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Abstract: Optimization seeks to find inputs for an objective function that result in a maximum or
minimum. Optimization methods are divided into exact and approximate (algorithms). Several opti-
mization algorithms imitate natural phenomena, laws of physics, and behavior of living organisms.
Optimization based on algorithms is the challenge that underlies machine learning, from logistic
regression to training neural networks for artificial intelligence. In this paper, a new algorithm called
two-stage optimization (TSO) is proposed. The TSO algorithm updates population members in two
steps at each iteration. For this purpose, a group of good population members is selected and then
two members of this group are randomly used to update the position of each of them. This update is
based on the first selected good member at the first stage, and on the second selected good member
at the second stage. We describe the stages of the TSO algorithm and model them mathematically.
Performance of the TSO algorithm is evaluated for twenty-three standard objective functions. In
order to compare the optimization results of the TSO algorithm, eight other competing algorithms
are considered, including genetic, gravitational search, grey wolf, marine predators, particle swarm,
teaching-learning-based, tunicate swarm, and whale approaches. The numerical results show that the
new algorithm is superior and more competitive in solving optimization problems when compared
with other algorithms.

Keywords: Friedman test; machine learning; population-based optimization; swarm intelligence

1. Introduction

Optimization is the science of finding the best solution available for a problem, maxi-
mizing or minimizing the corresponding objective function. Each optimization problem has
essentially three elements: (i) decision variables; (ii) objective function; and (iii) constraints.
An optimization problem can have more than a solution, reason why its global optimum is
called the main solution [1].

Methods to solve optimization problems may be divided into two categories: (i) exact
and (ii) approximate [2]. Exact methods are able to find the optimum accurately, but they
are not efficient enough in complex problems, with their execution times being increasing
exponentially according to the problem dimension. The approximate methods (or algo-
rithms) are able to find good (near-optimal) solutions in a short time for complex problems.

There are numerous optimization problems in engineering and sciences that can
be solved with different algorithms, where the population-based approaches are often
considered as one of the most effective methods in solving such problems [3]. Note
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that optimization is the challenging problem that underlies many machine and statistical
learning algorithms, from the logistic regression model to training artificial neural networks,
tools which are fundamental for the development of artificial intelligence [4].

In order to optimize the objective function, population-based algorithms are able to
find appropriate values for the decision variables, based on the constraints to which this
function is subject to, through random scanning of the problem search space [5].

Although optimization algorithms provide good solutions, they do not necessarily
attain the global optimum. However, often these solutions are close to this optimum
and then accepted as a quasi-optimal solution. In order to evaluate the performance of
the approximate methods in solving optimization problems, an algorithm is superior to
another if the former one provides a better quasi-optimal solution than the last one.

Some researchers have focused on designing algorithms to provide quasi-optimal
solutions closer to the global optimum. In this regard, diverse algorithms have been
applied by engineers and scientists in various fields such as engineering [6] and energy [7]
to achieve quasi-optimal solutions.

Therefore, mainly in computationally highly complex and challenging optimization
problems, different practitioners are interested on improving the computational efficiency
of the algorithm used to solve such problems. Consequently, population-based algorithms
can be useful to deal with this improvement considering two stages of updating of popula-
tion members. To the best of our knowledge, this two-stage approach has not been until
now considered to improve population-based algorithms.

The main objective of this paper is to propose a new algorithm called two-stage
optimization (TSO). The TSO algorithm updates each population member in two stages
based on a selected group of the good members. Accordingly, the position of a member of
the population is updated using two randomly selected members of the good group.

The rest of the article is organized as follows. Section 2 provides an overview of
optimization algorithms published in the literature, mentioning several related works.
Then, in Section 3, the proposed TSO algorithm is introduced. The performance of the new
algorithm in solving optimization problems is evaluated in Section 4. We present further
analysis of the results and discussion on the performance of the TSO algorithm in Section 5.
Finally, conclusions and suggestions for future works are given in Section 6.

2. Literature Review

In this section, we provide an overview of optimization algorithms published in
the literature.

The main purpose of the algorithms is to search effectively and efficiently for the
solution space of the optimization problem, as well as to apply rules and strategies to
guide the search process. In population-based optimization algorithms [3], a population
of random solutions is created first [5]. Then, in an iterative process, this population is
improved using rules of the algorithm. The principal idea of the population-based algo-
rithms is to update the population in successive iterations, providing better quasi-optimal
solutions. An optimization algorithm may provide a reasonable solution to some problems
but inadequate to others. Therefore, the main indicator to compare the performance of
optimization algorithms is the value of the objective function.

Optimization algorithms have been inspired by various natural phenomena, behavior
of living organisms, plant growth, physical laws, and rules of the games, among others. In
general, this type of algorithms can be classified into four groups including: (i) evolutionary-
based, (ii) game-based, (iii) physics-based, and (iv) swarm-based approaches, which are
detailed below.

Evolutionary optimization algorithms [8] were derived by taking into account genetic
processes, especially reproduction. Genetic algorithms [9] are the most famous and widely
used of this group, which are based on simulating the birth process and Darwin theory of
evolution. In these algorithms, population members are updated based on: (i) selection, (ii)
crossover, and (iii) mutation. The differential evolution [8] is proposed to overcome the
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drawback of the genetic algorithm [9], namely its lack of local search. The main difference
between the genetic algorithm and differential evolution is in the selection operators. For
these operators of the genetic algorithm, the chance of selecting an answer as one of the
parents depends on the value of its objective function, but in the differential evolution all
answers have an equal chance of being selected. Therefore, this chance does not depend on
the value of its objective function. The artificial immune system evolutionary algorithm is
inspired by the mechanisms of the human body and designed by simulating the defense
mechanism against disease, microbes, and viruses [10].

Game-based algorithms [11] are developed by simulating the rules of various indi-
vidual and group games with the aim of solving optimization problems. The orientation
search is one of the algorithms in this group, which has been designed by considering
the orientation game rule. With this rule, the players move on the playground (that is
the same as search space) according to the direction indicated by the referee. Football
game-based optimization is another of these algorithms which is formulated by simulating
the behaviors and policies of clubs in the football league. In this algorithm, the population
is updated in four phases: (i) holding the league, (ii) training the clubs, (iii) transferring the
players, and (iv) relegation and promotion of the clubs [12].

Swarm-based optimization algorithms [13] are widely considered and designed mim-
icking the behaviors of animals, plants, and living organisms, as well as other population-
based phenomena [14]. One of the most famous algorithms is the particle swarm optimiza-
tion (PSO), which imitates the birds’ movement. The process of population updating in
the PSO algorithm [15] is based on individual knowledge (local best) and the knowledge
of the whole population (global best). Teaching-learning-based optimization (TLBO) is
another algorithm in this swarm-based group that was introduced following the teaching-
learning process between students and teacher [16]. Grey wolf optimization is also in
the group of swarm intelligence algorithms and is inspired by nature. This algorithm
simulates the hierarchical structure of social behavior of gray wolfs during hunting [17].
When implementing the algorithm, four types of gray wolf (alpha, beta, delta, and omega)
are used to model their hierarchical leadership, with three hunting steps being executed:
(i) search for prey, (ii) siege of prey, and (iii) attack on prey. The marine predators (MP)
algorithm is inspired by the movement strategies that marine predators use when trapping
their prey [18]. In the first phase, MP generates a random population of predators in the
search space. Then, given that stronger hunters get more chances and share of food, the
best solution is applied. Tunicate swarm (TS) is an optimization algorithm that imitates
the jet propulsion and swarm behaviors of tunicates during the navigation and foraging
process [19]. Whale optimization (WO) is an algorithm inspired by the bubble net hunting
method of whales [20]. The WO is performed into three phases: (i) encircling prey, (ii)
bubble-net attack, and (iii) searching for prey.

Physics-based algorithms are designed using physical laws to achieve quasi-optimal
solutions [21]. One of these optimizers is the gravitational search (GS), which was for-
mulated by simulating the law of gravitational force between objects [22]. Simulation of
the Hooke and spring displacement laws were applied to designing the spring search
algorithm [23]. In this algorithm, population members correspond to weights connected to
each other by different springs. These members are updated moving in the search space
using the forces exerted on the weights by the springs. The Henry gas solubility algorithm
tries to imitate the behavior governed by the Henry law to solve challenging optimization
problems. This is an essential law that states that the amount of gas dissolved in a liquid
is proportional to its partial pressure on the liquid at a fixed temperature. The Henry
algorithm imitates the huddling behavior of gas to balance exploration and exploitation in
the search space and avoid local optima [24].

3. The New Two-Stage Optimization Algorithm

In this section, the stages of the proposed TSO algorithm are described and then
mathematically modeled to be implemented on various optimization problems.
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3.1. Theory of the TSO Algorithm

In most population-based optimization algorithms, the member that provides the best
value of the objective function (the best member) has an impressive impact on population
update and algorithm progress. However, the position of the best member in the problem
search space may not be appropriate in all axes (decision variables). This concept means
that the best member might not be suitable for leading the population in some axes.

The main idea of the TSO algorithm for solving such an issue is to employ a selected
group of good members of the population called the good group. The use of this group in
population updating utilizes more information in population development to achieve a
quasi-optimal solution. Each member in the TSO algorithm is updated in two stages. At
each stage of this algorithm, a member of the good group is randomly selected to update
the position of each population member on each axis of the search space. This population
update continues iterating until the algorithm stops. Then, when the algorithm reaches the
stopping condition, the best quasi-optimal solution for the problem is reported. In the next
subsection, mathematical modeling of the TSO algorithm is presented.

3.2. Mathematical Modeling of the TSO Algorithm

As mentioned, the TSO algorithm is a population-based optimization technique. Each
row of the population matrix belongs to a population member, which proposes values
for the decision variables. Each column of this matrix also specifies values of a variable
proposed by different members. Therefore, for the population matrix, the number of rows
is equal to the number of members, whereas the number of columns is equal to the number
of decision variables. The population matrix (X) of the TSO algorithm is defined as

X =



→
X1
...
→
Xi
...
→

XN


=



x1
1 · · · xd

1 · · · xm
1

...
. . .

... . .
. ...

x1
i · · · xd

i · · · xm
i

... · ·
· ...

. . .
...

x1
N · · · xd

N · · · xm
N


N×m

,

where
→
Xi is the i’-th population member, xd

i is the suggested value for the d’-th variable
by the i’-th population member, m is the number of variables, and N is the number of
members. After defining the mentioned matrix, the objective function is evaluated based
on the corresponding members according to the values proposed for the variables. By
comparing the obtained values, a certain number of population members (for example, a
ten percent), for which quasi-optimal values have been achieved in the objective function,
are selected as members of the good group. This group is described using the matrix
representation stated as

G =



→
G1
...
→
Gj
...
→

GNG


=



g1
1 · · · gd

1 · · · gm
1

...
. . .

... . .
. ...

g1
j · · · gd

j · · · gm
j

... · ·
· ...

. . .
...

g1
NG

· · · gd
NG

· · · gm
NG


NG×m

,

where
→
Gj is the j’-th good member, gd

j is the d’-th dimension of the j’-th good member, and
NG is the number of selected good members. The main idea in the TSO algorithm is to
update the value of each variable (proposed by each member of the population) using two
different members of the good group.
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In the first stage, the position of each population member on each axis of the search
space is updated with a selected good member. Thus, a good member may be selected to
lead a population member on one or more axes. In addition, a good member may not be
selected to lead other members on any of the axes. The first stage of the TSO algorithm for
updating population members is expressed as

x′di =

 xd
i + rand×

(
gd

j − xd
i

)
, Fj < Fi,

xd
i + rand×

(
xd

i − gd
j

)
, else;

j ∈ 1 : NG, (1)

→
Xi =


→

X′ i, F′ i < Fi,
→
Xi, else,

(2)

where x′di is the new position of the i’-th member in the d’th dimension, rand is a random
number in the interval [0, 1], Fi is the value of the objective function for the i’-th population

member,
→

X′ i is the new position of the i’-th member, and F′ i is its corresponding objective
function value. Equation (1) indicates that a member is updated if the value of the objective
function is improved in the new position.

In the second stage, the position of each member, on each axis of the search space, is
updated again based on a non-repetitive good member. This means that the position of
each member, on each axis, is affected by two different members of the good group. This
stage of the TSO algorithm in updating population members is defined as

x′di =

 xd
i + rand×

(
gd

k − xd
i

)
, Fk < Fi,

xd
i + rand×

(
xd

i − gd
k

)
, else;

k ∈ 1 : NG, k 6= j, (3)

→
Xi =


→

X′ i, F′ i < Fi,
→
Xi, else.

(4)

After updating the population based on the mentioned two stages, new members
of the good group are selected. This process is repeated until the algorithm reaches the
condition of stopping. The implementation process of the TSO algorithm is presented as a
pseudo-code in Algorithm 1. Furthermore, the steps of the TSO algorithm are shown as a
flowchart in Figure 1.
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Algorithm 1 Pseudo-code of the TSO approach.

Start the TSO algorithm.
1. Determine the range of decision variables, constraints and objective function of the problem.
2. Create the initial population at random.
3. Evaluate the objective function based on the initial population.
4. For t = 1:T, with t being iteration number and T the maximum iteration:
5. Update the good group.
6. For i = 1:N, with N being the number of population members;
7. For d = 1:m, with d being the contour and m the number of variables:
8. Select the j’-th good member.
9. Stage 1: Update x′di based on (1).
10. End for d = 1:m.
11. Update

→
Xi based on (2).

12. For d = 1:m:
13. Select the k’-th good member, with k 6= j.
14. Stage 2: Update x′di based on (3).
15. End for d = 1:m.
16. Update

→
Xi based on (4).

17. End for i = 1:N.
18. Save the best quasi-optimal solution.
19. End for t = 1:T.
20. Print the best quasi-optimal solution obtained by the TSO algorithm.
End the TSO algorithm.

4. Simulation Study and Results

In this section, the performance of the TSO algorithm for solving optimization prob-
lems is evaluated. For this purpose, the algorithm has been implemented on twenty-three
different objective functions for achieving a suitable quasi-optimal solution. These objec-
tive functions can be categorized into three different types including: (i) unimodal, (ii)
high-dimension multimodal, and (iii) fixed-dimension multimodal functions. Detailed
information of these objective functions is given in the Appendix A (Tables A1–A3).

4.1. Experimental Setup

In order to analyze the performance of our proposal, the results obtained by the
TSO algorithm are compared, as mentioned, with three classes of existing optimization
algorithms, which include (i) GA and PSO, as the most well-studied algorithms (famous
methods), (ii) GSA, GWO and TLBO, as algorithms which are cited by many scientists
(popular methods), and (iii) MPA, TSA and WOA, as recently developed algorithms (new
methods). The experimentation has been done on MATLAB (R2017b version, MathWorks,
Natick, MA, USA) using a 64-bit Core i7 processor of 3.20 GHz and 16 GB main memory.
For all objective functions, the TSO algorithm and its competing algorithms have been
simulated in 20 independent runs, where each run employs 1000 iterations. The optimal
solutions of the objective functions are evaluated using the two most important indexes for
comparing the performance of algorithms when solving optimization problems, that are:
average (AV) and standard deviation (SD) of the best obtained solutions, where, as it is
known, such an SD reports the dispersion of these solutions. Indeed, when analyzing the
performance of the optimization algorithms with the results presented in Tables 1–3, the
AV index is important first, but if two algorithms have a similar AV, then the algorithm
with less dispersion is superior.
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Table 1. Results of applying the indicated algorithm on the listed unimodal objective function.

Genetic PSO GS TLBO GWO WO TS MP TSO

AV 13.2405 1.7740 × 10−5 2.0255 × 10−17 8.3373 × 10−60 1.09 × 10−58 2.1741 × 10−9 7.71 × 10−38 3.2715 × 10−21 1.2 × 10−163
F1

SD 4.7664 × 10−15 6.4396 × 10−21 1.1369 × 10−32 4.9436 × 10−76 5.1413 × 10−74 7.3985 × 10−25 7.00 × 10−21 4.6153 × 10−21 2.65 × 10−180

AV 2.4794 0.3411 2.3702 × 10−8 7.1704 × 10−35 1.2952 × 10−34 0.5462 8.48 × 10−39 1.57 × 10−12 2.29 × 10−86
F2

SD 2.2342 × 10−15 7.4476 × 10−17 5.1789 × 10−24 6.6936 × 10−50 1.9127 × 10−50 1.7377 × 10−16 5.92 × 10−41 1.42 × 10−12 1.05 × 10−99

AV 1536.896 589.492 279.3439 2.7531 × 10−15 7.4091 × 10−15 1.7634 × 10−8 1.15 × 10−21 0.0864 5.83 × 10−70
F3

SD 6.6095 × 10−13 7.1179 × 10−13 1.2075 × 10−13 2.6459 × 10−31 5.6446 × 10−30 1.0357 × 10−23 6.70 × 10−21 0.1444 4.06 × 10−77

AV 2.0942 3.9634 3.2547 × 10−9 9.4199 × 10−15 1.2599 × 10−14 2.9009 × 10−5 1.33 × 10−23 2.6 × 10−8 1.91 × 10−70
F4

SD 2.2342 × 10−15 1.9860 × 10−16 2.0346 × 10−24 2.1167 × 10−30 1.0583 × 10−29 1.2121 × 10−20 1.15 × 10−22 9.25 × 10−9 4.56 × 10−83

AV 310.4273 50.26245 36.10695 146.4564 36.8607 41.7767 28.8615 46.049 28.4397
F5

SD 2.0972 × 10−13 1.5888 × 10−14 3.0982 × 10−14 1.9065 × 10−14 2.6514 × 10−14 2.5421 × 10−24 4.76 × 10−3 0.4219 1.83 × 10−15

AV 14.55 20.25 0 0.4435 0.6423 1.6085 × 10−9 7.10 × 10−21 0.398 0
F6

SD 3.1776 × 10−15 1.2564 0 4.2203 × 10−16 6.2063 × 10−17 4.6240 × 10−25 1.12 × 10−25 0.1914 0

AV 5.6799 × 10−3 0.1134 0.0206 0.0017 0.0008 0.0205 3.72 × 10−4 0.0018 2.75 × 10−5
F7

SD 7.7579 × 10−19 4.3444 × 10−17 2.7152 × 10−18 3.87896 × 10−19 7.2730 × 10−20 1.5515 × 10−18 5.09 × 10−5 0.001 8.49 × 10−20

Where AV: average and SD: standard deviation.

Table 2. Results of applying the indicted algorithm on the listed high-dimension multimodal objective function.

Genetic PSO GS TLBO GWO WO TS MP TSO

AV −8184.4142 −6908.6558 −2849.0724 −7408.6107 −5885.1172 −1663.9782 −5740.3388 −3594.16321 −12536.9
F8

SD 833.2165 625.6248 264.3516 513.5784 467.5138 716.3492 41.5 811.3265 1.30 × 10−11

AV 62.4114 57.0613 16.2675 10.2485 8.5265 × 10−15 4.2011 5.70 × 10−3 140.1238 0
F9

SD 2.5421 × 10−14 6.3552 × 10−15 3.1776 × 10−15 5.5608 × 10−15 5.6446 × 10−30 4.3692 × 10−15 1.46 × 10−3 26.3124 0

AV 3.2218 2.1546 3.5673 × 10−9 0.2757 1.7053 × 10−14 0.3293 9.80 × 10−14 9.6987 × 10−12 4.44 × 10−15

F10
SD 5.1636 × 10−15 7.9441 × 10−16 3.6992 × 10−25 2.5641 × 10−15 2.7517 × 10−29 1.9860 × 10−16 4.51 × 10−12 6.1325 × 10−12 7.06 × 10−31

AV 1.2302 0.0462 3.7375 0.6082 0.0037 0.1189 1.00 × 10−7 0 0
F11

SD 8.4406 × 10−16 3.1031 × 10−18 2.7804 × 10−15 1.9860 × 10−16 1.2606 × 10−18 8.9991 × 10−17 7.46 × 10−7 0 0

AV 0.047 0.4806 0.0362 0.0203 0.0372 1.7414 0.0368 0.0851 7.42 × 10−4

F12
SD 4.6547 × 10−18 1.8619 × 10−16 6.2063 × 10−18 7.7579 × 10−19 4.3444 × 10−17 8.1347 × 10−12 1.5461 × 10−2 0.0052 1.75 × 10−18

AV 1.2085 0.5084 0.002 0.3293 0.5763 0.3456 2.9575 0.4901 1.08 × 10−4

F13
SD 3.2272 × 10−16 4.9650 × 10−17 4.2617 × 10−14 2.1101 × 10−16 2.4825 × 10−16 3.25391 × 10−12 1.5682 × 10−12 0.1932 3.41 × 10−17

Where AV: average and SD: standard deviation.
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Table 3. Results of applying the indicated algorithm on the listed fixed-dimension multimodal objective function.

Genetic PSO GS TLBO GWO WO TS MP TSO

AV 0.9986 2.1735 3.5913 2.2721 3.7408 0.998 1.9923 0.998 0.998
F14

SD 1.5640 × 10−15 7.9441 × 10−16 7.9441 × 10−16 1.9860 × 10−16 6.4545 × 10−15 9.4336 × 10−16 2.6548 × 10−7 4.2735 × 10−16 8.69 × 10−16

AV 5.3952 × 10−2 0.0535 0.0024 0.0033 0.0063 0.0049 0.0004 0.003 0.0003
F15

SD 7.0791 × 10−18 3.8789 × 10−19 2.9092 × 10−19 1.2218 × 10−17 1.1636 × 10−18 3.4910 × 10−18 9.0125 × 10−4 4.0951 × 10−15 1.82 × 10−19

AV −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
F16

SD 7.9441 × 10−16 3.4755 × 10−16 5.9580 × 10−16 1.4398 × 10−15 3.9720 × 10−16 9.9301 × 10−16 2.6514 × 10−16 4.4652 × 10−16 8.65 × 10−17

AV 0.4369 0.7854 0.3978 0.3978 0.3978 0.4047 0.3991 0.3979 0.3978
F17

SD 4.9650 × 10−17 4.9650 × 10−17 9.9301 × 10−17 7.4476 × 10−17 8.6888 × 10−17 2.4825 × 10−17 2.1596 × 10−16 9.1235 × 10−15 9.93 × 10−17

AV 4.3592 3 3 3.0009 3 3 3 3 3
F18

SD 5.9580 × 10−16 3.6741 × 10−15 6.9511 × 10−16 1.5888 × 10−15 2.0853 × 10−15 5.6984 × 10−15 2.6528 × 10−15 1.9584 × 10−15 4.97 × 10−16

AV −3.85434 −3.8627 −3.8627 −3.8609 −3.8621 −3.8627 −3.8066 −3.8627 −3.8627
F19

SD 9.9301 × 10−17 8.9371 × 10−15 8.3413 × 10−15 7.3483 × 10−15 2.4825 × 10−15 3.1916 × 10−15 2.6357 × 10−15 4.2428 × 10−15 6.95 × 10−16

AV −2.8239 −3.2619 −3.0396 −3.2014 −3.2523 −3.2424 −3.3206 −3.3211 −3.3219
F20

SD 3.97205 × 10−16 2.9790 × 10−16 2.1846 × 10−14 1.7874 × 10−15 2.1846 × 10−15 7.9441 × 10−16 5.6918 × 10−15 1.1421 × 10−11 1.89 × 10−15

AV −4.3040 −5.3891 −5.1486 −9.1746 −9.6452 −7.4016 −5.5021 −10.1532 −10.1532
F21

SD 1.5888 × 10−15 1.4895 × 10−15 2.9790 × 10−16 8.5399 × 10−15 6.5538 × 10−15 2.3819 × 10−11 5.4615 × 10−13 2.5361 × 10−11 5.96 × 10−16

AV −5.1174 −7.6323 −9.0239 −10.0389 −10.4025 −8.8165 −5.0625 −10.4029 −10.4029
F22

SD 1.2909 × 10−15 1.5888 × 10−15 1.6484 × 10−12 1.5292 × 10−14 1.9860 × 10−15 6.7524 × 10−15 8.4637 × 10−14 2.8154 × 10−11 1.79 × 10−15

AV −6.5621 −6.1648 −8.9045 −9.2905 −10.1302 −10.0003 −10.3613 −10.5364 −10.5364
F23

SD 3.8727 × 10−15 2.7804 × 10−15 7.1497 × 10−14 1.1916 × 10−15 4.5678 × 10−15 9.1357 × 10−15 7.6492 × 10−12 3.9861 × 10−11 9.33 × 10−16
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4.2. Evaluation for Unimodal Objective Functions

The objective functions F1 to F7 are unimodal. The optimization results of the TSO
algorithm and other mentioned algorithms for these objective functions are presented in
Table 1. For all of these functions, the TSO algorithm performs better than the other eight
algorithms. Note that the proposed algorithm provides exactly the global optimal solution
for F6. In addition, for other functions, the TSO algorithm provides a solution very close to
the global optimum, especially for F1 and F2. These results show that the new proposed
algorithm has a good efficiency in achieving a suitable quasi-optimal solution for this type
of objective functions.

4.3. Evaluation for High-Dimesional Multimodal Objective Functions

Six objective functions F8 to F13 are selected from high-dimension multimodal func-
tions. Table 2 reports the results of optimizing these functions using the TSO algorithm and
other algorithms. Note that the new algorithm performs better for all F8 to F13. Especially
for F9 and F11, the TSO algorithm has achieved the global-optimal solution. An overview
of the results in Table 2 shows that the proposed algorithm is able to solve this type of
optimization problems more effectively compared to the other algorithms.

4.4. Evaluation for Fixed-Dimesional Multimodal Objective Functions

The functions F14 to F23 are used to evaluate the performance of the TSO algorithm
and other algorithms for multimodal functions. The results are reported in Table 3. Notice
that the new algorithm provides suitable quasi-optimal solutions for this type of functions.
Although the MP algorithm also performs well, it is not competitive with the TSO algorithm
for F15, F17, and F20. Thus, the new algorithm is more efficient than the other eight
algorithms in optimizing this type of objective functions.

The AV and SD of the optimal solutions of the objective functions using the proposed
TSO algorithm and eight other optimization algorithms are presented in Tables 1–3. How-
ever, since this class of objective functions are associated with too many local minima, in
order to have a better understanding of the results, logarithmic scale plots of the optimal
solutions for each algorithm and function are shown in Figure 2.

As mentioned, in order to evaluate the performance of optimization algorithms,
objective functions of three different types have been selected. The objective functions
F1 to F7 of the unimodal type have no local optimum, and the global optimum solution
for these functions is zero. Based on the plots of F1 to F7, the TSO algorithm provides
the best performance among the optimization algorithms. The GA algorithm is the worst
optimizer for F1, F2, F3, and F5. The PSO algorithm is not a good optimizer for F4, F6,
and F7. Note that the objective functions F8 to F13 are high-dimension multimodal type
with local optimal solutions. Considering the plots drawn for these objective functions in
Figure 2, it is clear that the TSO algorithm has good performance in solving these types of
optimization problems. The distributions of quasi-optimal solutions in the TSO algorithm
are very close to each other and therefore have very low SD. The objective functions F14 to
F23 are fixed-dimension multimodal type with local optimal solutions. The superiority of
the TSO algorithm in providing quasi-optimal solutions with low SD is evident in Figure 2
for F14, F15, F20, F21, F22, and F23. As reported in Table 3, the TSO algorithm and other eight
algorithms provide similar performance in optimizing the objective functions F16, F17, F18,
and F19. Thus, it is expected that the plots of these functions are similar and practically
with no difference to each other.

Based on the analysis of numerical results in Tables 1–3 and the plots presented in
Figure 2, it is evident that the TSO algorithm is able to provide suitable quasi-optimal
solutions with low SD in various problems.
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4.5. Statistical Testing

Comparison of the performance of the optimization algorithms in providing quasi-
optimal solutions based on AV and SD gives us relevant information. However, considering
only these results is not enough to guarantee the superiority of an algorithm. This is because,
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even after twenty independent runs for each algorithm, the superiority of one over the
another may occur randomly with very low probability.

Therefore, in order to prove non-randomness superiority of the TSO algorithm, a
statistical test on the performance of the algorithms must be considered. In this paper,
the Friedman rank test [25], pp. 262–274 is applied for statistical analysis of optimization
results and performance of the algorithms. The results of this test for the TSO algorithm
and eight other algorithms are reported in Table 4. According to this table, the TSO algo-
rithm ranks first in optimizing unimodal objective functions. After the TSO algorithm, the
TSA algorithm ranks second in the optimization of this type of functions. The proposed
algorithm also ranks first among eight other algorithms in optimizing high-dimension
multimodal objective functions. For this type of functions, after the TSO algorithm, the
GWO algorithm ranks second. The proposed algorithm has also achieved the best per-
formance when optimizing fixed-dimension multimodal objective functions. After the
TSO algorithm, the MP algorithm is in the second position. In addition, based on general
analysis of the results reported in Table 4, for all twenty-three objective functions, the TSO
algorithm achieves the best performance among the mentioned optimization algorithms
and has the first position. These results confirm the superiority of the TSO algorithm over
the other eight algorithms and prove that this superiority is not product of the randomness.

Table 4. Results of the Friedman rank test for evaluating the indicated algorithm and type of objective function.

Function TSO MP TS WO GWO TLBO GS PSO Genetic

1
Unimodal

(F1–F7)

Friedman value 7 37 16 42 27 28 37 56 57

Friedman rank 1 5 2 6 3 4 5 7 8

2
High-dimension multimodal

(F8–F13)

Friedman value 6 33 27 38 24 25 32 37 40

Friedman rank 1 6 4 8 2 3 5 7 9

3
Fixed-dimension multimodal

(F14–F23)

Friedman value 10 15 33 33 31 35 38 45 55

Friedman rank 1 2 4 4 3 5 6 7 8

4 All 23 functions
Friedman value 23 85 76 113 82 88 107 138 152

Friedman rank 1 4 2 7 3 5 6 8 9

5. Discussion

Exploitation and exploration capabilities are two important indicators to evaluate
performance of algorithms in providing quasi-optimal solutions [26]. Exploitation power
means the ability of an algorithm to achieve a suitable quasi-optimal solution. In fact, at
the end of iterations of an algorithm, this must provide the best quasi-optimal solution
so far. An algorithm has a higher exploitation power regardless of whether this quasi-
optimal solution is closer to the global solution. Exploration power indicates the ability
of an optimization algorithm to accurately scan different areas of the search space. Thus,
an algorithm that scans the search space more accurately for all iterations can provide
a quasi-optimal solution close to the global solution without getting stuck in the local
solutions. An important point is to maintain a balance between these two indicators. Then,
in the first iterations, the priority is with the exploration index to check the search space
well. Therefore, by increasing the number of iterations of the algorithm, the priority is with
the exploitation index to achieve the best quasi-optimal solution.

The new TSO algorithm, with suitable number of members, has the potential to
accurately scan the search space. Guiding the population members in this space under
the influence of several good members causes the population to move to different areas of
such a space [27]. This issue increases the ability of the TSO algorithm to accurately scan
the search space, which indicates the reasonable exploration power of this algorithm. In
addition, as the number of iterations increases, the population members move towards
the good members, and as the algorithm reaches the final iterations, population converges
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and concentrates on near the optimal solution. This issue proves the suitable exploitation
power of our TSO algorithm to provide an appropriate quasi-optimal solution.

The analyzed unimodal objective functions have one global optimal solution and no
local optimal solutions. Then, these functions are suitable to evaluate the exploitation
index. The optimization results of such objective functions presented in Table 1 indicate
that the TSO algorithm has an acceptable ability to provide a quasi-solution close to the
global solution and has a much higher exploitation power than the other algorithms.

The studied high-dimension and fixed-dimension multimodal functions have several
local optimal solutions, in addition to the global optimal solution. Therefore, these types of
objective functions are suitable for evaluating the exploration index. Based on the results
reported in Tables 2 and 3, the TSO algorithm, with the desired exploration power, was
able to provide appropriate quasi-solutions. This shows that the TSO algorithm has a
reasonable ability to accurately scan the search space and therefore has higher exploration
power compared to the other eight optimization algorithms.

The statistical results of the Friedman rank test presented in Table 4 confirmed that
the superiority of the TSO algorithm over the other eight algorithms analyzed in the
exploitation and exploration indexes is not random.

6. Conclusions and Future Works

Certain algorithms are able to provide a solution for optimization problems, which
is not necessarily the global solution, but could be close to it. In this paper, a two-stage
algorithm was introduced to solve optimization problems. The main idea of this algorithm
acronymized as TSO is to update the population based on a selected group of its good
members. For this purpose, several good members are utilized to lead each population
member in all axes of the search space, instead of using only the best member. Therefore,
the position of each member in each axis of the search space is updated in two stages
and under the influence of two different good members. The main feature of the TSO
algorithm is its simplicity of relationships and implementation, as well as the lack of control
parameters not needing their tuning.

The stages of the TSO algorithm were described and then mathematically modeled for
solving optimization problems. The performance of the proposed algorithm was evaluated
on a set of twenty-three objective functions from three different types including unimodal,
high-dimension multimodal, and fixed-dimension multimodal functions. The results of
this evaluation were compared with the performance of the genetic, gravitational search,
grey wolf, marine predators, particle swarm, teaching-learning-based, tunicate swarm, and
whale algorithms in optimizing these objective functions [28]. By comparing the simulation
results for the unimodal case, which are suitable for evaluating the exploitation index
due to having an optimal solution, obvious superiority of the TSO algorithm over the
other eight algorithms was demonstrated. Considering the performance of the proposed
algorithm and other algorithms on both groups of multimodal objective functions, it was
shown that the TSO algorithm has higher exploration power and is superior to other
algorithms in optimizing this type of objective functions. Furthermore, the Friedman rank
test was applied in order to further analyze the performance of the TSO algorithm and other
algorithms. Based on the results of this statistical analysis, it was found that the proposed
algorithm ranks first among the studied algorithms and its superiority in optimizing
objective functions is not random. Therefore, general analysis of the optimization and
statistical results confirmed the superiority of the TSO algorithm doing it more competitive
than the other eight analyzed algorithms.

Some ideas and perspectives for future research the arise from the present investigation
are the following: (i) the design of the binary version as well as the multi-objective version of
the TSO algorithm has an interesting potential; (ii) the implementing of the TSO algorithm
on various optimization problems and real-world problems could be explored and achieve
some significant contributions [29]; and (iii) it exists a promising area of application in
machine, deep and statistical learnings, for instance, in image compression [5]. These and
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other aspects for further research are being studied by the authors and we hope to publish
their finding in future works.
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Appendix A

Mathematical details of the twenty-three objective functions used for obtaining the
results in Tables A1–A3.

Table A1. Unimodal objective functions and their variables’ interval.

Objective Function Variables’ Interval

F1(x) =
m
∑

i=1
x2

i [−100, 100]m

F2(x) =
m
∑

i=1
|xi|+

m
∏
i=1
|xi| [−10, 10]m

F3(x) =
m
∑

i=1

(
i

∑
j=1

xi

)2

[−100, 100]m

F4(x) = max{|xi|, 1 ≤ i ≤ m} [−100, 100]m

F5(x) =
m−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30]m

F6(x) =
m
∑

i=1
([xi + 0.5])2

[−100, 100]m

F7(x) =
m
∑

i=1
ix4

i + rand(0, 1) [−1.28, 1.28]m

Table A2. High-dimension multimodal objective functions and their variables’ interval.

Objective Function Variables’ Interval

F8(x) =
m
∑

i=1
−xi sin

(√
|xi|
)

[−500, 500]m

F9(x) =
m
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]m

F10(x) = −20 exp

(
−0.2

√
1
m

m
∑

i=1
x2

i

)
− exp

(
1
m

m
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32]m

F11(x) = 1
4000

m
∑

i=1
x2

i −
m
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]m
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Table A2. Cont.

Objective Function Variables’ Interval

F12(x) = π
m

{
10 sin(πy1) +

m
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

m
∑

i=1
u(xi, 10, 100, 4),

where u(xi, a, i, n) =


k(xi − a)n xi > −a,

0− a < xi < a,
k(−xi − a)n xi < −a

[−50, 50]m

F13(x) = 0.1
{

sin2(3πx1) +
m
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxm)

]}
+

m
∑

i=1
u(xi, 5, 100, 4)

[−50, 50]m

Table A3. Fixed-dimension multimodal test functions and their variables’ interval.

Objective Function Variables’ Interval

F14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
[−65.53, 65.53]2

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5]4

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5, 10]×[0, 15]

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
)
]×

[30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)
]

[−5, 5]2

F19(x) = −
4
∑

i=1
ci exp (−

3
∑

j=1
aij

(
xj − Pij

)2
) [0, 1]3

F20(x) = −
4
∑

i=1
ci exp (−

6
∑

j=1
aij

(
xj − Pij

)2
) [0, 1]6

F21(x) = −
5
∑

i=1
[(X− ai)(X− ai)

T + 6ci]
−1 [0, 10]4

F22(x) = −
7
∑

i=1
[(X− ai)(X− ai)

T + 6ci]
−1 [0, 10]4

F23(x) = −
10
∑

i=1
[(X− ai)(X− ai)

T + 6ci]
−1 [0, 10]4
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