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ABSTRACT Sensing capability is one of the most highlighted new feature of future 6G wireless networks.
This paper addresses the sensing potential of Large Intelligent Surfaces (LIS) in an exemplary Industry
4.0 scenario. Besides the attention received by LIS in terms of communication aspects, it can offer a
high-resolution rendering of the propagation environment. This is because, in an indoor setting, it can be
placed in proximity to the sensed phenomena, while the high resolution is offered by densely spaced tiny
antennas deployed over a large area. By treating an LIS as a radio image of the environment relying on
the received signal power, we develop techniques to sense the environment, by leveraging the tools of
image processing and machine learning. Once a radio image is obtained, a Denoising Autoencoder (DAE)
network can be used for constructing a super-resolution image leading to sensing advantages not available
in traditional sensing systems. Also, we derive a statistical test based on the Generalized Likelihood
Ratio (GLRT) as a benchmark for the machine learning solution. We test these methods for a scenario
where we need to detect whether an industrial robot deviates from a predefined route. The results show
that the LIS-based sensing offers high precision and has a high application potential in indoor industrial

environments.

INDEX TERMS Computer vision, industry 4.0, large intelligent surfaces, machine learning, sensing.

. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) is

one of the essential technologies in the 5th gen-
eration of wireless networks (5G) [2]. Compared with
traditional multiuser MIMO systems, the base station of a
massive MIMO system is equipped with a large number of
antennas, aiming to further increase spectral efficiency [3].
Looking towards the 6th generation of wireless networks
(6G), there are some significant breakthroughs on the design
of reprogramable metamaterials [4], giving raise to new con-
cepts such as holographic MIMO surfaces (HMIMO) [5],
large intelligent surface (LIS) [6] and reconfigurable intel-
ligent surface (RIS) [7]. While HMIMO and LIS originally
refer to the use of continuous radiating surfaces where the

received electromagnetic field is recorded and ultimately
reconstructed [8], in practice an LIS is envisioned and
regarded as a collection of closely spaced tiny antenna ele-
ments. On the other hand, RIS are composed by small
passive reflectors embedded in a surface, allowing to arbi-
trarily modify the phase of the impinging electromagnetic
waves and thus enabling a smart control of the propagation
environment [9]-[11].

The performance analysis of LIS and RIS assisted systems
has attracted considerable attention in the recent years, and
many works have studied the applicability of these technolo-
gies. For instance, the use of RIS to control the signals prop-
agation has been analyzed in the context of communications
through the so-called passive beamforming [7], [12]-[14], in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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location and positioning systems [15]-[17], and in physical
layer security [18], [19]. The combination of Deep Learning
(DL) and RIS elements efficient reconfiguration has also
been studied in [20]. In turn, LIS are considered as a natural
extension of massive MIMO, and their potential for data
transmission [6], [21] and positioning [22], [23] has been
also addressed.

However, the potential of LIS could go beyond commu-
nications applications. Indeed, such large surfaces contain
many antennas that can be used as sensors of the environment
based on the channel state information (CSI).

Sensing strategies based on electromagnetic signals have
been thoroughly addressed in the literature in different ways,
and applied to a wide range of applications. For instance,
in [24], a real-time fall detection system is proposed through
the analysis of the communication signals produced by active
users, whilst the authors in [25] use Doppler shifts for
gesture recognition. Radar-like sensing solutions are also
available for user tracking [26] and real-time breath mon-
itoring [27], as well as sensing methods based on radio
tomographic images (RTI) [28], [29]. Interestingly, whilst
some of these techniques resort solely on the amplitude
(equivalently, power) of the receive signals [26], [29], in the
cases where sensing small scale variations is needed, the full
CSI (i.e., amplitude and phase of the impinging signals) is
required [27], [28]. Moreover, in terms of power-based radio
maps generation, some indoor positioning strategies leverage
the use of machine learning (ML) solutions [30] based on
the Received Signal Strength (RSS) of several beforehand
known anchors for localization purposes.

On a related note, ML based approaches are gaining pop-
ularity in the context of massive MIMO, mainly due to
the inherent complexity of this type of systems and their
sensitivity to hardware impairments and channel estimation
errors. Hence, DL techniques arise as a promising solution
to deal with massive MIMO, and several works have shown
the advantages of ML solutions in channel estimation and
precoding [13], [31]-[36]. Due to the even larger dimensions
of the system in extra-large arrays, DL may play a key role
in exploiting complex patterns of information dependency
between the transmitted signals. Also, the popularization of
LIS as a natural next step from massive MIMO gives rise to
larger arrays and more degrees of freedom, providing huge
amount of data which can feed ML algorithms.

Despite all the available works dealing with beyond mas-
sive MIMO and sensing, both topics have been addressed
rather separately. This has motivated the present work, where
the objective is to assess the potential of the combined use of
DL algorithms and large surfaces for the purpose of sensing
the propagation environment. To that end, the received signal
along with the LIS is treated as a radio image of the propaga-
tion environment, giving raise to the use of image processing
techniques to improve the performance of sensing systems
beyond purely radio-based approaches. Also, we analyze the
pros and cons of this image sensing proposal, comparing it
to alternative solutions based on classical post-processing of
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the received radio signal. Specifically, the contributions of
this work are summarized as follows:

« We propose an image-based sensing technique based on
the received signal power at each antenna element of
an LIS. These power samples are processed to generate
a high resolution image of the propagation environment
that can be used to feed ML algorithms to sense large-
scale events. The usage of received signal power would
lead to simple deployments, since there is no need of
coherent receivers.

« A ML algorithm, based on transfer learning and
local outlier factor (LOF), is defined to process the
radio images generated by the LIS in order to detect
anomalies over a predefined robot route.

« We show the advantage of representing the radio prop-
agation environment as an image, allowing us to use
a denoising autoencoder network (DAE) for augment-
ing image resolution and significantly increasing the
performance of the system.

o We derive a statistical test, based on the classical gen-
eralized likelihood ratio test (GLRT), to carry out the
same sensing task, and perform a comparison with the
ML solution in terms of generality, performance and
further potential applications.

To evaluate the capabilities for sensing of LIS, we consider

a simple problem of route anomaly detection in an indoor
industrial scenario. Hence, we analyze the feasibility of this
proposal to determine whether a robot has deviated from
its predefined route, and compared it with the here derived
statistical solution.

The reminder of the paper is organized as follows.
Section II introduces the concept of sensing based on radio
images. Then, Section III presents the problem of robot devi-
ation detection in an industrial setup. The classical solution
based on hypothesis testing is derived and characterized in
Section IV and the proposed ML algorithm is detailed in
Section V. With the ML solution presented, the model vali-
dation is carried out in Section VI, whilst simulated results
are discussed in Section VII. Finally, some conclusions are
drawn in Section VIII.

Il. RADIO IMAGE-BASED LIS SENSING

In a wireless context, a LIS could be described as a struc-
ture which uses electromagnetic signals impinging in a
determined scatterer in order to obtain a profile of the envi-
ronment. That is, we can use the resulting signal of the
superposition of all the involved paths that imping into every
of the antenna elements conforming the surface. Then, the
power of the resulting superimposed signal is used to obtain a
high resolution image of the propagation environment. Note
the LIS elements are using the CSI information as envelope
detectors, as no phase estimation is needed but the received
signal power. Using this approach, the complexity of the
multipath propagation is reduced to using information rep-
resented as an image. This provides a twofold benefit: i) the
massive number of elements that compose the LIS leads to
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FIGURE 1. Radio images for line-of-sight (LoS) and Industry scenarios.

an accurate environment sensing (i.e., high resolution image),
and ii) it allows the use of computer vision algorithms and
ML techniques to deal with the resulting images.

As an illustrative example, an LIS is deployed in a wall
along a 22 x 8 m physical aperture, containing antenna
elements separated % cm while an arbitrary robot is trans-
mitting a sensing signal. Fig. 1 shows the LIS radio images
obtained from different propagation environments under this
setup. Specifically, Fig. 1(a) corresponds to an LoS propa-
gation (no scatterers), whilst Fig. 1(b) is obtained from an
industrial scenario with a rich scattering. Note that, in the
case in which different scatterers are placed, their position
and shapes are captured by the LIS and represented in the
image. Beyond that, LIS-based imaging does not need of
a previous calibration period as well as no scatterers need
to be modelled to be captured in the radio image, contrary
to other wireless image reconstruction techniques that rely
on the received signal power, such as RTI [28], [29]. To
the best of the authors’ knowledge, this is the first time
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that LIS image based wireless sensing is proposed in the
literature.

lll. SYSTEM MODEL AND PROBLEM FORMULATION

We stick to a simple baseline problem in order to ana-
lyze, for first time in the literature, the sensing potential of
LIS. To that end, let consider an industrial scenario where
a robot is supposed to follow a fixed route. Assume that,
due to arbitrary reasons, it might temporarily deviate from
the predefined route and follow an alternative (undesired)
trajectory. The goal is to be able to detect whether the robot
is following the correct route or not, based on the sensing
signal transmitted by the target device.

In order to perform the detection, we assume that a LIS,
consisting of M antenna elements, is placed along a wall.
The sensing problem reduces to determine, from the received
signal at each of the M LIS elements, whether the transmis-
sion has been made from a point at the desired route or from
anomalous ones. Formally, if we define the correct trajectory
as the set of points in space P, € RNp*3 = P -- -, pr),
and the received complex signal from an arbitrary point,
Pr € RI*3 ag Vi € CMx1 then the problem reduces to
estimating whether py € P, based on y;. Note that this
formulation can be generalized to any anomalous detection
based on radio-waves in an arbitrary scenario.

The complex baseband signal received at the LIS from
point p (the subindex is dropped for the sake of clarity in
the notation) is given by

y = hx +n, (1)

with x the transmitted (sensing) symbol, h € CM*! the
channel vector from point p to each antenna-element, and
n ~ CN (0, 21)) the noise vector. Moreover, we consider
a static scenario where the channel h only depends on the
user position, neglecting the impact of time variations.

In order to reduce deployment costs, and because we
are interested in sensing large scale variations, we consider
the received signal amplitude (equivalently, power). This
assumption may lead to cheaper and simpler system imple-
mentations, avoiding the necessity of performing coherent
detection.

IV. STATISTICAL APPROACH: LIKELIHOOD RATIO TEST
A. DECISION RULE
Let us consider that the system is able to obtain several sam-
ples from each point p; belonging to the correct route P,
during a training phase. Then, once the system is trained, the
problem can be tackled from a statistical viewpoint by per-
forming a generalized hypothesis test, as shown throughout
this section.

To start with, let us assume that the value of o2 in (1) is
perfectly known and, without loss of generality, that x = 1.
Since we are considering only received powers, the signal

at the output of the i-th antenna detector is given by
wi = yill® = llhi + nill?, @)
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where y;, h; and n; for i = 1,..., M are the elements of
y, h and n, respectively. When conditioned on h;, w; fol-
lows a Rician distribution (in power) [37], and due to the
statistical independence of the noise samples, the joint con-
ditioned probability density function (PDF) of the vector
W= (Wi, ..., wy)! is given by the product of the individual
PDFs.

Consider also that, during the training phase, N; sam-
ples of wo, namely wqg; for j = 1,...,N,, are obtained
from a correct (trained) point pg. The samples wy; are
then jointly Rician distributed with vector parameter! gy =
(0,101, - .., 1ho mlI*)T. Then, from wo , the system obtains
an estimation gy = (20,1, ..., 80.m)" of go.

Once trained (evaluation phase), the LIS receives another
set of samples wy for k =1, ..., N, from an arbitrary point
p. Therefore, the objective is, based on wg; and wy, to
determine whether p = po or not. To that end, we formulate
a binary hypothesis test as

Hy : g=1%0
H; : g # 2o, 3)

where 8 = (8i,...,8u)" is the channel vector estimated
from wj. The test is hence formulated based on the GLRT,
but replacing the knowledge of the null hypothesis by its
estimated counterpart, i.e.,

Ny, M ~
logA = ZZloglo( 80 W’ >+Zzg’ 80.

k=1 i=1 k=1 i=1

N, M
v 28i/Wix\ Ho
——}:}:kgm<—fﬁi—>§n, )
1

k=1 i=1

where w; x denote the i-th entry of wi. Replacing the true
value of gp by its estimation introduces a non-negligible
error in the test that has to be considered in the threshold
design, as we will see in the following subsections.

B. ESTIMATOR FOR G
In conventional likelihood ratio tests, the estimation of the
involved parameters is carried out through maximum likeli-
hood. However, since in our problem the distribution of the
received power signal wi V k is a multivariate Rician, the
maximum likelihood estimation implies solving a system of
M non-linear equations [38]. This may lead to a considerable
computational effort taking into account the large number
of antennas (M) that characterizes the LIS. To circumvent
this issue, we proposed a suboptimal — albeit unbiased —
estimator based on moments.

Since E[nn”] = Iy, the estimation of the channel at each
antenna element can be solved separately. Then, we can

1. Note that, due to the circular symmetry of the noise, the distribution of

w does not depend on the complex channel %; but on its squared modulus
2
= llhill=
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estimate g; in both the training and evaluation phases as

1 1
~ 2 o~ 2
80,i = 7 Wo,ij — 0, & = 77 Wik — 0", (5)
N; 4 N,
j=1 k=1

where wyq ; ; are the elements of wq ;. It is easily proved that
the estimators in (5) are unbiased with normally distributed
error for relatively large number of samples.

C. THRESHOLD DESIGN

Although the asymptotic properties of logA have been well
studied in the literature (see, e.g., [39]), these general results
are not valid in our case because i) we are replacing the true
value of g( by its estimation, and ii) we are using moment-
based estimators instead of the optimal one. A more general
result, which is the starting point of our derivation, is that the
limiting distribution of —2logA, under the null hypothesis,
is given by [40, eq. (4.3)]

—2logAly, 2> @ - 'NJI@ - D), (6)

where we have replaced gy by go. In (6), 2 stands for
convergence in probability and J € R¥*M is the Fisher
information matrix of wy with respect to go [41]. In our
case, J is a diagonal matrix whose i-th element is given by

ﬂ(l . /—>
/OO Wie_wi/‘72 28V i 1
0

Y EPN
(7

o—8il0?
Ji(g) = ——
078i

Eq. (6) can be rewritten as

(€0 — TN, J(eo — €, (8)

where €g = (€p,1, . . ., eo,M)T and € = (€1, ..., ey)! are the
error vectors of estimators in (5). Note that both error vectors
are Gaussian distributed, but they vary at very different time
scales. The true channel g is estimated during the training
phase, and thus the error €p, albeit random, remains con-
stant during the whole evaluation phase until the system is
retrained. In turn, each time the system evaluates a point, €
takes a different (random) realization. With that in mind, we
propose choosing 7 based on a worst case design, i.e., we
consider an estimation error €g that overestimates the true
error at 1 — g percent of the time. That is,

—ao/2), €))

where Fe,, stands for the cumulative distribution function
(CDF) of a Gaussian variable with zero mean and vari-
ance —2(0 + 280.;)- Note that we have replaced the true
channel value by its estimation in the calculation of the
aforementioned percentile.

Finally, conditioned on 66’ ;» the distribution of the test for
large number of samples is given by

— 2log Alp, R

r =1
EO,i - Fe()_,'(l

M

2
—2log Alp,q > D =Y Nuigi)(ei — ;)" (10)
i=1
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Algorithm 1: Statistical Test for Sensing

Training phase:

for each p € P, do

1. Estimate gy using (5)

II. Compute 66,:‘ fori=1,...,M from (9) for a
confidence value o

II. Compute J(gp;) for i=1,..., M from (7)

IV. Compute —2n using (11) for a confidence value

enda

Evaluation phase: Received w; for j=1,...,N,, do
for each p € P, do

I. Estimate g using (5)

II. Compute —2logA using (4)

III. Reject Hy if —2logA > —2n

end
The point does not belong to P, if Hy is rejected V p

which corresponds to a non-central Gaussian quadratic form.
Therefore, given a predefined false alarm probability «, the
test finally reads as

H
—2logA = ~2n = F}' (1 - @),
Ho
where Fp is the CDF of D, which can be obtained by Monte-
Carlo simulations or by using some of the approximations
given in the literature for Gaussian quadratic forms (see,
e.g., [42]-[44]). Note that, in (11), we have again replaced
the true channel values by their estimations. In our proofs,
this seems to have a negligible impact on the threshold dis-
tribution unless the number of samples is very low (in which
case the asymptotic analysis here presented does no longer
hold). A summary of the proposed statistical test is pro-
vided in Algorithm 1, where the here presented pointwise
comparison is performed along the whole route P..

Y

V. MACHINE LEARNING FOR RADIO IMAGE-BASED LIS
SENSING

In the previous section, we have presented a statistical
method to sense the environment based on the received power
signal at the different antenna elements of the LIS, and hence
detecting route deviations from a predefined correct trajec-
tory. This approach exploits the large number of antennas
in the LIS in the same way as in massive MIMO systems.
However, the high spatial density of antennas and the large
array aperture of LIS can be exploited in an alternative way.
The basis of this novel technique is using the power of the
received signal across the surface as a radio image of the
environment, as stated in Section II.

A. MODEL DESCRIPTION

We introduce a ML model to perform the anomalous route
classification task based on the radio-based images obtained
at the LIS. The main advantage of this proposal, as we will
see, is that it is independent on the data distribution, and
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no assumptions are needed to its implementation. This is in
contrast with Section IV where we considered the noise is
Gaussian distributed with noise variance known for the sake
of simplicity in the analytical derivations. In reality, these
assumptions may not hold.

In our considered problem, the training data is obtained
by sampling the received power at certain temporal instants
while the target device is moving along the correct route.
In order to reduce both training time and scanning periods,
which may be heavy tasks for large trajectories, we resort
on transfer learning [45]. Because of this matter, the risk of
overfitting due to our constraint of short scanning periods is
quite significant, being transfer learning also a proper way
to tackle it. This allows using a small dataset and therefore
improving the flexibility of the system in real world deploy-
ments. In our case, we choose the VGG19 architecture [46].
Due to our specific use case, and the training data constraints,
we propose the use of an unsupervised ML algorithm named
as LOF which identifies the outliers presents in a dataset (i.e.,
the anomalous positions of the target robot) [47].

The proposed model is detailed in Fig. 2, where, in
order to perform the feature extraction, we remove the last
fully connected layer (FC) that performs the classification
for the purpose of VGGI19 and modify it for our specific
classification task (anomaly/not anomaly in robot’s route).

B. LOCAL OUTLIER FACTOR

LOF is an unsupervised ML algorithm that relies on the
density of data points in the distribution as a key factor
to detect outliers (i.e., anomalous events). In the context of
anomaly detection, LOF was proposed in [47] as a solution to
find anomalous data points by measuring the local deviation
of a given point with respect to its neighbors.

LOF is based on the concept of local density, where
the region that compounds a locality is determined by its
K nearest neighbors. By comparing the local density of a
point to the local densities of its neighbors, one can identify
regions of similar density, and points that have a substantially
lower density than their neighbors (the latter are consid-
ered to be outliers). This approach can be naturally applied
to the anomalous trajectory deviation detection as deviated
points that are really close to the correct trajectory could
be really close in distance, but they would have a lower
density compared with the points that actually belong to the
correct one, being accurately detected as deviations. Hence,
the points belonging to the correct route are used to learn
the correct clusters. The strength of the LOF algorithm is
that it takes both local and global properties of datasets
into consideration, i.e., it can perform well even in datasets
where anomalous samples have different underlying densities
because the comparison is carried out with respect to the sur-
rounding neighborhood. For the reader’s convenience, a brief
description of the LOF theory is provided in the following.?

2. For a more detailed description, the reader is gently referred to [47].
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FIGURE 2. Proposed model. White and blue blocks refer to VGG19 re-used original architecture and to the additional blocks for our task, respectively.
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FIGURE 3. Illlustration of Reachability Distance with K = 3. Manhattan distance
used for illustration purposes.

The algorithm is based on two metrics, namely the
K-distance of a point A, denoted by Dg(A), and its
K-neighbors, which is the set Nx(A) composed by those
points that are in or on the circle of radius D with respect to
the point A. Note that K is a hyperparameter to be chosen and
fixed for computing the clusters. Also note that this implies
INk(A)| > K, where |[Nk(A)| is the number of points in
Nk (A). With these two quantities, the reachability distance
between two arbitrary points A and B is defined as

RDk (A, B) = max{Dg(A), d(A, B)}, (12)

where d(A, B) is the distance between points A and B.
Figure 3 illustrates the RDg concept. This means that if
a point B lies within the K-neighbors of A, the reachabil-
ity distance will be Dg(A) = 3 (the radius of the circle
containing points C, D and E), else the reachability dis-
tance will be the distance between A and B. In the example,
RDk (A, B) = 6.

Note that the distance measure is problem-specific, being
in our case the Euclidean distance between the different
features extracted by the VGG19 network. From (12), the
local reachability density (LRD) of a point A is defined as
the inverse of the average reachability distance of A from
its neighbors, i.e.,

-1
RDk(A, B)

LRDr(d) = INk(A)]

2

BeNk(A)

13)

According to the LRD, if neighbors are far from the point
(i.e., more the average reachability distance), less density of
points are presented around a particular point. Note this
would be the distance at which the point A can be reached
from its neighbors, meaning this measures how far a point
is from the nearest cluster of points, acquiring low values
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of LRD when the closest cluster is far from the point. This
finally give rise to the concept of LOF, which is given by

ZBENK(A) LRDk (B)
LRDk (A)INk(A)|

Observe that, if a point is an inlier, the ratio is approxi-
mately equal to one because the density of a point and its
neighbors are practically equal. In turn, if the point is an
outlier, its LRD would be less than the average LRD of
neighbors, and hence the LOF would take large values. In
our specific problem, we propose using the LOF values to
determine whether a point belong to the correct trajectory
or from any other point due to a robot deviation.

LOFk(A) = (14)

C. DATASET FORMAT

With the algorithm and the model introduced, the remaining
component to fully characterize the proposed ML solution
is the dataset. In our considered problem, the dataset is
obtained by sampling the received signal power at each ele-
ment of the LIS while the robot moves along the trajectories.
Formally, we can define the possible trajectories (including
those composed by both correct and anomalous points) as
the set of points in the space P, € RV»*3? being N, the total
number of points in the route. Let us assume the system is
able to obtain N samples at each channel coherence interval
V p; € Py, being p; forj =1, ..., N, an arbitrary point of the
route. Hence, the dataset consists of T'= N, x N; samples
(monocromatic radio image snapshots of received power).
Each sample is a gray-scale image which is obtained by
mapping the received power into the range of [0, 255]. To
that end, we apply min-max feature scaling, in which the
value of each pixel m;; fori=1,...,Mandj=1,...,N,
is obtained as

(wij
m;j = | myn +

where w;; are the elements of w;, i.e., w;j = ||h;; + n,~,j||2,
mMyax = 255 and mMyiNn = 0, and

- WMIN,j) (mmax

WMAX,j

— MyN) —" (15)

— WMIN,j

WMAX,j = P WMIN,j = {i=Ill,l.i.I.1,M} Wi.j (16)
are the maximum and minimum received power value from
a point p; along the surface.

The input structure supported by VGG19 is a RGB image
of n. = 3 channels. Due to our monocromatic measurements,
our original gray-scale input structure is a one-channel
image. To solve this problem, we expand the values by

copying them into a n, = 3 channels input structure.
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(a) Use case scenario.

FIGURE 4. Simulated scenario.

Once the feature extraction is performed, the output is
ne. = 512 channels of size n, = 7 and ny; 7 pixels.
Since LOF works with vectors, the data is reshaped into
an input feature vector formed by 7 x 7 x 512 = 25088
dimensions, meaning our dataset is {x?}"_ . where x is
the i-th n-dimensional training input features vector (being
n = 25088) and x;l) is the value of the j-th feature.

VI. MODEL VALIDATION

In order to validate both sensing solutions, namely the sta-
tistical hypothesis testing and the radio-based image sensing
algorithm, we carried out an extensive set of simulations
to analyze the performance of the systems in a simple,
yet interesting, industrial scenario. To properly obtain the
received power values, we use a ray tracing software, there-
fore capturing the effects of the multipath propagation in
a reliable way. Specifically, we consider ALTAIR FEKO
WINPROP [48].

A. SIMULATED SCENARIO

The baseline set-up is described in Fig. 4(a), a small size
industrial scenario of size 484 m*. We address the detection
of the deviation of the target robot (highlighted in red color)
in 2 cases: i) it follows a fixed route parallel [Fig. 4(b)], and
ii) the correct route is normal to the bottom wall, in which
the LIS is deployed [Fig. 4(c)]. To evaluate the performance
in the detection of anomalies, we consider that the robot
may deviate from the correct route at any point, and we test
the ability of both systems to detect potential deviations at
a distance of, at least, Ad = 50 cm and Ad = 10 cm. These
two distances correspond to the cases Ad > A and Ad = A,
respectively, denoting A the wavelength.

For the aforementioned cases, we simulate in the ray
tracing software N, points, which correspond to different
positions of the robot in both the correct and anomalous
routes. Then, N radio image snapshots of the measurements
are taken at every p;, j = 1,...,N,. The most relevant
parameters used for simulation are summarized in Table 1.

In our simulations, we set N, = 367 and Ny = 10, thus
the dataset is composed of T = N, x Ny = 3670 radio
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Anomalous route

Correct route
Anomalous route
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(b) Parallel deviation. (c) Normal deviation.

TABLE 1. Parameters.

Frequency Pcr)l;/(er Nray | Antenna Antenna Propagation
(GHz) (dBm) paths type Spacing (cm) model
35 20 10 Omni % Free Space

propagation snapshots containing images of both anomalous
and non-anomalous situations, as described in Section V-C.
Out of N, = 367, N, = 185 are the snapshots corresponding
to the correct route, meaning we have 7, = N. x Ny = 1850
correct data samples, while the remaining are anomalous
points. To train the algorithm with the correct points, we split
the correct dataset into a 80% training set 10% validation set
and the remaining 10% for the test set. During the training
phase, the optimum value of K = 3 (the LOF parameter)
is obtained by maximizing the accuracy score in the correct
validation set. The training procedure was performed in an
Intel Xeon machine with 32 CPUs taking around 15 seconds
in the offline scanning period.

B. RECEIVED POWER AND NOISE MODELING

The complex electric field arriving at the i-th antenna element
at sample time f, E(r), can be regarded as the superposition
of each path, ie.’

Ny N,
Ei(t) = ZE,',n(t) = ZEi,n(f)Eﬂp""’(t),

n=1

A7)

n=1

where N, is the number of paths and INZi,n(t) is the complex
electric field at i-th antenna from n-th path, with amplitude
E; »(t) and phase ¢; (¢). From (17), and assuming isotropic
antennas, the complex signal at the output of the i-th element
is therefore given by

(1) = AZZEt t
yi(t) = I Zo (1) + ni(2),

3. Note that the electric field also depends on the point p;. However,
for the sake of clarity, we drop the subindex j throughout the following
subsections.

(18)
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with A the wavelength, Zg = 120x the free space impedance,
Z; the antenna impedance, and n;(f) is complex Gaussian
noise with zero mean and variance o2. Note that (18) is
exactly the same model than (1); the only difference is that
we are explicitly denoting the dependence on the sampling
instant #. For simplicity, we consider Z; = 1Vi. Thus, the
power w;(t) = llyi(H)||% is used at each temporal instant 7
both to perform the hypothesis testing in (4) and to generate
the radio image, as pointed out before. Finally, in order to
test the system performance under distinct noise conditions,
the average signal-to-noise ratio (SNR) over the whole route,
Y, is defined as?

)\2 T M
i A Z.
V' = 4nZoMTo? t; ;’E’m

where M denotes the number of antenna elements in the
LIS.

2
)

19)

C. NOISE AVERAGING STRATEGY
The statistical solution presented in Section IV has been
derived taking into account the presence of noise, and con-
sequently it has implicit mechanisms to reduce its impact
in the performance. However, the presence of noise may be
more critical in the radio image sensing, since it impacts
considerably the image classification performance [49].
Referring to (2) and (18), since we are considering only
received powers, the signal at the output of the i-th antenna
detector is given by

2
A2Z; ~
5 Ei+mni| .

20
drZy (20)

wp =

where we have dropped the dependence on f. Also, let us
assume the system is able to obtain S extra samples at each
channel coherence interval V p; € P;. That is, at each point
pj, the system is able to get N; = Ny x S samples. Since
the algorithm only expects Ny samples from each point, we
can use the extra samples to reduce the noise variance at
each pixel. To that end, the value of each pixel m;; is not
computed using directly w;; as in (15) but instead

N
, 1
Wi = E Z Wij,s»
s=1

where w; ; ¢ denote the received signal power at each extra
sample s = 1, ..., S. Note that, if S — oo, then

o = Elwijlhij] = 3] + o2,

ey

/
Wi

(22)

S—
meaning that the noise variance at the resulting image has
vanished, i.e., the received power at each antenna (con-
ditioned on the channel) is no longer a random variable.
Observe that the image preserves the pattern with the only
addition of an additive constant factor o2. This effect is only
possible if the system would be able to obtain a very large
number S of samples within each channel coherence interval.

4. This is equivalent to averaging over all the points p; of the trajectory P.
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D. STACKED DENOISING AUTOENCODER FOR IMAGE
SUPER-RESOLUTION

An autoencoder is a type of neural network which tries to
learn a representation (denoted as encoding) from the data
given as input, usually for dimensionality reduction purposes.
Along with the encoding side, a reconstructing side is learnt,
where the autoencoder tries to reconstruct from the reduced
encoded data a representation as close as possible to its
original input. There are several variations of the basic model
in order to enforce the learned representation to fulfill some
properties [50]. Among all of them, we are interested in the
DAEs [51].

The goal of the denoising autoencoder is to reconstruct
a “clean” target version from a corrupted input. In our
context, let us assume that we can obtain a target image
t € NN [0,255]" and a corrupted input ¢ € NN [0, 255]¥
result of the received power mapping explained in (15). Also,
consider N >> M and that t was obtained from a less noisy
environment, i.e., the average SNR 7, is greater than that of
¢, denoted by ¥, > ... Then, we can perform a resizing of
both images such as R : [0,255]Y — RN [0, 1]¥, meaning
we resize both images towards the same dimension R and
we normalize the values dividing by 255, being t, = R(t)
and ¢, = R(c) the target and corrupted input used to train
our DAE. Note that, although the two images (t, and c;)
are identical in dimension (R pixels) after the resizing pro-
cedure, the resolution of the target one is higher because it
is obtained in a more favorable scenario (larger SNR) and
from an initially higher number of pixels N.

To illustrate the approach, a one hidden layer explanation
is made for simplicity. The denoising autoencoder can be
split into two components: the encoder and the decoder,
which can be defined as transformations ® and W such that
®:RN[0, 1R > F, ¥ : F - RNI0, 1]R. Then, the
encoder stage of the DAE takes the input ¢, and maps it
into e e R = F as

e = p(Wer +b), (23)

being / the dimension of the compressed representation of
the data, known as the latent space, p the element-wise
activation function, W the weight matrix and b the bias
vector. These weights and biases are randomly initialized
and updated iteratively through backpropagation. After this
process, the decoder stage maps e to the reconstruction Cr
of the same shape as ¢,

& =p(We+b'), (24)
being p the activation function, and W’ and b’ the parameters
used in the decoder part of the network. In our specific case,
the reconstruction error, also known as loss, is given by the

mean squared error (MSE) of the pixel values of the target
image and the reconstructed image (R pixels), that is

Ylite — &I

E(tl‘7 é:‘) = R

5. Note that the summation is made along all the pixel values. However,
for the sake of clarity, we drop the subindex in this expression.
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FIGURE 5. Denoising autoencoder architecture.
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For the sake of reproducibility, a detailed summary of
the proposed architecture is provided in Figure 5. We have
used the Keras [52] library, so the description of the layers
corresponds to its notation. The ADAM optimizer with a
learning rate o = 0.001, exponential decay for the 1st and
2nd moment estimates 81 = 0.9 and By = 0.999 and € =
10~7 have been used for updating the gradient, minimizing
the MSE loss function. For the encoder part, Conv2D layers
with filter size 64 and 32 have been used, kernel sizes of
3x3 and stride = 2. The activation function LeakyReLU has
been used with a slope coefficient § = 0.2. Then, a Batch
Normalization layer has been used to maintain the mean
output close to 0 and the output standard deviation close
to 1. The Flatten layer is used to reshape the output into a
vector to feed the Dense layer with a number of neurons
! = 16 which corresponds to the dimension of the latent
space. The dimension ! was determined by analyzing the
learning curves in the training procedure.

In the decoder part, a Dense layer is used again to
recover the previous size of the feature vector while the
reshaping recovers the initial 2D input structure. Then,
Conv2DTranspose layers have been used to perform the
reconstruction of the input structure, having an identical con-
figuration than in the encoder side but changing the order
of the filters (32 and 64). The LeakyReLU activations and
the Batch Normalization are identical. The last layer is com-
posed by 1 filter, kernel size of 3x3 and stride = 1. This last
layer is for recovering completely the size as the input struc-
ture. Furthermore, the DAE network trains itself to augment
the resolution of the input image, because it will remove
artifacts resulting from a lower resolution, by learning from
a high resolution target. Then, this reconstructed image will
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tageous for our problem, leading to a strategy for improving
the performance of the system.

E. PERFORMANCE METRICS

To evaluate the prediction effectiveness of our proposed
method, we resort on common performance metrics that
are widely used in the related literature. Concretely, we are
focusing on the F1-Score which is a metric based on the
Precision and Recall metrics. First, we need to describe what
we consider as a positive or negative event. In our problem,
TP and FP stand for True and False Positive (anomalous
event) while TN and FN for True and False Negative (cor-
rect event). In this way, the applied metrics are defined as
follows:

o Precision positive (PP) and negative (PN) as the
proportion of correct predictions of a given class
po TP gy TN
TP+FP’ TN+FN'
« Recall positive (RP) and negative (RN) as the proportion

of actual occurrences of a given class which has been
correctly predicted.

(26)

TN
P= , N = .
TP+FN TN+FP
« Positive F1-Score (PF1) and Negative F1-Score (NF)
as the harmonic mean of precision and recall:
PP - RP PN - RN
PP + RP’ PN + RN’

Note that although the training procedure is fully unsuper-
vised, for our specific evaluation we know the labels of
the data samples, meaning we can calculate these metrics,
well-known in the supervised learning literature.

27)

PF =2- NF; =2 28)
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FIGURE 6. PF; score for radio image sensing with M = 32 x 32 antennas,
inter-element distance of As = 1/2, correct route parallel to the LIS, anomalous points
placed at Ad = 10 cm, and different numbers of samples.

VIl. NUMERICAL RESULTS AND DISCUSSION

We here present some numerical results in order to ana-
lyze the performance of both proposals (statistical test and
radio image sensing) in our evaluation setup described in
Section VI. Generally, in the considered industrial setup,
it would be more desirable to avoid undetected anomalies
(which may indicate some error in the robot or some exter-
nal issue in the predefined trajectory) than obtaining a false
positive. Hence, all the figures in this section shows the
algorithm performance in terms of the PF| metric.

Also, we mainly focus our results on the radio image
sensing algorithm since it is the proposal with a larger num-
ber of tunable parameters, whilst the statistical hypothesis
testing is used as a benchmark of the ML based solution.

A. IMPACT OF SAMPLING AND NOISE AVERAGING

First, we evaluate the impact of both available number of
samples and the noise averaging technique in the radio image
sensing algorithm. To that end, we consider a LIS com-
pounded by M = 32 x 32 antennas and a spacing As = A/2
for a Ad = 10 cm parallel deviation.

We evaluate two approaches: i) using the S extra samples
directly as input to the algorithm, being Tc = N, x Ny xS, and
ii) using the S extra samples for averaging. For this particular
case, N} € {1000, 100}. Then V p; weuse S = Ny 5 samples for
obtalnmg N, S-averaged samples for training the algorithm,
being still Tc = N, x Ny = 1850. Note that the number of
samples N, would depend on the sampling frequency and
the second order characterization of the channel, i.e., the
channel coherence time and its autocorrelation function.

Figure 6 shows the performance of the system when using
S extra samples and S averaged ones respectively. As high-
lighted previously, noise contribution is critical in image
classification performance, leading to not achieving a valu-
able improvement when augmenting the number of samples
presented to the algorithm. However, when performing the
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FIGURE 7. PFy score for radio image sensing with fixed LIS aperture of 5.44 x 5.44
m, correct route parallel to the LIS, anomalous points placed at Ad = 10 and Ad = 50
cm, S = 100 samples, and different number of antennas and spacings.

averaging, results are significantly improved due to the noise
variance reduction. As expected, when noise level is higher,
more samples are needed to preserve the pattern by aver-
aging, being N, = 1000 the one which yields a better
performance. For the following discussions, this sampling
strategy will be used, meaning we are using S = 100 extra
samples.

B. IMPACT OF ANTENNA SPACING

The next step is evaluating the impact of inter-antenna dis-
tance in the ML sensing solution. We fix the aperture to
5.44 x 544 m and S = 100 averaged samples. Then, we
assess the performance in both Ad = 50/10 cm for the
parallel deviation, and we analyze different spacings with
respect to the wavelength (A/2, A and 21).

The performance results for the distinct configurations are
depicted in Fig. 7. As observed, the spacing of 2A — which
is far from the concept of LIS — is presenting really inaccu-
rate results showing that the spatial resolution is not enough.
We can conclude that the quick variations along the surface
provide important information to the classifier performance.
Besides, this information becomes more important the lower
the distance between the routes is. Specially in the range
of ¥ € [10,4] for A/2 where the detection is almost iden-
tical regardless of the extra precision needed to detect the
deviation when the routes are closer. Furthermore, the effect
of antenna densification for a given aperture is highlighted
and it can be seen that the lowest spacing leads to the best
results.

C. LIS APERTURE COMPARISONS
In this case, LIS with different apertures have been evaluated.
The spacing is fixed to A/2, S = 100 averaged samples are
used while the deviation is Ad = 10 cm parallel.

Looking at Fig. 8, the aperture plays a vital role in the
sensing performance. Increasing the number of antennas
leads to a higher resolution image, being able to capture the
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FIGURE 8. PF; score for radio image sensing with variable aperture, inter-antenna

distance of 1/2, correct route parallel to the LIS, anomalous points placed at Ad = 10
and S = 100 samples.
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FIGURE 9. Comparison between radio image and the ical solution
in (4) for M = 32 x 32 antennas, correct route parallel to the LIS, spacing of 1/2 and
different processing techniques.

large-scale events occurring in the environment more accu-
rately. Note the usage of incoherent detectors is yielding to
a good performance when the aperture is large enough. The
key feature for this phenomena is the LIS pattern spatial
consistency, i.e., the ability of representing the environment
as a continuous measurement image.

D. DAE FOR IMAGE SUPER-RESOLUTION EVALUATION
In this case, the impact on performance by using DAE is
evaluated and compared to the hypothesis test in (4). We
fix the aperture to M = 32 x 32, for a parallel deviation of
Ad =10 cm and an antenna spacing of 1/2.

For this evaluation, the performance is analyzed in 4
cases: i) no pre-processing of images performed, ii) S = 100
averaging strategy, iii) image resolution augmentation using
DAE, and iv) The hypothesis test proposed in Algorithm 1.
For the DAE, we assume we have access to a target refer-
ence image t € NN [0, 2551V |y=128x 128 With y =10 dB
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and our corrupted input is ¢ € NN [0, 255]M|M:32X32 with
y € [10,—10] dB. Then, we finally resize both images
R : [0,255]1¢ — R N[0, 11%|r=224x224, Obtaining images of
t. € NN [0, 117%*%?2* and ¢, € NN [0, 11224*2%* pixels.

Regarding Fig. 9, one can see the raw-data (blue line)
is yielding to a really poor performance. This is expected
taking into account noise can interfere significantly in the
local density of the clusters, leading to wrong results. Also,
the noise averaging strategy is good enough when noise
contribution is negligible, meaning that for improving the
results in lower SNR scenarios we would need to obtain a
higher S which would be unpractical. Finally, the usage of
DAE for image super-resolution outperforms both methods,
allowing to improve the system performance and even work
in quite unfavourable SNR scenarios. In turn, the hypothe-
sis test derived in Section IV provides in general the best
performance.

However, we must take into account that the statisti-
cal test is built based on some key a priori knowledge,
namely Gaussian noise with known variance. In the con-
text of estimation, the radio image sensing solution can
be seen as a non-parametric approach, which is valid for
any baseline distribution and no further assumptions are
required. Nevertheless, the performance of the ML solu-
tion (when DAE is employed), presents almost no difference
with respect to the ad-hoc test up to 2 dB of average SNR.
This is a promising result, since the application of more
refined image processing techniques may lead to an increase
in performance. Also, note that here we are considering a
rather simple scenario, where the scatterers do not move. In
a more realistic environment, with the rapid changes in the
channel and the temporal dependencies due to the relative
positions between users and scatterers in movement, ML-
based sensing seems a promising solution to learn temporal
dependencies in those scenarios where classical solutions
become impractical.

E. ROUTE DEVIATIONS EVALUATION

We evaluate now the impact of the separation of deviations
and different types of routes in both radio image sensing
and the statistical test. To that end, we fix the aperture to
M = 32x32, and a antenna spacing of 1/2. We will be using
all the improvements in the preprocessing of the images to
leverage the performance of the ML system.

In Fig. 10, we can see the performance of the system
under different deviations and SNR conditions. We can see
the system works better the closer the deviation of the routes
are. This is an advantage of our proposed approach, the
closer the routes are, the more accurate the reconstruction
of the DAE is, taking into account the corrupted image
¢y will be more similar to the target image t,, allowing a
better augmentation of the image resolution, so the correct
clusters can be learned more accurately. In this way, the
ML proposed algorithm works better in the cases a standard
wireless sensing system would be more prone to failure.
Also, the parallel deviations are easier to detect than the
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FIGURE 10. Comparison between radio image sensing and the statistical solution
in (4) for M = 32 x 32 antennas, different correct routes and spacing of 1/2.

normal deviations. The path loss of the points in the parallel
routes remains almost identical regardless of the specific
point, making it easier to detect. It is important to highlight
the SNR definition presented in (19) can influence in the
pattern acquisition in the normal deviation cases when points
are far from the LIS, which will have a significantly lower
instantaneous SNR leading to a more difficult detection.

Note that the abrupt decrease on performance for the
hypothesis test is due to the fact that we are using a pointwise
test to perform a detection over a whole route (collection of
points), as shown in Algorithm 1. Whilst the ML algorithm
performs an anomaly detection over the whole correct route,
the proposed statistical test is a pointwise comparison, i.e.,
it checks the validity of the null-hypothesis for each point
in the correct route separately. This implies that, in order to
detect a point as anomalous, the test has to reject Hy on all
the correct points. Consequently, failing in a single point is
equivalent to fail in all the points.

F. PERFORMANCE EVALUATION UNDER CHANGING
ENVIRONMENT

Finally, we here evaluate the performance of our system
when a major change in the scenario occurred, i.e., the rela-
tive positions between the scatterers and the transmitter has
changed considerably and thus the pattern capture in the
radio image no longer matches the original one used in the
training phase. Note that, although the considered scenario
for testing was assumed to be fixed, we may be interested in
extrapolate the performance of the proposed solutions when
dealing with environmental changes. To that end, we evaluate
the anomaly detection accuracy of both the hypothesis test
and the ML solution. We fix the aperture to M = 32 x 32, for
a parallel deviation of Ad = 10 cm and an antenna spacing
of A/2. Again, we will use all the improvements in the pre-
processing of the images to leverage the performance of the
ML system. Fig. 11 shows the performance of the system
under a changing environment. The hypothesis test is robust
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FIGURE 11. Performance of radio image sensing and the statistical solution in (4)
for M = 32 x 32 antennas, correct route parallel to the LIS, anomalous points placed at
Ad =10 and spacing of 1/2 in a changing environment.

to an environmental change, as its performance remains sim-
ilar as the static case. With respect to the ML solution, in
the range of ¥ € [0, —4] drops significantly. However, in
the proposed scenario, we assume a change in the environ-
ment is a really unlikely event, leading to a worsening in
the performance in some SNR cases.

VIll. CONCLUSION

We have made the first step towards the use of LIS for
sensing the propagation environment, exploring and propos-
ing two different solutions: i) an statistical hypothesis test
based on a generalization of the likelihood ratio, and ii) a ML
based algorithm, which exploits the high density of antennas
in the LIS to obtain radio-images of the scenario. We pro-
vide a complete characterization of the statistical solution,
and also pave the way to the use of ML technique to improve
the performance in the second case. As an example, we have
shown that the use of denoising autoencoders considerably
boosts the performance of the ML algorithm. Both proposals
are tested in an exemplary industrial scenario, showing that,
up to relatively low values of SNR, the performance of the
two presented techniques is rather similar. The ML solution
implies a larger computational effort than the statistical test,
but in turn does not require any a priori knowledge, as is
the case of the test in which the variance of the noise is
assumed in order to reduce analytical complexity. Finally,
the results obtained in this system motivate a further study
with more complex detectors of I/Q components to quan-
tify the potential performance gain obtained from using I/Q
receivers, i.e., analyzing the trade-off between the system
complexity and its performance.
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