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ABSTRACT The new possibilities offered by 5G and beyond networks have led to a change in the focus
of congestion control from capacity maximization for web browsing and file transfer to latency-sensitive
interactive and real-time services, and consequently to a renaissance of research on the subject, whose most
well-known result is Google’s Bottleneck Bandwidth and Round-trip propagation time (BBR) algorithm.
BBR’s promise is to operate at the optimal working point of a connection, with the minimum Round Trip
Time (RTT) and full capacity utilization, striking the balance between resource use efficiency and latency
performance. However, while it provides significant performance improvements over legacy mechanisms
such as Cubic, it can significantly overestimate the capacity of fast-varying mobile connections, leading to
unreliable service and large potential swings in the RTT. Our BBR-S algorithm replaces the max filter that
causes this overestimation issue with an Adaptive Tobit Kalman Filter (ATKF), an innovation on the Kalman
filter that can deal with unknown noise statistics and saturated measurements, achieving a 40% reduction in
the average RTT over BBR, which increases to 60%when considering worst-case latency, while maintaining
over 95% of the throughput in 4G and 5G networks.

INDEX TERMS Congestion control, latency, transport protocols, BBR.

I. INTRODUCTION
Over the next few years, several formerly impossible applica-
tions are going to become real, thanks to the novel capabilities
of 5G and beyond networks: smooth high-definition video
conferencing over mobile networks, remote robotic opera-
tions on the factory floor, and wireless Augmented Reality
(AR) are just a few well-known examples. All these applica-
tions have a high throughput and strict latency constraints,
which are expected to be met by the new Radio Access
Technologies (RATs), but the existing end-to-end congestion
control approaches often do not consider latency, caus-
ing self-queuing delay by probing the channel too aggres-
sively [1]. Finding the correct balance between exploiting
capacity efficiency and maintaining a low latency is still an
open problem in congestion control.

The recent work by Google on this subject has led to the
development of BBR [2], a new mechanism that promises
to solve this problem by exploiting capacity fully and
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maintaining a lowRTT at the same time. Google has switched
to BBR for most of its outgoing traffic and included it in
its new QUIC protocol [3], which is poised to replace the
Transmission Control Protocol (TCP) over the next few years.
BBR works by explicitly estimating the Bandwidth-Delay
Product (BDP) of a connection with a simple max filter
(i.e., taking the maximum measured value over a window as
the ‘‘true’’ capacity), then using it to control the congestion
window and pacing rate of the sender.

In this work, we present BBR-S, where the S stands for
Sender-side Kalman Inference Procedure (SKIP): our con-
gestion control maintains the basic structure of BBR, but
replaces the max filter with the titular SKIP, a better estima-
tion mechanism. The BBR-S mechanism can avoid BBR’s
pitfalls by improving capacity tracking, significantly reduc-
ing the RTT while still achieving fairness with Cubic flows
and effectively exploiting capacity. The main contributions
in the paper are as follows:
• We present the SKIP filter, which models capacity as
the combination of a Gauss-Markov process with rare
step-like events and tracks it through an ATKF, which is
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a new theoretical tool that we developed by combining
the Tobit Kalman Filter (TKF) [4] and an Adaptive
Kalman Filter (AKF) [5];

• We describe the operation modes that the congestion
control mechanism uses to keep track of sudden shifts
in the capacity, in order to react faster even in cases of
blockage or cross-traffic spikes;

• We test the new mechanism in extensive ns-3 simula-
tions over real network traces from modern wireless
network, comparing it with standard BBR and other
state-of-the-art congestion control mechanisms.

BBR-S manages to stay close to the actual minimum
RTT while maintaining more than 90% of standard BBR’s
throughput in our ns-3 simulations over real network traces.
The average RTT reduction over standard BBR was 40%,
which increased to approximately 60% when considering the
99th percentile. This result combines the traditional advan-
tages of Vegas, whose RTT is only similar, with the ability
to share capacity fairly with more aggressive congestion
control mechanisms. In fact, BBR-S can get 90% of its
fair share when competing with a Cubic flow, making the
protocol extremely versatile. These results show a signifi-
cant end-to-end performance advantage for latency-sensitive
application over existing congestion control mechanisms,
including standard BBR, in fast-varying connections like
those that use mmWave links.

The rest of the paper is organized as follows: first, the state
of the art on congestion control is presented in Sec. II, with a
focus on the BBR protocol and its issues. Then, our BBR-S
solution is described in detail in Sec. III, defining the SKIP
filter and its practical implementation. The simulation scenar-
ios and results are described in Sec. IV, and Sec. V concludes
the paper and lists some avenues of future research.

II. RELATED WORK
Congestion control is an essential component of modern net-
works, since the large number of heavy flows that the infras-
tructure needs to support can only be delivered if senders limit
their rate before flooding connections and generating conges-
tion. This issue is even more pressing in wireless networks,
from the first commercial services in the 1990s [6] to modern
mmWave links [7]: the nature of the wireless medium makes
it prone to losses and fluctuations in the capacity, putting a
strain on congestion control. Line of Sight (LoS) to Non-Line
of Sight (NLoS) transitions in mmWave [8] are even more
damaging, since they cause sharp drops in the capacity which
TCP is often too slow to adapt to and recover from, creating
a long queue after the drop and taking a long time to get back
to full capacity after it is over.

Classic congestion control mechanisms, such as the
omnipresent Cubic [9] and the older Tahoe and New Reno,
interpret packet losses as a signal of congestion: they gradu-
ally increase their sending rate until a loss indicates that the
bottleneck buffer is full. Filling the buffer allows Cubic to
exploit capacity effectively, but the RTT can grow quickly if
the bottleneck buffer is large. This has led to the emergence

of the bufferbloat problem [10]: as buffers in the Internet
grew, Cubic’s RTT did the same, reaching values up to several
seconds.

In order to maintain a low RTT, the Vegas congestion
control mechanism [11] was developed with a delay-based
philosophy: any increase in the RTT is interpreted as con-
gestion, making Vegas suited to low-latency application.
Vegas achieves a fair capacity exploitation with no RTT
increases when sharing the bottleneckwith other Vegas flows,
but it has famously never been widely adopted because it
cannot coexist with Cubic, since its throughput drops to
almost zero when it shares a bottleneck with more aggres-
sive loss-based mechanisms. Compound [12], which is the
default mechanism on Windows machines, combines this
approach with a loss-based one, attempting to strike a balance
between throughput and delay. Verus [13] is a more advanced
delay-based congestion control mechanism, which shares
Vegas’s vulnerability but works very well in fast-varying
channels.

Another philosophy that has recently gained traction
is learning-driven congestion control: although they are
not yet mature for widespread use, the Remy [14] and
Performance-oriented Congestion Control (PCC) [15] pro-
tocols are two important examples of this recent trend. The
main issue that learning-driven congestion control has to
face is generalization, since the mechanisms are often tied
to knowledge about a specific scenario or a limited training
set and cannot be used out of the box on the wider Inter-
net without major performance losses. For a more extensive
discussion of congestion control mechanisms, we refer the
reader to [16], [17].

A. BBR CONGESTION CONTROL
We now look at BBR [2], the congestion control mechanism
our work is based on. We examine its driving mechanism,
as well as the flaws that we try to correct with BBR-S. BBR
tries to explicitly estimate the BDP and stay close to the
connection’s optimal operating point, defined as full capac-
ity exploitation with minimum RTT [18]. In other words,
the objective of BBR is to transmit data at the highest possible
rate without creating a queue. BBR uses a capacity-based
philosophy, measuring capacity directly like the older West-
wood mechanism [19] and the more recent Sprout [20]. The
protocol has four phases, which are represented in Fig. 1:
• In the startup phase, BBR uses a gain of 2/ ln(2) to
quickly ramp up the sending rate until the actual band-
width is discovered. This can create a queue of up to
twice the BDP, resulting in an RTT increase of twice the
minimum RTT of the connection.

• In the drain phase, BBR uses the inverse of the
startup gain to reduce the queue before starting normal
operation.

• The bandwidth probe phase is BBR’s normal mode of
operation: in this phase, BBR is driven by its capacity
estimates. The estimates of the capacity are passed to
a max filter, whose output is the protocol’s bandwidth

VOLUME 9, 2021 76365



F. Chiariotti et al.: BBR-S: Low-Latency BBR Modification for Fast-Varying Connections

FIGURE 1. Operation of the BBR algorithm.

estimate. This optimistic estimation mechanism is not
without issues, as we will discuss later, but it allows
BBR to fully exploit the capacity in stable channels.
The protocol then sets the pacing rate to the bandwidth
and the congestion window to twice the BDP, ensuring
that the reaction to capacity drops will not be too slow.
Since capacity estimates are limited by the pacing rate,
BBR periodically adjusts the pacing rate to 1.25 times
the measured bandwidth. In this way, it builds up a
queue and gets more accurate estimates of the capacity,
identifying large upswings in the capacity. After one
RTT, the protocol spends another RTT with a reduced
pace of 0.75 times the bandwidth in order to reduce the
standing queue.

• The RTT probe phase is repeated periodically, with a
default of 10 s. During this phase, BBR updates its
estimate of the connection’s minimum RTT. In order to
do so, it reduces the congestion window to 4 packets
for a short period, flushing the queue at the bottleneck
and ensuring that the estimate of the minimum RTT is
unaffected by self-queuing delay. Naturally, other flows
sharing the bottleneck buffer might still bias the esti-
mate. After an RTT probe, operation resumes normally.

Since it does not interpret loss as a signal of congestion,
relying on the BDP estimate to avoid buffer overflows, BBR
does not reduce its sending rate as a consequence of packet
loss. This gives it an advantage over loss-based mechanisms
in naturally lossy connections such as wireless and mobile
systems.

B. BBR’s ISSUES IN MOBILE NETWORKS
BBR is currently on the way to become the standard TCP ver-
sion for mobile networks: measurements in a highway mobil-
ity scenario show that it can achieve a far higher throughput
than Cubic in fast-varying scenarios [21]. However, BBR
also has some significant shortcomings: aside from being
RTT-unfair [22] because of its 2BDP congestion window
limit, its fairness to Cubic flow is highly dependent on
the bottleneck buffer size, as BBR is very aggressive in
shallow-buffer connections, but far more conservative than
Cubic in bufferbloat conditions [23]. Another issue is the
slow convergence of multiple flows to the fair bandwidth
allocation [24], as the synchronization between RTT probing
periods can take more than 30 s.

The most important issue of BBR in fast-varying net-
works, which we aim to solve with BBR-S, is inherent in its
bandwidth estimation procedure: since capacity samples are

FIGURE 2. Comparison between a sending rate driven by capacity
estimates based on the max filter and a simple moving average.

filtered using a simple max filter, any temporary upswing in
the path capacity influences BBR’s bandwidth estimate until
the sample exits the max filter window [25]. The window
itself has no fixed length, but expires after 10 subsequent
sentinel packets, whose RTT can be much larger than the
minimum RTT of the connection. In fact, it is often almost
twice as much: if the pacing rate is higher than the actual
capacity, packets will be queued at the bottleneck, until the
2BDP limit is reached and the congestion window limits the
queuing.

The same behavior has been observed when multiple BBR
flows share a bottleneck buffer [26]. In these cases, which are
very common for wireless connections with volatile capac-
ity, BBR’s operating point will be far from the maximum
throughput and minimum RTT objective. Connections whose
bottlenecks are mmWave links will experience this phe-
nomenon often, since the capacity of mmWave links can drop
suddenly and dramatically after a transition between LoS and
NLoS propagation or a beam switching event [27]. In fact,
the performance of TCP over mmWave links is already a
concern for the research community [7], and cross-layer solu-
tions have already been proposed to overcome the trade-off
between underutilization and high latency that traditional
end-to-end congestion control faces [28].

Some of these issues are partly addressed by the
BBRv2 release [29], which reduces the impact of RTT probes
by making the change in the congestion window less drastic:
instead of reducing it to 4 packets, the new version reduces
it to half of the currently estimated BDP. It also deals with
shallow buffers by probing for congestion and maintaining
headroom, but quickly resuming standard operation if the
buffer is large. Other changes involve an improved mecha-
nism to deal with Explicit Congestion Notification (ECN)
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andActiveQueueManagement (AQM) techniques, improved
performance over aggregation-heavy links, and a way to
handle lossy networks by setting a maximum acceptable loss
rate. However, the max filter structure is unchanged even in
BBRv2, so RTT performance in fast-varying networks will
be similar.

BBRx [30] is a recent modification to BBR that attempts
to correct for the aggressiveness of the standard mechanism.
BBRx corrects the max filter output by adding a factor that
depends on the difference between the current RTT and the
minimum measured RTT of the connection. The parameters
of the filter can be learned online.

III. THE BBR-S SOLUTION
The idea behind the BBR-S solution is simple: in order to
avoid the queuing problem caused by the max filter, capacity
needs to be estimated with an unbiased filter. If the filter is
accurate and there are no sudden upswings in the capacity,
the throughput loss with respect to standard BBR will be
negligible, and the queue at the bottleneck buffer will bemuch
shorter. Fig. 2 shows this in a simple example: we generated
a normally distributed capacity trace with a mean of 10 Mb/s
and a standard deviation of 1 Mb/s, then ran the max filter
alongside a simple moving average (the window for both
filters was 0.1 s). The two filters were used to determine
the pace of the sender: as the plot on the right side shows,
the constant overestimation of capacity by themax filter leads
to a very large standing queue, and BBRwill soon reach a full
congestion window and operate at twice the minimum RTT.

The difference between the simple max filter and the BBR-
S SKIP procedure is shown in Fig. 3. While BBR uses a
simple rate sampling strategy and filters its outputs directly
through a max filter, BBR-S operates in three steps:

1) RTT samples are processed to get a capacity sam-
ple. This procedure is more accurate than counting
acknowledgments over time, as it can take variations
in the pacing rate into account. However, the capacity
sample is inaccurate when there is no standing queue at
the bottleneck, as the capacity will be censored by the
sending pace.

2) We assume that most of the time the capacity of the
link is going to be slow-varying, with a certain amount
of noise caused by short flows and fading. This can be
represented well by a Gauss-Markov model, particu-
larly when the filter is adaptive and can adjust the noise
variance. However, all Kalman-based models can take
a long time to converge in case of stepwise changes
in the system, which are to be expected in wireless
systems, e.g., when a heavy cross-traffic flow starts
or ends, or when blockage significantly affects the
channel quality. For this reason, SKIP has a dropmode
and a step mode, which are triggered when capacity
sharply decreases and increases, respectively.

3) If SKIP is in normal mode, the sample is filtered
through theATKF, and the pacing rate is set to themean
of the filter. In drop mode, the pacing rate is still set

to the mean of the ATKF, but the filter is not updated
with new capacity samples: a counter is increased, and
after tthr steps in drop mode, the mean of the ATKF
is reset to the average capacity seen during the drop.
In this way, the sending rate is not decreased at every
temporary drop, but SKIP can still react quickly to
persistent changes in the capacity. The requirement to
avoid decreasing the sending rate does not hold for step
mode: in this case, the ATKF is still evolved with the
new samples, but its mean is reset after tthr steps to
ensure full capacity utilization.

Thanks to its three modes of operation, SKIP can deal with
both small, persistent variations in the capacity, which are
well-represented by a Gauss-Markov model, and large step-
wise changes: resetting the mean of the filter speeds up the
response to the change, giving SKIP a faster response than
standard BBR. At the same time, SKIP is not significantly
more complex than standard BBR, maintaining the computa-
tional cost acceptable in a high-capacity real-time setting.

Additionally, during RTT Probe periods, the congestion
window is set to half the BDP instead of just 4 packets in order
to estimate the minimum RTT without affecting throughput
too heavily. This innovation is also present in BBRv2, but
we remark that BBRv2 does not solve the max filter issue,
and will suffer from the same overestimation in wireless
networks. Finally, BBR-S can exit from the startup phase
faster than BBR, basing it on the measured RTT instead of
capacity growth: while BBR enters the drain phase only if the
measured capacity grows by a factor lower than 1.25, we stop
the startup exponential growth if either that condition is met
or the RTT reaches 6 times theminimum, indicating that there
is a large standing queue.

Wewould also like to remark that the Gauss-Markovmodel
with steps is not necessarily the optimal model for any given
scenario, but it satisfies three extremely important needs in
the design of a congestion control algorithm. The model is
flexible, as it can deal with most practical cases with no stabil-
ity issues, and has no obvious failure modes that lead to sub-
optimal performance, unlike the max filter. It is simple, as the
computational requirements of a one-dimensional ATKF are
very limited, and can be executed with little effort on most
modern platforms. Finally, it is extendable: a more accurate
model, considering specific features of a given connection,
can be easily integrated in the framework by modifying the
underlying model of the ATKF. Furthermore, as our simula-
tion will show, the throughput loss with respect to standard
BBR is negligible, while maintaining the RTT very close to
the minimum for the connection in different wireless net-
works. In the following, we will describe the implementation
of SKIP in detail.

A. ESTIMATING CAPACITY WITH SKIP
First, we introduce the notations used in the following: given
a random variable X , its expected value is denoted by E[X ]
and its variance by Var[X ]. The conditional expectation of X
given the value of Y is denoted by E[X |Y ]. Vectors like x are
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FIGURE 3. Comparison of the pacing rate adaptation in BBR and BBR-S.

TABLE 1. Main notations used in the paper.

written in bold, while matrices like A are written in bold and
indicated with capital letters. The hat symbol indicates that
the value is an estimate: x̂ is an estimate of x. We refer to
the univariate normal PDF as φ(·), and to the normal CDF
as 8(·). Accordingly, the estimate of the value of x at time t
given the observations up to time ` is denoted as x̂t|`. The
main notations used in the following are listed in Table 1.

Let t = (t1, . . . , tn) be the vector of send times for the last
n packets whose ACKs arrived in the last estimation time Tk ,
and a = (a1, . . . , an) be the vector of the corresponding ACK
reception instants. Furthermore, let L = (L1, . . . ,Ln) be the
vector of the corresponding packet sizes. In the following,
we assume that ti ≥ tj ∀i > j and ai ≥ aj ∀i > j.1

1This in-order delivery hypothesis is a basic assumption of most TCP
congestion control mechanisms, and holds almost universally in modern
networks.

The resulting RTT vector is τ = a− t, and its i-th element is
given by:

τi = τmin +
Li
C
+ qi, (1)

where τmin is the end-to-end forwarding, propagation and
processing time for the packet and its ACK, i.e., the mini-
mum RTT of the path, except for the contribution due to the
bottleneck link, C is the bottleneck link’s available bitrate,
i.e., the path capacity, and qi is the time required to get rid of
the backlog at the bottleneck when the packet is generated,
which is defined as:

qi =


X (ti)
C
− (ti − t1), if S(ti) > C;

0, otherwise;
(2)

where X (ti) =
∑i

j=1 Lj is the number of bytes in flight at
time ti, and S(ti) =

X (ti)
ti−t1

is the average sending rate between
t1 and ti. In practice, (2) states that, if the sending rate exceeds
the bottleneck capacity, the queuing delay grows linearly in
time. By combining (1) and (2), we get:

τi = τmin +
Li
C
+

[
X (ti)
C
− (ti − t1)

]+
, (3)

where [x]+ is equal to x if the argument is positive, and 0 if
it is negative. Consequently, we have

τj − τi =
Lj − Li
C
+

[
X (tj)− X (ti)

C
− (tj − ti)

]+
, (4)

where j > i. If we assume a quasi-stationary regime,
i.e., S(ti) ' S(tj), we get

τn − τ1 =
Ln − L1
C

+

[
S(t)(tn − t1)

C
− (tn − t1)

]+
. (5)

If we take the derivative over time of the RTT on the path,
we get

∂τ

∂t
=

S(tn)
C − 1, (6)

from which we get

C = S(tn)
∂τ
∂t +1

. (7)

76368 VOLUME 9, 2021



F. Chiariotti et al.: BBR-S: Low-Latency BBR Modification for Fast-Varying Connections

We can now estimate ∂τ
∂t by using linear least squares fitting:

∂τ

∂t
=

∑n
i=1 Li

∑n
i=1

(
ti−

∑n
j=1 tj
n

)2(
τi
Li
−

∑n
j=1 τj∑n
j=1 Lj

)
n
∑n

i=1

(
ti−

∑n
j=1 tj
n

)2 . (8)

By combining (7) and (8), we can get an estimate of the
average capacity, which we can store to get an empirical CDF
of the path capacity. The norm of the residual error of the
linear fit is useful to gauge the jitter of the path, i.e., capacity
fluctuations that are faster than the estimation timestep Tk .

The derivation above assumes that there is queuing, so it
will not work when there is no standing queue and the
sender’s pace S(t) is below the capacity. In that case, the esti-
mation will simply return S(t). Most capacity estimation
methods share this limit, as Jaffe proved in 1981 [31].
This kind of saturation effect can be modeled using Tobit
Type I censoring [32], in which measurements have an upper
or lower threshold, and any value beyond the threshold is
clipped.

B. TRACKING CAPACITY WITH THE ATKF
The capacity estimation method we defined above is noisy,
both because of imperfections in the estimates and because
of the natural fluctuations of the channel. In order to reduce
this imprecision, we track the evolution of the capacity using a
Kalman Filter (KF) [33], assuming that the noise is Gaussian.
The TKF [32] is an extension of the KF that can deal with
Tobit Type I censoring, solving the limited measurement
issue. The basic system model we use is very simple, and
operates on discrete timesteps with interval Tk , which is
equivalent to the capacity estimation timestep:

xt+1 = xt + wt ; (9)

Ct = min(St , xt + vt ). (10)

In the model, the measured capacity Ct is a noisy observa-
tion of a hidden state xt , which represents the actual capacity
of the channel, whose evolution is modeled by a simple
Gauss-Markov process. The measured capacity is limited
by the sending rate St . The two components wt and vt are
Gaussian random variables with zero mean and variances
σ 2
w = Q and σ 2

v = R, respectively. The two variances
are required inputs of the filter, which needs to distinguish
between temporary variations due to vt (estimation noise) and
long-term effects that change the state of the system due to
wt (process noise). The KF gain Kt is calculated based on
the a priori and a posteriori estimates of the prediction error
variance. The KF is the optimal estimator if its parameters
are correct for the tracked system, but it needs the values of
Q and R as inputs, and its results can degrade quickly if the
settings are wrong [34]. If the variances are unknown or can
change over time, as in our case, there are several techniques
to estimate them online while tracking the underlying pro-
cess [35]. These extensions of the KF are called AKFs. In the
following, we describe the TKF and extend the recursive
AKF implementation from [5] to the Tobit Type I censored

case, deriving the Adaptive Tobit Kalman Filter (ATKF).
Other AKF techniques such as Autocovariance Least Squares
(ALS) [36] can also be used, but the adaptations required to
make them work in the Tobit case are more extensive.

We now quickly report the derivation of the TKF, which
is adapted from [4]. To simplify the notation in the following
steps, we denote the normalized distance from the censoring
threshold as ηt :

ηt =
St − x̂t|t−1

σv
, (11)

where x̂t|t−1 is the a priori estimate of the hidden state xt . This
parameter is critical in the TKF, as the censoring probability
is computed directly from it and, consequently, so are the
filter update equations and Kalman error. We also define the
inverse Mills ratio, i.e., E[X |X < α], which denoted as λ(α)
for the univariate normal case:

λ(α) = −
φ(α)
8(α)

. (12)

Its equivalent for the variance is ð(α):

ð(α) = λ(α) (λ(α)− α) . (13)

Using the notation defined above, the first two moments of
Ct are given by:

E[Ct |xt , σv]= (1−8(ηt ))St+8(ηt ) (xt−σvλ(ηt )) ; (14)

Var[Ct |xt , σv]= σv [1− ð (ηt)] . (15)

The Kalman error C̃t is then given by:

C̃t = Ct − E[Ct |x̂t|t−1, σv]. (16)

Additionally, the Bernoulli variable pt represents the cen-
soring of the measurements: the variable is 0 if the measure-
ment is censored and 1 if it is not. It is given by:

pt = I (Ct < St ), (17)

where I (·) is the indicator function. The expected value of the
censoring variable is:

E[pt ] = 8(ηt) . (18)

The covariance RxC̃,t = E
[
(xt − xt−1)C̃t

]
is:

RxC̃,t = 9t|t−1CtE[pt ], (19)

where 9t|t−1 = E[(xt − x̂t|t−1)2] is the predicted a priori
state error variance. The variable ṽt = σvλ (ηt) represents the
bias introduced in the measurement noise by the censoring.
As in [4], the Kalman error covariance matrix is RC̃C̃,t =

E
[
C̃2
t

]
:

RC̃C̃,t = E[pt ]29t|t−1 + E[pt (vt − ṽt )2]. (20)

The second term of the sum corresponds to the measure-
ment variance Vt = Var[Ct |x̂t|t−1, σv]. The Kalman gain is
calculated as:

Kt = RxC̃,tR
−1
C̃C̃,t

. (21)
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The TKF is then given by:

x̂t|t−1 = x̂t−1|t−1; (22)

9t|t−1 = 9t−1|t−1 + Qt−1; (23)

x̂t|t = x̂t|t−1 + RxC̃,tR
−1
C̃C̃,t

C̃t ; (24)

9t|t =

(
(1− E[pt ])RxC̃,tR

−1
C̃C̃,t

)
9t|t−1. (25)

The ATKF combines the TKF from [4] with the recursive
AKF implementation from [5]. In the following, we repeat
the derivation of the noise covariance estimator, adapting it
to the TKF. The a posteriori density function of the noise
covariance of a standard Kalman filter can be estimated using
the Maximum A Posteriori (MAP) coupling form [37]:

Q̂t =
1
t

t∑
`=1

[(
x̂t|` − x̂t|`−1

)2]
; (26)

R̂t =
1
t

t∑
`=1

[(
C` − x̂t|`

)2]
. (27)

Even in the standard scenario with no censoring, the terms
x̂t|`−1 and x̂t|` require multiple prediction steps and make
the optimal formulation above impractical, as it cannot be
described in recursive form. A practical one-step approxima-
tion is presented in [5]. In the TKF case, the derivation for
the practical unbiased estimator for Q̂t follows from (9). The
process noise variance is still Q = E

[
(xt − xt−1)2

]
, and if

we assume that the ATKF state estimate is close enough to
the real state, i.e., x̂t|t ' xt (an assumption that the standard
TKF also requires) we get:

Q = E
[
(xt − xt−1)2

]
(28)

' E
[
(x̂t|t − x̂t−1|t−1)2

]
(29)

' E
[
(x̂t|t − x̂t|t−1)2

]
(30)

' E
[(
Kt C̃t

)2]
, (31)

where Kt is the Kalman gain of the filter at time t and C̃t =
Ct − E

[
Ct |x̂t|t−1

]
is the Kalman error. We can now estimate

the value of Q from the available samples:

Q̂t =
1
t

t∑
`=1

(
K`C̃`

)2
. (32)

The expected value of the process noise covariance is:

E
[
Q̂t
]
= E

[
1
t

t∑
`=1

(
K`C̃`

)2]
(33)

=
1
k
E

[
t∑
`=1

E[p`]K`9`|`−1

]
(34)

= E

[
1
t

t∑
`=1

9`|`−1 −9`|`

]
. (35)

The a posteriori state error variance 9`|` is given in (25).
The derivation of (34) follows from the fact that E

[
C̃2
t

]
=

RC̃C̃,t . In the following step, we use (25) to remove the
Kalman gain from the equation. We can now subtract the
expected value in (35) from (32) to write the unbiased esti-
mator for the process noise covariance:

Q̂t =
1
t

t∑
`=1

(
K`C̃`

)2
+9`|` −9`−1|`−1. (36)

The derivation of (36) is the same as in [5], using the
TKF modified equations instead of the standard KF. The
estimation noise variance Rt does not have a linear estima-
tor, since the Kalman error covariance matrix RC̃C̃,t , given
by (20), contains the censored measurement noise variance
Vt = E

[
(max (vt , St − xt))2

]
instead of Rt . We get the

unbiased estimator for V̂t by substituting the TKF equations
into the one-step version of (27):

V̂t =
1
t

t∑
`=1

(1− K`)
(
C̃2
` (1− K`)+ RxC̃,`

)
. (37)

In order to estimate R̂t , we can now simply invert the
formula for computing the variance of a censored Gaussian
random variable, which is given in (15):

R̂t =
V̂t

1− ð(η̂t )
; (38)

η̂t =
St − x̂t|t−1
σ̂v,t−1

, (39)

where σ̂v,t−1 =
√
R̂t−1 and η̂t is the estimate of the normal-

ized distance of the current state from the censoring threshold.
The resulting heuristic estimator is not unbiased, since the
function is non-linear, but corresponds to the one-step Maxi-
mum Likelihood Estimator (MLE) for the censored Gaussian
distribution, as derived by Gupta [38].

The TKF converges to the standard KF when the censoring
region is far from the state value. The noise estimator also
converges to the unbiased noise estimator used in the AKF.
After substituting the terms in (36), the estimator is the one
in [5]. The same goes for the measurement noise estimator,
since limηt→−∞ R̂t = V̂t . In order to deal with time-varying
noise, the estimation of the noise covariances needs to be
performed over a limited window in time. This can be done
with a simple lowpass filter, so that the new estimate of the
covariance is the linear combination of the old estimate and
the latest sample, weighted by a factor 0t :

0t =
1− γ
1− γ t

, (40)

where γ ∈ [0, 1) is a fading factor. Lower values of the
fading factor correspond to a higher weight to new samples,
and setting γ = 0 is equivalent to only considering the
latest sample. However, the covariance samples are sensitive
to noise outliers, and the estimator might even diverge. For
this reason, the estimator can use an Innovation Covariance
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Estimator (ICE) that averages the covariance samples over a
rectangular slidingwindow to guarantee that noise covariance
matrices are semidefinite positive [39]:

ξt =
1
N

t∑
`=t−N+1

[
C̃2
`

]
, (41)

where N is the size of the sliding window. The ICE is another
lowpass filter, and its length determines the reactiveness of
the estimator. If the noise statistics are fast-varying, shorter
windows are recommended. It is now possible to rewrite the
estimator recursive equations, considering (40) and (41):

Q̂t = (1− 0t )Q̂t−1 + 0t
(
K 2
t ξt+9t|t−9t−1|t−1

)
; (42)

V̂t = (1− Kt)
(
Ktξt (1− Kt)+ RxC̃,t

)
; (43)

R̂t = (1− 0t )R̂t−1 + 0t
(
1− ð

(
η̂t
))−1 V̂t . (44)

The full ATKF is given by the full estimator in (42)-(44),
along with the standard update formulas in (22)-(25).While it
is more complex than a max filter, its complexity is still linear
in the number of packets, and an efficient implementation can
run in real time with no issues even in mobile processor. The
most complex component of the filter is the ICE, which can
be implemented in a way that only requires 4 operations at
each step by exploiting previous steps. All other components
are a simple series of conditions and basic mathematical
operations, which are not significantly more complex than
mechanisms such as Cubic.

C. SKIP OPERATION
The ATKF can deal well with gradual changes to the capacity,
but it does not respond quickly enough to sudden capacity
drops or even full outages. Wireless channels are often char-
acterized by sharp drops and temporary outages, and this
issue is particularly significant at higher frequencies, where
transitions from LoS to NLoS propagation due to blockage
from walls, objects or humans are very fast. For this reason,
SKIP has three modes of operation, which we will describe
below: the pseudocode for the filter mode operation is given
in Algorithm 1.
In order to describe the operation mode logic, we will con-

sider time step t , for which the ATKF has a mean x̂t|t−1 and a
total variance9t|t−1+Q+R. First, we examine the condition
to trigger the drop mode. If the sender is in app-limited mode,
i.e., the application is not providing enough data to fill the
available capacity, BBR-S should not go into drop mode: the
measured capacity is an artifact of the limited sending rate.
We then formulate a first condition:

Ct < St . (45)

This condition is checked in line 2 of the pseudocode.
We then state a second condition, considering the full outage
case: if the measured capacity is 0 for at least tthr samples,
the link is in outage and the sending rate should be reduced

Algorithm 1 SKIP Mode Operation
1: function SKIPmode(C, S,ATKF, tdrop, tstep, tout)
2: if C ≥ S then F Application-limited mode
3: tdrop, tstep, tout← 0;
4: update(ATKF, C, S);
5: return;
6: end if
7: if C = 0 then F Outage mode
8: tout← tout + 1;
9: tstep← 0;
10: if tout = tthr then F Reset filter
11: tout← 0;
12: reset(ATKF, Cmin);
13: return;
14: end if
15: else
16: tout← 0;
17: end if
18: if C < ATKF.x − 3ATKF.σ then F Drop mode
19: tdrop← tdrop + 1;
20: tstep← 0;
21: blindUpdate(ATKF);
22: if tdrop = tthr then F Reset filter
23: tdrop← 0;
24: reset(ATKF, µdrop);
25: end if
26: else
27: tdrop← 0;
28: if C < ATKF.x + 3ATKF.σ then F Step mode
29: tstep← tstep + 1;
30: if tstep = tthr then F Reset filter
31: tstep← 0;
32: reset(ATKF, µstep);
33: end if
34: else F Normal mode
35: tstep← 0;
36: end if
37: update(ATKF, C, S);
38: end if

drastically:

t−tthr∑
k=t

Ck = 0 ∧ x̂t|t−1 > 0. (46)

If this second condition, implemented in line 7 of the pseu-
docode, is verified, the mean of the ATKF is reset to the initial
minimum value (50 kB/s in our setup) straight away.

We now define another condition, which gives the drop
mode its name: a sharp capacity drop. We define a capac-
ity drop as a 3σ event for the ATKF: according to the
model, the probability that the capacity is lower than the
ATKF’s mean by more than 3 times its standard deviation
should be about 10−3, but propagation conditions can make
drops happen far more often. The condition for a drop is

VOLUME 9, 2021 76371



F. Chiariotti et al.: BBR-S: Low-Latency BBR Modification for Fast-Varying Connections

FIGURE 4. Block diagram of the filter operation modes.

then given by:

Ct < x̂t|t−1 − 3
√
9t|t−1 + Q+ R. (47)

This condition is implemented in line 18 of the pseu-
docode. During the drop, we keep evolving the ATKF by
running the prediction step, thus gradually increasing its
variance, but do not update it with the new capacity samples.
We consider the drop over after τ steps if the measured
capacity is higher than x̂t|t−1 − 3

√
9t|t−1 + (τ + 1)Q+ R.

If the drop lasts for a number of steps tdrop ≥ tthr, we consider
the capacity shift to be permanent and reset the mean of the
ATKF x̂ to accelerate the adaptation to the new conditions.
The new value of the mean is the average capacity measured
during the drop:

µdrop(t) =
1
tthr

t−tthr+1∑
τ=t

Ct . (48)

The drop mode increases the filter’s reactiveness to sudden
drops in the capacity, making the protocol more resistant to
this kind of issues and limiting the build-up in the bottleneck
buffer. During the drop mode, the mean of the ATKF is
unchanged, so the pacing rate is as well, but the mean reset
can allowBBR-S to react faster to sudden capacity drops. The
number of necessary samples tthr increases the robustness of
the mechanism to random temporary changes in the capacity,
but there is a trade-off between stability and responsiveness.
We found that setting tthr = 3 guarantees that the mechanism
avoids following noise in the capacity measurement, while
still strongly outperforming standard BBR in terms of respon-
siveness to outage event. With a longer tthr, the filter would
take longer to react to changes in the capacity, operating with
a wrong estimate for a longer time. On the other hand, setting
tthr to 1 or 2 would make it more vulnerable to temporary
changes due to physical layer effects, such as fast fading:
resetting the filter mean every time it receives an outlier
sample would reduce its stability and, consequently, its ability
to filter out noise from the capacity measurements.

TABLE 2. Main parameters of the simulation scenario.

We also consider a thirdmode of operation for SKIP, which
we named step mode. In this case, the mechanism needs to
react to a sharp step upwards in the capacity. The issues of the
ATKF are the same as with drops, with the added problem of
the censoring, so the unaided ATKF can be very slow to reach
the full capacity. For this reason, we turn on step mode if the
opposite condition to drop mode is verified:

Ct > x̂t|t−1 + 3
√
9t|t−1 + Q+ R. (49)

During step mode operation, the ATKF is evolved nor-
mally, but if the condition persists for more than tthr steps,
its mean is reset to the average capacity measured during the
step:

µstep(t) =
1
tthr

t∑
τ=t−tthr+1

. (50)

As for the drop mode, the trade-off in setting tthr is between
underexploiting capacity if the threshold is too high and
reducing stability if it is too low. The step mode also helps
the filter converge faster in the startup phase, making its
convergence fast enough even in high-capacity scenarios.
As soon as BBR-S exits its drain phase, the filter is already
operational, with a good estimate of the current capacity.
The modes of operation of the filter are also graphically
illustrated in the block diagram in Fig. 4. These conditions
allow BBR-S to avoid BBR’s failure modes, maintaining
responsiveness to sudden events while following the trend of
the capacity, and are a fundamental part of the mechanism’s
operation.

IV. TESTING SCENARIO AND RESULTS
In order to test the performance of BBR-S, we simulated
the protocol over ns-3 in a controlled scenario. We used
two PointToPointChannel objects to simulate the
paths, varying their capacity according to two real network
traces:
• An LTE trace from a driving mobility scenario, with
highly variable capacity but no sharp drops.

• A WiGig trace from an experimental setup, with fre-
quent sharp drops due to LoS/NLoS transitions.

In our simulation, a backlogged source sends data to a client
using TCP, andwemeasure performance in terms of achieved
throughput and RTT. In order to show the performance of
BBR-S, we compare it with legacy BBR and BBRx, along
with three traditional congestion control mechanisms: Cubic,
Compound, and Vegas. In our simulation, we assumed that
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FIGURE 5. Goodput and RTT over time in the LTE trace.

FIGURE 6. Average throughput versus RTT comparison in the LTE scenario.

there are no physical layer losses in order to compare the
algorithms fairly: while earlier mechanisms, including Vegas,
Cubic, and Compound, always interpret packet loss as a sign

FIGURE 7. Average throughput versus 99th percentile RTT comparison in
the LTE scenario.

of congestion, BBR variants, including BBRx and BBR-S,
are relatively insensitive to it and infer congestion from
other measurements. This gives all BBR-based algorithms
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FIGURE 8. Goodput and RTT over time in the WiGig trace.

an advantage over lossy connections, as they can still fully
exploit the capacity, without reacting to individual packet
losses by halving the congestion window.

In the LTE scenario, BBR-S is able to exploit the capac-
ity almost as well as the more aggressive algorithms, but
performs much better in terms of RTT, as Fig. 5 shows.
In particular, BBR-S has a faster start than Vegas, and can
follow the average throughput, but does not exploit short
upward spikes as well as BBR, BBRx, Compound, or Cubic,
as it does not maintain a long queue. Note that, in this case,
BBRx performs almost identically to BBR in terms of RTT
and throughput, while BBR-S can control the latency much
better. In this case, Compound and Cubic can generate huge
delays, and are not shown in the figure because their average
RTT is over 500 ms.

Fig. 6 shows a comparison of the average throughput and
RTT obtained by the different congestion control algorithms.
While BBR-S and Vegas have a slightly lower throughput,
they are able tomaintain a far lower RTT, both on average and
in the 99th percentile, as Fig. 7 shows. BBR-S stays very close
to the minimum RTT, while other versions of BBR perform
far worse, and Compound and Cubic can go far over 500 ms
(as above, they are not shown in the figure).

The benefits that BBR-S gets from running the SKIP
capacity estimation and filtering are even more evident in
the WiGig scenario, as Fig. 8 shows. BBR-S is the only
algorithm that can follow the transition from LoSto NLoS
that happens after the 70 second mark, tracking the capacity
while remaining close to the minimumRTTwhen even Vegas
has a long-term increase in the delay. As above, Cubic and
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FIGURE 9. Average throughput and RTT comparison in the WiGig scenario.

FIGURE 10. Average throughput and 99th percentile RTT comparison in
the WiGig scenario.

Compound perform worse than any of the other mechanisms
in terms of delay, with RTTs over 500 ms during the NLoS
event. The biggest issue with Vegas is the extremely slow
start, as it does not reach the full capacity until the 40 second
mark, while the BBR versions and Cubic have an extremely
aggressive slow start, bringing the RTT over 500 ms. Thanks
to the SKIP filter, BBR-S can reduce the start-up time by
about half, starting normal operation after less than 4 seconds
(i.e., as soon as the SKIP filter converges to the connection
capacity), while BBR and BBRx’s performance suffers for
almost 10.

We can also observe that BBRx is better than standard BBR
at maintaining a low RTT, but still has increased delays when
the capacity changes. We can see BBRx as an intermediate
solution between our BBR-S, which loses some throughput
but maintains a very low RTT, and standard BBR. This is
confirmed by Fig. 9, which shows the average throughput
and RTT of the different congestion control mechanisms
(measured after the 10 second mark, to remove the effect of
the slow start): while BBR-S has a 10% loss in the average
goodput with respect to the other algorithms (Vegas has 20%),
it has an average RTT just above the minimum, doing better
than even Vegas. This is even more evident if we look at the
99th percentile of the RTT, which represents the worst-case

FIGURE 11. Throughput of 10 BBR-S flows over a 100 Mb/s bottleneck.

FIGURE 12. 10 BBR-S flows over a 100 Mb/s bottleneck.

scenario and is crucial for reliability-oriented applications:
as Fig. 10 shows, BBR, BBRx, and Vegas reach an RTT of
approximately 250 ms, while BBR-S only arrives at 100 ms.
Cubic is not even shown in the figure, as the 99th percentile
of the RTT is over 1 second.

A. BEHAVIOR WITH MULTIPLE FLOWS
In order to verify the BBR-S congestion control mechanism’s
fairness, we test the scenario in which 10 flows compete
for a shared bottleneck with a capacity of 100 Mb/s and a
minimum RTT of 50 ms. The flows arrive at an 8 second
interval, as Fig. 11 shows. The spikes in the throughput are
due to the start-up phase of new flows, which probes the
capacity like standard BBR. However, after a few seconds,
the flows get back to a fair share of capacity, albeit with some
oscillations. The Jain Fairness Index (JFI) is a measure of
fairness in communication networks that we can use to gauge
the fairness of the congestion control mechanism:

J (x1, . . . , xn) =

(∑n
i=1 xi

)2
n
∑n

i=1(xi)2
. (51)

An ideal division into exactly equal shares would get a JFI
of 1. The JFI of the 10 BBR-S flows is 0.9711, which is very
close to the optimum. As Fig. 12 shows, the RTT of the flows
is also limited: while the performance is slightly worse than in
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FIGURE 13. Throughput of a Cubic flow and a BBR-S flow over a 50 Mb/s
bottleneck.

FIGURE 14. RTT of a Cubic flow and a BBR-S flow over a 50 Mb/s
bottleneck.

the single-flow case, the average RTT after all the flows have
started is just 84 ms, and no flow’s RTT goes over 100 ms
outside of the startup phases.

In modern cellular networks, data for different pairs of
hosts is stored in separate buffers [20], and if the wireless
link is the bottleneck of the connection, flows will not inter-
act directly. Cross-traffic will be experienced as a uniform
reduction in capacity, since wireless resources are allocated
by a scheduler that tries to maintain fairness while each flow
is on a separate buffer. In this case, self-interaction is the
foremost cause of queuing delay, and BBR-S can keep the
RTT close to the minimum thanks to BBR-S’s more accurate
estimates of the available capacity. If the bottleneck is not
the cellular wireless access, but rather an 802.11 link, or in
the network core, BBR-S will have no performance loss
over BBR, which is here considered as the state-of-the-art
protocol. By inheriting the basic structure of BBR, BBR-S
also gets its resistance to lossy connections.

BBR-S can also coexist fairly with Cubic, while BBR
is arguably too aggressive [24] and highly sensitive to
buffer size, even though the next version of the proto-
col [29] promises to overcome these issues. Fig. 13 shows
the throughput over time of a Cubic flow and a BBR-S flow
sharing a 50 Mb/s bottleneck, with a minimum RTT of 50 ms

for both flows. The BBR-S flow takes up between 80% and
90% of its fair share of capacity. The two RTT Probe phases
after approximately 15 and 25 seconds make Cubic quickly
occupy the whole space. However, the shallow RTT probing
makes the protocol quickly get back its half of the capacity.
As Fig. 14, the RTT can grow significantly, as Cubic does not
try to maintain a low latency.

V. CONCLUSION
In this work, we presented BBR-S, an improvement to the
BBR congestion control scheme that significantly improves
its latency with negligible capacity losses. While the max
filter used by BBR tends to make it too aggressive in
fast-varying connections, making the congestion window the
limiting factor on the send rate, and not the pace as BBR was
designed for, our SKIP filter maintains the send rate close
to the capacity. In order to effectively track capacity from
censored observations, which are limited by the pace at which
the packets were sent, we developed the ATKF, an adaptation
of the TKF that can deal with linear systems with unknown
noise covariances. Furthermore, SKIP can overcome the limi-
tations of Kalman-based filters by adapting directly to sudden
transitions in the capacity.

The results of our ns-3 simulations show that BBR-S can
have more than 90% of BBR’s throughput while reducing
the average and 99th percentile RTT by more than 50%
when operating on capacity traces from real wireless network
environments. In particular, its reactiveness to sharp capacity
drops makes it ideal for WiGig scenarios. Unlike Vegas,
the other common latency-oriented congestion control mech-
anism, it can also share a link fairly with capacity-oriented
flows, albeit without most of its latency advantages. BBR-
S is far better at maintaining a low latency than current
mechanisms, as well as adaptable to different scenarios and
able to deal with sudden changes in the capacity.

Future extensions of the protocol will focus on further
refinements on the filter, including more complex statistical
tools such as Gaussian Mixture Models (GMMs) to improve
the capacity tracking. Other improvements to BBR such
as the ones suggested for BBRv2 might be patched in, reduc-
ing the impact of bandwidth probing on the protocol’s latency
and improving fairness.
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