
also have M |= ¬deadlock , as M −→∗ πi and en(πi) 6= ∅.

� Case ρ(ϕ1) = deadlock : Then the only case where M |=
E (ϕ1Uϕ2) can be true is when i = 0, implying M |=
ϕ2. By the induction hypothesis we conclude with M |=
ρ(ϕ2).

� Case ρ(ϕ1) = ¬deadlock : Clearly, for any path we have
¬deadlock always holds in every intermidiary
marking due to the de�nition of paths, giving us
M |= E (trueUϕ2). This is the de�nition of M |= EFϕ2

for the minimal set of CTL operators.

� Case ρ(ϕ2) = EFϕ3: There existsM
′ ∈M(N) s.t. πi −→∗

M ′ andM ′ |= ϕ3. Since we haveM −→∗ πi and πi −→∗ M ′
we must also have M −→∗ M ′ is the case, implying that
M |= EFϕ3 is true.

� Case ρ(ϕ2) = ϕ3∨EFϕ4: Either we have πi |= ϕ3 or there
exists M ′ ∈ M(N) s.t. πi −→∗ M ′ and M ′ |= EFϕ4. In
the former case clearly we haveM |= E (ϕ1Uϕ3) since the
path π exists, and we can conlude with M |= (EFϕ4) ∨
E (ϕ1Uϕ3) by disjunction introduction. In the latter case
since M −→∗ πi and πi −→∗ M ′ we must also have M −→∗
M ′ is the case, implying that M |= EFϕ4 is true, and we
can conclude with M |= (EFϕ4)∨E (ϕ1Uϕ3) by disjunc-
tion introduction.

� Implication (2): Assume M |= ρ(E (ϕ1Uϕ2)). There are 5
cases given by the de�nition of ρ(E (ϕ1Uϕ2)) in Table 3. The
otherwise case is trivial due to the induction hypothesis.

� Case ρ(ϕ2) = ¬deadlock : Trivially we have that M |=
¬deadlock impliesM |= E (ϕ1U¬deadlock) by the seman-
tics of ϕ.

� Case ρ(ϕ1) = deadlock : Trivially we have that M |= ϕ2

implies M |= E (ϕ1Uϕ2) by the semantics of ϕ.

� Case ρ(ϕ1) = ¬deadlock : Trivially we have that M |=

161

EFϕ2 implies M |= E (¬deadlockUϕ2) by the semantics
of ϕ.

� Case ρ(ϕ2) = EFϕ3: Trivially we have that M |= EFϕ3

implies M |= E (¬deadlockUEFϕ3) by the semantics of
ϕ.

� Case ρ(ϕ2) = ϕ3 ∨ EFϕ4: If M |= (EFϕ4) ∨ E (ϕ1Uϕ3)
then either we have M |= EFϕ4 or M |= E (ϕ1Uϕ3).
In the former case by disjunction introduction we have
M |= ϕ3 ∨EFϕ4, and trivially we have M |= E (ϕ1Uϕ3 ∨
EFϕ4) by the semantics of ϕ. In the later case there
exists π ∈ Πmax (M) and a position i s.t. πi |= ϕ3 and for
all j ∈ {0, . . . , i − 1} we have πj |= ϕ1. By disjunction
introduction we have πi |= M |= ϕ3 ∨ EFϕ4, and clearly
since the path π exists we have M |= E (ϕ1Uϕ3∨EFϕ4).

H Proof of Theorem 3

Proof. We prove the three claims by structural induction on ϕ.
Base Cases:

ϕ = true: Since simp(true) = (true, {{0 ≤ 1}}, ∅) the formula re-
mains unchanged and Condition 1 trivially holds. Condition 2
holds because for {0 ≤ 1} any variable assignment is a solution
and Condition 3 is a vacuous case.

ϕ = false: Since simp(false) = (false, ∅, {{0 ≤ 1}}) the formula re-
mains unchanged and Condition 1 trivially holds. Condition 2 is a
vacuous case and Condition 3 holds as any variable assignment is
a solution to {0 ≤ 1}.

ϕ = deadlock : Since simp(deadlock) = (deadlock , {{0 ≤ 1}}, {{0 ≤
1}}) the formula remains unchanged and Condition 1 trivially
holds. Conditions 2 and 3 hold as any variable assignment is a
solution to {0 ≤ 1}.

ϕ = e1 ./ e2: If either const(e1) or const(e2) is not linear, then
simp(e1 ./ e2) = (e1 ./ e2, {{0 ≤ 1}}, {{0 ≤ 1}}) and all three con-
ditions trivially hold. Otherwise, we have LPS = {{const(e1) ./
const(e2)}} and LPS = {{const(e1) ./ const(e2)}}. Let M be a

162

H. Proof of Theorem 3

marking such that M0
w−→ M . We will now argue that the three

conditions of the theorem hold. There are three subcases to con-
sider:

� Algorithm 5 returns simp(false) = (false, ∅, {{0 ≤ 1}}) be-
cause {LP ∪ BASE | LP ∈ LPS} has no solution. Then
M 6|= e1 ./ e2 as otherwise ℘(w) would be a solution both
to BASE as well as {const(e1) ./ const(e2)} due to the con-
struction of the state equations for e1 and e2. This means that
Condition 1 holds, Condition 2 is vacuous, and Condition 3
holds as ℘(w) is clearly a solution to {0 ≤ 1}.

� Algorithm 5 returns simp(true) = (true, {{0 ≤ 1}}, ∅) be-
cause {LP ∪ BASE | LP ∈ LPS} has no solution. Then
M 6|= e1./e2 as otherwise ℘(w) would be a solution both to
BASE as well as {const(e1)./const(e2)} due to the construc-
tion of the state equations for e1 and e2. This implies that
M |= e1./e2 and hence Condition 1 holds. Condition 2 holds
as ℘(w) is clearly a solution to {0 ≤ 1} and Condition 3 is
vacuous.

� Algorithm 5 returns (e1 ./ e2,LPS ,LPS) and because the for-
mula was unchanged, Condition 1 trivially holds. Due to the
construction of the linear programs based on state equations,
it is clear that if M |= e1 ./ e2 then ℘(w) is a solution to
both BASE and LPS , implying Condition 2. Symmetrically,
ifM 6|= e1 ./ e2 thenM |= e1./e2 and hence ℘(w) is a solution
to both BASE and LPS , meaning that Condition 3 holds too.

Inductive Cases (where M0
w−→M):

ϕ = ¬ϕ1: Let simp(ϕ1) = (ϕ′1,LPS ,LPS). By structural induction
hypothesis we know that M |= ϕ1 i� M |= ϕ′1 which implies
that M |= ¬ϕ1 i� M |= ¬ϕ′1 and Condition 1 is thus satis�ed
for all three possible returns. Conditions 2 and 3 clearly hold if
simp(false) or simp(true) is returned. In case the return value
is (¬ϕ′1,LPS ,LPS), we use the induction assumption that Condi-
tions 2 and 3 hold for ϕ1 and by adding the negation to ϕ1 and
swapping the sets of linear programs, the conditions hold also for
¬ϕ1.

ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn: Let simp(ϕi) = (ϕ′i,LPS i,LPS i) for all i,
1 ≤ i ≤ n. By structural induction hypothesis, for all i we have

163

M |= ϕi i�M |= ϕ′i. Hence if for some i it is the case that ϕ′i = false
we can terminate and return simp(false) since it is clear M 6|= ϕ
and all three conditions hold as required. Similarly, if ϕ′i = true
for some i, then this conjunct can be safely skipped over as it will
not change the validity of ϕ′. Moreover, should this be the case for
all i, 1 ≤ i ≤ n, then we can safely return simp(true) and all three
conditions still hold.

Assume that M |= ϕ, then clearly M |= ϕi for all i and by the
induction hypothesis ℘(w) is a solution to each LPS i, meaning
that for each i there is an LPi ∈ LPS i for which ℘(w) is a solution.
By the de�nition of the merge operation, we know that there exists
an LP such that LP ⊆ LP1 ∪ LP2 ∪ . . . ∪ LPn, where LP ∈ LPS
and ℘(w) is a solution to LP . As a consequence, LPS has ℘(w)
as a solution and Condition 2 is thus satis�ed. Conversely, if LPS
has no solution, this implies M 6|= ϕ and in this case we can safely
return simp(false).

Let us assume that M 6|= ϕ, implying that M 6|= ϕi for at least one
i. By induction hypothesis, there is LP ∈ LPS i such that ℘(w)
is a solution to LP and because we perform unions of all LPS i,
clearly LP ∈ LPS and Condition 3 therefore holds.

ϕ = ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn: Let simp(ϕi) = (ϕ′i,LPS i,LPS i) for all i,
1 ≤ i ≤ n. By structural induction hypothesis, for all i we have
M |= ϕi i�M |= ϕ′i. Hence if for some i it is the case that ϕ′i = true
we can terminate and return simp(true) since it is clear M |= ϕ
and all three conditions hold as required. Similarly, if ϕ′i = false
for some i, then this conjunct can be safely skipped over as it will
not change the validity of ϕ′. Moreover, should this be the case for
all i, 1 ≤ i ≤ n, then we can safely return simp(false) and all three
conditions still hold.

Assume that M |= ϕ, then clearly M |= ϕi for some i and by the
induction hypothesis ℘(w) is a solution to some LP ∈ LPS i. Then
the algorithm either returns simp(true) and all three conditions
hold, or LP ∈ LPS as we perform the union operation on LPS and
this guarantees that Condition 2 holds once the algorithm returns
(ϕ′,LPS ,LPS).

Let us assume that M 6|= ϕ, implying that M 6|= ϕi for all i. By
induction hypothesis, for all i there is LPi ∈ LPS i such that ℘(w) is
a solution to LP . By the de�nition of the merge operation, we know

164

H. Proof of Theorem 3

that there exists an LP such that LP ⊆ LP1∪LP2∪. . .∪LPn, where
LP ∈ LPS and ℘(w) is a solution to LP . As a consequence, LPS
has ℘(w) as a solution and Condition 3 is thus satis�ed. Conversely,
if LPS has no solution, this impliesM |= ϕ and in this case we can
safely return simp(true).

ϕ = QXϕ1, where Q ∈ {A,E}: Let simp(ϕ1) = (ϕ′1,LPS ,LPS). By
structural induction hypothesis, we have M |= ϕ1 i� M |= ϕ′1. In
case that ϕ′1 is either true or false, the four cases in the algorithm
clearly preserve logical equivalence and all three conditions are sat-
is�ed. Otherwise we return QXϕ′1 which is equivalent to QXϕ1

and Condition 1 remaind satis�ed. Both sets of linear programs
that are returned have any assignment as a solution, so Condi-
tions 2 and 3 hold too.

ϕ = QPϕ1 where QP ∈ {AG,EG,AF,EF}: This case is analogous to
the next operators discussed above.

ϕ = Q(ϕ1Uϕ2) where Q ∈ {A,E}: Let simp(ϕ1) = (ϕ′1,LPS 1,LPS 1)
and simp(ϕ2) = (ϕ′2,LPS 2,LPS 2). By structural induction hy-
pothesis, we have M |= ϕ1 i� M |= ϕ′1, and M |= ϕ2 i� M |= ϕ′2.
If ϕ′2 = true then Q(ϕ1Uϕ2) is equivalent to true and we can re-
turn simp(true) while satisfying all three conditions. Similarly if
ϕ′2 = false we can safely return simp(false). If ϕ′1 = true then
Q(ϕ1Uϕ2) becomes logically equivalent to QFϕ′2 and both sets of
linear programs that are returned have any assignment as a so-
lution, so all three conditions are satis�ed. In case ϕ′1 = false
then necessarily ϕ2 must hold immediately and we can return
(ϕ′2,LPS 2,LPS 2) that satis�es all three conditions by the induc-
tion hypothesis. Otherwise we return Q(ϕ′1Uϕ

′
2) that is equivalent

to ϕ and the two returned linear programs admit all assignments
as solutions, so all three conditions hold.

165

FR
ED

ER
IK

 M
EYER

 B
Ø

N
N

ELA
N

D
TIM

E FO
R

 STU
B

B
O

R
N

 G
A

M
E R

ED
U

C
TIO

N
S

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-907-7

