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English summary 

This PhD project investigates fourth grade students’ understanding and development 

of the concept of fractions in a Danish school system setting. There is international 

consensus about the importance of understanding fractions for students’ further 

mathematical development, but fraction proficiency has proven to be particularly 

difficult for some students. In Denmark, there has been limited focus on the topic of 

fractions, and no quantitative studies have been conducted based on student 

development of fractions over time. The present PhD project seeks to remedy this 

knowledge gap in the Danish context.  

The dissertation is based on five articles that shed light on various aspects of the 

development of the concept of fractions, methodologically, empirically, and 

theoretically. It seeks to answer the overarching research question:  

How can we investigate and explain students’ difficulties with developing the 

multifaceted concept of fractions in the fourth grade? 

Methodically I have addressed the first part of the research question, ‘How can we 

investigate students’ difficulties?’ through the development of a measuring instrument 

analysed in Study 1, reported in Paper 1. The empirical foundations for this study 

consist of data collected in the form of student responses to different fraction tasks 

and expert evaluations of the measuring instrument’s content. Afterwards, different 

statistical analyses have been carried out to investigate the measuring tool’s accuracy, 

for example, a Rasch analysis.  

The enquiry into the second part of the question, ‘How are students’ difficulties 

explained?’, is therefore primarily based on quantitative data collected through the 

measuring instrument that has been developed. Where the student responses to 

selected tasks are examined in further detail, that is, the connection between the 

answers in fraction comparison tasks and previous answers to natural numbers 

arithmetic, the theoretical analysis was not based on quantitative data. However, the 

curiosity for the theoretical study 3 arose from the observed answers in Study 2, which 

is reported in Paper 2. Although this dissertation’s studies are primarily based on the 

collected quantitative data, it is important to emphasise that various qualitative data 

were collected throughout the PhD project from teacher training courses and 

interviews with students through a fraction intervention instruction phase among 

others. 
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The five articles (studies) that are part of of this dissertation shed light on:  

I. How to collect data through a quantitative measuring tool. 

II. How the answers in four arithmetic operations are related to the answers in 

fraction comparison tasks.  

III. How two different conceptions of equivalence influence the understanding 

of fractions. 

IV. How natural number bias can distract in the fraction-learning process.  

V. How high-performing and low-performing students differ in their 

development of fraction proficiency throughout the fourth grade. 

The main conclusions can be summarised as follows: the newly developed measuring 

instrument measures within acceptable accuracy (Paper 1). The pattern between 

answers to four arithmetic tasks and answers to fraction comparison tasks differ, and 

there is a significant relationship between correct answers to division or division tasks 

and correct answers to fractional comparison tasks. However, these patterns differ 

depending on whether the fraction comparison task contains equal fractions or non-

equal fractions. In addition, when the two compared fractions were equivalent, the 

pattern differed, and the comparison of equivalent fractions appeared to be more 

difficult (Paper 2). The theoretical Study 3 detects two understandings of equivalence: 

proportional and unity equivalence. Both conceptions of equivalence are important 

and appear differently in the understanding of fractions (Paper 3). For further 

exploration into the different answers to fraction tasks, the students’ different answers 

were coded based on whether the answers could be explained as based in a natural 

number bias or not. The patterns between the different natural number bias aspects 

were then analysed. I found that the different types did not seem to be related to each 

other in the beginning of the fourth grade (Paper 4). Instruction on multiplicative 

principles seems to support the high-performing students’ development of fraction 

proficiency; however, the same development was not found in the low-performing 

student group (Paper 5). 

These results provide directions for different points of focus in the classroom. 

a) It is of central importance that students be given the opportunity to develop 

the two understandings of equivalence; especially because these are related 

to the development of equivalence within, for example, algebra and 

percentages. Equivalence can thus support a conceptual understanding of 

these more advanced mathematical concepts as it helps to create coherence 

between concepts.  

b) Students must be given opportunities to recognise the differences between 

natural numbers and rational numbers in different contexts in order to 

understand the differences between natural numbers and fractions and 

overcome the tendency of distraction from natural numbers.  
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c) Students with mathematical difficulties must be supported in developing 

connections between different mathematical subjects. 

These results suggest that students’ development of their concept of numbers is 

integrated with their understanding of integers and, at the same time, that students 

must develop a conceptual change in their understanding of numbers in order to 

accomplish the multifaceted fraction concepts. This means that students need to 

recognise how fractions (rational numbers) differ from natural numbers through, for 

example, density – that is, one can no longer count one’s way to the next number in 

the series. One can therefore see fraction concept development as an integrated 

conceptual change of the concept of numbers. 

 

Keywords: fractions, learning, development of the concept of fraction, equivalence, 

fourth grade  
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Dansk resume 

Denne afhandling undersøger elevers forståelse og udvikling af brøkbegrebet i 4. 

klasse i det danske skolesystem. Internationalt er der generelt konsensus om 

vigtigheden af brøkforståelsen for elevernes videre matematiske udvikling, og at 

netop udviklingen af brøkbegrebet har vist sig at være særligt vanskelig for elever at 

lære. Men inden for dansk kontekst har der været en begrænset opmærksomhed på 

området og ingen kvalitative studier med afsæt i elevernes begrebsudvikling af brøker. 

Dette videnshul inden for den danske kontekst søger afhandlingen at råde bod på. 

Afhandlingen bygger på fem artikler, der belyser forskellige aspekter i udviklingen af 

brøkbegrebet både metodisk, empirisk og teoretisk. Gennem afhandlingen søges at 

besvare følgende forskningsspørgsmål: 

Hvordan kan vi undersøge og forklare elevers vanskeligheder ved udviklingen af det 

komplekse brøkbegreb i 4. klasse? 

Metodisk har jeg adresseret den første del af forskningsspørgsmålet, “hvordan kan vi 

undersøge elevers vanskeligheder?”, gennem udviklingen af måleinstrumentet 

beskrevet i Studie 2, som afrapporteres i Artikel 2. Det empiriske fundament for denne 

undersøgelse består af indsamlet data fra elevbesvarelser på opgaver i 

måleinstrumentet og evaluering fra eksperter af måleinstrumentets opgavers indhold. 

Efterfølgende er der lavet statistiske analyser for yderligere at undersøge 

måleinstrumentets nøjagtighed fx via en Rasch analyse. 

Undersøgelsen af anden del af spørgsmålet, “hvordan forklares elevers 

vanskeligheder?”, bygger derfor primært metodisk på kvantitative dataindsamlinger 

gennem det udviklede måleinstrument. Her bruges data til at undersøge 

elevbesvarelserne; fx sammenhængen mellem svarene på brøkopgaver og tidligere 

løste regneopgaver med naturlige tal. Det tredje studie bygger på en teoretisk analyse 

af ækvivalensbegrebet, men nysgerrigheden for netop en teoretisk undersøgelse 

udsprang af forundringen over de observerede svar i Studie 2, som er afrapporteret i 

Artikel 2. Selv om afhandlingens studier primært bygger på de indsamlede 

kvantitative data, blev der gennem projektet foretaget forskellige kvalitative 

dataindsamlinger; fx gennem observationer af lærerkurser og interview af elever 

gennem interventionsfasen.  
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Afhandlingen består ud over denne kappe af fem artikler (studier) der belyser:  

I. Hvordan man kan indsamle data gennem et kvantitativt måleredskab. 

II. Hvordan svar inden for hver af de fire regneoperationer hænger sammen med 

svarene på opgaver omhandlende sammenligning af brøker.  

III. Hvordan to forskellige ækvivalensforståelser: proportional- og 

enhedsækvivalens influerer på brøkforståelsen.  

IV. Hvordan naturlige tal kan distrahere i udviklingen af brøkbegrebet.  

V. Hvordan højt præsterende og lavt præsterende elever adskiller sig i deres 

udvikling af brøkbegrebet gennem 4. klasse.  

Hovedkonklusionerne kan opsummeres som følger: Det udviklede målingsinstrument 

måler inden for en acceptabel nøjagtighed (Artikel 1). Sammenhængene mellem de 

fire svar i de fire regnearter og brøksammenligningsopgaver afviger fra hinanden. Der 

er en signifikant sammenhæng mellem svar på multiplikations- og divisionsopgaver 

og svar på brøksammenligningsopgaver afhængig af, om brøkopgaven indeholder 

ækvivalente brøker eller ikke (Artikel 2). Ud fra en teoretisk undersøgelse i Studie 3 

kan man finde, at der er to forståelser af ækvivalens: proportional- og 

enhedsækvivalens. Begge forståelser er vigtige og optræder forskelligt i forståelsen af 

brøker (Artikel 3). For at undersøge og forklare de forskellige svar og mønstre fundet 

i brøkopgaverne er en analyse af de forskellig naturlige tal distraktorer (natural 

number bias) blevet udført. Jeg fandt, at de forskellige naturlige tal distraktorer ikke 

ser ud til at hænge sammen i starten af 4. klasse (Artikel 4). Højt præsterende elever 

udvikler deres brøkbegreb, når de modtager undervisning i multiplikative principper, 

men den samme udvikling er ikke fundet hos de lavt præsterende elever (Artikel 5). 

Disse resultater influerer og giver anvisninger til forskellige fokusområder i 

klasserummet.  

a) Det er centralt, at eleverne får mulighed for at udvikle de to forståelser af 

ækvivalens – særligt fordi det hænger sammen med udviklingen af 

ækvivalens inden for fx algebra og procent. Ækvivalens kan dermed støtte 

en konceptuel forståelse af disse begreber, da det er med til at skabe 

sammenhæng mellem begreber.  

b) Eleverne skal gives mulighed for at udvikle en forståelse af forskellene 

mellem naturlige tal og rationale tal i forskellige kontekster og dermed forstå 

forskellen mellem naturlige tal og brøker. Med andre ord skal de overkomme 

tendensen til distraktorerne fra de naturlige tal.  

c) Elever med matematikvanskeligheder skal støttes i at udvikle sammenhænge 

mellem forskellige matematiske emner.  

Resultaterne tyder på, at elevernes udvikling af deres talbegreber på den ene side er 

integreret med deres heltalsforståelser, og på den anden side skal de samtidigt skabe 

en konceptuel forandring af deres talforståelse for at udvikle det komplekse 



 LEARNING AND UNDERSTANDING THE COMPLEXITY OF FRACTIONS  

 X 

brøkbegreb. Det betyder, at eleverne skal lære, hvordan brøker (rationale tal) adskiller 

sig fra de naturlige tal gennem for eksempel densitet. Dvs. at man ikke længere kan 

tælle sig frem til det næste tal i rækken. Man kan derfor se det som en integreret 

konceptuel forandring af talbegrebet, når brøkbegrebet udvikles.  

 

Emneord: brøker, læring, udvikling af brøkbegrebet, ækvivalens, fjerde klasse 
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Chapter 1: Introduction 

The subject of this PhD project is fractions: how students understand fractions, and 

how fractions are taught to students in elementary school in Denmark.  

The concept of rational numbers has proven to be a critical point in students’ 

development of more advanced mathematical thinking (Bailey et al., 2012; Siegler et 

al., 2011, 2012; Siegler & Pyke, 2013). In particular, the rational number notation 

known as fractions is associated with algebra readiness and algebra ability (Booth et 

al., 2014; DeWolf et al., 2015b, 2016; Siegler et al., 2013). Unfortunately, many 

students have difficulty in developing an understanding of fractions (Tian & Siegler, 

2017; Torbeyns et al., 2015), and these difficulties often persist as students advance 

through their education (Fazio et al., 2016; Schneider & Siegler, 2010). 

In a Danish context, data obtained from a test question on a 2019 final examination in 

mathematics presented to students after 10 years of compulsory education revealed 

that only 42% of the students could successfully identify the fraction that would result 

from 
5

6
 added to 

1

3
 (Winsløw, 2019b). An ongoing study of the 13% of Danish youth 

who are not in employment, education, or training indicated that 70–88% of them had 

not completed the mathematics section of the compulsory school leaving exam, 

whereas only 40–50% had not yet completed the Danish language part of the exam 

(Görlich et al., 2015). This gap in the mathematics performance between students who 

continue in the educational system and the group who leave compulsory school 

without further education arises early in primary school and increases throughout the 

course of schooling (Gustafsson et al., 2015). Moreover, there is a clear connection 

between Danish students’ mathematics grades in school and their ability to enter and 

complete secondary education; especially among young men in vocational schools 

(Hvidtfeldt & Tranæs, 2013). Mathematics can be considered one gatekeeper to 

further success in the Danish school system, and thus, success in later life.  

International studies have found that rational numbers have especially proven to be 

the gatekeeper to more advanced mathematics (Booth & Newton, 2012; Siegler et al., 

2013) and developing an understanding of fractions is particularly challenging for 

many students (Fuchs, Schumacher, et al., 2016; Hwang et al., 2019; Lortie-Forgues 

et al., 2015; Tian & Siegler, 2017). In particular, this subject is difficult for students 

with mathematical disabilities or difficulties (Hecht & Vagi, 2010; Mazzocco et al., 

2013). Based on these findings, it should be essential for mathematical education and 

research to continue to explore how mathematics, and especially rational numbers, are 

taught in order to ensure that every student is given the best opportunity to learn 

mathematics. 
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Many international studies have been conducted on this topic over the last 40 years 

(Lortie-Forgues et al., 2015), but few studies exist in this area in the Danish context 

(e.g., Putra & Winsløw, 2018; Winsløw, 2019a), and the studies that do exist have 

focussed on the teachers’ content knowledge (Putra & Winsløw, 2018, 2019) and the 

learning environment in the classroom (Larsen et al., 2006). Despite this research on 

the topic of fractions, students continue to show considerable difficulties.  

Given the extensive international research on the subject and the importance of the 

topic, it is reasonable to investigate students’ fraction-related difficulties further for at 

least three reasons: 

 Students are still struggling with fractions. 

 In the Danish context, little research has been done on the topic.  

 Fractions are an important gatekeeper in students’ mathematical 

development. 

The purpose of this PhD project is to investigate and understand more about students’ 

difficulties when developing their understanding of fractions. The next sections of the 

introduction will offer a definition of students with mathematical difficulties. It will 

then define fractions, and the overarching problem of this project will be explored. 

This will be followed by a short presentation of the current PhD project and end with 

an overview of the whole dissertation.  

1.1 Students with mathematical learning difficulties 

In this dissertation, the terms ‘students with mathematical difficulties’, ‘struggling 

learners in mathematics’ and ‘low-performing students in mathematics’ are used in 

different contexts. Therefore, it is important to define these terms. In the Danish 

research field and school culture, the term elever i matematikvanskeligheder 

(‘students in mathematical difficulties’) is emphasised rather than elever med 

matematikvanskeligheder (‘students with mathematical difficulties’). The preposition 

with indicates something that one is stuck with or has to live with, whereas in indicates 

that the situation may change (Lindenskov, 2010). However, this distinction is not 

made internationally. Instead, the term ‘disability’ or ‘difficulty’ is a way to illustrate 

this difference. According to Mazzocco (2007), mathematical learning disabilities 

suggests a biologically based disorder, whereas mathematical learning difficulties is 

a broader term referring to children who show poor mathematical achievement that 

may be explained by several causes and circumstances (e.g., psychological reasons 

such as anxiety or sociological reasons such as family background). Therefore, it does 

not only refer to a presumed biological explanation. 

Previously, the terms mathematical learning difficulty and mathematical learning 

disability have not been clearly defined, which has led to the use of different criteria 

for defining students who struggle with learning mathematics (Jitendra et al., 2018). 



LEARNING AND UNDERSTANDING THE COMPLEXITY OF FRACTIONS  

 7 

The traditional definition of learning difficulties has often been based on the 

discrepancy hypothesis, meaning that a student with learning difficulties in 

mathematics is achieving far below expectations (Lunde, 2012).  

However, there are multiple examples of other definitions; for example, students with 

mathematical difficulties could be identified as those scoring < 25th percentile on a 

mathematics test (Dennis et al., 2016; Lunde, 2012; Shin & Bryant, 2015). Another 

definition could be students considered by their classroom teachers to have difficulties 

in mathematics (e.g., Gresham & MacMillan, 1997). Mazzocco and Räsänen (2013) 

found that mathematical learning difficulties were used synonymously with 

developmental dyscalculia, but at the same time, learning difficulties were distinct 

from developmental dyscalculia when it referred to a larger group of students with 

mathematical difficulties.  

Overall, there are no consistent criteria to determine or judge whether learning 

difficulties are present in mathematics; therefore, the way the term is used varies. The 

term ‘difficulty’ implies a lower-than-average performance. Consequently, cut-off 

scores were used. The cut-off score is a way to operationalise mathematical 

difficulties in quantitative studies. However, the term mathematical learning 

difficulties has been defined by some researchers as students with poor achievement 

in mathematics from any number of causes (Mazzocco, 2007). In this project, the sub-

score in the national test score for third grade is used in Study 5, and the cut-off score 

is scoring < 25th percentile. This is discussed further in Chapter 9.2.2. 

The National Council of Teachers of Mathematics (2020) has developed the following 

definition of students with learning difficulties in mathematics: ‘Students who 

struggle with learning mathematics regardless of their motivation, past instruction, 

and mathematical knowledge prior to starting school’ (p. 1). When I use the term 

mathematical learning difficulties in this dissertation, it refers to this definition. 

However, in the last study (Study 5), in which I use the cut-off score of < 25th from 

the national test, I use the term low-performing students for this sub group. I need to 

emphasise that this term is not equal to ‘students with learning difficulties in 

mathematics’, but the group will most likely contain students with mathematical 

difficulties. Therefore, the classes can be seen as regular representations of an ordinary 

school class with an average population of fourth grade students which most likely 

include both low- and high performing students (see Chapter 6.2.1). The 25 percent 

cut-off was detected across schools and classes from the total of participants (N = 

398).  

1.2 Fractions 

The mathematical topic of fractions has been shown to be a stumbling block for many 

students in general (e.g., Booth & Newton, 2012; Braithwaite et al., 2019; Hecht & 

Vagi, 2012) and for students with mathematical learning difficulties in particular (e.g., 
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Mazzocco et al., 2013; Roesslein & Codding, 2019). The concept of fractions has a 

multifaceted structure that involves not only the ability to look at the notation as a 

rational number but also to see it as a proportional relation or operation division (e.g., 

Lamon, 2012). In this introduction, it is important to emphasise that a fraction cannot 

be explained by a unique mathematical definition, unlike the term rational number. 

Although the two terms are connected, they are not synonymous. All rational numbers 

can be expressed in the symbolic fraction form, for example, .25 = 
1

4
. However, not 

all written numbers using the symbolic fraction notation are rational numbers, for 

example, 
1

√2
∉ Q. Mathematically, the notation of a fraction is defined as 

𝑎

 𝑏
. In the 

context of this dissertation, the term ‘fraction’ refers to a rational number. This means 

that in 
𝑎

 𝑏
 both a and b are integers and b ≠ 0.  

 

Various researchers have made distinctions regarding the term fraction. Thompson 

and Saldanha (2003) distinguish between a fraction as a ‘personally knowable system 

of ideas’ and a rational number as a ‘formal system developed by mathematicians’. 

They made this distinction because the mathematical formal system of rational 

numbers is abstract, which means that elementary school students are often unable to 

fully understand and comprehend the system. The term fraction and its notation 

system are further described and defined in Chapter 3. 

1.3 Presentation of the PhD project 

This project uses an enquiry-based approach grounded in the methodology of 

pragmatism (Brinkmann, 2011; Buch & Elkjaer, 2020; Elkjaer, 2000; Pedanik, 2019). 

The theoretical framework primarily stems from Dewey’s later studies (Dewey, 

[1933]1986, [1938]1986), and this methodology is further elaborated on in Chapter 2. 

Therefore, each of my five studies included in the project must be viewed as an 

enquiry process in which I investigate why students have difficulties with learning 

fractions. In the enquiry process described by Dewey, it is important that the enquiry 

starts from an experienced problem. Therefore, I briefly describe my first encounter 

with the complex field of teaching fractions. 

My curiosity and interest in studying students’ difficulties with developing an 

understanding of fractions were sparked when I started working as an elementary 

school teacher in 2004. My first experience with students’ problems with fractions 

occurred in a grade 8 classroom, where several students thought that when adding two 

fractions with no common denominator, they should simply multiply the 

denominators and then add the numerators (e.g., 
1

3
 + 

1

4
 = 

2

12
). They expressed strong 

faith in this incorrect method and argued that it was how their previous teacher had 

taught them to add two fractions. Because of my position as a new mathematics 

teacher, it took a long time before they listened to my arguments. I was younger and 

had not been teaching for long, and I had to earn their respect. I was certain that their 

prior teacher had not instructed them to add two fractions this way. However, it 
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astonished me how they could not see that 
2

12
 was equal to 

1

6
 and that the result of 

adding the two fractions was smaller than the sum of both fractions. This argument, 

which was logical from my perspective, had no effect. I ended up showing them the 

right procedure with the knowledge that they had not gained any conceptual 

understanding of adding fractions while doing so. 

The above experience as a teacher was my starting point in the complex field of 

teaching and learning fractions. It can be recognised as the starting point of my 

enquiry process, which later led to my journey as a PhD student. However, this 

enquiry does not follow a linear process but rather resembles organic circles (Buch & 

Elkjaer, 2020; Elkjaer, 2000). Nevertheless, time is linear, and therefore the project 

exists simultaneously as a linear time-managing process (see Fig. 1) (i.e., collecting 

different datasets, conducting the intervention, etc.) as well as a circular enquiry 

process of exploring and questioning, which has led me to novel insights and 

questions. Furthermore, studies overlap, take longer than expected, or branch into new 

directions. 

Looking at the linear structuring of this project, it is based on the four following 

phases: 1) My observation of the problem as an elementary school teacher of 

mathematics (the first experience phase). 2) My initiation as a researcher investigating 

the field, starting with the first literature review (the initial phase) and developing 

materials for the project (intervention and measuring tool). 3) The first data collection 

and investigation in the field (first data collection phase). 4) Implementation of an 

intervention in the field and different data collection methods during this period 

(intervention phase). 5) Writing and finishing the dissertation (completion phase). 

This gave two independent data collections in the third phase (the first data collection) 

and the fourth phase (intervention phase). 

 

Fig. 1 Timeline over the different phases of the project 

The current PhD project is an independent project funded by the Independent 

Research Fund Denmark. I therefore took part in two research groups, ‘IT and 

Learning and Design’ at Aalborg University and ‘Program for Science and 

Matehmatics’ at VIA University College. The research group at VIA University 

College also assisted me with organisations and discussions during my PhD. In 

particular, the research project group connected to the ‘Teaching Routines and 
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Content Knowledge Project’ (TRACK) was established by the researchers at VIA 

University College. Through TRACK, I received support in terms of my 

communication with the schools, a graphic designer as well as teachers and students 

connected to the project. In addition, the research group made it possible for national 

and international experts to help with developing the study instruments as well as 

facilitating aid from a contact expert teacher who evaluated the intervention material. 

However, this PhD project was an independent research project and was centred on a 

separate enquiry process related to fractions. Originally, the PhD project was designed 

as a quasi-experimental design with a control group. However, it changed for several 

reasons during the three-year period, which will be further discussed in the last chapter 

of the dissertation.  

 

1.4 Aim and research questions 

The aim of this PhD project was to explore the concept of fractions and how student’s 

learning was supported and developed. This led to the overall research question in this 

dissertation and the starting point for the multifaceted enquiry process: 

How can we investigate and explain students’ difficulties with developing the 

multifaceted concept of fractions in the fourth grade? 

 

As previously mentioned, this project uses enquiry-based research defined by 

pragmatism (outlined in CHAPTER 2: METHODOLOGY). The research question is 

connected to an enquiry process into the observed problem of why many students have 

difficulty in understanding fractions. In addition, it is a process of questioning, 

exploring, and understanding the problem in a continuous manner (see Fig 2). The 

knowledge developed during this project is organised into five papers that each 

contain a separate study which is related to and informs the overarching research 

question. This means that each of the five studies is reported in a separate paper.  

It is important to emphasise that the five studies overlap and, at the same time, explore 

new corners of the problem (outlined in Chapter 8). The descriptions below give a 

brief introduction and overview of how the studies were connected and generated 

during the process. 
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Fig. 2 The five studies informing the project. Each study is reported in a separate paper 

Study 1: How can we measure fraction proficiency? (Paper 1) 

Originally, it was planned that Study 1 would be finished during the first data 

collection phase (phase 3), but the development of the measurement instrument was 

more complex than anticipated, and I needed more time. The development included 

finding and analysing existing fraction measurement tools and designing and 

validating the accuracy of the measurement. Consequently, this study continued into 

the intervention phase, which was not ideal but forced by reality. As a result, Study 1 

includes data from both phases 3 and 4. Retrospectively, this might be a lifelong study 

of how we can gather information/data about the observed problem of some students’ 

difficulties with fractions and create new meaning from these data. The developed 

measurement tool must continue to be developed in the process of creating meaning 

from new data, representing a never-ending process. 

 

Study 2: How does students’ whole number arithmetic relate to their ability to 

compare fractions? (Paper 2) 

Study 2 was conducted using the data collected during the first data collection phase. 

I made observations and identified patterns in the students’ answers when comparing 

fractions, which piqued my curiosity. The students’ answers in the developing and 

pilot testing of the measurement tool in Study 1 showed that I needed to investigate 
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equivalence and further answers that produced patterns in the dataset. How could I 

explain that the students showed greater difficulties in comparing 
1

4
 with 

2

4
 than 

5

11
 with 

3

5
? Could it be connected to their knowledge of the four arithmetic operations? 

 

Study 3: How can we understand the concept of fraction equivalence? (Paper 3) 

My curiosity about the difficulties of comparing equal fractions led to my search for 

knowledge about equivalence. I soon began Study 3, which was a theoretical study. 

In it, I asked the following question: Why is equivalence important in more advanced 

mathematics, and how can equivalence be seen in two different conceptions? The 

quest to explain and make sense of why 
1

4
 compared with 

2

8
 had shown to be more 

difficult than 
5

11
 compared with 

3

5
 continued into Study 4. 

 

Study 4: How are students’ different natural number bias aspects related to each 

other, and is there a pattern that indicates an overall tendency towards natural 

number bias?  

In this study, I looked deeper into natural number bias to explain comparison 

difficulties. Natural number bias can be explained as the tendency to use natural 

numbers reasoning and understanding when working with fractions. An example 

could be that 
1

3
 is interpreted as bigger than 

1

2
 because 3 is bigger than 2. This study 

explores how natural numbers can detract from the understanding of fractions in 

contrast to Study 2, which investigated how whole number arithmetic operations were 

positively related to fraction comparisons. 

 

Study 5: How does students’ fraction proficiency develop and how do other 

mathematical topics support this development? 

Study 5 explored how high- and low-performing students developed their fraction 

proficiency during fourth grade. The students followed the same curriculum during 

the school year, and I had developed instructional material in fractions that was used 

in an intervention period around Christmas in the school year 2018/19. The developed 

instructional material considered the fraction instructional material in particular, 

which exhibited a greater focus on fraction equivalence compared with the content in 

the most common mathematics books used in Denmark (see Chapters 5.2 and 6.3). 

1.5 Overview of the dissertation 

After this brief introduction to the project (see Fig. 3), I present its overall 

methodological and philosophical foundations in Chapter 2. In Chapter 3, I introduce 

the terminology related to fractions and give a short historical overview of the 

development of fractional notation. In Chapter 4, the relevant literature is reviewed to 

clarify what is known about how students learn to understand fractions. Thus, this 

chapter includes four reviews: 4.2 Review (1): Mathematical knowledge and fraction 

proficiency aims at elaborating on what it means to understand mathematics and 
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fraction proficiency. 4.3 Review (2): Natural number bias and 4.4 Review (3): Number 

knowledge development sum up how fractions can be viewed as a component of a 

student’s overall development in number knowledge, and I develop and unite the 

theoretical framework. Lastly, 4.5 Review (4): Fraction interventions provides an 

overview over an analysis of how previous intervention studies have been carried out 

on fraction interventions targeting students with mathematical difficulties/struggling 

learners. 

 
Fig. 3 Overview of the chapters 

Chapter 5 introduces and analyses how fractions are presented in the official Danish 

curriculum, and a simple content analysis of three commonly used books of 

mathematics is conducted. Chapter 6 outlines and discusses the projects and how I 

studied fourth grade students’ fraction proficiency. In Chapter 7, I present the 

methodological considerations connected to data collection through measurements. 

Chapter 8 is a summary of the five studies described in the five papers. Finally, in 

Chapter 9, I discuss the results, methodological choices for the PhD project, the 

implications for instruction, and the contribution to the field, including suggestions 

for further research. The five papers are placed at the end of the dissertation; however, 

they will be removed from the final publication. One paper is still under revision for 

a journal (Study 5), and one paper is still a manuscript (Study 1), so they cannot be 

published elsewhere beforehand. (All five papers will be published with open access.) 
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The structure of the dissertation can be seen as follows: The overall aim for the 

introduction to the five studies can be seen as containing four main elements: First, a 

methodology element. Second, a previous knowledge element. Third, an element that 

describes and analyses the Danish context of the dissertation. Fourth, the actual 

studies and their results. The methodology element is divided into two parts that I 

placed before the descriptions of the five studies. The aim of the introduction to the 

five studies is to elaborate the methodology behind the studies, elaborate the context 

in which the studies were conducted, and create coherence and transparency of the 

current research project’s development.  
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Chapter 2: Methodology 

As mentioned in the introduction, this PhD project draws on pragmatism as a research 

methodology. The theoretical framework of this approach primarily originates from 

Dewey’s theoretical work, and it provides the basis for the enquiry-based research 

methodology of this PhD project. The consequences of this research strategy are 

explained and discussed in order to improve the transparency of the project. The 

purpose of this chapter is to explain the methodological approach to the choices made 

in the process and how to interpret knowledge generated from this PhD project. First, 

the nature of pragmatism is introduced. Next, central concepts in Dewey’s theories 

are explained and reflected (experience and enquiry), and finally, the enquiry phases 

are explained in the context of the current PhD project. 

 

2.1 The nature of pragmatism 

A common oversimplification of pragmatism has been merely asking, ‘What works?’ 

and this oversimplification has been a persistent problem throughout the last century. 

Fortunately, there have been ongoing discussions about the nature of pragmatism, 

which have also created a more varied understanding of its nature (Goldkuhl, 2012; 

Morgan 2014; Silva et al., 2018)  

The common simplified question ‘What works?’ is not in itself an accurate 

conceptualisation of pragmatism; other questions are needed to capture its 

multifaceted framework. We must instead raise questions in our research such as 

‘why’ or ‘how’ questions, for example: Why do we define this as a problem in itself? 

Why do we do our research this way and not another? (Dewey, [1938]1986; Morgan, 

2014). In this context, the questions become: ‘Why do we define fraction difficulties 

as a problem?’ ‘How and why do we investigate fraction proficiency in school?’ When 

we ask these types of questions, we focus on our different choices in the research 

process. For example, why do we choose to say having difficulties in learning 

fractions is a problem, or why do we choose to use a Pearson correlation coefficient 

analysis in looking for answers? It is a simplification of pragmatism only to ask, ‘What 

works?’ because in reducing the method to that question, we ignore our choices about 

both the problems we will investigate and the essence of those problems.  

Pragmatism has been seen as a paradigm (e.g., Goldkuhl, 2012) or as a methodological 

approach (e.g., Parvaiz et al., 2016) in which it is essential for the researchers to ask 

the ‘right questions’. Determining the ‘right questions’ must involve the values of the 

researcher, and the researchers must therefore also question these values or beliefs. 

Therefore, pragmatism is not based purely on either a quantitative or a qualitative 

approach. What method the researcher chooses is determined by the question or 

enquiry (Fendt et al., 2008; Morgan, 2014; Onwuegbuzie & Leech, 2005). My choice 

of method in this research has been driven by the problem observed and by exploring 
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this problem by questioning and enquiring further into the topic. Therefore, 

pragmatism has been my methodological foundation because it asserts that the 

problem determines how we investigate and thereby capture the multifaceted field of 

mathematical educational research. There is no theory or method that determines how 

to explore and investigate the field; it all depends on the research process and its 

transparency. In the current PhD project, four of the five studies are based on 

quantitative research. Primarily, I chose to collect my data through the measurement 

tool developed in Study 1. Different methods and statistical analyses are used in each 

study. The choice of data, statistical models, and analysis is driven by the overarching 

research question in the PhD project: How can we investigate and explain students’ 

difficulties with developing the multifaceted concept of fractions in fourth grade? 

 

To summarise, the essence of pragmatism is not connected to a particular method, but 

the choice of method is based on the investigation of the problem.  

 

2.2 Experience as the bridge  

As previously mentioned, this PhD project is primarily based on Dewey’s theories of 

pragmatism; a framework in which experience is a central concept. For most of his 

life, Dewey developed and conceptualised pragmatism by orientating it towards 

human experience. The central theme of Dewey’s theory is the attempt to overcome 

the epistemological barriers between the observer and the observed (Dewey, 

[1920]1986, [1933]1986). As he states:  

Experience includes what men do and suffer, what they strive for, love, 

believe, and endure, and how men act and are acted upon, the ways in which 

they do and suffer, desire, and enjoy, see, believe, imagine—in short, processes 

in experiencing. Experience denotes the planted field, the sowed seeds, the 

reaped harvests, the changes of night and day, spring and autumn, wet and dry, 

heat and cold, that are observed, feared, longed for; it also denotes the one who 

plants and reaps, who works and rejoices, hopes, fears, plans, invokes magic 

or chemistry to aid him, who is downcast or triumphant. It is ‘double-barrelled’ 

in that it recognizes in its primary integrity no division between act and 

material, subject and object, but contains them both in an unanalysed totality. 

‘Thing’ and ‘thought’…are singlebarreled; they refer to products discriminated 

by reflection out of primary experience (Dewey, 1925, p. 8). 

According to Dewey, experience must be seen as both the subject’s being and acting 

in the world, not as the subject’s being outside and looking into the world (Elkjaer, 

2000). Moreover, ‘experience’ often implies that a subject passively senses and 

observes an object external to the subject itself, but this is not how Dewey defines 

experience – there are no divisions of act and object, or of subject and object. Overall, 

Dewey’s theories and ideas can be seen as founded on the idea of an organic unity. 

There has been a critique of the idea of organic unity where the principle of continuity 

of experience defines the concept of experience that transcends the boundaries, which 
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can be seen as a simplification. For example, Rorty (1998) states that this can be seen 

as an attempt to ‘marry Hegel with Darwin’ (p. 291). The broader discussion of the 

implications exceeds the scope of this dissertation. However, it is important to raise 

the critique because unification can be seen as a simplification; yet, I argue that 

Dewey’s theoretical framework of organism unity makes it possible to capture not 

only both sides of subject and object, but the overall complexity of acting and being 

in the world. 

Dewey’s concept of experience was defined in his later work as transactional. 

Transaction refers to an interpretation of reality that is not static or isolated but that 

exists in the relationships or exchanges with other events. Transactions means that the 

elements, humans, and surroundings in reality influence one another and are therefore 

changed by this influence. In contrast to the term ‘interaction’, according to which the 

elements are not changed, the focus of the term ‘transaction’ is on the relation between 

the elements (Brinkmann, 2011; Dewey & Bentley, [1949]1973). Dewey’s theory 

tries to overcome the gap between the observer and the observed through human 

experience, meaning experience is not to be seen merely as subjective, but is both 

subjective and objective because it is transactional in nature (Brinkmann, 2011). In 

this way, Dewey argues that there are several ways to interpret the world; there is no 

single point of view that can reveal the entire picture because the nature of the world 

is based on experience. Therefore, knowledge is not seen as final or true but instead 

continues to develop and change, as Dewey ([1938]1986) argued: ‘The history of 

science also shows that when hypotheses have been taken to be finally true and 

unquestionable, they have obstructed enquiry and kept science committed to doctrines 

that later turned out to be invalid’ (p. 145). Hence, Dewey rejects the existence of 

direct, exact knowledge and emphasises that all knowledge has mediational and 

inferential aspects (Dewey, [1938]1986).  

This does not mean that there is no true reality; however, it means that reality is 

constantly changing because of our actions. Any attempt to find a stable, enduring, 

external reality outside ourselves is not possible because of our constant action in the 

same reality (Dewey, [1920]1986, 1925, [1933]1986, [1938]1986). As a result, the 

findings of this project cannot be considered enduring reality but must be seen as a 

matrix of enquiry into why fractions can be difficult to learn – I only experience the 

mediated reality, and I mediate my reality by the methods chosen for this current 

project. I chose to primarily collect data about students’ fraction knowledge by my 

developed fraction measurement tool (described in Study 1), and data generated from 

this measurement tool mediates the reality as well as me as a researcher mediating 

what I observe as a problem. That students showing more difficulty comparing equal 

fractions might not have occurred if the measurement had a different design or if I, as 

a researcher, did not observe the problem.  

In connection with this interpretation/understanding of reality, it must be emphasised 

that Dewey underlines the importance of actions. Actions create the essential gap 
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between pragmatism and most versions of interpretivism (e.g., relativism) because, 

according to interpretivism, we are free to interpret our experiences in whatever way 

we want to. Hence, actions have outcomes that are often quite predictable, and we 

build our lives around experiences that link actions and their outcomes. We are not 

free to interpret our experience in any direction we choose, because we must consider 

the outcomes of the actions. That students show difficulties in understanding fractions 

is an experience shared by both the teachers and the students themselves; however, 

saying that this difficulty is a result of a poor number sense can be seen as a hypothesis 

that needs to be explored by, for example, making an intervention working with 

number knowledge that leads to students being better at fractions. Even though Dewey 

denies that there is an unchangeable, real knowledge, experiences create predictable 

knowledge or, as Dewey calls it, ‘warranted assertibility’ (Dewey, [1938]1986).  

For this reason, I do not consider the knowledge generated by the different studies in 

the PhD project as ‘true knowledge’; instead, knowledge developed during the project 

must be interpreted as warranted assertibility.  

2.3 Enquiry: the basis for the project 

Enquiry is always embedded in the framework of biological and cultural operations. 

Dewey’s emphasis on cultural factors specifies that every act of enquiry is based on a 

background of culture and therefore takes effect in the modification of the conditions 

out of which it grows (Dewey, [1938]1986). Experience and enquiry are not limited 

to the private subject; they are centred on a context or culture. My cultural background 

as a teacher and the Danish school system will influence the conditions out of which 

the enquiry grows, and so will the research culture of which I am a part in my study 

of fourth-grade classes in a municipality and in the research group in Aarhus Teacher 

Education and Aalborg University. Enquiry must be seen as organic; that is, it will be 

shaped by the conditions of the surroundings.  

Dewey argues that enquiry and questioning must be closely connected and related in 

the term ‘meaning’. He explains the relationship between enquiry and questioning by 

arguing that when we enquire into a phenomenon or a problem, we must also be in 

the process of questioning it. Problems grow out of actual situations, and the nature 

of a problem must be defined according to the elements in a given situation that are 

experienced and settled in observations (Dewey, [1938]1986). In this project, my 

problem is founded on the observations that students have difficulties solving 

mathematical problems that involve fractions and that I must continue to be in a 

process of questioning this problem. During the research process, I tried to question 

how the students’ problems in learning the concept of fractions developed through the 

different studies in each paper (see Chapter 8 for a summary of the studies). The given 

situation is described and analysed based on the different curricula in Chapter 5.  
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Dewey further defines the situations that motivate enquiry as indeterminate situations, 

meaning that the situation of an organism must be interpreted in the environmental 

context of objects and events as well as placed in the timeframe of past, present, and 

future (Dewey, [1938]1986). Here it is clear that Dewey’s framework also had a 

biological, organic approach. An indeterminate situation is further described as an 

ongoing automatically habitual activity that does not satisfy a need in a situation. The 

term ‘indeterminate’ is central to Dewey’s theory and emphasises the significance of 

environmental objects and events in a given situation. The unique experience is 

connected to indeterminateness in any given circumstance, and it controls the enquiry 

until the enquiry has transformed the situation into a determined one (if the enquiry is 

successful). Therefore, even though knowledge is warranted assertibility, it is still 

possible to predict or determine what a result will be. 

 

The current research project’s starting point – students’ difficulties in learning 

fractions – can be seen as an indeterminate situation in which I continue enquiring and 

questioning: How can we investigate and explain students’ difficulties with developing 

the multifaceted concept of fractions in fourth grade? In the enquiry process, I try to 

find new knowledge about the answer to the question; however, the knowledge is still 

seen as warranted assertibility. The enquiry must be based on and determined by 

judgement connected to the question of ‘why’. This means that each study choice, 

such as data collection methods and statistical analysis, is connected to recognised 

problems in the study. For example, in Study 1, how can we measure and study 

fraction proficiency? Can it be done by a curriculum-based measurement, or is it better 

to interview students? Do my test items measure fraction proficiency? Can using 

confirmatory factor analysis (CFA) explore whether the items are related by a latent 

factor? If not, I should use an exploratory factor analysis (EFA) instead.  

Four of the five studies are based on quantitative data collection and must be seen as 

having some advantages in moving from the indeterminate to the determinate; the 

many observations make it possible to find determinate patterns. However, the 

quantitative data collection will contain the issue of whether the complexity of the 

intermediate situation is reduced too much, or whether an important variable is not 

captured. In the cultural complexity context, the students are unique individuals, and 

the teachers have various backgrounds, and the situation is connected to the 

measurement situation (the student might be given the right opportunity to show their 

fraction proficiency in a test situation that differs from the regular classroom 

instructions). This complexity cannot be fully captured in my quantitative data 

collection, and it will not ever be possible to capture the complexity in any given 

situation. Qualitative data will have the same problem. The complexity will also 

change constantly, so we constantly act in the situation and thereby change it. I am 

changing the situation by conducting a measurement and trying to capture and 

investigate students’ difficulties with fractions, and in doing this, I also change the 

reality by my action. As Dewey would say, reality is constantly changing because of 

our actions. (Dewey, [1920]1986, 1925, [1933]1986, [1938]1986). To compensate for 

the reduced complexity of the intermediate situation in the measurement data 
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collection, I also made observations and interviewed students in the intervention phase 

(phase 4). These data will be analysed in future studies, although it will still be a 

reduced picture of fraction understanding – it will be a smaller picture with more 

details.  

To summarise, the importance of questioning in the enquiry process must be 

emphasised. Dewey argues that enquiry and questioning must be closely connected 

and related in the term meaning. He explains the relationship between enquiry and 

questioning by arguing that when we enquire into a phenomenon or a problem, we 

must also be in the process of questioning it. Problems grow out of actual situations, 

and the nature of a problem must be defined according to the elements in a given 

situation that are experienced and settled in observations. In this current PhD project, 

the problem is founded on my experience that some students seem to have difficulties 

when working with mathematical problems and tasks that involve fractions and that I 

must continue to be in the process of questioning this problem. In other words, during 

the research process, I tried to question whether an understanding of the students’ 

difficulties in learning the concept of fractions was developed through the different 

studies in each paper.  

2.4 The phases of enquiry 

‘Enquiry is the controlled or directed transformation of an indeterminate situation into 

one that is thus determinate in its constituent distinctions and relations as to convert 

the elements of the original situation into a unified whole’ (Dewey, [1938]1986). The 

creation of this unified whole is an ongoing process, and this dissertation should be 

interpreted as a picture of this process. In other words, knowing comes about when 

enquiry leads to an understanding that goes beyond ordinary apprehension. 

Dewey defines the six phases of enquiry in How We Think ([1933]1986) and in Logic 

([1938]1986) (see Fig. 4). In the following, I will present the terms for the phases used 

by Dewey in Logic (pp. 109–122) and the corresponding but slightly different terms 

used in How We Think (pp. 200–210) in parentheses. Although only five phases are 

described in How We Think, I found that the sixth phase described in Logic is 

especially important in this context because it describes the difference between 

scientific knowledge and common knowledge. The section is structured with an 

introduction to the phase defined by Dewey, followed by examples of how this phase 

has influenced questionings connected to this PhD project. 
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Fig. 4 The phases of the enquiry process 

  

I) The Antecedent Conditions of Enquiry: The Indeterminate Situation 

(Suggestion). A perplexing or problematic situation arrests or grows out 

of an observed or direct activity. Dewey used a broad variety of terms 

to define indeterminate situations (disturbed, troubled, ambiguous, 

confused, full of conflicting tendencies, etc.). ‘It is the situation that has 

these traits. We are doubtful because the situation is inherently doubtful’ 

(Dewey [1938]1986, p. 109). In How we think ([1933]1986) the term 

‘suggestion’ is used for the first phase, and it is a slightly different 

definition. In How we think ([1933]1986), this first phase looks at 

different kinds of suggestions to go further into the enquiry. Therefore, 

Dewey here emphasises that when we find ourselves ‘in a hole’, we need 

to come up with different suggestions on how to solve the problem. In 

Logic ([1938]1986), the focus is on defining the condition for the 

problem, whereas in How we Think ([1933]1986), the focus is on how 

the condition makes us come up with the need for enquiry. This might 

seem like two distinctions, but I will argue that they are related and alike. 

Hence, the suggestions are creating the condition, and the condition is 

creating the suggestion. We act in the world and create the world.  
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In this PhD project, the antecedent condition of enquiry can be seen as a process in 

which we must ask ‘Why?’ or question the situations: ‘Why do we need fractions (the 

fraction notation)?’ ‘Why is the concept of fraction complex?’ ‘What is the 

complexity?’ ‘Do we need fractions? (If we do not, we do not have a problem)’ ‘What 

is the concept of the fraction?’ ‘Alternatively, why am I experiencing this situation as 

a problem?’  

II) Institution of a Problem (Intellectualisation). The unspecified situation 

becomes an issue for the enquiry process because it is subjected to 

enquiry (Dewey, [1933]1986, [1938]1986). In other words, we need to 

determine whether the situation requires enquiry. Is it a problem in 

general?  

Here I need to question the situation: ‘Is it a general problem?’ ‘Where is the problem 

of fractions situated?’ Here, this phase is connected to the reviews in Chapter 4, which 

explore the international investigation of the problem. In Chapter 5, the introduction 

of fractions in the Danish school system is analysed. The reviews are placed in the 

same section, and the reviews also influence and play an important role in the other 

phases, so as outlined, it is a dynamic process.  

III) The Determination of a Problem-Solution (The guiding idea, 

hypothesis). Dewey defines this phase as the phase in which a possible 

solution that is founded on factual conditions is suggested. These 

conditions are secured by observations. Dewey does not define what 

kind of observations these are; it must be determined by the situation or 

the enquiry. This means ideas and expected consequences (forecasts) of 

what will happen when planned operations are put into practice (Dewey, 

[1938]1986). 

In this phase of the project, I examined the data from the first collection, looking at 

conditions such as the students’ difficulties with comparing fractions (Study 2). An 

implicit hypothesis was made that there was a relation between the students’ ability 

to solve multiplicative whole-number tasks (e.g., 12 × 74 and 78 ÷ 3) and their ability 

to compare fractions, for example (
1

4
>

1

5
). Another example is in Study 4, where I 

made the following explicit hypothesis: Students who use this intuitive reasoning from 

natural numbers have a tendency to do so across different kinds of tasks. In Study 5, 

the Determination of a Problem-solution (Phase III) can be seen in the developed 

fraction instruction material, which is a suggested solution to the problem. This 

instruction development was based on the findings from Review 4 (see Chapter 4.5). 

IV) Reasoning (Reasoning). This can be seen as a process where reasoning 

about the developed meaning-contents of ideas is connected to their 

relation to other ideas (Dewey, [1938]1986).  
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In every study, this Phase IV is primarily seen in the discussion section, for example, 

in Study 1’s discussion of fraction proficiency measurement or Study 5’s high- and 

low-performing differences in development. Another example of reasoning could be 

in Study 1 where we had an ongoing discussion about whether the Rash analysis 

would contribute new information or not. In Study 3, which is theoretical, the focus 

is reasoning about the importance of fraction equivalence, and this study mainly 

connects to theoretical reasoning. 

V) The Operational Character of Facts-Meanings (Testing the Hypothesis 

by Action). According to Dewey, both observed facts and ideas are 

operational and must cooperate to come together as a whole despite their 

differences; the facts must serve as evidence for the hypothesis (Dewey, 

[1938]1986). In this phase, the meaning of the act in action must be 

examined. There are slightly different terms used in Logic ([1938]1986) 

and in How We Think ([1933]1986), where testing the hypothesis phase 

in How We Think ([1933]1986) might be seen as being split into two 

phases in Logic ([1938]1986) and is therefore also part of Phase VI. 

However, I choose to put it next to the Operational Character Phase, 

and I see it primarily as evaluating the facts from testing the hypothesis. 

Yet, this choice is open to discussion. 

In this PhD project, intervention material was tested on high- and low-performing 

student groups in Study 5, meaning that the hypothesis that the material created an 

opportunity for both high-and low-performing students was tested. The hypothesis in 

Study 2 was tested by analysing the relation between students’ answers to whole 

number arithmetic and fraction comparison tasks. In Study 4, the relation between all 

natural number bias aspects was investigated by analysing the collected data. 

VI) Common sense and scientific enquiry (this phase is not described in How 

We Think). The difference between common sense and scientific enquiry 

is connected to differences in (a) subject or topic matters, which of 

course are connected to what kind of problems are in focus, (b) distance 

from the immediate subject, and (c) differences in the degree of 

precision, control, and systematicity. Solutions to common-sense 

problems are based on the habitual culture of a group and therefore 

reflect the group’s culture, whereas science-based enquiry is a more 

disinterested enquiry that is not connected to one group. Alternatively, 

it could be said that the focus of common sense is on qualities (e.g., 

good, bad), and the focus of science is on relations (e.g., position, 

motion). Dewey defines the ‘world’ of common sense as ‘the 

environment in which human beings are directly involved’ (Dewey, 

[1938]1986, p. 66). In contrast, scientific enquiry must lack ‘direct 

involvement of human beings in the immediate environment’ (Dewey, 

[1938]1986, p. 67), and therefore it is somewhat distant from present 
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needs and wants. Hence, scientific knowledge is ‘attainment of 

knowledge…for its own sake,’ and it is ‘attaining confirmed facts, 

“laws” and theories’ (Dewey, [1938]1986, pp. 66–67). This means that 

scientific knowledge is judged not on its presentation, but on systematic 

relations of coherence and consistency (Dewey, [1938]1986). 

That this PhD project is a scientific enquiry, and not based in common sense enquiry, 

can be seen in three outlined differences mentioned above: (a) The topic of fraction 

understanding and learning is not one that is normally connected to common sense; 

however, as a mathematics teacher, the topic could also be enquired about in an 

everyday setting in a classroom. (b) Where my research project differs is the distance 

between me as an external researcher and the immediate subject: the students learning 

fractions in fourth grade. The intermediate situation was conducted in the municipality 

of Syddjurs. The use of quantitative methods to enable the collection of a greater 

amount of data across classrooms can be seen as a way to ensure independence from 

the particular situation in each classroom. However, the data were collected in the 

same municipality, so they could be particular to Syddjurs. The differences between 

schools (large or small, urban or rural, private or public, see Chapter 6.2.1) can be 

seen as a way to ensure that the observations are not founded on a specific type of 

classroom. (c) There are differences in the degree of precision, control, and 

systematicity. The precision can be seen in the development securing the accuracy of 

the measurement tool (Study 1), and control can be seen in the continued evaluation 

and discussion of my statistical script written by my counsellor and research partner. 

The systematics can be found in the search strategy behind the reviews in Appendices 

A–D. 

 

The question of whether we can confirm or replicate our findings is also central to 

scientific enquiry. In Study 5, for example, we can confirm the discovered pattern in 

the first data in the delayed data set, which confirms our findings in the first data set. 

Other questions need to be asked, such as in Study 2: ‘Do we find the same relation 

between whole number arithmetic and fraction comparison tasks in grades other than 

fourth grade?’ The overall question of whether we can replicate our findings in other 

data sets and classes must be further investigated.  

Overall, Dewey’s enquiry process can be charaterised as dynamic and nonlinear, and 

in the context of the PhD project, it is important to emphasise that the five studies 

influence each other in continued cycles; for example, Study 1 continued to influence 

the discussion on how we observe or collect data for the enquiry. Each study explores 

different parts of the overarching problem. Dewey also emphasises that the sequence 

is not fixed, and some phases can be expanded; in other words, the process is dynamic 

(Dewey, [1933]1986). 
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Chapter 3: What are fractions? And how to 

understand them 

During this PhD project, I became more and more aware of the need for understanding 

historical and cultural influence to answer the question of why we need fraction 

notation today. There is also a need for a semantic framework to capture the 

multifaceted complex concept of fraction. 

 

In this chapter, I try to capture the development of the written fraction notation and 

its multifaceted structure. The first part of the chapter contains a definition of the 

terminology connected to fractions in an educational context. This is followed by a 

brief historical overview of the development of fractional notation, and at the end of 

the chapter there is a theoretical presentation of the multifaceted construct of the 

fraction concept. The purpose of the section is to describe and explain the terminology 

connected to fractions as it is used in the five studies of this dissertation to make a 

foundation for how to understand fractions. When describing the historical 

development of fraction notation, it is the written notation that is described, whereas 

when I later describe the concept of fractions, it is an elaboration of the semantic 

meaning of the concept. By doing so, the aim is to create a foundation for studying 

the overarching research question: How can we investigate and explain students’ 

difficulties with developing the multifaceted concept of fractions in fourth grade? I 

need to describe, capture, and define the need for fraction notation and the nature of 

multifaceted concept fractions. It can be seen as a further elaboration of the Antecedent 

Conditions of Enquiry: The Indeterminate Situation Phase I (Dewey, [1938]1986), 

where I try to answer, ‘Why do we need fractions (the fraction notation)?’ and ‘Why 

is the concept of fractions complex?’ 

 

3.1 Terminology of fractions  

The term ‘fraction’ comes from the Latin term frangere (fractus) which means ‘to 

break’. The traditional representation is ‘a part of a whole’ or a ‘number of equal 

parts’. A fraction’s notation consists of three parts: a numerator, a denominator, and 

a line that separates the two numbers (World Encyclopedia, n.d.).  

 

As previously mentioned, fractions are connected to a symbolic notation of rational 

numbers. Fractional notation is defined as 
𝑎

𝑏
, where the denominator b can be any non-

zero quantity, which means that any rational number can be written as a fraction; 

however, not every fraction is necessarily a rational number. For example, 
2

3
 is a 

rational number, but 
1

√2
 is not (Lamon, 2012).  
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The use of terminology associated with fractions in an educational context is not 

consistent. Payne (1976) describes how there is a great variety of terms used in 

connection to fractions in the literature of mathematics education, such as fractional 

numbers and fraction symbols. He claims that the choice of term is primarily based 

on the personal preferences of the writers. Kieren (1995), whose theoretical 

framework will be described later in the chapter, gives his perspective on terminology 

use:  

I am taking the liberty of using the terms ‘fractional numbers’, ‘rational 

numbers’ and ‘rational numbers of arithmetic’ loosely and interchangeably; 

I am thinking about children perhaps aged 7 to 12, as they come to learn to 

deal with the non-negative rational numbers and their operations through 

using standard and nonstandard fractional language. (p. 35) 

To make it even more complex, the term ‘rational numbers’ has been used 

interchangeably with ‘fraction’ in the elementary school setting (Lamon, 2012). It has 

both referred to the mathematical definition (elements of a quotient field) and as a 

topic in elementary school (Olive, 1999). The relationship between the term ‘fraction’ 

and rational numbers has been described by Behr et al. (1992) as follows: ‘Rational 

numbers are elements of an infinite quotient field consisting of infinite equivalence 

classes, and the elements of the equivalence classes are fractions’ (p. 296). Therefore, 

equivalence classes play a central role in the mathematical interpretation of fractions. 

In building the connection between rational numbers and fractions, x is a rational 

number, if integers a and b exist, such that 𝑏𝑥 = 𝑎 (Kieren, 1993). 

Other researchers have stressed the need for a clearer definition of the term ‘fraction’ 

(Lamon, 2012; Thompson & Saldanha, 2003). Lamon (2012) argues that careless use 

of the term can cause difficulties in communicating. She therefore makes a distinction 

in the use of the term ‘fraction’, which coexists in mathematics education: a numeral 

and an abstract sense of a number. First, the numeral refers to a fraction’s bipartite 

symbol, where fractions refer to a notational system – a particular form for writing 

numbers: 
𝑎

𝑏
, a particular notation form where a and b are written with a bar/line 

between them. The second interpretation involves fractions that are synonymous with 

positive rational numbers in a school setting (Lamon, 2007, 2012).  

I am taking the freedom of using the term ‘fraction’ based on Lamon’s (2012) second 

interpretation. Here, in this context, the term ‘fraction’ is defined as a notation where 

both the numerator and the denominator consist of natural numbers, and therefore the 

fraction is also a positive rational number. When using the term ‘fraction notation’, it 

refers to the written notation in the form of two integers, one above and one below a 

horizontal bar, for example 
1

3
. When I use the term ‘fraction concept’, it refers to the 

broader multifaceted concept connected to the understanding of fractions. 
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3.2 The historical development of the fractions notation  

The concept of fractions has historically been connected to breaking up or dividing in 

the setting of food or trade, for example, in a market place (Streetland, 1991). The 

first known descriptions were made by the Babylonians. They made a fraction system 

that was funded in the base of sixty: half = 30, one-third = 20, quarter = 15 (Aldosray, 

2016; Cajori, 1928; Miller, 2017). The Egyptians used a form of notation that dates 

back to 4000 BCE. They used a hieroglyphic inscription system with a special notation 

system for unit fractions where the reciprocal of any integer was notated by placing 

an oval sign, which meant ‘mouth’, indicating ‘part’, above the number above the 

integer. For example, the fraction 
1

8
 would appear as  in the Ahmes Papyrus. The 

oval eventually developed into a dot, and 
1

8
 would later appear as  where the 

numerator is two horizontal lines, each representing the quantity of four. 

Occasionally, they used a special sign for fractions in the form of 
𝑛

(𝑛+1)
 . However, the 

commonly used notation was the unit fractions (having a numerator of 1). Overall, a 

vertical form of a fraction notation was used and developed in ancient Egypt (Cajori, 

1928; Merzbach & Boyer, 2011). It is important to emphasise that Egypt was not the 

only place where vertical notation was used, and it had most likely been used in many 

earlier civilisations.  

It is worth mentioning that the tradition of vertical notation was not recognised 

worldwide. For example, the Greeks also needed a notation for fractions, and they 

developed their own systems. However, this notation was rather unclear, and often the 

context around the fraction was essential when reading the fraction correctly (Cajori, 

1928). The following example is alphabetic numerals from this system. They used 

diacritical as a mark that was placed after the denominator of the unit fraction. (The 

Greek number system β = 2 and δ = 4). This means, that β′ =
1

2
 and that δβ′ =

1

42
.However, the last notation can also be 40 

1

2
 (Allen, 1997; Miller, 2017). 

Many similar notations were used in Greek ancient civilisation, with increasing 

sophistication of the notation. The late Diophantus (AD 200/214 to 284/298) has been 

recognised as being the first found Greek mathematician that used a vertical notation 

form identical to our modern fraction notation, although with the denominator and 

numerator in reversed positions (Allen, 1997), and like the Egyptians, he usually only 

used the unit fraction. Although later the Greeks used the vertical notation form, they 

had a sophisticated understanding of numbers (Cajori, 1928; Eves, 1976). Overall it 

seems that the Greeks lacked a common notation of fractions, which meant that 

fractions were excluded from common use in the number system. The reason for this 

is an ongoing discussion of whether this was based on an imperfect notation or 

whether this missing notation was genuine ‘conceptual divergence in numbers’. The 

Greeks’ mathematical understanding of magnitude less than one differed from our 

modern mathematical understanding of numbers (Høyrup, 2004).  
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The ancient Greek mathematicians were rather late in their use of the vertical notation. 

Approximately 300 years before, in 150AD, the Indian Jain mathematicians wrote 

‘Sthananga Sutra’, which contained their collected work on numbers theory, 

arithmetic, and fraction operations. Our modern notation of fractions, known as 

bhinnarasi, also appears to have been developed in India by three mathematicians: 

Aryabhatta (476–550), Brahmagupta (598–668), and Bhaskara (1114–1185). Their 

work with numbers resulted in forming the fraction bipartite notation system where 

they placed the numerators above the denominators without a bar between them 

(Cajori, 1928; Miller, 2017; Plofker, 2016) in contrast to Diophantus, who had them 

around the other way.  

The Moroccan mathematician Al-Hassar is famous for using the notation with the 

horizontal bar between the numerator and denominator for the first time (Aldosray, 

2016; Saidan, 1996). However, this notation was used more than a thousand years 

before, and Al-Hassars’ fame in the Western world could be due to his work being 

translated into Latin (Saidan, 1996). The first European mathematician to use the bar 

notation was Fibonacci (1175–1250), who described the horizontal bar using the Latin 

term ‘virga’ (Cajori, 1928; Plofker, 2016). 

In the Middle Ages, fraction notations with a bar were generally found in Latin 

manuscripts, but when printing was invented as a way to duplicate, the bar was often 

left out, probably because of typographical problems (Miller, 2017). In 1585, Simon 

Sten (1548–1620) wrote ‘D Thiende’; in this work, he describes how natural numbers 

can be extended by using decimal fractions (Streetland, 1991). 

This fraction notation, which places the horizontal bar between the numerator and the 

denominator, was developed over centuries (Edwards, 1979; Miller, 2017; Thompson 

& Saldanha, 2003). In the last 300 years, it has been consistent as a notation, even 

though the diagonal fraction bar (solidus or virgule) was found in a handwritten 

document from 1718 by Thomas Twining’s Ledger, it was properly used before this 

(Miller, 2017). The diagonal bar was probably invented because the horizontal bar 

was typographically problematic. Nowadays, the use of this diagonal notation is 

increasing because it is directly available on any computer’s keyboard. Therefore, the 

horizontal bar (–) might in the future be replaced with the slash symbol (/) as it is 

easier to write on a keyboard.  

To look at the fraction notation separated from the general development of rational 

number notation is a simplification, and the development of the notation is of course 

influenced by the general development of the mathematical field. For example, in 

connection to the development of differential calculus, the multifaceted concept of 

fraction was articulated by the French Mathematician Jean-Baptiste le Rond 

d’Alembert (1717-1783), who questioned how to understand 
𝑑𝑦

𝑑𝑥
 . He argued that the 

concept of limit should not be thought of as a derivative that merely symbolised one 

quotient (a result of a calculation), but should be interpreted as symbols representing 
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one magnitude (Edwards, 1979; Thompson & Saldanha, 2003). The importance of 

this question is easily missed because it was not placed in the context of fractions but 

in the context of differential calculus, but it is important in later discussions of the 

multifaceted structure of fractions. Seeing fractions as a rate of change as two 

independent numbers was an incoherent conception; hence, the common 

interpretation of a ratio as two numbers present, for example, in the fraction notation, 

was really one number. This means that when looking at the fraction notation, it is a 

number and not a calculation (Thompson & Saldanha, 2003). 

However, this unified conception of fraction notation as a number was not adopted as 

consensus among mathematicians, and this might be lucky. As Vogel demonstrated 

in 1936, the whole terminology for ratios claiming not to be seen as numbers but a 

relation between a pair of numbers is fortunate because it supported the need for 

fractions and the connection to the terminology for fractions. Keeping the ratio 

understanding of fractions can be why fractions are saved in a theoretically acceptable 

way. We need this notation to illustrate the relation between two pairs of natural 

numbers (Høyrup, 2004); even though we have another notation form for rational 

numbers (decimals and percentages), they do not capture this relation. The concept of 

ratios needing a language that is connected to the practice of fractions is a fortunate 

accident that means that we have the need for the fraction notation.  

These mathematical questions are connected to the need for fraction notation, and how 

to understand this notation further leads to other mathematical concepts such as rates-

as-numbers and continuity of functions. These concepts are the foundation that leads 

to the development of a formal construction of rational number systems – and of 

course, also real number systems (Thompson & Saldanha, 2003).  

It would be out of the context of this dissertation to summarise this development. 

Nevertheless, I want to emphasise that the mathematical development of rational and 

real number systems consists of many concepts that are typically first introduced in 

graduate mathematics courses. The content of the Danish textbook will further be 

introduced and analysed in Chapter 5.2. 

To summarise, the fractional notation system has been developed over thousands of 

years and will continue to evolve in the future. Overall, fractional notation was 

invented and developed because of the need for a way to depict where reciprocals of 

integers were present, where the notation, for example, represented ‘one part of three’ 

or ‘one divided by three’. The need for this notational form in mathematics is still 

relevant. The phrase, ‘
1

4
 pizza’ gives a different interpretation to ‘0.25 pizza’ or ‘25% 

pizza’. In addition, the fraction notation form with the horizontal bar has several 

advantages in common calculation and algebra, such as the tasks 24 ÷ 4 × 6; if the 

calculation is read from left to right, the answer is 36, and if multiplication sign is 

used first, then it is 1. There is no consensus about what is right (Cajori, 1928), and to 

determine which order to do this, the calculation brackets must be used: (24 ÷ 4) × 6 
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or 24 ÷ (4 × 6). If the fraction notation is used, this problem is avoided: 
24

4
× 6 or 

24

4×6
. 

The advanges of this notation are further found when reducing an expression in 

algebra, for example, when reducing the expression (24a + 12ab ) ÷ (9𝑎 − 6𝑎𝑐) =
 3a(8 +  4b) ÷ 3a(3 –  2c) = (8a + 4b) ÷ (3 –  2c).  

In the fraction notation form, the same process would be 
24a+12ab

9a−6ac
=

3a(8+4b)

3a(3−2c)
=

 
8a+4b

3−2c
 . It seems easier to find that 3a divided by 3a is equal to 1 because 3a is just 

above and below the bar, and that 
8a+4b

3−2c
 is a new expression, rather than a calculation 

as (8a + 4b) ÷ (3 –  2c). My understanding of that is the result of years of schooling 

in a Danish school system, however.  

The fraction notation makes it possible to describe the world mathematically in a way 

we need. We need a multi-faceted notation, but at the same time, this complexity 

makes it difficult to fully understand and learn. 

3.3 The multi-faceted construct of the fraction concept 

A way to describe the multifaceted structure of fractions is the five subconstructs: 

part-whole, measure, operator, quotient, and ratio which have been added to the 

semantic concept of fractions. Kieren (1976) originally developed this framework of 

subconstructs. Both Vergnaud (1983) and Freudenthal (1983), as well as Kieren 

(1976), independently identified subconstructs, aspects, or objects of fractions in the 

mid-1970s and early 1980s. All three researchers came up with frameworks that 

broadly consist of the same objects, constructs, or subconstructs, using slightly 

different terms and definitions. Vergnaud (1983) defines the concept of fractions 

founded in the broader context of the multiplicative conceptual field, and Freudenthal 

(1983) defines the concept of fractions based more on the development of different 

aspects of partitioning. Kieren introduced the theoretical framework of rational 

numbers as a set of interrelated, but distinct subconstructs: part-whole, measure, 

operator, quotient, and ratio ( Kieren, 1980, 1976).  

These have generally been accepted and applied by researchers as the five 

subconstructs that comprise the fraction concept (Behr et al., 1993; Charalambous & 

Pitta-Pantazi, 2007; Kieren, 1980; Tsai & Li, 2017). However, it is important to 

emphasise that there have been other ways to describe this complexity and that the 

five subconstructs are not unchangeable or universal (Hecht et al., 2003; Ohlsson, 

1987, 1988; Rapp et al., 2015). For example, Ohlsson made semantic interpretations 

of fractions and suggested three basic senses: comparison between quantities, division 

of quantities, and counteracting changes (Ohlsson, 1987). Later, Ohlsson developed 

his definition and defined fractions as containing the concept of rational numbers, 

binary vectors, and composite fractions (Ohlsson, 1988). However, fraction has also 

been seen as having structural-operational duality where fractions (rational numbers) 

are seen as structural (pair of integers that are members of a defined set of pairs) and 
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operational (the result of a division of the two integers) (Sfard, 1991). Another 

definition of fractions is how much is present in a rational quantity (part-whole and 

measure) (Hecht et al., 2003). A way to hypothesise the relation between decimals 

and fractions can be seen in Fig. 5. The figure was developed by Rapp et al. (2015). 

Here fractions are illustrated as connected to countable discrete data, and here a 

fraction represents the ratio between numerator and denominator, meaning that it is a 

bipartite format (
𝑎

𝑏
) that is defined as the value of the part (the numerator) and the 

whole (the denominator). In contrast, the decimal is connected to continuous data; 

here, a decimal represents the one-dimensional magnitude of a fraction (
a

𝑏
= 𝑐) set in 

the standard base-10 metric system. In this framework, the fraction notation represents 

a two-dimensional relation, whereas the responding decimal is a one-dimensional 

magnitude (English & Halford, 1995; Rapp et al., 2015). This means that the one-

dimensional magnitude .04 responds to the bipartite format 
4

100
.  

 

 

Fig. 5 Hypothesised alignment of decimals and fractions with discrete and continuous entities. 
Figure developed by Rapp et al. (2015) 

The above-mentioned studies show both multiple concepts and frameworks of 

fractions, and there is no universal consensus of the interpretation of fractions. In this 

dissertation, the five subconstructs – part-whole, measure, operator, quotient, and 

ratio (five-part model) developed from Kieren’s (1976) theoretical framework–are 

used as a reference point since this frame captures the multifaceted complex concept 

of fractions. It is one exemplary clear model that includes or overlaps with most of 

the other above suggested frameworks. In his early work, Kieren (1976) recognised 

four subconstructs: measure, ratio, quotient, and operator. The concepts of this part-

whole were implied as being embedded in each of the four constructs as a base, and 

the part-whole construct was not included as a separate construct.  
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Later, Behr et al. (1983) in the Rational Number Project further developed Kieren’s 

(1976) work by suggesting that the part-whole or partitioning subconstruct should be 

considered a distinct subconstruct of fractions (see Fig. 6) and added rate and 

decimals, but they broadly recognised and used the five-part model. In the same text 

where Behr et al. adds the new subconstructs, they introduce the five-part model, and 

in Kieren’s article from 1980, the model of the five subconstructs was likewise defined 

and explained. 

Later, Kieren developed his five-part model framework for rational numbers (1988, 

1993, and 1995). In his later work, he re-established the model with three underlying 

concepts (partitioning, equivalence, and unit forming). This development can broadly 

be explained as focusing on quotient as the foundation for rational numbers. This later 

model has not had the same explanatory power as the previous simpler five-part 

model, but it is important to emphasise that his model has developed over time, and 

in this context, the model underlines that knowledge shall not be seen as universal, 

but as warranted assertibility. 

The recognition of the original five-part model during the last decade might be 

explained by its simplicity and therefore functionality in the research field. A body of 

research has used his five subconstruct model (1980), consisting of part-whole, 

measure, quotient, operator, and ratio which, in this dissertation, will be referred to 

as his five-part model (Charalambous & Pitta-Pantazi, 2007; Lamon, 2007, 2012; Tsai 

& Li, 2017). The framework based on Kieren’s work has been criticised for not 

exhausting or not including other possible interpretations (Ohlsson, 1987), and that 

the subconstruct model can be interpreted as a semantic top-down analysis of rational 

numbers, which can be seen as an adult understanding of fractions. It is uncertain 

whether it describes students’ constructs of fractional knowledge (Olive & Lobato, 

2008).  

 

Fig. 6 The Five-Part Model Note. The original model with the five subconstructs of fractions 
connected to the different operations of fractions and to problem solving (Behr et al., 1983). 
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In the context of this dissertation, Kieren’s earlier five-part model of subconstructs is 

used as a framework to understand the multifaceted nature of fractions, particularly in 

Study 1 in the development of the fraction proficiency measurement tool. In Study 3, 

the theoretical framework is used as the foundation for the analysis of the different 

equivalence conceptions. Therefore, the measurement tool is the foundation for data 

collection. Kieren’s framework is implicitly present in Study 5, where I follow high-

and low-performing students’ fraction proficiency development during fourth grade. 

I will describe the content of the five subconstructs in the next sections. They are 

further unfolded in Study 3, where they are used as a framework for analysing the two 

conceptions of equivalence. 

3.3.1 The part-whole subconstruct 

The part-whole subconstructs are based on the student’s ability to partition either a 

continuous quantity or several discrete objects into equal-sized parts or sets (Behr et 

al., 1983). This subconstruct is often the first subconstruct introduced for children in 

school. It describes the number of equal-sized partitioned parts denoted by 

denominator b, and the numerator defines the number of parts (Barnette-Clarke et al., 

2010; Charalambous & Pitta-Pantazi, 2007; Kieren, 1980; Marshall, 1993; Tsai & Li, 

2017).  

The representation of part-whole differs when the constructs are connected to a 

continuous quantity, for example, the area of a pizza or length of a road, where the 

part-whole is taken from a group of discrete quantities, such as a box of candies 

(Beckmann, 2011). The two types, continuous quantity versus discrete quantity, also 

demand different types of cognitive structures. The student performs significantly 

better when the task’s content is in the form of discrete examples compared to 

continuous (Hiebert & Tonnesse, 1978). The part-whole construct is often the first 

representation introduced, and it is the most frequent model used in the classroom 

setting where teachers use it to introduce and explain the concept of fractions (Fuchs 

et al., 2013; Hiebert & Tonnesse, 1978).  

3.3.2 The quotient subconstruct  

Another one of the five subconstructs is quotient, where the notation 
𝑎

𝑏
 can also refer 

to the mathematical operation of division. Hence, 
𝑎

𝑏
 can be seen as a ÷ b, representing 

a quotient. The interpretation of representation can be explained as follows: the 

denominator stands for the number of recipients, and the numerator is the quantity 

that has to be shared (Behr et al., 1993; Kieren, 1993, 1976; Marshall, 1993; 

Middleton et al., 2001). This process involves a minimum of two stages of 

interpretation: The first stage includes an interpretation of the fraction as an operation, 
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and this means a pathway to understanding the equivalence or transfer between 
8

4
 and 

2 or see 
1

4
 as the result of 1÷ 4 (Behr et al., 1983; George, 2017; Marshall, 1993).  

Furthermore, division is the only whole operation that includes whole numbers, where 

a rational number can be the outcome, and it is a way to connect and develop students’ 

whole number understanding so they have a concept of numbers that includes rational 

numbers (Bright et al., 1988; Middleton et al., 2001). Toluk and Middleton (2001) 

conducted a case study where they observed students’ progress in fraction schemes 

and the concept of the operation division in their development from the part-whole 

subconstruct concept towards a conceptualisation of the quotient subconstruct. 

Studies have also shown that proficiency in long division supports students’ 

development of fractions (Siegler & Pyke, 2013; Ye et al., 2016). In other words, the 

quotient subconstruct involves a process where a two-entity versus a one-entity 

phenomenon is present. The process starts by first looking at the fractions as two 

quantities (the numerator and the denominator). Second, the numerator is seen as a 

divisor, and the denominator is viewed as the dividend. Third, the process of partitive 

or quantitative division of a single quantity is the result. This method further leads to 

two different forms of division: partitive or measurement (Behr et al., 1993). This 

description can be traced back to d’Alembert’s question of whether a fraction should 

be thought of as merely a symbol that represents one number instead of as a pair of 

symbols representing a ratio of two numbers. Here, it can be said that the answer lies 

in the phases of a process.  

3.3.3 The measure subconstruct 

The measure subconstruct contains two interpretations: the first is that the fraction 

can be understood as a numerical value and the second that the fraction can be seen 

as a measure, for example, a distance or a size (Charalambous & Pitta-Pantazi, 2007) 

when the subconstruct measure is defined as a fraction used to determine a distance. 

Here, the distance is connected to an interpretation unit fraction, which is used 

repeatedly to measure a distance. It is therefore often connected to a number line 

(Charalambous & Pitta-Pantazi, 2007; Marshall, 1993). The measure is defined as a 

distance to a certain point from the starting point in a unit fraction distance (Behr et 

al., 1993; Kieren, 1976; Marshall, 1993). The term ‘certain point’ is used because not 

all points on a number line can be defined as a fraction (these are irrational numbers). 

The subconstruct therefore includes a determination of the unit and the starting and 

ending points. When introduced to fractions, the starting point would often be zero; 

however, the starting point may also be points other than zero, such as the distance 

between 1 and 2 
7

11
 (Marshall, 1993). Hence, the subconstruct can also contain other 

representations such as stripes, chips, areas, etc. (Kieren, 1976; Lamon, 2012). In 

Kieren’s (1976) original definition, both partitive and measurement division are used, 

and Lamon (2012) followed this definition by including and emphasising measuring 

units as an important part of the understanding of measure (Lamon, 2007, 2012).  
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The measure subconstruct can overall be seen as based on four approaches: (a) to 

recognise a fraction as a unique number, (b) to understand the density property 

(infinite number of fractions between two given fractions), (c) equal partitioning, and 

(d) to describe a unit fraction as a unit of measure that can be used repeatedly to 

measure distances (Charalambous & Pitta-Pantazi, 2007; Lamon, 2007, 2012; 

Marshall, 1993; Pantziara & Philippou, 2012). This is further described in Study 3. 

3.3.4 The ratio subconstruct 

A ratio can be defined as the relationship between two relative magnitudes: a 

numerator and denominator. Thus, it can be seen as a comparative index or 

proportionality rather than as a number (Behr et al., 1993; Kieren, 1993; Lamon, 

2012). This is the only subconstruct; no partitioning of an object is required (Marshall, 

1993). To illustrate the difference between quotient and ratio, ratio can be seen as 

four apples for every five students. This concept differs from quotient that can be seen 

as five students sharing four apples, meaning every student gets 
4

5
 of an apple. A ratio 

can likewise be seen as a part-part relationship, where two similar units are compared. 

For instance, there are four boys for every five girls (George, 2017). The term ratio is 

not well defined, and there is no consensus about the terminology (like fractions). As 

a result, it also has several understandings and definitions; for example, there is no 

consensus of ‘ratio’ and ‘rate’ and how these differ (Beckmann et al., 2015). Some 

researchers have distinguished the difference of the terms to whether the compared 

quantities are the same or not (e.g., Ohlsson, 1988). When having an understanding 

of fractions based on the ratio, it is central to look at the relations between the two 

different whole numbers represented in the numerator and the denominator (e.g., in 
1

2
 

the denominator is twice the size of the numerator). This subconstruct can therefore 

be seen as strongly connected to the concept of equivalence and explains why 
2

3
 is 

equal to 
4

6
 (Kieren, 1976). The proportional relation between a and b means that if 

there is a change in a, it will lead to predictable change in b. The constancy in the 

notation indicates that the ratio is constant (Behr et al., 1993; Charalambous & Pitta-

Pantazi, 2007; Marshall, 1993; Wong & Evans, 2007).  

3.3.5 The operator subconstruct 

The operator subconstruct can be defined as a given value or area that needs to be 

operated on so we can find a second size of value or region. The fraction works as an 

operator that operates on another value and can be illustrated as a function machine 

(Behr et al., 1993; Kieren, 1976; Tsai & Li, 2017). One example of a task that includes 

an operator subconstruct could be where a student is asked to transform a figure into 

a new figure that is 
3

4
 of the original size (Marshall, 1993). In the context of continuous 

quantities, the operator first shrinks and then stretches the original object.  
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For example, for 
3

4
 of 12, first you stretch by multiplying 12 by 3 equal to 36, then you 

divide by 4, which gives the result of 9. It is also possible to do it the other way around: 

first shrink then stretch. In the context of discrete entities, the fraction 
a

b
 operates on a 

set of objects to find a new set with 
𝑎

𝑏
 times as many objects (Behr et al., 1983). 

Behr et al. (1993) later developed these subconstructs by defining five different 

interpretations. They specifically focused on the two interpretations of stretcher-

shrinker and duplicator/partition-reducer in their analysis. Here, the stretcher-shrinker 

interpretation is defined as the result of the operation is the same number of units of 

different size, whereas the result of a duplicator/partition-reducer operation is a 

different number of units of the same size (see Study 3 for further elaboration). The 

different interpretations of the operator have been seen as a way to understand the 

fraction multiplier (Lamon, 2012; Marshall, 1993) and overall, this subconstruct 

operator requires an understanding of composition, reversibility, and proportionality 

(Kieren, 1976). 

3.4 Summary  

As mentioned in the beginning of this chapter, it was clear during my enquiry process 

that I needed to explore the historical development of the fraction notation to fully 

understand the need for this representation. The notation of fractions is a product of a 

long historical development and might continue to be developed, especially because 

of the extended use of symbols that are included on a keyboard. Overall, the 

development tells us that we still need this notation to describe the world 

mathematically. Therefore, the fundamental question is whether we need to 

understand fractions as outlined in the previous chapter as part of the first phase in the 

enquiry process (The Antecedent Conditions of Enquiry Phase I). My answer is yes, 

we need the notation to describe the world mathematically. 

The last part of the chapter aimed to explain the concept of fractions and illustrate the 

complexity of the concept. Kieren’s five-part model is chosen as the theoretical 

framework for the definition of fractions since it illustrates and captures fractions’ 

complex multifaceted nature and this can illustrate and elaborate why the topic of 

fractions often leads to difficulties in students’ learning processes. It explains the 

semantic complexity of fractions. It is important to emphasise that the subconstructs 

are seen as parts, and they work flexibly together. In my work on this dissertation, 

especially Study 3, I developed a new illustration of the interaction between 

subconstructs from Behr et al.’s original figure, and I wanted to emphasise the 

overlapping subconstructs and that they are working together (see Fig. 7). The 

difference between Figs. 6 and 7 is that the newly developed Fig. 7 emphasises that 

all subconstructs overlap. 
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Fig. 7 The theoretical model linking the five subconstructs of fractions, developed from Behr 
et al.’s model (1983) and used in Study 3  

Because I continued to ask questions in my enquiry, I began to question whether 

quotient should play the same role as part-whole because it can be a bridge between 

natural and rational numbers. This bridge is based on the fact that quotient is seen as 

the result of the whole number division. The importance of division is supported by 

the findings in Study 2, where the relation between whole number arithmetic and 

fraction comparison tasks is investigated. This study found that both the correct 

answers in division and multiplication had a stronger relation to the correct answers 

in fraction comparison tasks than addition and subtraction. The later studies of Kieren 

(1993) also emphasised the importance of the quotient; therefore, the latest semantic 

figure I developed can be seen in Fig. 8. Future empirical research needs to be done 

to further explore the theoretical figure. 

The measurement tool developed for this PhD project is developed from this 

subconstruct framework together with the official Danish curriculum. This 

measurement tool is described, analysed, and validated in Study 1. The study is based 

primarily on the quotient subconstruct.  
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Fig. 8 New developed semantic model emphasising quotient equal to part-whole  
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Chapter 4: What is fraction learning and 

understanding? 

As the terms ‘understanding/knowledge/fractions proficiency’, ‘natural number bias’, 

‘number knowledge development’, and ‘fraction intervention’ are central for this 

project, the aim of this chapter is to elaborate and describe these terms through four 

different literature reviews.  

As described in Chapter 2, the project is an ongoing process of enquiry. I did four 

literature reviews connected to different stages of enquiries, mainly the three phases 

at the beginning of the process: Institution of a Problem (Phase II), Determination of 

a Solution (Phase III), and Reasoning (Phase IV), and at the end of the process: 

Common Sense and Scientific Enquiry (Phase VI), where the scientific enquiry is 

supported by finding similar or contradictory conclusions in other studies. It is 

important to emphasise that reviews of prior knowledge of the subject will be part of 

the other phases of the enquiry as well, always influencing the choices made in the 

research process.  

The reviews were a dynamic process. During the writing and review process, I 

continued going back and making new searches or redefining and adapting the search 

string, and therefore the reviews were present in the remaining enquiry Phases I) The 

Antecedent Conditions of Enquiry and V) The Operational Character of Facts-

Meanings. The reviews were not made according to a linear process in which one 

review was finished before beginning the next. Rather, the reasoning from a previous 

review often influenced the next, which in turn would lead me back to the previous 

review. This process and method will be explained further in the next section. The 

four reviews will be reported in the following order: 1) mathematical knowledge and 

fraction proficiency, 2) natural number bias, 3) number knowledge development, and 

4) fraction intervention. 

4.1 Method used for making the reviews 

The objective of the systematic reviews was to survey prior research on mathematical 

understanding and fraction proficiency, fraction interventions, natural number bias, 

and number knowledge development. These reviews followed an established protocol 

(Petticrew & Roberts, 2006; Zins, 2000). Following this protocol, I have created a 

systematic search strategy in which search terms, databases, and search hits are 

documented and evaluated (see Appendices B, C, D, and E). This is done to secure 

the demands for systematicity in the scientific enquiry process, as previously outlined 

in Chapter 2.4 (Dewey, [1938]1986). 
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Overall, the literature search comprised four steps. First I selected the databases and 

specific search locations for each review (see Appendix A). To select the search 

words, I conducted a pilot search using single words and phrases in the selected 

databases within a period covering a suitable time limitation for each search. For 

example, natural number knowledge included studies from the year 2005 to 2020; the 

year 2005 was the year Ni and Zhou (2005) published their study about the bias. The 

experience of these pilot searches was the foundation for developing models that were 

finally used in the database search. In other locations (e.g., Danish or Scandinavian 

journals), I looked for single words, as done in the first step. 

In the database search, my chosen language was English. This meant that only Danish 

literature that had been published internationally would be found. In addition, I had 

selected research that involved alternative sources of the Scandinavian National 

Mathematical Centre, such as the Nationellt Centrum för Matematikutbildning 

(NCM) Matematikksenteret, Nasjonalt senter for matematikk i opplæring or the 

specific Danish journals MoNa and the Scandinavian journal Tangenten, Nomad, and 

Nämnaren. When looking into these Scandinavian journals and centres, I chose 

Scandinavian words for the search, for example, brøk*, bråk* or fraction* in addition 

to the English terms, so these journals could be published in Scandivian languages as 

well as English. Upon completion of the process, the fourth step included an 

evaluation of the protocol with a research librarian. In some reviews, I decided that 

the search protocol had to be adapted in order to deliver more precise results, so it was 

repeated with new models that reflected an overall consistency throughout the search 

(see Appendices B, C, D, and E). Later, feedback from reviews meant that the search 

protocol was repeated or new words were added.  
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4.2 Review (1): Mathematical knowledge and fraction proficiency  

This first review’s aim is to enquire further into mathematical knowledge and fraction 

proficiency and thereby inform the overall enquiry process of the problem: How can 

we investigate and explain students’ difficulties with developing the multifaceted 

concept of fractions in fourth grade? 

 

The enquiry process needed an elaboration of how mathematical understanding could 

be described before I could look further into how students developed the concept of 

fractions. I chose to see and define mathematical understanding as containing both 

procedural and conceptual knowledge (National Research Council, 2001; Rittle-

Johnson et al., 2015; Star, 2005; Thompson & Saldanha, 2003). This definition has 

been used in several theories of learning and development in the mathematical 

educational field (e.g., Hiebert & LeFevre, 1986; Jordan et al., 2013; Rittle-Johnson 

et al., 2001, 2015; Star, 2005). This definition of understanding as containing both 

procedural/conceptual duality has a long history. The duality is first seen in modern 

times in Skemp’s (1976) distinction between instrumental and relational 

understanding, which has been commonly used over the last four decades. Other 

researchers have defined the dual nature of knowledge not as different types of 

mathematical understandings, but as complementarity in knowledge (Maciejewski & 

Star, 2016). This approach to complementarity knowledge can be found in Gray and 

Tall’s (1994) two terms process and concept, and in Sfard’s (1991) process and object 

duality. In the official Danish curriculum, there is a duality between two terms 

færdigheder (skills/ability) and viden (knowledge). This duality will be analysed 

further in Chapter 5.1.  

The two types of knowledge, procedural and conceptual, dominate the discourse in 

mathematics education studies. In the context of this dissertation, I take the position 

that the conceptual and procedural distinction of knowledge type is a productive 

framework to describe knowledge1. See Appendix B for search protocols. 

4.2.1 Conceptual knowledge 

Conceptual knowledge is often discussed in the literature based on the definition from 

Hiebert and Lefevre (1986) as ‘knowledge that is rich in relationships. It can be 

thought of as a connected web of knowledge, a network in which the linking 

relationships are as prominent as the discrete pieces of information’ (pp. 3–4). Byrnes 

(1992) further described conceptual knowledge simplified as ‘knowing that’ and in 

                                                           
1 I need to emphasise that I am aware of Dewey’s own theoretical framework for ‘knowing’ or knowledge 

which simplified can be seen mostly as connected, active, and problem-oriented. However this PhD project 

is based in methodology of pragmatism, and in this enquiry process a central question is: ‘How can fraction 

knowledge be defined?’, and to answer this question I found that the theoretical framework of conceptual 

and procedural knowledge contributed with central points and definitions. 
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detail as ‘relational representations’ which ‘consist of two or more represented 

entities, that are mentally linked through a relation of some sort’ (p. 236). Kieren 

(1993) defined conceptual knowledge as ‘the interweaving of the intuitive and formal 

knowledge on a personal basis’ (p. 49). Overall, conceptual knowledge is defined as 

the ability to see interconnections between things rather than seeing knowledge as 

discrete bits of information – ‘knowing that’ (Byrnes & Wasik, 1991). 

Conceptual knowledge in the context of fractions could involve understanding the 

magnitude of fractions; for example, 
1

2
 can refer to either a pizza where half is eaten 

or half of the students in a class (Cramer et al., 2002; Hecht & Vagi, 2012). Fraction 

magnitude can also be ordering fractions from smallest to largest (e.g., Hecht et al., 

2003; Smith et al., 2005). Conceptual understanding could involve solving 
1

2
 + 

1

4
 by 

shading corresponding pieces of a circle or using a number line (Hecht & Vagi, 2012). 

However, these operations could also be seen as procedural, depending on the 

students’ solving process. Conceptual knowledge can be seen as including 

understanding of the previously learned subconstructs of fractions: measure, ratio, 

operation, quotient, and part-whole (Lenz et al., 2020). 

When looking more deeply into the literature, it can be seen that definitions of 

conceptual knowledge differ in their level of detail. The definition of 

conceptualisation by Hallett et al. (2010) remains implicit to some extent because they 

define conceptual knowledge as ‘the ability to see interconnections’ (p. 396) without 

further specification of what this involves in a subject-specific way. With regard to 

mathematics, on the other hand, Lin et al. (2013) defined conceptual knowledge as 

‘the relationships and interconnections of ideas which explain and give meaning to 

mathematical procedures’ (p. 42). When looking at conceptual knowledge in the 

context of fractions specifically, both Hecht et al. (2003) and Jordan et al. (2013) 

specified conceptual knowledge as mainly based on the part‐whole and measure 

aspects of fractions. (This leads back to previous definitions of subconstruct fractions 

in Chapter 3.)  

4.2.2 Procedural knowledge 

Procedural knowledge has been defined in terms of knowledge of procedures in the 

solving process and as sequential – knowing what to do next (Hiebert & Lefevre, 

1986) – or as the ‘knowing how’ to do something (Hallett et al., 2010). Byrnes (1992) 

further defined it as ‘goal-directed action sequences’ (p. 236), meaning students’ 

ability to put together an action sequence to solve a problem. This can also be 

described as knowledge of what actions to take next in the mathematical solving 

process (Rittle-Johnson et al., 2001; Rittle-Johnson & Rittle‐Johnson, 2017). This 

kind of knowledge has been connected to algorithms (Hiebert & LeFevre, 1986). As 

Hiebert and Lefevre (1986) put it: 
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One kind of procedural knowledge is a familiarity with the individual 

symbols of the system and with the syntactic conventions for acceptable 

configurations of symbols. The second kind of procedural knowledge 

consists of rules or procedures for solving mathematical problems. Many of 

the procedures that students possess probably are chains of prescriptions for 

manipulating symbols. (pp. 7–8) 

By these definitions, procedural knowledge can be seen as the ability to execute action 

sequences to solve problems. This type of knowledge is tied to specific problem types 

and has been interpreted as not widely generalisable (Rittle-Johnson et al., 2001). In 

the context of fractions, procedural knowledge can refer to the ability to solve fraction-

based tasks or problems correctly. For example, this process could include fraction 

arithmetic such as finding the common denominator by multiplying the two 

denominators when adding fractions (Hallett et al., 2010). In other words, procedural 

knowledge in fractions refers to the ability to carry out tasks or solve problems in 

fractions accurately – ‘knowing how’ (Byrnes & Wasik, 1991; Durkin & Rittle-

Johnson, 2015; Hecht & Vagi, 2012). This does not mean that procedural knowledge 

is superficial as a mechanical procedure might suggest. It also has a deeper meaning 

of students using procedures flexibly and innovatively in their problem-solving 

process (Maciejewski & Star, 2016; Star, 2005). 

4.2.3 The interaction between the two types of knowledge 

The importance of conceptual knowledge is important in learning fraction procedures 

and emphasises the importance of conceptual knowledge in the learning process 

(Hallett et al., 2010; Hecht & Vagi, 2010; Siegler et al., 2011). Historically, many 

studies of the development of conceptual and procedural knowledge have been based 

on detecting which of these two kinds of knowledge needs to be developed first for 

mastery of a given mathematical subject or topic. The relations between the two types 

of knowledge might be unidirectional, meaning that students begin by developing 

conceptual knowledge and then procedural knowledge (Byrnes, 1992; Geary, 1994; 

Halford, 1993; Siegler & Crowley, 1994) or going from some kind of procedural 

knowledge to conceptual knowledge (Karmiloff-Smith, 1996; Siegler & Stern, 1998), 

or bidirectional, according to an iterative model in which each of the two types of 

knowledge is developed in mutual support of the other (Hecht & Vagi, 2010, 2012) 

in an iterative process (Rittle-Johnson et al., 2001; Rittle-Johnson & Rittle‐Johnson, 

2017).2  

According to Rittle-Johnson et al. (2015), conceptual knowledge in the literature 

shows a tendency to play a greater role in newer research, but procedural knowledge 

has not been given the same focus historically. Procedural knowledge has been linked 

                                                           
2 More than one type of development has been defined where the knowledge types have not been directly 

causally related (inactivation view) (Schneider & Stern, 2010). 
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to traditional instructional methods in classrooms in terms of mastery of algorithms, 

whereas conceptual knowledge has been associated with the reform approaches in 

which mathematics is seen as a sense-making activity. Star (2005) argues that the two 

different definitions of knowledge types (procedural and conceptual) have been 

interpreted as connected to different quality of knowledge (superficial and deep). 

Procedural knowledge has been seen as more superficial, whereas conceptual 

knowledge has been considered deeper. This conflation has stifled or misled research 

on procedural knowledge acquisition and performance; procedural knowledge has 

come to be viewed inaccurately as more superficial than conceptual knowledge and 

less supportive of overall mathematical understanding. The conceptualisations of 

procedural knowledge seem to be more homogeneous, describing procedural 

knowledge as knowledge referring to algorithms for solving mathematical tasks, 

although this is a simplification of the concept (Baroody et al., 2007; Rittle-Johnson 

et al., 2015; Rittle-Johnson & Rittle‐Johnson, 2017; Star, 2005; Star & Stylianides, 

2013). The same tendency is found in fraction research. Here, fraction concepts are 

often defined as including understanding part-whole, fraction notation ( 
1

2
 ), and 

fraction magnitude (e.g., 
2

5
,

2

4
 and 

2

3
 can be ranked from smallest to largest. 

Researchers have suggested that concepts and procedures are interdependent and 

learned through mutual interaction in an interactive process (Maciejewski & Star, 

2016; Rittle-Johnson et al., 2001, 2015; Rittle-Johnson & Alibali, 1999; Rittle-

Johnson & Rittle‐Johnson, 2017; Schneider & Stern, 2010). Rittle-Johnson et al. 

(2001) showed that there is an underlying relationship between conceptual and 

procedural knowledge in which development of ‘the relations between conceptual and 

procedural knowledge are bidirectional, and that improved procedural knowledge can 

lead to improved conceptual knowledge, as well as the reverse’ (p. 360). They argue 

that conceptual and procedural knowledge is an iterative process, meaning that one 

type of knowledge supports increases in the other type, which in turn supports 

increases in the first. This bidirectional relationship means that procedural and 

conceptual knowledge are equal in importance, depending on each other to produce a 

deeper understanding of mathematical concepts (see Fig. 9). When learning fraction 

procedures (e.g., the fraction addition algorithm), it also supports the conceptual 

knowledge of fractions (e.g., fraction magnitude or relation to decimals). When 

developing conceptual knowledge, developing the understanding of fraction 

magnitudes also supports the development of procedural knowledge. Both approaches 

to knowledge are fundamental concepts and support each other. Connected or joined 

conceptual and procedural knowledge can be described as an indication of deeper 

understanding for students in mathematics. 
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Fig. 9 Iterative model of the development of conceptual and procedural knowledge (Rittle-
Johnson et al., 2001, p. 347) 

That the two types of knowledge cannot be seen as separate and unconnected is 

supported by several studies that show a positive high correlation between conceptual 

and procedural fraction knowledge (e.g., Hallett et al., 2010; Schneider & Stern, 

2010). Hallett et al. (2010) reported the individual differences in the conceptual and 

procedural fraction knowledge of fourth and fifth graders in the United Kingdom 

(N = 318). The researchers formed two different scales (conceptual and procedural). 

The correlation between the two scales was high and significant (r = .68, p < .001). 

Almost the same correlation was found by Jordan et al. (2013) between the two kinds 

of knowledge (r = .62, p < .001) in their study of sixth‐grade students’ knowledge of 

fraction in the US. Both studies together give no support to separating conceptual and 

procedural knowledge into two different scales in a measurement. Only a few 

empirical studies of knowledge of fractions separate them (exploring two latent 

variables). In only one study, by Schneider and Stern (2010), an analysis was made 

splitting the conceptual and procedural knowledge into two latent variables in a 

confirmatory factor analysis. The study was conducted in fifth and sixth grades in 

Germany (N = 230). These latent factors showed high correlations (r > .93, p < .001), 

and factor analysis showed that the two-factor model distinguished between 

conceptual and procedural knowledge, and the one-dimensional model was of equally 

adequate fit. 

A new study by Lenz et al. (2020) compared a two-dimensional factor model 

including a ‘conceptual-procedural’ model with a one-dimensional model including 

just one underlying factor. The difference between the goodness-of-fit of the two 

models was found to be significant (∆ꭕ2 = one, N = 235, DF = 29,162, p < .01) and 

the best model fit was the two-dimensional ‘conceptual-procedural’ model. Although 

the two-dimensional model showed a better fit, the one-dimensional model showed 

an acceptable fit as well (TLI = .89, CFI = .93, RMSEA = .10). Correlations between 

the conceptual indicator variables ranged from .48 to .57 (p < .001) and the four 

procedural indicators ranged from .32 – .56 (p < .001) but the correlations between 

conceptual and procedural indicators ranged from .32 to .53 (p < .001). There was no 

clear difference shown between the correlations among the same types of indicators 
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(conceptual/conceptual and procedural/procedural) and between the two types of 

indicators (conceptual/procedural). 

The contradictory results may be explained by the previously described 

multidisciplinary nature of the field of mathematics education, which influences the 

definition of the two kinds of knowledge. Star and Stylianides (2013) found that 

psychologists and mathematics educators use the same terms – procedural and 

conceptual knowledge – to refer to different types of mathematical knowledge, but 

the two terms are used differently between disciplines. Whereas mathematics 

education research tends to view the two kinds of knowledge as focusing on qualities 

within a mathematics setting, in psychology research, the terms tend to be based on 

the nature of knowledge per se and not as connected to discipline-specific knowledge. 

Because of the multidisciplinary nature of the field, it is important to be aware of how 

the terms are used. I take the position that the distinctions between the conceptual and 

procedural definitions of knowledge types are a productive framework. However, as 

the above-mentioned studies illustrate, the two types of knowledge are interrelated as 

part of an iterative process, so I will treat them as contributing equally to students’ 

development of fraction proficiency. In the analysis of the data from Study 1, where 

the developed measurement tool will be validated, there will be no distinction between 

the two types of knowledge, but rather an overall measurement of fraction proficiency. 

The intervention material is designed to develop both the student’s conceptual and 

procedural knowledge. 

4.2.4 Fraction proficiency 

In the mathematics education community, the term ‘mathematical proficiency’ has 

been broadly accepted. The term was first introduced in 2001 by the National 

Research Council in the report ‘Adding it Up: Helping Children Learn Mathematics’. 

The Council reviewed the best available research on mathematics learning and then 

defined five strands of mathematics proficiency, which included both conceptual and 

procedural knowledge. These strands are summarised in Table 1. 

The five strands are not isolated concepts that need to be developed separately from 

one another, but are linked and interdependent. Developing just one or two strands 

will not support students’ efforts to become mathematically proficient (National 

Research Council, 2001). The term ‘proficiency’ attempts to capture the essence of 

what it means to learn mathematics. This report, where the term was first introduced, 

was edited by Jeremy Kilpatrick, Jane Swafford, and Bradford Findell, who argued 

that the terms expertise, competence, knowledge, and facility do not fully cover all 

aspects of what it means to be ‘competent in mathematics’. Instead, the interaction 

between them must be included in the concept, and the term proficient is meant to 

capture the intended complexity.  
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Table 1 Proficiency (National Research Council, 2001, p. 5) 

Strands Definition Explanation 

Conceptual understanding The comprehension of 

mathematical 

concepts, operations and 

relations. 

 

Using and understanding 

number magnitude when 

making estimations. 

Procedural fluency A skill in carrying out 

procedures flexibly, accurately, 

efficiently, and appropriately. 

 

Being capable of moving 

between different 

representations.  

 

Strategic competence The ability to formulate, 

represent, and solve 

mathematical problems. 

 

Having multiple strategies for 

calculations, flexible use of 

numbers while doing mental 

computations.  

 

Adaptive reasoning The capacity for logical 

thought, reflection, explanation, 

and justification. 

 

Judging whether answers are 

reasonable. 

 

Productive disposition The habitual inclination to see 

mathematics as sensible, useful, 

and worthwhile, coupled with a 

belief in diligence and one’s 

own efficacy. 

 

To see sense in mathematics, to 

perceive it as both useful and 

worthwhile, to believe that 

steady effort in learning 

mathematics pays off and to 

see oneself as an effective 

learner and ‘doer’ of 

mathematics. 

 

 

The term proficiency was developed in an American school tradition and culture, 

which are different in many ways from the Scandinavian tradition. In the Danish 

school system, a central term is competencies, which is often used to describe the 

content of mathematical education (Niss & Højgaard, 2002, 2019). However, in this 

dissertation, I chose the concept proficiency to describe mathematical learning as it 

fits the present understanding of conceptual and procedural knowledge better than a 

framework of different mathematical competencies.  

The term proficiency has been broadly adopted into the education field of 

mathematics, but few researchers have used terms like fraction proficiency or rational 

number proficiency. During the literature review, only 24 peer-reviewed articles 

appeared in the search (see the second part of the search protocol in Appendix B). 



CHAPTER 4: WHAT IS FRACTION LEARNING AND UNDERSTANDING?   

 48 

When evaluating the studies, I only found two that attempted to define fraction 

proficiency as a concept (Brown & Quinn, 2007; Tsai & Li, 2017). In the context of 

their study on the relationships between fraction proficiency and algebra, Brown and 

Quinn (2007) defined it as a state in which ‘not only a student is able to understand 

fraction concepts, but also that the student is able to manipulate fractions for accurate 

computation without the aid of a calculator’ (p. 9). Their definition suggests that 

proficiency is not only connected to the concept of fractions, but also to computations. 

When looking at the original definition of mathematical proficiency, you can see the 

first four strands in their definition; the fifth, productive disposition, is not explicit in 

it. However, their definition includes both conceptual and procedural knowledge.  

In contrast to Brown and Quinn’s definition, fraction proficiency in Tsa and Li (2017) 

is defined as ‘conceptual comprehension, procedural skills and the ability to approach 

daily situations involving fractions’ (p. 246). This is close to the overall definition of 

proficiency but does not contain explicit reference to strategic competence or adaptive 

reasoning. However, because all five strands are described as being interconnected, 

they might be implicit in their definition. Furthermore, Tsa and Li (2017) proposed a 

framework for developing fraction proficiency that contained the following five 

dimensions: 

 The five constructs of fractions (based on Kieren’s subconstruct as described 

in Chapter 3.3). 

 The concept of equivalent fractions.  

 The procedural fluency for and conceptual understanding of fraction 

operations.  

 The relationship between fractions, decimals, and percentages and the 

transition between different forms of representations involving fractions 

(Tsai & Li, 2017). 

4.2.5 Summary of fraction proficiency 

Although their framework is interesting, the taxonomy between the five dimensions 

and the definition of overall mathematical proficiency is not clear. As will be outlined 

in Study 3, I see fraction equivalence as an important concept in the five subconstructs 

and not as a separate dimension. Moreover, the concept of equivalence is closely 

connected to a conceptual understanding of fraction procedures when adding fractions 

(e.g., finding the common denominator). Equivalence plays an important role when 

describing the relationship between fractions, decimals, and percentages; for example, 
1

4
 is equal to 

25

100
. The five subconstructs are also a foundation for describing this 

relationship. These two studies offered a definition of the term fraction proficiency, 

while others in the review used the term without further definition (e.g., Ennis & 

Losinski, 2019; Vitoria et al., 2017).  
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Overall, the multifaceted construct of fractions makes it difficult to produce a 

description of fraction development within the framework of fraction proficiency. 

After reviewing and synthesising the theoretical and empirical studies, I suggest the 

theoretical framework for defining fraction proficiency presented in Table 2. As 

Rittle-Johnson et al. (2001) also argued, I see conceptual and procedural knowledge 

as an iterative process, and both knowledge types are combined in my definition of 

proficiency.  

Table 2 Fraction proficiency 

Strands Definition 

Conceptual understanding of 

fractions 

Comprehension of fractional notation, magnitude, operations, 

and relations (e.g., equivalence, density, and other rational 

number representations); a flexible understanding of five 

subconstructs (described in Chapter 4.2.1). 

Fraction procedural fluency Skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately (e.g., fraction arithmetic, algebra, 

or conversion between fractions, decimals, and percentages). 

Fraction strategic competence The ability to formulate, represent, and solve mathematical 

problems involving fractions. 

Fraction adaptive reasoning The capacity for logical thought, reflection, explanation, and 

justification, particularly as connected to estimation of fraction 

size. 

Fraction productive disposition The habitual inclination to see fractions as sensible, useful, and 

worthwhile, understanding the necessity of the notation form, 

coupled with a belief in diligence and one’s own efficacy when 

using fractions. 

 

As the National Research Council (2001) also emphasises, the five strands in their 

original framework of ‘proficiency’ are interrelated and cannot be separated from each 

other. The measurement tool developed in Study 1 and the students’ development of 

fraction proficiency in Study 5 are based on this definition. The time limitation of a 

computerised test made it difficult to evaluate all the strands, especially ‘fraction 

productive disposition’, ‘fraction strategic competence’, and ‘fraction adaptive 

reasoning’. Kieren’s subconstructs were, as previously mentioned, central elements in 
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the development of the test (Chapter 3; Behr et al., 1984; Charalambous & Pitta-

Pantazi, 2007; Kieren, 1976; Marshall, 1993).  
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4.3 Review (2): Natural number bias  

During the research process exploring How can we investigate and explain students’ 

difficulties with developing the multifaceted concept of fractions in fourth grade? it 

was clear that the natural number bias was a central aspect of answering parts of this 

overarching research question. As previously mentioned, this second review was 

closely connected to Institution of a Problem Phase II, Study 4. The search protocol 

can be seen in Appendix C. 

4.3.1 Natural number bias 

One of the major difficulties many researchers agree on is associated with problems 

in students’ learning process of fractions is a tendency to let whole number knowledge 

interfere with their concept of fractions and rational numbers (e.g., English & Halford, 

1995; Meert et al., 2010; Ni & Zhou, 2005; Van Hoof et al., 2018).  

This tendency was first called ‘whole number bias’ by Ni and Zhou (2005); later, the 

term ‘natural number bias’ was used by other researchers, such as Vamvakoussi, Van 

Dooren, and Verschaffel (2012). The tendency to let whole number knowledge 

interfere with rational numbers has been described by many researchers in both the 

educational and psychological fields. They agreed that there was a distinct difficulty 

associated with the students’ whole number knowledge interfering with their concept 

of fractions (or rational numbers) (e.g., Behr et al., 1993; Streetland, 1991); however, 

Ni and Zhou were the first to formulate and describe it as a bias. In the present chapter, 

a literature review about natural number bias was conducted. This included studies 

from 2005 until the present, indicating that impetus was taken to begin with the first 

year that a whole number bias was defined.  

Overall, the term ‘whole number bias’ has been defined as a major tendency to 

inappropriately apply natural number properties to the concept of rational numbers 

(Ni & Zhou, 2005). The later developed term ‘natural number bias’ has the same 

intended meaning (Christou & Vosniadou, 2012; Gómez et al., 2014; Obersteiner et 

al., 2013; Van Hoof et al., 2013, 2018), yet, the term must be seen as more specific. 

There is a mathematical distinction between whole numbers and natural numbers. 

Whereas natural numbers can be described in everyday language as those used for 

‘counting’ (cardinal numbers or positive integers that include 1, 2, 3, …), whole 

numbers are defined as integers, which consist of natural numbers as well as integers 

and zero (or exact positive and negative numbers plus zero).  

Current studies only focus on fractions that contain only positive whole numbers in 

the numerator and the denominator, so the term natural number bias is more 

appropriate (Christou, 2015; Gómez et al., 2014; Van Hoof, Verschaffel, et al., 2015). 

Hence, the term natural number bias is used in this current PhD project in order to 
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make a more precise description of the bias based on the procedures and properties of 

natural numbers that influence different concepts of fractions.  

The overall tendency for studies connected to the research group in Belgium (Leuwen) 

or Greece is to use the term natural number bias, whereas studies from the US use the 

term whole number bias.  

4.3.2 Who is affected by the natural number bias? 

Research has shown that everyone seems to have a tendency for natural number bias 

in some form. It has been detected in elementary school students’ answers (McMullen 

et al., 2018; Meert et al., 2010; Reinhold et al., 2020; Resnick et al., 2019) in high 

school students (DeWolf & Vosniadou, 2015; Obersteiner et al., 2016; Van Hoof, 

Vandewalle, et al., 2015), in adults (Fu et al., 2020; Vamvakoussi et al., 2012), and in 

expert mathematicians (e.g., Obersteiner et al., 2013). The bias can be detected and is 

present among children who have just learned fractions and also in adults with a lot 

of math experience, particularly longer experience with fractions. Obersteiner et al. 

(2016) found evidence for a natural number bias in eighth-grade students, but they did 

not find the same traces of this bias in expert mathematicians. These researchers 

argued that while students found their answers using their intuition about natural 

numbers, experts would rely on their intuition about algebra, meaning they were 

unaffected by this bias as they do not use natural number strategies. This finding 

indicates that instruction or experience with rational numbers can be used by students 

to develop strategies to overcome a natural number bias. This is further supported by 

Rinne et al. (2017) who found that bias decreases with increasing experience with 

fractions. 

They found that students who showed a partial understanding of fractions by choosing 

fractions with smaller numbers were more likely to adopt normative comparison 

strategies earlier than those with larger number bias. Exploratory factor analysis 

showed that over time, children appeared to increasingly represent fractions as 

discrete magnitudes when simpler strategies were unavailable. These results support 

the integrated theory of numerical development which posits that an understanding of 

numbers as magnitudes unifies the process of learning whole numbers and fractions. 

The findings contrast with conceptual change theories, which propose that children 

must move from a view of numbers as counting units to a new view that 

accommodates fractions to overcome the natural number bias. 

This outcome is further supported by Kainulainen et al. (2017) who found that third-

to fifth-grade students’ development from natural number-based reasoning to a 

mathematically correct concept of fractions was almost non-existent over a one-year 

period. Instead, students appeared to develop intermediary concepts before acquiring 

a mathematically correct understanding of rational numbers. Second, a cross-cultural 

study by McMullen et al. (2018) made a comparative study where they found that 
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Finnish and Flemish students were affected in similar ways by the natural number 

bias.  

The overall finding was that older students and adults have not completely overcome 

the natural number bias and that its development seems to take place gradually over 

time.  

4.3.3 Different aspects of the natural number bias 

According to my search, the first to propose categorisation of different aspects of 

natural number bias was Vamvakoussi et al. (2012). They detected three different 

aspects: comparison, arithmetical operations, and density property. Later Van Hoof, 

Vandewalle, et al. (2015) detected four aspects in their review: density, operations, 

size, and representations (see Fig. 10). The definition of size overlaps with 

Vamvakoussi et al.’s (2012) definition of the term comparison, whereas 

representation is a new aspect that Van Hoof, Vandewalle, et al. (2015) defined. These 

different aspects of natural number bias are used in the coding process in Study 4. It 

is important to emphasise that in other studies only three aspects have been defined as 

density, size, and operations (e.g., Van Hoof, Verschaffel, et al., 2015), indicating that 

the definition of the aspect is not universal and unchangeable.  

 

Fig. 10 The model of four aspects of natural number bias used in Study 4 
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Density 

The first aspect of density is described as the contrast between natural numbers and 

rational numbers and is based on the distinction that natural numbers are discrete (you 

can always count which number comes next on the number line), whereas rational 

numbers are dense (you do not know which number comes next, so there are infinite 

numbers between two rational numbers). This difference can lead to the natural 

number bias that there is a finite number of numbers between two pseudo-successive 

numbers; for example, between 
1

2
 and 

1

4
, there is only 

1

3
 (McMullen & Van Hoof, 2020; 

Vamvakoussi et al., 2012; Van Hoof, Vandewalle, et al., 2015  

I found nine studies that examined density as a natural number bias aspect (Iuculano 

& Butterworth, 2011; McMullen et al., 2018; Vamvakoussi et al., 2012; Vamvakoussi 

& Vosniadou, 2010; Van Hoof et al., 2016, 2018; Van Hoof, Janssen, et al., 2015; 

Van Hoof, Vandewalle, et al., 2015; Van Hoof, Verschaffel, et al., 2015). 

Vamvakoussi and Vosniadou’s (2010) study concluded that all age groups from 

grades 7 to 11 showed natural number bias, meaning that they had an idea of 

discreteness that a fraction had a unique ‘successor’ like natural numbers. This bias 

appeared to be unconnected to a unique cultural school system, but affects students 

across countries (McMullen et al., 2018). In Van Hoof, Verschaffel, et al.’s (2015) 

study, the aspect of density was shown to be the strongest natural number bias 

compared to size and operation.  

Representation 

Van Hoof, Vandewalle, et al. (2015) described the representation aspect of natural 

number bias as another difference between natural numbers and rational numbers. 

While a natural number can be seen as having only one symbolic representation, each 

rational number has an infinite number of symbolic representations (e.g., 
1

2
 is equal to 

0.5 or 
1

4
 is equal to 

2

8
 ). This trend could indicate that students have been unable to 

accept or understand that a fraction and a decimal can represent the same number 

(Vamvakoussi et al., 2012) or that a fraction can be interpreted as two separate natural 

numbers instead of representing a single number (Stafylidou & Vosniadou, 2004; Van 

Hoof, Vandewalle, et al., 2015).  

Size 

The fast majority of studies investigated the numerical size of rational numbers where 

students make their reasoning about the size of rational numbers based on their 

concept of natural numbers (e.g., that 
1

3
 is bigger than 

1

2
 because 3 is bigger than 2, or 

2

3
 is smaller than 

3

7
 because both 2 and 3 are smaller than 

3

7
 ) (Rinne et al., 2017; Van 
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Hoof, Vandewalle, et al., 2015; Van Hoof, Verschaffel, et al., 2015). When a 

comparison answer can be based on prior natural number knowledge, it is called a 

congruent task, for example, 
7

8
 > 

1

2
, whereas when it is not true, the comparison is 

defined as an incongruent item, for example 
2

3
 > 

3

7
 (Van Hoof, Janssen, et al., 2015). 

This tendency has explained the student difficulty of seeing a fraction as one number 

instead of two separate numbers (Van Hoof , Vandewalle, et al., 2015), so the size and 

representation aspects must therefore be closely connected, and this explains why the 

representation aspect was dropped in later studies (e.g., Van Hoof et al., 2018).  

Meert et al. (2010) found that response times were slower for fractions with common 

numerators compared to fractions with common denominators, which they proposed 

indicated an interference of the size of the denominators when choosing the larger 

fraction (e.g., the problem of 
2

3
 compared to 

2

4
 takes longer to solve than 

3

5
 compared 

4

5 
).  

Obersteiner et al. (2013) further looked into response time and found that 

mathematician experts process fraction comparisons differently depending on 

whether there is a common component present. When the fraction had the same 

denominator or numerator, the experts were affected by the natural number bias 

(showing a longer response time when solving problems with different denominators). 

When the fractions did not contain any common components, there was no natural 

number bias, which they argued indicated the use of a more holistic strategy in the 

solving process. Obersteiner and Tumpek (2016) supported this conclusion via an eye-

tracking study where they found that participants preferred componential strategies 

when there were common numerators or common denominators, and they preferred 

holistic over componential strategies for fraction pairs without common components.  

Furthermore, Gómez et al. (2015) showed that students with a natural number bias 

were significantly faster at solving fraction comparison tasks than proficient students. 

They suggested that this reflects a difference in the way these two groups reasoned 

about fractions; where natural number-biased students based their reasoning on the 

natural numbers concept, proficient students used more complex strategies. 

Vamvakoussi et al. (2012) found a natural number bias in their experiment that 

measured university students’ speed and accuracy when solving various fraction tasks 

where half of the task targeted congruent, and the other half contained incongruent 

fraction pairs. With congruent pairs (e.g., 
6

9
 and 

2

3
), natural number reasoning will lead 

to the correct answers while whole number reasoning produces wrong answers with 

incongruent pairs (
2

3
 and 

3

5
). Their results found no significant difference in correct 

versus incorrect answers, but it took significantly longer for respondents to compare 

incongruent pairs versus congruent pairs. This trend was further investigated by Van 

Hoof et al. (2013) in their study of whether fraction comparisons were controlled by 
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distance stimuli in first- and fifth-year secondary school students. Their results also 

found longer reaction times for incongruent fraction pairs. A new study by Obersteiner 

et al. (2020) found a reverse bias defined as the misconception that a smaller 

component is always the larger fraction, such as 
2

3
 is bigger than 

4

5
. This reverse bias 

was greater among participants with lower mathematics experience. In addition, these 

researchers found that when the fractions were close to 0 or 1, there was a decrease in 

the detected natural number bias.  

Overall, the many studies about size where participants were asked to compare or 

order fractions reveal the complexity of the concept of natural number bias. Several 

factors could affect the natural number bias observed in fraction comparison tasks, 

such as the strength and preciseness of rational number representations. The strength 

of the rational number representations was likely dependent on the students’ 

experience with fractions, and their answers could depend on the length of time that 

had passed since they last received instruction on the topic (Alibali & Sidney, 2015). 

Operation 

The last aspect, operation, can be defined as students using their assumptions or rules 

connected to whole number arithmetic when they are solving fraction operation tasks. 

This aspect appears when students assume that addition and multiplication will always 

produce larger results, and subtraction and division will always lead to smaller results 

(Vamvakoussi et al., 2012; Van Hoof, Vandewalle, et al., 2015). The can also be 

connected to the common mistake made when adding or subtracting to change both 

the numerator and the denominator, for example 
1

4
+

3

4
=

4

8
 (Tian & Siegler, 2017). In 

the review of literature, eight studies targeted this (Sidney & Alibali, 2017; 

Vamvakoussi et al., 2012; Van Hoof, Verschaffel, et al., 2015).  

In Obersteiner et al.’s (2016) study, the students were given a task in which the 

congruent problem answers based only on natural numbers led the students to the 

correct answer; for example, can 4 < 𝑥 × 4 be true? (The correct answer is yes.) 

However, the incongruent problem answers given by respondents who relied on 

natural numbers led to an incorrect answer; for example, can 4 > 𝑥 × 4 be true? 

While the correct answer is still ‘yes’, the natural number bias answer would be ‘no’. 

Younger students based their answers on their intuition about natural numbers and 

therefore showed a tendency for bias. In contrast, expert mathematicians relied on an 

algebraic understanding and were therefore unaffected. Their study focused only on 

multiplication and division. Vamvakoussi and colleagues investigated intuitive 

reasoning about all four operations as algebraic hypotheses in connection to their 

response times. Their studies on operations showed that students made more mistakes 

with incongruent items, and that it took more time to arrive at the correct answers. 

Overall, they found that the natural number bias was deeply rooted in people’s 

reasoning about arithmetic (Vamvakoussi et al., 2012).  
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Schumacher and Malone (2017) investigated natural number bias in subtraction and 

addition tasks. Their research showed that students were more likely to have a 

tendency to use a natural bias on tasks with unlike denominators. They found that 

below-average students who received small-group tutoring had a lower tendency for 

a natural number bias compared to students who only participated in the regular 

instruction. 

4.3.4 Summary of natural number bias 

The four aspects defined by Van Hoof, Vandewalle et al. (2015) are multifaceted in 

their structure, and their theoretical framework should be discussed. In contrast to the 

study by Van Hoof, Verschaffel, et al. (2015), I did not find any indication of the fact 

that the aspects can be seen as aspect of an overall tendency of natural number bias.  

As mentioned in Study 4, it should also be discussed whether we should understand 

these four dimensions as an aspect of the natural number bias or as four different 

natural number bias constructs. Another question is whether the four aspects can be 

seen as adequate, or whether there are others. For example, it is clear that the concept 

of equal fractions differs from the other answers that students gave when comparing 

fractions in Study 2.  

The definition of representation includes the concept of a fraction as a ‘single 

magnitude’ or quotient and thereby the student sees the notation as two separate 

natural numbers that do not interact. This can be seen as one process of understanding 

the fraction notation (e.g., interpreting 
a

b
 as one magnitude), whereas understanding 

the different equivalence classes as the same magnitude is another (e.g., 
a

b
 = 

na

nb
).  
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4.4 Review (3): Number knowledge development  

The third review is central for exploring the overarching research question: How can 

we investigate and explain students’ difficulties with developing the multifaceted 

concept of fractions in fourth grade? where we need to enquire into what 

‘development of fractions’ means. The development of number knowledge is 

therefore in focus in this third review. In this chapter, the two central theories of 

number knowledge development are explained: first, the conceptual change theory 

and then the integrated theory. The integrated theory is further described in Study 5, 

and the review is primarily connected to an overall reasoning (Reasoning Phase IV) 

in the research process. (The search protocol can be seen in Appendix D.) 

4.4.1 Conceptual change theory 

In connection to the natural number bias, the theoretical framework that has often been 

used to explain and describe why the bias appears is the conceptual change theory 

(Vosniadou, 1994).This approach to learning can be seen as based in both science 

education and cognitive-developmental research and has, of course, also been applied 

to mathematics education (Brown, 2015; Van Dooren & Inglis, 2015; Vosniadou & 

Verschaffel, 2004). Conceptual change theory emphasises that the fraction learning 

process must include a conceptual change in the students’ concept of numbers. This 

conceptual change theory proposes that students encounter natural numbers more 

frequently than rational numbers in their first years of schooling and before beginning 

in school. As a result, they have already developed a concept of what numbers are, 

and their actions are based on these first experiences with natural numbers. One 

experience could be that numbers always get bigger with multiplication, while they 

get smaller with division. Thus, students require a conceptual change of these initial 

natural numbers concepts when rational numbers are introduced (e.g., McMullen et 

al., 2015; Stafylidou & Vosniadou, 2004; Vamvakoussi & Vosniadou, 2004, 2010; 

Vosniadou & Verschaffel, 2004). The different nature of rational numbers, which 

students need to change their conception of, can be seen in Table 3. Overall conceptual 

change theory is described in the following quote by Stafylidou & Vosniadou (2004, 

p. 504):  

a) The knowledge acquisition process is not always a process of enriching 

existing conceptual structures. Sometimes the acquisition of new information 

requires the radical reorganisation of what is already known. 

b) Learning that requires the reorganisation of existing knowledge structures is 

more difficult and time consuming than learning that can be accomplished 

through enrichment. Moreover, it is likely that in the process of 

reorganisation, students will create misconceptions. 

c) Many misconceptions are synthetic models that reveal students’ attempts to 

assimilate the new information to their existing knowledge base. 
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Table 3 Conceptual change between natural numbers and fractions/rational numbers 
(Stafylidou & Vosniadou, 2004) 

Numerical value Natural numbers Fractions 

Symbolic representation One number (presupposition of 

discreteness). 

Two numbers and a line 

(presupposition of density). 

Ordering 

 

Supported by the natural 

numbers’ sequence (counting 

on). 

Existence of a successor or a 

preceding number. 

No number between two 

different numbers. 

 

Not supported by the natural 

numbers’ sequence.  

There is no unique successor or 

a unique preceding number. 

Infinity. 

 

Relationship to the unit  

 

The unit is the smallest 

number. 

No unique smallest number. 

Operations   

Addition–subtraction Supported by the natural 

numbers’ sequence. 

Not supported by the natural 

numbers’ sequence. 

Multiplication  

 

Multiplication makes the 

number bigger. 

Multiplication makes the 

number either bigger or 

smaller. 

Division Division makes the number 

smaller. 

Division makes the number 

either smaller or bigger. 

 

In the conceptual change theory, researchers argue that the explanation for natural 

number bias is caused by how the ‘bias’ interferes with fraction learning as a 

temporary ‘misconception’ of rational numbers (Vamvakoussi & Vosniadou, 2010). 

In their study, Vamakoussi and Vosniadou (2010) argue that before students are 

introduced to rational numbers that include fractions, they have already formed a 

‘coherent explanatory framework of numbers’ (p 186). This framework can be defined 

as a domain-specific understanding of numbers, such as counting. Students’ concept 

of numbers is connected to the domain, which is the basis for their understanding. 

Vamakoussi and Vosniadou (2010) further explain this as follows:  
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Within the framework theory approach to conceptual change, the 

phenomenon of students’ misconceptions due to faulty natural number 

reasoning (Moss, 2005; Ni & Zhou, 2005) can be explained not as occasional 

intrusions of students’ prior knowledge, but as an indication that students 

draw heavily on their initial understandings of numbers to make sense of 

rational numbers. (p. 187) 

This means that initial understanding is the key to understanding new types of 

numbers. However, when students encounter this new information or experience with 

numbers, it is more demanding and requires more time to understand because the new 

information is likely not compatible with their initial concept of numbers (Van Hoof, 

Janssen, et al., 2015).  

According to Van Hoof et al. (2018), there is no consensus in the conceptual change 

theory regarding whether a student’s preliminary concepts of numbers can be 

characterised as relatively independent fragments (e.g., DiSessa, 2013) or if these 

early concepts of numbers are a more coherent idea (e.g., Vosniadou, 2013). However, 

in both interpretations, conceptual change is not an all-or-nothing matter, but a gradual 

process with many intermediate states (Van Hoof et al., 2018; Vosniadou, 2013). This 

change should not be seen as a specific point in time where it will take place, 

according to Vamvakoussi and Vosniadou’s (2010) theoretical framework; it is 

transition or development from a natural number to a rational number perception, and 

transition is a gradual and time-consuming process.  

This transition process from natural numbers to rational numbers generates synthetic 

conceptions; an intermediate state that can be explained as a bridge between the 

student’s previous concept of whole numbers and the new concept of rational 

numbers. In their framework, Vamvakoussi and Vosniadou (2010) further emphasise 

that students rely primarily on additive mechanisms to add new information to prior 

knowledge in an all-or-nothing way. Natural number bias can be seen when students 

develop a synthetic concept of numbers, which includes rational numbers, but the 

synthetic conception includes a misconception. The integrated theoretical approach 

therefore argues that the development of rational numbers from natural numbers 

moves through intermediary concepts, which support the theory of a slow and 

gradually developing conceptual change in rational numbers (Kainulainen et al., 

2017). It is important to emphasise that conceptual change with rational numbers is 

seen as a complex phenomenon that consists of different subconstructs (McMullen et 

al., 2015).  

Overall, the conceptual change theories differ, but they are all founded on an 

underlying assumption that there is a conceptual difference between an early 

understanding of whole numbers and a later-developing understanding of fractions 

(Brown, 2015; Fu et al., 2020; McMullen et al., 2018; Vamvakoussi & Vosniadou, 

2010). The earlier concept of whole numbers is explained as interfering with the later-
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developing concept of rational numbers (Vamvakoussi et al., 2012, 2018). To sum up, 

the conceptual change theories and the understanding of fractions and other rational 

numbers requires a substantial change in the basic concept of numbers (DeWolf & 

Vosniadou, 2015; McMullen et al., 2015; Van Hoof et al., 2018). 

4.4.2 Integrative theory 

In contrast to the conceptual change theory, Siegler et al. (2011) suggested an 

integrated framework named integrative theory of numerical development. This 

theory proposes that whole number knowledge can be seen as the basis for developing 

an understanding of fractions. In integrative theory, the number line plays an 

important role because both the magnitude of fractions and whole numbers (natural 

numbers) can be represented on a mental number line. Schneider and Siegler (2010) 

do not view the development of fractions as a conceptual change but instead argue 

that over time, students become gradually able to understand the concept of fractions 

as a holistic magnitude instead of composites of a set of whole numbers with one in 

the numerator and the other in the denominator (Schneider & Siegler, 2010). 

The integrative theory is further supported by Torbeyns et al.’s (2015) study, where 

they argued that there are two different ways in which integrative theory varies from 

conceptual change theories. First, they propose that conceptual change theories do not 

take into account that whole number knowledge has been proven to have a significant 

positive impact on fraction learning. Second, they argue that overgeneralisation of 

whole number knowledge (which natural number bias is founded on) is not the only 

difficulty students have; there are many other difficulties with fractions that cannot be 

explained by a natural number bias or the need for a conceptual change.  

Siegler et al. (2012) viewed the integrative theory of numerical development of 

fractions learning as a process of expanding on whole number magnitude 

representations. In this theory, conceptual changes still take place, but they are seen 

as isolated and fine-grained changes when it comes to fraction learning (Rinne et al., 

2017). The natural number bias holds that this theoretical framework is not a 

conceptual mistake but is instead viewed as a phase where students try to emphasise 

rational numbers in their conceptual knowledge of numbers, and the bias will decrease 

during experiences with rational numbers. 

These gradual numerical development expansion support the integrative theory of 

numerical development, which posit that an understanding of numbers as magnitudes 

unifies the understanding of numbers. Meaning that understanding of fractions is 

integrated in the knowledge of magnitude. Fractions must be taught in the context of 

natural numbers, meaning that throughout the teaching process, the student must be 

given the opportunity to learn whole number properties and fraction properties and to 

contrast and link the two together because natural number magnitude knowledge 
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supports the fraction learning process (Rinne et al., 2017) and therefore also supports 

students in overcoming their tendency to hold a natural number bias.  

The integrative theory argues that a central idea of numerical development is the 

expansion process of the numbers where magnitude plays an important part. This 

process contains four overlapping steps described here by Siegler (2016, p. 341):  

1. Representing the magnitudes of non-symbolic numbers with increasing 

precision.  

2. Connecting small symbolic numbers to their non-symbolic referents.  

3. Extending understanding from smaller to larger whole numbers.  

4. Accurately representing the magnitudes of rational numbers. 

The representation of non-symbolic numbers could estimate the sum of dot arrays, 

whereas processes connecting symbolic numbers to the symbolic referent include a 

written number and should be connected to the correct number of objects. The process 

of extending the small numbers to larger whole numbers is logical when 

understanding larger numbers and also how the decimal system is connected to whole 

numbers (e.g., 30 is bigger than 3). Accuracy in representing the magnitude of 

fractions is, for example, estimating placing 
3

4
 on the number line.  

The integrative theories of development of mathematical concepts can be seen as a 

more holistic understanding of learning mathematics and not as the development of 

one topic after another (Siegler, 2016). Proponents of the integrative theory of 

numerical development therefore propose that fraction learning is based on a process 

of expanding on the whole number magnitude concept and not a fundamental 

conceptual change (Rinne et al., 2017; Siegler et al., 2012). Natural number bias can 

be seen as a phase that some students require in this expanding process. A longitudinal 

study by Rinne et al. (2017) supported the integrative theory where the concept of 

numbers is founded in the understanding of different magnitudes that unify the 

process of learning whole numbers and fractions. The overall development of the 

number concept from natural to rational numbers does not require an overall 

conceptual change (Dyson et al., 2020; Fu et al., 2020; Rinne et al., 2017; Schneider 

& Siegler, 2010; Siegler et al., 2011). The integrative theory argues that students have 

a tendency for natural number bias at the beginning of learning fractions, but this will 

gradually decrease with more experience with fractions, and in the process, students 

will create new strategies to solve fraction tasks (Fu et al., 2020). 

The students’ development of rational numbers from natural numbers appears to move 

through an intermediary concept, which supports the theory of a slow and gradual 

development of a conceptual change in rational numbers (Kainulainen et al., 2017). 

These gradual numerical developments support the integrative theory of numerical 

development, which posit that an understanding of numbers as magnitudes unifies 

where fractions are integrated into the knowledge of whole numbers. Fractions must 
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be taught in the context of natural numbers, which means that throughout the teaching 

process, the student must be given the opportunity to learn whole number properties 

and fraction properties. Both should be contrasted and linked together because whole 

number magnitude knowledge supports the fraction learning process (Rinne et al., 

2017) and therefore also helps students to overcome their tendency for natural number 

bias. These new studies are in contrast with conceptual change theories, which suggest 

that students should develop their concept of natural numbers first as counting units 

and then the more complex concept of rational numbers (e.g., fractions to overcome 

the natural number bias).  

In the Danish context, this integrated approach can be seen as related to the framework 

of mathematical landscape theory (Lindenskov, 2006, 2010). This is a metaphor 

which sees mathematics as a landscape that students expand and move through, 

meaning that mathematical development is considered more as an integrative process, 

where mathematics is seen as a whole which is more in alignment with an integrative 

learning process. 

4.4.3 The dissertation’s theoretical perspective on number knowledge 

development 

This dissertation proposes that the two theories of conceptual change and integrative 

theory should not be seen as opposite to each other but instead as an integrated 

conceptual change framework (Fig. 11). 

I do not see the two theories3 in opposition to each other. Looking at the development 

or process of going from natural numbers to rational numbers can be understood as 

an integrated development where natural numbers play an important role in the 

development of the concept of rational numbers in the expansion process of the overall 

number concept. When the starting point and ending point are viewed as separate from 

the process of looking at the difference between the two points, or between the two 

concepts of numbers, this can be seen as a change in concept when the starting point 

is held up against the ending point. For the sample, the student realises that 1
1

2
 is a 

number between 1 and 2, next finding also that 1
1

4
 and 1

2

3
 are between 1 and 2, and 

thereafter finding new fractions between the two numbers, then realising that there is 

a density between the two whole numbers, finishing by realising there are infinite 

numbers of fractions (rational numbers) between every whole number.  

                                                           
3 It is important to emphasise that the two theories must not be interpreted as fully-fledged theories using 

Niss’ (2007) terms. In Niss’ framework, they must be seen as sub-theories both based in an individual 

notion. 
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Fig. 11 The integrated conceptual change framework 

The two theoretical frameworks already have similarities where conceptual change 

describes the process of development as a slow change (DeWolf & Vosniadou, 2015; 

Van Dooren et al., 2015; Van Hoof, Janssen, et al., 2015) while the integrative theories 

also acknowledge the need for new concepts or small changes in concepts (Siegler, 

2016; Torbeyns et al., 2015). Hence, I argue that it makes sense that the two 

frameworks are not seen as opposite to each other but as two sides of the same coin 

focusing on different aspects in the number knowledge development process. I argue 

that the two theories can be combined in one theoretical perspective, integrated 

conceptual change framework or model, where the change is defined by the objects 

(natural numbers or rational numbers), and the integration defines the process. From 

this perspective, the development cannot be viewed as an overall conceptual change; 

it is more correct to look at the number knowledge as an expansion of the knowledge 

of natural numbers. As another explanation, a conceptual change must be considered 

as a point in time, whereas integrated development is the movement through time. 

From a mathematical standpoint, rational numbers are not separate concepts from 

natural numbers. Therefore, rational numbers include the interpretation of whole 

numbers. 

Several subconstructs are required for supporting the expansion of the number 

concept, for example part-whole, quotient, etc. This expansion leads the student to 

overcome their natural number bias if they have a tendency to this. To overcome the 

natural number bias size, the measure subconstruct could be supported by comparing 

the fraction size on the number line, or the understanding of density could be 
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supported by the subconstruct quotient. If four children share eight buns, they get two 

buns each. 
8

4
 = 2, and if four children share 9 buns they get 2

1

4
 each (this will further 

be described in the developed intervention instruction material in Chapter 6.2.2). 

When looking at how this framework was generated, it was first based on Study 2, 

where I explored the connection between whole number arithmetic and fraction 

comparison: in other words, how whole number operations and fraction comparisons 

are related or integrated. It is an investigation of how a whole number operation relates 

to (supports) fractions – the integration. The same integration is seen in Study 5, where 

I explore how instructions from other mathematical topics support the development 

of fraction proficiency (multiplication/division and equations). Study 4 explores how 

natural numbers distract the concept of fractions. Future research should look further 

into which instructions support the development of this integrated conceptual change 

and how this differs between subgroups. During the last few decades, several fraction 

intervention studies have been conducted, and the generated knowledge from these 

studies is described in the next review (Review 4). 

4.5 Review (4): Fraction interventions 

As previously described, this fourth review was made in connection with the 

development of the instructional material used in Study 5. The aim was to collect 

previous knowledge about fraction intervention. This was used to inform the enquiry 

process, primarily Determination of a Problem-Solution Phase (Phase III) and 

Common Sense and Scientific Enquiry Phase (Phase VI). I used the review to develop 

an instruction material that could help me explore and try to solve the observed 

problem with students’ difficulties with developing the multifaceted concept of 

fractions. The review’s conclusions supported and secured the quality of the material. 

In addition these previous findings from this review were also used to discuss and 

Reasoning (Phase IV) with my findings in Study 5 (. Lastly the reviews findings also 

supported the Scientific Enquiry (Phase VI). The search protocol can be seen in 

Appendix E. 

The first review was made by Misquitta (2011), who examined studies published 

between 1990 and 2008 that focused on fraction instruction and targeted struggling 

learners. This review resulted in the inclusion or identification of 10 empirical studies. 

The overall results show that four different kinds of interventions were found to be 

effective for improving the development of mathematics for struggling learners and 

for teaching fractions: 1) graduated sequences, 2) anchored instruction, 3) strategy 

instruction, and 4) direct instruction. Ad 1) The graduated sequences can be defined 

as a graduated progress in the instruction. This could be graduated sequence, concrete-

representational-abstract (CRA). The use of CRA-sequence in the fraction instruction 

showed positive results (Butler et al., 2003; Jordan et al., 1999). Ad 2) The second 

intervention components anchored instruction was primarily based on instruction 

using videodiscs of real-world problems targeting fraction, and the aim was to 
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improve students’ problem-solving. (Bottge, 1999; Bottge et al., 2002). Ad 3) The 

third intervention components that were found to have a positive effect on students’ 

fraction leaning was strategy instruction including fraction strategy steps (Joseph & 

Hunter, 2001; Test & Ellis, 2005). Ad 4) Lastly, the fourth component, direct 

instruction, emphasises the need for a direct and explicit approach when teaching 

fractions to students with difficulties (Bottge & Hasselbring, 1993; Flores & Kaylor, 

2007; Gersten & Kelly, 1992; Kelly et al., 1990). The review further emphasises the 

overall importance of both procedural and conceptual knowledge in fraction 

instruction. 

The second review was conducted by Shin and Bryant (2015), who further extended 

Misquitta’s (2011) review by expanding the inclusion years to cover studies from 

1975–2014. This review included 17 publications and targeted students in third to 

twelfth grade. The review examined studies where there were related topics aligned 

with the Common Core State Standards for Mathematics (CCSSM), so the majority 

of studies focused on fraction learning that was aligned with the CCSSM. The review 

contained specific instructional components embedded in the interventions. This 

review also found that explicit and systematic instruction in connection with visual 

representations of fractions showed significant and highly positive outcomes for 

developing fraction concepts and skills. Furthermore, the review found that heuristic 

approaches combined with explicit instruction led to improvising struggling students’ 

concept of fractions, which in the previous review by Misquitta (2011) was defined 

as strategy instruction (Joseph & Hunter, 2001; Test & Ellis, 2005). They further 

identified three studies that revealed a positive effect of using a concrete-

representational-abstract (CRA) approach in the instruction of fractions by Hughes 

(2011), Reneau (2012), and Watt (2013).  

The third review was made by Roesslein and Codding4 ( 2019). In contrast with Shin 

and Bryant’s review, they included studies that focused more on elementary-level 

students (K-6) and did not include studies from seventh to twelfth grade. They 

included a total of 12 studies published from 2012 to 2017, most of which focused 

primarily on conceptual learning or both procedural and conceptual knowledge (of 

fractions). The most common conceptual approach was supporting students in 

developing fraction magnitude, word problems, equivalence, or number lines (e.g., 

Fuchs et al., 2013; Fuchs, Schumacher, et al., 2016; Sharp & Shih, 2017), and fewer 

studies have the shared focus of both conceptual and procedural learning (e.g. Watt & 

Therrien, 2016). Only one study targeted isolated procedural knowledge (Everett et 

al., 2014). This can be seen as a support for Star’s (2005) previous mentioned point 

that conceptual knowledge has been more in focus than procedural knowledge. 

                                                           
4 I read the review after the intervention, so it did not have a great influence on the intervention instruction 

material, and the finding of the reviews was used as background knowledge for the discussion in Study 5–

and in the overall inquiry process of this PhD project. 
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It is noteworthy that two studies focused on equivalency understanding using ratio‐

based problem solving (Hunt, 2014; Westenskow & Moyer-Packenham, 2016). 

Overall, the majority of studies (11 out of the 12) utilised concrete and/or visual 

representations of fractions. They found a large effect size generated across studies 

when the intervention content consisted of explicit, systematic instruction, visual 

representation – specially the use of the number line. Medium to large effect sizes 

were found for the equivalency or magnitude understanding of fractions. In addition, 

the results indicated promising effects when the intervention consisted of a 

multicomponent of representation targeting a variety of fraction skills, especially the 

number line.  

These three previously conducted reviews (Misquitta, 2011; Roesslein & Codding, 

2019; Shin & Bryant, 2015) were included my review, but I only included studies 

targeting second to sixth grade. The choice of only including these grades is founded 

in the fact that this PhD project targeted fourth grade students, so studies relevant for 

this group could be considered two grades before and after. I made a new search 

including the word: fraction* and interventions* OR instruction* and included newer 

studies from the years 2018–2020. Six newer studies were found (Barbieri et al., 2020; 

Flores et al., 2018, 2020; Fuchs et al., 2020; Hacker et al., 2019; Soni & Okamoto, 

2020). These studies were not taken into account when designing the intervention in 

2018, but they were used later in confirming or disconfirming my findings (Scientific 

Enquiry Phase VI). I made local searches in Scandinavian Journal, but none of the 

included studies were conducted in a Danish context; the only included study from 

the Scandinavian context was in Finland (Kiili et al., 2018).  

The summarised results from the fourth review about different fraction interventions 

show the importance of multiple representations, which particularly include the use 

of the number line. The use of a concrete-representational-abstract (CRA) sequence5 

in the instruction material can be a way to obtain explicit and systematic instruction. 

The educational use of the CRA was further supported when looking at the large effect 

sizes in studies using this approach (Bouck et al., 2017; Butler et al., 2003; Jordan et 

al., 1999). However, none of these CRA fraction studies from 2017 and before 

explored the CRA-integrated approach (CRA-I) where the phases of the CRA are 

integrated into the instruction so that students use manipulatives, representations, and 

abstract symbolic notation in each lesson and almost every task if possible. Later 

                                                           
5 The CRA approach has also been implemented in the Singaporean curriculum where it has been a 

prominent component of the official curriculum (Ministry of Education Singapore, 2012). Here it is named 

concrete-pictorial-abstract (CPA). The main difference between CRA and CPA is that the representational 

approach is simplified and called pictorial. The overall research project works with different elements of 

the Singaporian curriculum, but my project focuses on the use of CRA and creating an inclusive learning 

environment for both high and low performing students. 
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studies explored the integrated approach (Flores et al., 2018, 2020; Morano et al., 

2020). Other effective fraction intervention contents were strategy instruction (Joseph 

& Hunter, 2001; Test & Ellis, 2005; Zhang et al., 2016) and explicit or direct 

instruction6 (Fuchs et al., 2013, 2014, 2017; Fuchs, Malone, et al., 2016; Fuchs, 

Schumacher, et al., 2016; Hunt, 2014; Kelly et al., 1990). 

There could be a publication bias within these reviews, where studies showing 

statistically significant effects are more likely to be published than those not showing 

such effects (Rosenthal, 1979). 

The instruction material developed in the current PhD project is founded on the results 

from these reviews. The material is used in Study 5. However, as previously 

mentioned, this only includes studies published before June 2018. Later published 

works are used to reconfirm or discuss my findings in the last phase (Scientific 

Enquiry Phase VI) of the enquiry process. This will further be elaborated in 

connection to the intervention design in Chapter 6.3.  

 

  

                                                           
6 Direct instruction defined when the children are taught for example fractions as the main subject as 

opposite to when the subject is for example equations, but fractions are used. The latter is explicit instruction 

in equations and indirectly in fractions. The instruction material is both characterized by being structured, 

systematic, and scaffolded and is often characterised as an important part of explicit instructions (e.g., 

Hughes et al., 2017).  

 



LEARNING AND UNDERSTANDING THE COMPLEXITY OF FRACTIONS  

 69 

Chapter 5: Fractions in the Danish 

elementary school 

In terms of further exploration into the inquiry phase, Institution of a Problem (Phase 

II), this chapters is set in a Danish context to explore the context of where the students’ 

problems with fractions are observed. The aim for this chapter is therefore to describe 

and analyse the educational context in which the PhD project is settled. I will therefore 

in this chapter outline how the topic of fractions is settled in the context of the Danish 

Curriculum. In Denmark students have to have ten years of fundamental schooling – 

this means that there is ten years of compulsory school from grade 0 to grade 9. It may 

be confusing, but the reason is that the Danish school system starts with grade 0. This 

means that the students begin in grade 0 and finish after grade 9, which then makes 

ten years of schooling. It is not mandatory to go to school. Parents are allowed to 

home school their children, but the vast majority of children are attending either public 

schools (about 80%) or private schools (about 20%). All children shall by law be 

instructed or follow the mandatory parts of the official curriculum. However, the ten 

years of schooling is mandatory for all Danish children, and the final examines are 

based on the objectives from the curriculum. Therefore, the instruction material and 

the measurement tool developed for this project must logically also be founded in the 

official curriculum. Therefore, I will first introduce how fractions are described and 

embedded in the official curriculum published by the Danish Ministry of Education 

(Danish Ministry of Education, 2015, 2019)7.  

In addition to the intended official Danish curriculum, there is the enacted curriculum 

in the classroom. In Denmark, we have a high degree of local independent on each 

school, and teachers have a high degree of autonomy (of course many work in teams). 

For example, they are allowed to choose what materials are used in the classroom. 

This means that they can freely choose a mathematic book system or combine systems 

from several private publishers or choose not to use a published book and make 

instruction materials by themselves. However, because of the schools’ financial 

situation, each school usually has one published book system they use through all 

classes8. Every publisher is also free to publish, and no official has to approve the 

quality of the content in the books. The consequences of the high degree of local 

independence and the teachers’ autonomy make it questionable to generalise about 

the enacted curriculum in the Danish mathematics classroom based on the content of 

                                                           
7 The current Danish Curriculum ‘Forenklede Fælles Mål’ was developed from 2013 to 2015. The 

curriculum was resolved in 2014 and implemented in the school year of 2015/16. In 2019, the curriculum 

was revised, and the primary adjustment was that some objectives were no longer mandatory. 

8 Often there is a web portal connected to the book system. 



CHAPTER 5: FRACTIONS IN THE DANISH ELEMENTARY SCHOOL   

 70 

the Danish mathematic books. However, their content can be seen as a part of the 

intended curriculum, which of course influences the enacted curriculum. 

It is difficult to get an overall view if the enacted curriculum in the classrooms because 

of the local independence in the Danish school system – Every teacher is free to 

choose their material or create their own. However, to show the tendency, I make a 

small content analysis of the published mathematic books’ fraction approaches. The 

aim of this simple content analysis is to illustrate how my developed instruction 

material in Study 5 differs from the commonly used instruction material. To sum up, 

the structure of this chapter is first an introduction to how fractions are embedded in 

the official curriculum. Hereafter, there is a small fraction content analysis of four 

commonly used mathematic books. The analysis consists of coding the fraction tasks 

into the different subconstructs (Charalambous & Pitta-Pantazi, 2007; Kieren, 1980, 

1988) introduced in the tasks, and next, an analysis of the content of the first two pages 

introducing fractions in fourth grade.  

5.1 Official curriculum 

The latest official curriculum was published by the Danish Ministry of Education in 

2015 (Danish Ministry of Education, 2015, 2019). It is structured into four main areas: 

Mathematical competencies (Matematiske competenceområder), Numbers and 

algebra (Tal og algebra), Geometry and measurement (Geometri og måling), and 

Statistics and probability (Statistik og sandsynlighed). For each of the four areas, there 

is a different competency objective that targets a different grade level: grades 3, 6, and 

9. In each Competency objective, there are different skills and knowledge objectives 

(Færdigheds- og vidensområder og -mål), and these are formed in different phases. 

When I started on this project, every objective in January 2018 was mandatory; 

however, later in March 2018, the phases described for each skills and knowledge 

objective were changed to be guidelines and not mandatory for teachers and school 

leaders to follow. This means that when this current instruction material was used in 

the school year 18/19, the content of the two columns, Numbers and Calculation 

strategies, were not mandatory in the tables below9. However, the areas of competency 

and the Competency objectives were mandatory as well as the Special attention notes 

(Særlige opmærksomhedspunkter). 

 

 

  

                                                           
9 It was a brief period between 2015–2018 where the content of the phases were mandatory.  
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Table 4 The official Danish Curriculum after third grade (Danish Ministry of Education, 2014, 
2019) 

AFTER THIRD GRADE 

 SKILLS AND KNOWLEDGE OBJECTIVES 

A
R

E
A

 O
F

 

C
O

M
P

E
T

E
N

C
Y

 

COMPETENCY 

OBJECTIVE 

P
H

A
S

E
S

 

NUMBERS CALCULATION 

STRATEGIES 

 

 

N
U

M
B

E
R

S
 A

N
D

 A
L

G
E

B
R

A
 

 

The student 

can develop 

methods for 

calculating 

with natural 

numbers  

 

1 The student 
can utilise 
natural 
numbers for 
the 
description of 
amount and 
sequence. 

 The 
student has 
knowledge 
of simple 
natural 
numbers. 

The student 
can do simple 
calculations 
with natural 
numbers. 

The student has 
knowledge 
about strategies 
for simple 
calculations 
with natural 
numbers  

2 The student 
can utilise 
multi-digit 
natural 
numbers for 
the 
description of 
amount and 
sequence. 

The student 
has 
knowledge 
about the 
role of 
natural 
numbers in 
the 
constructio
n of the 
decimal 
system. 
 

The student 
can develop 
methods for 
addition and 
subtraction 
with natural 
numbers. 

The student has 
knowledge of 
strategies for 
mental 
arithmetic, 
estimation, and 
arithmetic with 
written notes 
and digital 
tools. 

3 
The student 
can 
recognise 
simple 
decimal 
numbers and 
fractions in 
everyday 
situations  

The 
student 
has 
knowledge 
of simple 
decimal 
numbers 
and 
fractions. 
 

The student 
can develop 
methods for 
multiplication 
and division 
with natural 
numbers. 

The student has 
knowledge of 
strategies for 
multiplication 
and division. 

Special attention notes after third grade:  

*The student can use three-digit numbers to describe magnitude and order (area of competency: 

Numbers and algebra/Numbers). 

*The student can add and subtract simple natural numbers by using mental calculations or using a 

calculator (area of competency: Numbers and algebra/Calculation strategies). 

 

Note. There is some difficulties translating from Danish to English; therefore, in Danish and 

English, words do not necessarily have the exact same meaning. 
 

 

Know-

ledge 

Skills 

 

Know-

ledge 

Skills 
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5.1.1 After third grade  

For a better overview, see Table 4. Under each of the objectives for skills and 

knowledge, there are different topics, such as numbers and calculation strategies. 

These topics are divided into two columns. The Ministry does not explicitly describe 

the first column to the left as the skills object and the right column as the knowledge 

objective, but this can be seen as an implicit structure in the present curriculum 

(Danish Ministry of Education, 2019). In the following chapter, these two columns 

are defined as the skills string and knowledge string. 

The first-time fraction is described in Phase 3 in Numbers in both the skills and 

knowledge string. Students must be able to recognise decimals and fractions in 

everyday life in the skills string. Here you might see some parallels to the first part in 

the productive disposition strand in the definition of proficiency (National Research 

Council, 2001). Here the students need to realise the habitual inclination meaning to 

see mathematics as useful and worthwhile. As well as realising and recognising that 

fractions are used in their every day and therefore are useful. Whether the two strings 

skills and knowledge can be seen as the duality procedural and conceptual knowledge 

will be further elaborated in next section. However, it is clear that there is a duality 

between the two strings where skills is connected to ‘doing something’ (here it is 

recognising) or ‘knowing something’ (here it is knowing simple fractions). 

There are no description of fraction in the calculating strategies column (light grey in 

the table). This mean that students after third grade primarily have to recognise 

fractions and have knowledge about fractions. 

The mandatory Competency objective (the underlined text in Table 4) after third grade 

only describes how a student can develop methods for calculating natural numbers, 

and it does not consist of rational numbers. In addition, rational numbers are not 

mentioned in any of the special attention notes attaches to third grade (see last row in 

the table). 

5.1.2 After sixth grade  

The second time fractions is described is in Phase 1 for grades 4–6 under skills and 

knowledge objectives: numbers. (See Table 5) This is when students should be able to 

use decimals and fractions in everyday situations, and the students have a knowledge 

of the fractions’ and decimals’ structures in the decimal system. The taxonomy in the 

skills string is going from recognizing a fraction (in the previous phase after third 

grade) to using that fraction in the next phase; that is, from a more passive approach 

to an active approach. Still, it is connected to everyday situations and has parallels to 

the productive disposition string in conceptualisation of proficiency made by the 

National Council in 2001. Again there is a duality between doing and knowing 

between the two strings skills and knowledge.  
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Table 5 The official Danish Curriculum after sixth grade (Danish Ministry of Education, 2014, 
2019) 

AFTER SIXTH GRADE 

 SKILLS AND KNOWLEDGE OBJECTIVES 

A
R

E
A

 O
F

 

C
O

M
P

E
T

E
N

C
Y

 

COMPETENCY 

OBJECTIVE 

P
H

A
S

E
S

 

NUMBERS CALCULATION 

STRATEGIES 

 

 

N
U

M
B

E
R

S
 A

N
D

 A
L

G
E

B
R

A
 

 

The student 

can utilise 

rational 

numbers and 

variables for  

descriptions 

and 

calculations 

 

1 The student 

can 

utilise/use 

decimal 

numbers and 

fractions in 

everyday 

situations.  

 

The 

student has 

knowledge 

of fractions 

and 

decimals 

structures 

in the 

decimal 

system. 

The student 
can do 

calculations 

with the four 
operations 

using natural 

numbers, 
including 

calculations 

about the 
everyday 

economy.  

The student has 
knowledge 

about the four 

operations with 
natural 

numbers, 

including using 
a spreadsheet. 

2 The student 
can utilise 

negative 

whole 
numbers. 

 

The student 
has 

knowledge 

about 
negative 

whole 

numbers. 

 

The student 

can develop 

methods for 

operations 

with 

decimals, 

simple 

fractions, 

and negative 

whole 

numbers. 

The student 

has knowledge 

of strategies 

for 

calculations 

with decimals, 

simple 

fractions, and 

negative whole 

numbers. 

 

3 The student 

can utilise 

percent, 
simple 

potencies 

and pi. 

 

The student 

has 

knowledge 
about the 

concept of 

percent, 
simple 

potencies, 

and pi. 

The student 

can utilise 

calculations 
with percent, 

including 

using digital 
tools. 

 

The student has 

knowledge of 

strategies for 
calculations 

with percent. 

 

Special attention marks/goals after sixth grade: 

*The student can choose an appropriate arithmetic operation/calculation when solving simple everyday 

problems and set up a simple expression of an arithmetic operation (area of competency: Numbers and 

algebra/Calculation strategies). 

* The student can complete calculation processes within all four operations, including estimations and 

the use of a calculator as well as simple natural numbers by using mental calculations or using a 

calculator (area of competency: Numbers and algebra/Calculation strategies). 

Note. There is some difficulties translating from Danish to English; therefore, in Danish 

and English, words do not necessarily have the exact same meaning. 

 

Know-

ledge 

Skills 

 

Know-

ledge 

Skills 
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The next time fraction is mentioned is in Phase 2 in Proficiency and knowledge 

objectives after sixth grade, but now it is no longer under numbers; now it is placed 

under calculation strategies (the light grey column to the right in Table 5). In the skills 

string, it is mentioned that the student can develop methods for operations with simple 

fractions. Whether these operations include all four operations or only two (e.g., 

addition and subtraction) is not clear. However, it can be seen as a parallel to the 

procedural fluency string (National Research Council, 2001) or to procedural 

knowledge (e.g., Star, 2005; Star & Stylianides, 2013). 

Under the knowledge string, it is stated that the student has knowledge of strategies 

for calculations with simple fractions. This means that, under the skills string, the 

student must develop a method. But in the knowledge string, they must have the 

knowledge of strategies. This means that the two strings differ in their approach, and 

the easy solution would be to use the two different approaches (conceptual and 

procedural) and connect skills to procedural knowledge and knowledge to conceptual 

knowledge. However, conceptual knowledge is not just knowledge of strategies for 

calculations; it could also be defined as procedural knowledge; that is, knowing the 

strategies or procedures (e.g., Star, 2005; Star & Stylianides, 2013). Conceptual 

understanding refers to rich relationships between different concepts as a connected 

web of knowledge (Hiebert & LeFevre, 1986). It would be described as focusing on 

the relation or differences between operation with decimals, simple fractions, and 

negative whole numbers; for example, realising the conceptual differences between 

multiplying whole number and fractions. Therefore, it will not be correct to say that 

knowledge is similar to conceptual knowledge; it could be knowledge to 

understanding the procedure, and as Star (2005) argued, there is also a deeper 

understanding connected to procedure knowledge, and conceptual knowledge consists 

of a quality and can be deep knowledge of why the procedure works. And as previous 

mentioned, the relation between conceptual and procedural knowledge is an iterative 

process (Rittle-Johnson et al., 2001). With this in mind, the two strings, skills and 

knowledge, must be seen as working together and be interconnected to develop 

methods (skills) and strategies (knowledge). 

When looking at the two different terms methods and strategies, it is important to 

question whether this is the same or not? In the Danish tradition, method has often 

been defined as ways to do something, and strategies has been defined as ways to 

think (Pind, 2018). This again indicates that the skills column is more connected to 

‘doing’ or procedural knowledge, whereas strategies can be seen more connected to 

knowledge. Whether this is a more conceptual approach is not clear. Therefore, the 

connection between knowledge or the web of knowledge is not described. 
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5.1.3 After ninth grade  

The fraction is mentioned under the topic ‘Numbers’ in Phase 1 in the learning 

trajectories for after ninth grade. See Table 6.  

Here, it again describes how the student can use fractions, but this time it is not 

connected to everyday situations. This can be seen as a development from fractions 

in a context setting and without a context setting – or you can see it as a more concrete 

setting to a more abstract setting. It is almost the same as described in the last section 

however percent is added. This in an indication of the order of how the different 

representations of rational numbers are introduced: first fraction decimals and last 

percent. There is an ongoing discussion described in the literature review of Tian and 

Siegler (2018) about when representation should first be introduced. Previously, 

researchers had argued that decimals are easier to master because of their shared base-

10 structures, which cover both whole numbers and decimal notations, and the various 

fraction forms had led to the stance that decimals are easier to master (e.g., DeWolf 

et al., 2015a; Hurst & Cordes, 2016).  

In the Danish curriculum, there is not a clear order for how the two rational numbers, 

fractions and decimals, should be introduced, but it is clear that percentages are 

introduced later. The connection between the three representations is first described 

in the phase between grades seven to nine.  

Under the knowledge string, the student has knowledge of the connection between 

decimals, fractions and percentages. It is notable that the connections between 

representation have not been described earlier; it is clear that there is a clear parallel 

to the conceptual knowledge characterised as a connected web of knowledge (Hiebert 

& LeFevre, 1986). Under calculation strategies, fractions are not explicitly mentioned, 

but it is described that the student can do complex calculations with rational numbers 

–this must be interpreted as though the student can do complex calculations with 

fractions. Hereafter, neither fractions nor rationale numbers are mentioned, but in 

Phase 3 under numbers, it describes how a student can utilise real numbers where 

rational numbers are included.  
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Table 6 The official Danish Curriculum after ninth grade (Danish Ministry of Education, 2014, 
2019) 

AFTER NINTH GRADE 

 SKILLS AND KNOWLEDGE OBJECTIVES 

A
R

E
A

 O
F

 

C
O

M
P

E
T

E
N

C
Y

 

COMPETENCY 

OBJECTIVE 

P
H

A
S

E
S

 

NUMBERS CALCULATION 

STRATEGIES 

 

 

N
U

M
B

E
R

S
 A

N
D

 A
L

G
E

B
R

A
 

 

The student 

can utilise real 

numbers and 

algebraic 

expressions in 

mathematical  

inquiries 

 

1 The student 

can 

utilise/use 

decimals, 

fractions, 

and percent. 

 

 The 

student 

has 

knowledge 

of the 

connection 

between 

decimals, 

fractions, 

and 

percent. 

The student can 
do complex 

calculations 

with rational 

numbers. 

 

The student 
has 

knowledge of 

the order of 
operations. 

 

2 The student 
can utilise 
potencies and 
roots. 
 

The student 
has 
knowledge 
of 
potencies 
and roots. 
 

The student can 
create 
calculations 
about growth, 
including the 
rate of growth. 
 

The student 
has 
knowledge of 
the percent 
growth for 
growth 
calculations 
in a 
spreadsheet, 
including 
knowledge of 
rates, loans 
and savings. 
 

3 The student 
can utilise/ 
real 
numbers. 
 

The student 
has 
knowledge 
of 
irrational 
numbers. 

The student can 
perform 
calculation 
potencies and 
roots. 
 

The student 
has 
knowledge of 
calculation 
rules, 
potencies, 
and roots.  

Special attention notes after ninth grade: 

*The student can complete simple percent calculations with the use estimation and calculator (area of 

competency: Numbers and algebra/Numbers). 

*The student can set in numbers instead of variables in a simple formula (area of competency: Numbers 

and algebra/Formulas and algebraic expression). 

 

Note. There is some difficulties translating from Danish to English; therefore, in Danish and 

English, words do not necessarily have the exact same meaning. 

Know-

ledge 

Skills 

 

Know-

ledge 

Skills 
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To summarise, in Numbers there is a development in proficiency from ‘recognizing 

fractions in everyday situations’ to ‘utilising fractions in everyday situations’ to 

‘utilising a fraction is not specific in everyday situations’. Whereas when we are 

looking at the knowledge string for Numbers, it changes from ‘knowledge of simple 

fractions’ and ‘knowledge of fractions in the decimal system’ to ‘knowledge of the 

connection between fractions and the two other representations of rational numbers: 

decimals and percentages’. In calculation strategies, the skills string is described as a 

set of developing methods for fraction operations and the connection to strategies 

described in the knowledge. 

5.2 Analysing the content of the instructional materials  

The following three textbooks are the most commonly used in the Danish school 

system in fourth grade: Matematrix 4 (Gregersen et al., 2006), Multi 4 (Mogensen et 

al., 2011), Kontext+ 4 (Lindhardt et al., 2014)10. The textbook series typically consists 

of one book for each school year. It is important to note that mathematical textbooks 

in Denmark do not have to be licensed or approved by the Ministry of Education. 

Therefore, private publishers are free to publish and sell textbooks to the Danish 

school system. Authors of these books are usually skilled mathematics teachers who 

have received higher education. Each of the books’ chapters cover an individual 

mathematical topic such as division, areas, equations, decimal numbers.  

Through a simple analysis of the fraction problems in the three fourth grade textbooks, 

I coded each of the tasks in the fraction chapter into one of the five subconstructs: 

part-whole, quotient, measure, ratio, and operator (Behr et al., 1983; Charalambous 

& Pitta-Pantazi, 2007; Kieren, 1976; Tsai & Li, 2017) and specified whether the task 

was contextualised in an everyday situation or not. I only conducted a simple analysis 

of each main basic textbook, which did not require extra materials, such as 

photocopied materials, worksheets or online materials into account. I only analysed 

the fourth grade text books and not the overall progress throughout the book systems. 

If it had been possible, I would prefer another researcher to carry out the coding 

separately to secure the reliability and validity of the analysis, thus qualifying the 

analysis. In other words, it was not possible for me to calculate the inter-rater 

reliability between two different codings. The sole individual coding and analysis is 

why I call it a simple.  

I found that between 28% and 52% of the tasks described in the textbooks were 

contextualised through everyday situations; for example, using pieces of cake or 

                                                           
10 There is a fourth commonly used system named Format (Madsen et al., 2009), but the students’ book did 

not contain a separate chapter about the topic of fractions, and I only found four tasks about fractions in a 

chapter about numbers; therefore I did not include this system. I did not include MatLab (Kaas et al., 2020) 

either because the system was published after I made the instruction material. MatLab was published in the 

Summer of 2020.  
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pizza. As previously reported by Ni and Zhou (2005), the part-whole representations 

are the main representation in the early instruction in the US. The same tendency was 

found in the Danish book systems where the part-whole subconstruct dominated all 

the instruction material, except for that of Multi 4 (Mogensen et al., 2011) where 

measurement tasks in the form of number lines were predominant. The use of the 

number line is aligned by previous fraction intervention reviews (Chapter 4.4; see 

results from reviews by Misquitta, 2011; Roesslein & Codding, 2019; Shin & Bryant, 

2015) where the use of the number line in the intervention showed significant good 

results. Overall, emphasis on ratios did not dominate the books, nor did the idea of a 

fraction as a quotient (see Table 7). 

Table 7 Simple content analysis of the three commonly used mathematic books 

Book Con

text 

 

No 

context 

Part-

Whol

e 

Measure Ratio Quotient Operator Equivalence 

Matematrix 
4 (2006) 

 

.28 .72 .26 .17 .02 .21 .10 .01 

Multi 4 
(2011) 

 

.33 .67 .22 .28 .07 .09 .31 - 

Kontext+ 4 

(2014) 

 

.52 .48 .55 .09 - .11 .18 .05 

Note. Matematrix 4 (Gregersen et al., 2006), Multi 4 (Mogensen et al., 2011), Kontext+ 4 

(Lindhardt et al., 2014). Not every task could be coded as primarily containinig one of 

the five subconstructs part-whole, meausure, ration, quotient or operator. 

 

The percentage of tasks involving equivalence was also low: between 1% and 5% in 

the books, and one book (Multi 4) consisted of no tasks involving equivalence 

(Mogensen et al., 2011).  

Matematrix 4 (Gregersen et al., 2006) has the highest percentage of the quotient 

subconstruct (21%). There were no explicit explanations or examples for the 

conceptual differences between natural numbers and fractions (rational numbers). The 

same result was reported by Debou and Verschetze’s thesis in 2012, who investigated 

the three most commonly used textbooks for elementary school mathematics in 

Flanders. Their analysis showed that textbooks paid no explicit attention to the 

conceptual differences between natural and rational numbers (refered in Van Hoof, 

Verschaffel, et al., 2015). 

Overall, my content simple analysis11 shows a great variation in content between each 

book as Multi 4 (Mogensen et al., 2011) focuses more on measurement than the others 

                                                           
11 I define the analysis as simple; therefore another researcher did not participate and confirm the coding to 

secure the reliability. 
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(whereas Matematrix 4 (Gregersen et al., 2006) focuses more on quotient). However, 

in all the books, above 20% of the tasks targeted the subconstruct of part-whole, and 

very few tasks targeted ratio.  

Each book’s layout and approach to the first tasks (in the introduction of the fraction 

chapter) differ. One thing the books have in common is that the students are not meant 

to write or draw directly in them; they have to solve the tasks on a separate piece of 

paper. I analysed the first two pages about fractions from each book. 

5.2.1 Matematrix 4 (2006) 

 

Fig. 12 Introduction pages to fractions in the mathematic book Matematrix 4 (Gregersen et al., 
2006). Reprinted by permission from Alinea. 

The book introduces fractions with a wheel of fortune and asks how many equal sized 

parts the wheel has been divided into. See Fig. 12. The task numbers 1 to 5 on page 

35 are connected to the wheel on page 34. The word problem on page 35 can be 

translated as follows:  

1.  How big a fraction of the name plates on the wheel of fortune is  

     a. red                b. green               c. red or green  

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

The name plates are placed around the circle on page 34 and can be a little difficult to 

find. The tasks can be seen as embedded in the part-whole subconstruct – not the 
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‘normal pizza slides representation’ – where the representation of the fraction must be 

found in name plates around the circle. Each name represents a part, and the whole is 

all the names; therefore, the names must be seen as discrete quantities.  

Task number two is a word problem about three people playing on the wheel of 

fortune, perhaps the characters drawn on the right side of the following page (35). The 

text can be translated as follows: 

2. Lotte, Simon, and Ali play on the wheel of fortune. Lotte has a 
𝟏

𝟏𝟎
 chance of winning.  

    a. What did Lotte bet on? 

    Simon bets on the numbers. 

    b. What is his chance of winning? 

    Ali bets on spades and the numbers, 

    c. What is his chance of winning? 

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

The first question is connected to finding and recognising 
1

10
 on the wheel of fortune. 

The most obvious way to solve this involves counting whether there are ten slices in 

the middle and finding a unique one. Again, this is based primarily on the part-whole 

subconstruct. The next word problem is number 3: 

3. Look at the prizes. How many teddies are there in total? 

    How big is the fraction of teddies that are 

    a. brown           b.  brown or yellow 

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

To answer this question, the students need to find the prizes on pages 34 and have the 

background knowledge that teddies are often the prize from playing the wheel of 

fortune (as pictured in the drawings around the wheel of fortune). The students need 

to have a great overview of the two pages thanks to their multi-modality nature (i.e., 

pictures, texts, drawings, and diagrams). The content addresses part-whole with 

discrete data (how big is the part out of the whole). In a), the students are asked to find 

the whole in order to solve the next task. The part is the brown teddies in a) and both 

the brown and yellow teddies in b).  

In word problem number 4, the students continue working with the prizes in the wheel 

of fortune:  

4. Which fraction of the prizes are 

     a. elephants?                 c. snakes?                     

     b. giraffes?                   d. elephants, giraffes, or snakes? 

p. 35 in Matematrix 4 (Gregersen et al., 2006) 
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The content is again part-whole with discrete data therein. This task could have easily 

been a sub-question of word problem number 3. The last question about the wheel of 

fortune is word problem 5:  

5. Cut out the circles on the copies. Separate all parts from each other and write the name of the fraction    

    on each part. 

    How many parts are necessary to cover…  

    a. half of the wheel of fortune? 

    b. a quarter of the wheel of fortune? 

    c. a third of the wheel of fortune? 

    d. the whole wheel of fortune? 

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

The content is still primarily based on the subconstruct of part-whole. However, the 

subconstruct measure can be present as well; the students have to cover the wheel of 

fortune by putting its parts next to each other. There are 12 parts cut out of the circle; 

therefore, this word problem’s content also involves realising the equivalence between 
1

2
 and 

3

6
 and so on (

3

12
=

1

4
, 

4

12
=

1

3
, and 

12

12
= 1). This task is the first enactive task 

(Bruner, 1966) in this introduction to fractions, seeing as the cut-outs are physical 

manipulatives for the students. The context of the word problem changes in problem 

number 6: 

6. How long are the different rods in comparison to the one on the top? 

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

The content is not based on an everyday context, but rather the rod figures of different 

length. The subconstruct that is primarily present in this task is measure; the length of 

the rods is important when measuring, not the area. To support this, the number line 

introduced at the beginning of the task indicates that the blue rod is equal to 1. It has 

been previously shown that the number line is an important tool for or representation 

in the students’ development of fraction knowledge (Barbieri et al., 2020; Dyson et 

al., 2020; Hamdan & Gunderson, 2017; Soni & Okamoto, 2020).  

The final task on the two introduction pages is number 7: 

7. Show the fraction in a circle and a number line.  

a) 
𝟏

𝟒
           b) 

𝟏

𝟑
           c) 

𝟏

𝟓
           d) 

𝟑

𝟖
           e) 

𝟓

𝟔
  

p. 35 in Matematrix 4 (Gregersen et al., 2006) 

 

The task only consists of the fraction notation system and is not based on any context 

unless one considers it is based on the mathematical symbol language. The task 

progresses from unit fractions to non-unit fractions. The subconstruct in this task is 

predominantly measure when the students show the fraction on the number line, 
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whereas it is part-whole when the fraction is shown in a circle. In sum, the two 

introduction pages on fractions in Matematrix 4 (pp. 34–35) shift from tasks 

contextualised in everyday life to tasks free of any particular context. Primarily, the 

subconstruct used is part-whole in the beginning, but in the last two tasks include 

measure.  

The representations of fractions used on the two pages include the wheel of fortune, 

the circle, and the number line (introduced in the last two tasks); this aligns with 

previous studies emphasising the utility of multiple representations (Flores et al., 

2018; Westenskow & Moyer-Packenham, 2016). The illustrations (e.g., referring to 

the prizes) are not necessarily placed beside the tasks and can be difficult to find. 

Overall, the two pages are an example of the multimodality often present in many 

mathematics books. The use of the wheel of fortune relates to the topic of probability 

introduced in a later chapter, so if the teacher is following the progression of the book, 

this topic will be introduced later in the school year. The aim of the wheel of fortune 

is to contextualise the task for the students; however, it is debatable how many Danish 

students have played on a wheel of fortune by the age of 10, and it is rather difficult 

to see how the wheel works from the illustration. 

Task 5 includes the use of concert materials or manipulatives as the students are asked 

to cut out a circle from the worksheet. The progression of the tasks is not explicit. 

However, there seems to be shift from enactive tasks to pictural representations and 

end with abstract symbolic language, as often seen in CRA studies (e.g., Flores et al., 

2018; Hughes, 2011; Morano, 2017).  
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5.2.2 Multi 4 (2011) 

 

Fig. 13 Introduction pages to fractions in the mathematic book Multi 4 (Mogensen et al., 2011). 
Reprinted by permission from Gyldendal. 

On top of the first fraction introduction page in the Multi 4 book (Mogensen et al., 

2011) is a box page where the aims and goals (Mål) for this chapter are stated in the 

left column, and the right column includes an overview of the mathematic concepts 

and terms connected to the chapter (Fig. 13).  

Hereafter, the first page (p. 52) appears to be based on background knowledge 

(Forhåndsviden) stated in the page headline. On this page, the students are asked to 

use a fraction to describe each picture, which implies there is more than one picture. 

However, there is only one big picture on the page (p. 52), or it appears to be one 

picture as the pencils overlap the milk bottles. As a result, I assume that ‘each’ refers 

to the different elements on the pages: a) the cake, b) the milk bottles, c) centicubes, 

and d) pencils. They include both discrete and ‘semi-discrete’ entities (both the cake 

and the coloured centicube figure indicate that they consist of parts; however, they 

can also be seen as continuous entities). The most obvious subconstruct in this 

presentation is the part-whole.  
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The first problem on this page can be translated into the following task:  

Task 1 

1. Write at least three fractions down and make a drawing that shows each fraction. 

p. 52 in Multi 4 (Mogensen et al., 2011)  

 

This task refers to the picture above. It is not explicit which subconstruct the students 

would use in their solving process for this task. Most likely it would be part-whole. 

Therefore, the task above is based on this subconstruct, but it is not necessarily the 

method that students would choose to solve the task.  

The process goes from the symbolic notation of a fraction to a corresponding drawing 

representing this fraction; or one can say that it moves from the abstract to a drawing 

representation, which is in direct contrast to the normal CRA-sequence approach, 

where students go from concrete representation to abstract form (Butler, 2003; Flores 

et al., 2018; Hughes, 2011; Morano, 2017; Morano et al., 2020). There is no given 

context in this task. On page 53, the first activity is a game (e.g., bingo), where the 

students are meant to play against each other in small groups. Hereafter, the next word 

problem is introduced next to a circle diagram showing a green 
1

6
 slice:  

Task 2 

1. Look at the fraction and on the figure and explain: 

    a. What does the denominator say about the figure? 

    b. What does the numerator say about the figure?  

 

2. Draw figures that illustrate the fractions 
𝟏

𝟒
 and 

𝟑

𝟖
 . 

3. Show each other how you solved the task. Use the words ‘numerator’ and ‘denominator’ when you   

    explain. 

p. 53 in Multi 4 (Mogensen et al., 2011)  

 

There is no context in this task, and it can be seen more as an instruction-text genre 

rather than a word-problem genre. In this task, the primary subconstruct is the part-

whole connected to the first part of the task. In the last part of the task, it is not explicit 

how the students illustrate the fractions when they are following the instruction. 

Therefore, it is explicit which subconstructs are present in the task. The oral 

explanation of fractions is emphasised by the content.  

As a result, students are asked to discuss their explanations to each other. The process 

in the first task includes looking at both the fraction notation and the figure and 

explaining how they correspond to each other. We can see this as an RA-process, 

where both the abstract notation and the representation are present. It is not an explicit 

process that moves from representation to abstract form but should instead be 

recognised as a two-way process. 
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The next task, Task 3, is a new instruction. These fractions are placed in a grey box 

above the task.  

Task 3 

1.Say the fractions out loud to each other.  

2. Write the fractions down that have 

     a) 1 as a numerator 

     b) 6 as a denominator 

     c) an equal number in the numerator  

     d) an unequal number in the denominator  

     e) a denominator that is twice as big as the numerator. 

p. 53 in Multi 4 (Mogensen et al., 2011)  

 

The task includes an instruction where the students need to be familiar with the 

following mathematical terms: numerator, denominator, equal, and unequal. The 

subconstruct that this task is based on is not explicit; it depends on the students’ own 

interpretation of the symbol that they are writing. The task is based on the abstract 

symbolic notation system and other representations are not used in this task. The next 

task on the page is Task 4:  

Task 4 

How large is the coloured fractions of the figures? 

1. Red?          2. Yellow?          3. Blue?          4. Purple?        5. Black? 

p. 53 in Multi 4 (Mogensen et al., 2011)  

 

The figures that the text refers to are placed under the text (two centicubes figures and 

one circle representation). Here, again, the subconstruct is mainly part-whole, and the 

task consists of three different representations: a square, a complex figure, and a circle. 

The first two are illustrated as they are made of centicubes.  

The figure can be seen as a semi-discreet entity, meaning that the entities are not 

separated but placed close together. There is clear indication of where the parts begin 

and stop, and they can easily be counted. The final task on the page is Task 5: 

Task 5 

You shall use centicubes to  

1. build two different figures of centicubes  

2. switch figures with your peers and describe each other’s figures with fractions. 

p. 53 in Multi 4 (Mogensen et al., 2011)  

 

This is the first time that the students are asked to use concrete materials enactively. 

The subconstruct connected to this task is part-whole.  
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Overall, the progression in the difficulty level is clear. The aim is to understand the 

fraction notation and be familiar with the mathematical terms used in connection to 

fractions – both in oral and written language. The progression in the use of 

representation on the page is not explicit for the reader. On the first page, the students 

are asked to use fractions to describe the picture but are first introduced to the fraction 

notation on the next page.  

The use of concrete material is first introduced in the last task on page 53. This is in 

contrast to the progression in the CRA-approach, which goes from the concrete to the 

abstract (Jordan et al., 1999; Kim et al., 2015; Morano et al., 2020). However, many 

different representations are used to illustrate fractions as previous intervention 

studies have also emphasised (Flores et al., 2018; Westenskow & Moyer-Packenham, 

2016). 

5.2.3 Kontext+ 4 (2014) 

 

Fig. 14 Introduction pages12 to fractions in the mathematics book Kontext+ 4. Reprinted by 
permission from Alinea. 

The next book is Kontext+ 4 (Lindhardt et al., 2014). See Fig. 14. Here, the headline 

on the first page about fractions is ‘Picnic in the Forest’. The topic of the chapter is in 

                                                           
12 There are two pages (64–65) before these page (66–57) about fractions which contain classroom tasks 

about fractions and the aims for this chapter. However, there were no word problems, and therefore I chose 

the next two pages. 
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the bottom corner of the page with small green letters: Fractions (brøker). The first 

picture on page 66 shows students placed in four different groups, and the members 

of the groups vary. The first word problem is:  

4.a is on picnic. They have made large sandwiches to bring to the picnic.  

You can see the groups and the sandwiches on the drawing. 

Task 1 

a. How many groups are there? 

b. How many students are there in each group? 

c. How many sandwiches are there in each group? 

p. 66 in Kontext+ 4 (Lindhardt et al., 2014) 

 

The task is set in the everyday context of a picnic – most Danish students have 

experienced being on a trip to the forest. The three questions do not require any 

knowledge of fractions – they can be seen as a way to make the students aware and 

read the information in the drawing. 

 

On the next page (p. 67), one group is downscaled from the previous page, showing 

group A, and a portrait of a girl from the group is placed on the right of the group 

picture. Her name, Emma, is written next to this portrait. On the right of the picture 

of Emma, there are three equal sized sandwiches placed on top of each other.  

Under these pictures, the word problem continues: 

Here you can see Emma’s group. They have to share the three sandwiches. 

Task 2 

a. How can the sandwiches be shared so they all get an equal amount of sandwich? 

b. Get a copy from your teacher and colour the part Emma gets. 

c. Show other ways to divide the sandwiches. 

 

p. 67 in Kontext+ 4 (Lindhardt et al., 2014) 

 

The content of task 2 is about equal sharing and equal parts and can be seen as a 

foundation to later work with equivalence. The subconstruct is primarily quotient 

based on partition division. The text in point ‘b’ and ‘c’ can be characterised as an 

instruction and not as a question. The solving process can be seen as based in an 

concret representation.  

Next on the page (p. 67), the other three groups are cut out of the picture shown on 

the previous page and, as above, one student from each group is taken out and 

portrayed and named to the right of the group picture. However, now the sandwiches 

are translated into light grey (brown) rods. 
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Task 3 

a. Divide the other groups’ sandwiches and colour the parts Emil, Lucas, and Ida get. 

b. Write with a fraction how big a piece they get of each sandwich. 

p. 67 in Kontext+ 4 (Lindhardt et al., 2014) 

 

This task is continuing the word problem above, comprised of the other three groups 

put into the same problem – therefore, the task is still based on the quotient 

subconstruct approach. Here, it is explicitly stated that students have to interpret the 

fraction as a number, which leads back to the previous discussion of the interpretation 

of the fraction notation: Is it a number or a relationship between two numbers? (e.g., 

Kieren, 1995; Lamon, 2012; Thompson & Saldanha, 2003). In this context, it is 

emphasised that it must be interpreted as a number. This is the first time the abstract 

fraction notation is required. Looking further into the progression, the students are 

instructed to make the abstraction looking at the rods/stripes as representations of 

sandwiches – this abstraction is supported by colouring them the same colour as the 

sandwich bread. In the task to colour the stripes on the handed copy sheet, this can be 

seen as a representational-abstract (RA) approach to the solving process (Butler et al., 

2003). This means that there is no enactive concrete materials present – but it is a 

representational approach in the form of colouring a picture; there are no physical 

materials that show the fraction or part. 

The next and last word problem on the pages is: 

Task 4 

a. In which group do the students get the most to eat? 

b. In which group do the students get the least to eat? 

c. Use the stripes/rods to reason for your answer. 

p. 67 in Kontext+ 4 (Lindhardt et al., 2014) 

 

The word problem setting continues in the context of the picnic. It is again a sharing 

situation where the approach to fractions must be seen as based on the subconstruct 

quotient. The students are asked to use their coloured stripes in their reasoning process 

– again, this demonstrates the RA-approach as in the previous tasks. 

Overall, in contrast to the other two books, this third book, Kontext+ 4 (Lindhardt et 

al., 2014) introduces fractions primarily using the subconstruct quotient approach, 

where the students have to share or divide sandwiches. The quotient subconstruct was 

emphasised in Kieren’s later work (Kieren, 1988, 1993), and using parting or division 

as the base for understanding fractions can be seen as a way to support how natural 

numbers and fractions are connected (see Fig. 8). Therefore, the students’ 

understanding of whole numbers and division naturally creates the need for fractions 

(rational numbers)s. Natural numbers and rational numbers are connected by the 

division operation, which is the only operation that creates rational numbers when 

working with two natural numbers (Hannula, 2003; Middleton et al., 2001). This 

could also be seen as an attempt to create a web of connected knowledge, previously 
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defined as conceptual knowledge (Hiebert & LeFevre, 1986; Star & Stylianides, 

2013). 

It is an implicit assumption that the sandwiches are equal in size; otherwise, the task 

makes very little sense. Another assumption is that the students share equally, 

meaning that they share the sandwich fairly among themselves, and either it is the 

same type of sandwich, or the type of sandwich does not matter. This means that 

whether the students get egg or ham is not important (in contrast to the everyday 

experience where the type of sandwich plays an important role in the sharing process). 

To summarise, this analysis has looked at three examples of introductions to fractions 

in fourth grade from three commonly used fourth grade books. The first two books 

primarily based their introductions on the whole subconstruct, whereas the last, 

Kontext+ 4, was based on the quotient subconstruct. When looking at the overall 

content analysis of the different uses of subconstructs, Kontext+ 4 was not the book 

system with the highest percentage of use of the quotient subconstruct (about 10% of 

the tasks were containing this subconstruct). Matematrix 4, on the other hand, showed 

the highest percentage of overall use of the quotient subconstruct (see Table 7). 

In particular, the first Matematrix 4 (2006) and the last Kontext+ 4 (2014) try to use 

the same everyday setting during the first to fifth word problem (wheel of fortune and 

picnic), whereas Multi 4 (2011) starts by using the everyday setting in the first setting 

to activate the students’ background knowledge. Later in the book, the majority of the 

tasks are not set in the everyday context; instead they are mostly based on the aim to 

understand and recognise the fraction notation. Overall, there is no explicit 

progression or an overall concrete material, representational-abstract (CRA) 

approach. There are three very different system layouts. However, they all fulfil the 

trajectories in the official national curriculum. Recognising and understanding 

fractions in an everyday setting is central. As previously mentioned, which books are 

used in each of the Danish mathematics classrooms is a local choice made by each 

school, normally by the teachers or the mathematics teacher group. Of course, it 

depends on the school’s economic resources – a new book system or books are not 

affordable every school year.  

5.3 Summary 

To summarise this dissertation’s chapter about the Danish curriculum: There was very 

little focus on fraction equivalence either in the official or instructed curriculum when 

I started my project in 2018. Kontext+ 4 (Lindhardt et al., 2014) contained a little by 

introducing equal parts. And as outlined in Study 3, I found equivalence important as 

it supports an understanding by creating flexible knowledge using this understanding 

in different mathematical contexts, for example, transforming fractions to decimals or 

percentages as in 
1

4
=

25

100
= 25%. Therefore, I find equivalence to support a flexible 
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understanding of fractions and create a web of knowledge as I will describe in Study 

3 (Chapter 8.3). 

The progression in the use of enactive manipulatives was not clear in the above; 

however, many tasks in the book used manipulatives, such as centicubes or cutting 

out circles. However, an explicit progression between concrete, picture, and abstract 

(CRA) representation was not present in any of the books. In particular, the use of the 

number line representation varied across books).  

This finding, in addition to the knowledge generated from the literature reviews, led 

me to develop different and new instruction material that could support students with 

mathematics difficulties as well as high-performing students in an inclusive classroom 

environment. This meant that the aim for content instruction material was to include 

a clear explicit progression in the use of different representations, aiming for using a 

Concrete, Representational and Abstract approach (CRA) and using many different 

representations, including the number line. In addition, the content is a CRA-

integrated approach (CRA-I; Strickland & Maccini, 2013) where the phases of the 

CRA are integrated into the instruction, meaning students use manipulatives, 

representations, and abstract symbolic notation in each lesson and almost every task 

if possible. Therefore, I hypothesise that a more integrated use develops a more 

flexible understanding, where the different uses of the different approaches side by 

side support the development of a flexible procedural and conceptual knowledge of 

fractions (Hiebert & LeFevre, 1986; Rittle-Johnson et al., 2015; Star & Stylianides, 

2013). 

In addition to fulfilling the requirements of the official curriculum’s trajectories 

(Danish Ministry of Education, 2014, 2019), I made sure the introduction of fractions 

was set in an everyday setting. This instruction material was used in Study 5 and will 

be further described in the next chapter. It is seen as a part of the Determination of a 

Problem-Solution Phase III in the enquiry process.  
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Chapter 6: Studying fractions in a Danish 

school context 

As described in Chapter 1, there is one timeline for research project planning and data 

collection, and one inquiry process where five studies are overlapping, integrating and 

in some level inform each other in a nonlinear process. Although the research process 

was not linear, it did provide more in-depth insight into the project. The tracks in the 

timeline included 1) literature review, 2) measurement/assessment, and 3) 

intervention. The scope and schedule of the current PhD project is the focus of this 

chapter. 

Next, I specifically chose to focus on the intervention designed used in Study 5. 

Therefore, the complexity of Study 5 requires a broader and more detailed description 

of the instruction material (Chapter 6.21) and implementation of the instruction 

(Chapter 6.2.2) than elaborated in Study 5. Finally, the ethical considerations I 

confronted during the research for this PhD project are described in Chapter 6.4. 

6.1 Project scope and timeline 

As mentioned in the introduction, the project consists of five phases: 

 Phase 1: First experience as a teacher. 

 Phase 2: Initial project start-up. 

 Phase 3: First data collection and measurement. 

 Phase 4: Intervention instruction and measures.  

 Phase 5: Completion. 

Each phases from phase 2 through phase 5 was implemented on three tracks. See Fig. 

15: 

 Track 1) Knowledge Collection: collect and review previous studies and 

data. 

 Track 2) Measurement: analyse collected studies and data; conduct 

measurement 

 Track 3) Intervention: develop instructional materials (see Chapter 6.2.2). 

Data were included from two independent collections in phase 3 (first data collection) 

and phase 4 (the intervention phase). To avoid confusing, the different phases 

connected to the timeline with the different phases connected to the overall enquiry 

process based on Dewey’s theory, I used Roman numerals when the described phases 

are connected to the overall enquiry process. I use Arabic numeral when describing 

phases connected to the projects time line.   
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Fig. 15 The three different tracks during each phase 

As mentioned in the introduction, the dissertation is based on five studies; all of which 

generate different answers to the overarching research question: How can we 

investigate and explain students’ difficulties with developing the multifaceted concept 

of fractions in fourth grade?The five studies were conducted during distinct phases of 

the timeline (see Fig. 16).   

 

The five studies will be further elaborated on in Chapter 8. 

 

 
Fig. 16 The five studies connected to the project’s phases and timeline 
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6.2 Elaboration of the intervention phase 

The following sections further elaborate on the intervention described in phase 4 in 

the time line of the project. This phase was an intricate puzzle with many different 

components that needed to be explained in Study 5. In addition, the participating 

schools, the instructional materials, and the implementation of the instruction 

intervention will also be described. 

6.2.1 Participants 

The data from phase 4 were selected from 11 schools in the same municipality. The 

participating school characteristics can be seen in Table 8. The largest school had four 

fourth grade classes (96 students), and the smallest school had one fourth grade class 

(13 students). In total, 446 students were enrolled. The average age was 10 years and 

four months (SD = 0.028) at the beginning of the 2018–2019 school year. The 

participating schools’ ethnicity was 92.7% Danish origin, 6.8% non-Western 

immigrants, and 0.5% Western immigrants. The teachers who participated in the 

project were 22 Danish schoolteachers and eight local mathematics consultants. The 

municipal school director decided that all schools in the region should participate. 

Because all schools in the municipality participated in the project, the teachers were 

assigned to participate in the research. This confirmed that the teachers participating 

in the project are considered representatives, and they do not have a tendency to be 

first movers. In other words, the schools, students, and teachers enrolled in the current 

PhD project can be seen as representatives for the Danish schools in general. 

Table 8 Participating school characteristics retrieved from the Danish Ministry of Education 
(2020)  

School School 
size 

(students) 

Type Stu-
dent 

per 

class 

Well-
being 

Average 
absence 

Average 
graduation 

mark 

Teacher 
comp 

Secon
dary 

edc. 

 
A 516 SCS -P 22.9 .89 .07 6.3 .88 .67 

B 578 SCS -P 22.9 .89 .07 6.7 .87 .85 

C 802 BCS -P 23.5 .93 .04 6.8 .88 .89 

D 370 CS-P 18,7 .92 .07 6.2 .88 .86 

E 394 CS-P 20.3 .93 .06 6.2 .90 .65 

F 303 CS-P 22.0 .93 .06 7.6 .66 .62 

G 236 CS-P 21.0 .90 .06 7.4 .80 - 

H 330 CS-P 19.5 .90 .07 6.5 .92 .82 

I 291 CS-Pr 20.2 - - 6.4 - .74 

J 150 CS-P 21.7 .95 .07 - .97 - 

K 301 CS-P 20.3 .93 .05 7.1 .85 .47 

 Note. SCS-P: Small City School – Public; BCS-P: Big City School – Public; CS-P: 

Country School – Public; CS-Pr: Country School – Privat; Teacher comp: Percent of 

educated teachers; Secondary edc.: Continuing to secondary education 
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The 22 teachers had quite different experience. One had just finished her education, 

and another had 30 years of experience as a teacher. Twenty were educated as 

mathematics teachers and two had teaching degrees, but not in mathematics. There 

were five data collection or measuring points during the school year described in 

Study 5. 

6.2.2 Developed instructional materials 

The material developed was named T-MAT Brøker (T-MAT Fractions) where T stands 

for the T in Track (Teacher Routine and Content Knowledge). Therefore this material 

was a part of the longitudinal research project conducted by the research group at VIA 

University College. The content of the instruction materials used in Study 5 was based 

on Kieren’s five subconstructs (see Table 9). The material was designed to take 

proximately seven weeks in total.  

Table 9 Topics in the developed instruction material during the seven weeks 

 Topic Hvad er en 

brøk? 

What is a 

fraction? 

Subconstructs 

 

 

 

Four weeks 

Module 1  Lige store dele Equal parts Part-whole/quotient in 

introduction 

Module 2 Hvad er en 

brøk? 

What is a 

fraction? 
Part-whole 

Module 3 At sætte en brøk 

på en tallinje 

To place a 
fraction on a 

number line 

Measurement 

Module 4 At forlænge en 

brøk 

To expand a 

fraction 
Ratio/part-whole 

Module 5 At forkorte en 

brøk 

To simplify a 

fraction 

Ratio/part-whole 

 Topic Blandede tal Mixed numbers Part-whole 

 

 

 

 

 

Three weeks 

Module 1 Hvad betyder 

blandede tal? 

What do mixed 

numbers means? 

 

mearnmean? 

Measurement/part-whole 

Module 2 Uægte brøker Improper 

fraction 

Measurement/part-whole 

Module 3 Fra blandede tal 

til uægte brøker 

From mixed 
numbers to 

improper 

fractions 

 

Measurement/part-whole 

Topic  Del af en 

mængde 

Part of a group  

Module 1 Find del af en 
mængde 

Find a part of a 
group 

Operator/part-whole 

Module 2 Hvor meget er? How much is? Operator/part-whole 

Module 3 Hvad er det 
hele? 

What is the 
whole (group)? 

Operator/part-whole 
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The progression of the developed material is based on Bruner’s three phases: enactive, 

symbolic and abstract (Bruner, 1966) previously described as the CRA-sequence and 

shown to be beneficial in the review of Chapter 4.4 (e.g., Butler et al., 2003; Flores et 

al., 2018; Morano, 2017), and the approach had also been developed into the 

Singaporean official curriculum as CPA-sequence (Ministry of Education Singapore, 

2012). The layout and design of the Singaporean mathematics books were therefore 

an inspiration for the layout in my materials. In the instruction materials, the three 

phases were used as models for students’ structural support in their math problem-

solving process, meaning that the CRA-sequence was used to make an explicit support 

(Shin & Bryant, 2015).  

All students were given physical manipulatives in the form of fraction bricks to use 

when solving problems in the enactive phase (e.g., plastic circles, paper, thread or 

plastic blocks). When solving the problem in the representable phase, the book was 

illustrated with different drawn representations (e.g., pie charts or block models) to 

support the students in their problem-solving process when drawing. Often, all three 

pictures were presented simultaneously on the page. This structure was symbolised 

by three different icons: 1) an apple in the enactive concrete process, 2) a pencil when 

it is representational pictorial process, and 3) an equal sign when it is symbolic or 

abstract (see Fig. 17). 

On the first course day, every class received physical materials to ensure that all 

classes had the same materials available to support the problem-solving process. 

According to the findings in Misquitta’s (2011) review, graduated instruction 

sequences are essential for fraction learning, and the use of CRA-sequences had a 

positive effect on the students fraction learning process. Westenskow & Moyer-

Packenham (2016) further broaden this so having multiple representations of fractions 

support students with difficulties in mathematics. As a structure, CRA seems to be a 

way to secure a structure when using multiple representations. The aim for the 

developed material was to create an inclusive environment where all subgroups of 

students could be supported in their problem-solving process, from low- to high-

performing students, using multiple representations. This was based a CRA-integrated 

approach (CRA-I; Strickland & Maccini, 2013). The CRA-phases are integrated into 

the instruction to use manipulatives, pictures, and abstract symbolic notation in each 

lesson and as many tasks as possible.  

This approach is different from traditional CRA, in which the phases are separated 

and students must master each phase before transitioning to the next (e.g., Butler et 

al., 2003). In other words, CRA-I instruction integration of the phases is essential. 

Therefore, students work with physical manipulatives, pictorial representations, and 

abstract symbolic notation in the same lesson (e.g., Flores et al., 2018; Strickland & 

Maccini, 2013). This approach supports the teachers’ ability to make explicit 

connections across representations supporting a web of knowledge and thereby 

supporting a conceptual understanding. Therefore, I hypothesise that a more inclusive 

learning environment is being created in which the students are supported by different 

representations depending on which representation makes sense in their unique 
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solving process. For example, low-performing students can transition to more 

concrete representations, whereas high-performing students are allowed to use 

abstract symbols when solving a task. Compared to the traditional CRA-instructional 

sequence, CRA-I provides additional support as students transition across phases by 

enabling teachers and students to cross-reference specific, representational, and 

abstract models during instruction.  

 

Fig. 17 A task from the instruction material T-MAT fractions where the three icons illustrate 
the three different representation in the CRA-sequence (Apple, Pencil and Equal Sign) 

The tasks at the end of the chapter often used the R-A approach, but we emphasised 

that any students who still require the physical materials were welcome to continue 

using them to support them in their working process. CRA-I is especially helpful in 

supporting the transition from the representational to the abstract phase. This phase is 

often challenging for students having difficulty with mathematics because they often 

struggle to conceptualise abstract concepts (Hudson, Miller, & Butler, 2006). Based 

on the intervention review in Chapter 4.5, it was essential to use several 

representations in the instruction (e.g., Butler et al., 2003; Flores et al., 2018; 

Westenskow & Moyer-Packenham, 2016) and that there should be focus on strategy 

instruction (Joseph & Hunter, 2001; Test & Ellis, 2005). Therefore, pie charts, number 

lines, and block models were used in the instructional materials. It is noteworthy that 

two studies which focused on equivalency understanding using ratio‐based problem 

solving (Hunt, 2014; Westenskow & Moyer-Packenham, 2016) showed a positive 

effect.  
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The progression further developed into how the students and class collaborate during 

each module of the instructional process. At the beginning of each new topic, there is 

class enquiry discussion on the new topic facilitated by the teacher. Examples of 

questions are ‘What does it mean when some parts are equal?’ or ‘How can we 

describe wholes and parts?’ The students work together first when solving a problem 

or a task and are eventually asked to work alone. When the students were meant to 

work alone, I made two levels of tasks; a more advanced level 2 and an easier level 1. 

The students were free to choose the level they found challenging by supervision from 

their teacher. The structure includes talks including the entire class, groups of four, 

pairs, and solo work. This was illustrated in the material with symbols for different 

numbers of hands. Another difference is that my instruction material was intended to 

be used only once; therefore, students could write and draw in the books. In particular, 

drawing was an essential part of the problem-solving process in many tasks. 

I created a similar content analysis of the developed fraction instruction material as 

described in Chapter 5.2. The content analysis of the commonly-used mathematics 

books in Denmark from the chapter is embedded in Table 10. I included only those 

books published at the time for the development of my instruction material T-MAT 

fraction. One significant difference in the instruction material is the focus on 

equivalence. 

Table 10 Simple content analysis of existing and new developed instruction materials 

Book Context 

 

No 

context 

Part-

Whol

e 

Measure Ratio Quotien

t 

Operator Equivalence 

Matematrix 

4 (2006) 

 

.28 .72 .26 .17 .02 .21 .10 .01 

Multi 4 

(2011) 

 

.33 .67 .22 .28 .07 .09 .31 - 

Kontext+ 4 

(2014) 

 

.52 .48 .55 .09 - .11 .18 .05 

T-MAT 

fraction 
.47 .53 .34 .13 .04 .07 .22 .26 

Note. Matematrix 4 (Gregersen et al., 2006), Multi 4 (Mogensen et al., 2011), Kontext+ 4 

(Lindhardt et al., 2014). Not every task could be coded as primarily containing one of the 

five subconstructs part-whole, measure, ratio, quotient, or operator. 
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Fig. 18 Introduction pages to fractions in the developed material. 

When looking at the introduction pages of my developed instruction material, the first 

page is set in the context of a birthday party where four children need to share. See 

Fig. 18. Therefore, the subconstruct quotient is present. However, there is also the part 

from the whole in the pizza; therefore, the subconstruct part-whole is also present, so 

both subconstructs are present. The birthday setting is consistent with the official 

Danish curriculum, in which first-time fractions are introduced. They must recognise 

fractions in everyday situations. This is also how all three Danish mathematics books 

started introducing fractions; they were all presented in an everyday setting. 

Therefore, this project’s proposed instructional materials are consistent with Danish 

tradition and established the introduction in a context familiar to the student. Under 

the picture of the birthday party, a girl asks different questions: 

How much pizza is left? 

How do we share the birthday cake? 

What if the dog is also given cake? 

In the blue box below the picture, it tells what ‘we are learning’ in this chapter: 

Recognising and describing fractions. 

Expanding and reducing fractions. 

p. 7 in T-MAT fraction (developed material) 
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On top of the next page (page 8), there is placed a grey box. The following questions 

are asked: 

How can we divide into equal parts? 

Divide a square piece of paper into four equal parts. 

How can you do this? 

 

p. 8 in T-MAT fraction (developed material) 

 

Under the box, different examples are showing how the paper can be divided into 

equal parts. Between the examples, there is one question and an instruction: 

How many different ways did you find to divide the paper? 

Look at these ways to divide the paper. 

 

p. 8 in T-MAT fraction (developed material) 

 

Last on the page are four new questions: 

Talk to your peer. 

Are the parts equal? Why? 

Why not? 

Have you found new ways to divide the paper into equal parts? 

 

p. 8 in T-MAT fraction (developed material) 

 

Again, the girl in the right corner makes a request: 

Try to continue in GeoGebra. 

Make a square where each side is 4. 

 

p. 8 in T-MAT fraction (developed material) 

 

The instructional material introduced fractions differently compared to the 

introduction in the three books. The material began with the assumption that when 

working with fractions, the parts need to be equal, and parts can be equal even though 

they do not have the same shape; Kontext+ 4 (Lindhardt et al., 2014) was the only 

Danish mathematics books with content about this (see Chapter 5.3). Therefore, the 
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starting point must be an understanding of the equal part. For example, every quarter 

in 
3

4
 needs to be the same size. 

The primary difference between the developed instructional materials and the other 

commonly-used mathematics books is that the first task is inactive. The students are 

asked to divide a piece of paper into equal parts; the abstract notion of the fraction is 

not introduced until later. In all of the standard books, the fraction notation was 

introduced in the first two pages. Later, my observations in the classroom showed that 

this was an important step. Therefore, about eight to ten students in each class 

experienced difficulty understanding that equal parts do not have the same shape; they 

can have different shapes and still be equal. This is the first step in developing 

equivalence in this material, and later in the chapter this is further developed to expand 

or reduce fractions.  

Another difference is that our instructional material’s layout differed from the other 

three books, especially Matematrix 4 (Gregersen et al., 2006) and Multi 4 (Mogensen 

et al., 2011). Therefore, there were fewer tasks on each side. The focus on equivalence 

differs from the commonly used mathematics book published when the intervention 

took place.  

6.2.3 Implementation and fidelity 

In March 2018, before the 2018–2019 school year, all school leaders and fourth-grade 

teachers were informed by the mathematics coordinator of the municipality about the 

current PhD project in connection with an informational meeting. In May, the first 

informational meeting was held with all fourth-grade teachers and consultants. 

According to Century and Cassata (2016), this first meeting could be called 

organisational and environmental, both the characteristics of the specific setting (e.g., 

the classroom at school) and its broader ecology (e.g., the municipality). Another 

factor that Century and Cassata (2016) discussed is implementation over time. Time 

will always be a factor in the implementation and diffusion of practices. All these 

factors will, of course, influence the implementation. However, the time factor was 

considered using the implementation model in the project, which was the Q-model 

(QUEST-model) for teachers’ professional development.  

The Q-model is based on the principles of PLCs and action teaching (Mogensen et al., 

2015; Nielsen et al., 2013). The Q-model was developed during a research and 

development project called QUEST (qualifying the in-service education of science 

teachers). See Fig. 19. This implementation was possible because of the help and 

support from the research group connected to TRACK at VIA University College. 
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Fig. 19 Teacher courses according to the Q-model 

The implementation follows a rhythm of full-day seminars during which participating 

teachers are introduced to elements of the instruction material by periods of individual 

engagement in their own practice and collaborative inquiries planned and organised 

at a local school-based level. Previous studies have shown that the Q-model created 

good results regarding developing and changing the practice of science teacher 

learning communities (Mogensen et al., 2015; Nielsen et al., 2013). For example, after 

two years, 90% of the participating teachers reported that the project had changed and 

improved their teaching, and 88% reported that the project had led to more 

collaborations among the science teachers in the participating schools. The Q-rhythm 

was chosen as the implementation model so participating teachers could develop and 

adapt the key elements of the fraction instruction material into their own teaching 

practices in a sustainable way. This implementation was supported by the TRACK 

group; therefore, fraction instruction was already inserted into the ongoing Q-rhythm 

of this research project.  

Before fraction instruction, the teachers participated in a course module which 

consisted of three courses within periods where they could develop and try materials 

and activities. The module activities followed a five-step process, according to the Q-

rhythm (Nielsen et al., 2013). The first step consisted of one course day for 

participating mathematics teachers and mathematics consultants where the theoretical 

fraction framework and instruction materials were introduced. They were also given 

concrete student materials, for example, books, plastic circles, and blocks for each 

student to support the concrete phase in the CRA-sequence (Butler et al., 2003; Flores 
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et al., 2018; Morano, 2017). Research has shown that confidence and training in new 

routines are especially important if practitioners are to change their practice 

Wahlgren, 2009). Hence, teachers were given time to understand and practice 

elements. They had time to plan their implementations and active learning in their 

own practice. Observation and field notes from the course provided data on 

expectations with the instructions in different teaching practices for collective 

reflections. The first school group started the intervention here, and the delayed school 

group started after the second course. See further description in Study 5.  

In step two, teachers taught fraction materials and activities on their own and informed 

and collaborated with their mathematics team about their active learning process. The 

teachers documented their practice situations using video to support analyses and 

collective discussions. This collective discussion could be based on the teacher’s 

observations in the classroom or in the video films made by the students while 

working with the topic of fractions (e.g., how different classroom discussions can 

enhance students’ fraction proficiency). 

Step three comprised a one-day seminar in which teachers from the first group of 

schools shared their experiences with their own teaching practices with the delayed 

group. Small videos from students’ work with fraction tasks were shared and 

discussed between the teachers. Time was again allocated for new input and for 

planning the second action learning steps in their own teaching practice. Data were 

collected by field notes from the course and the small film teachers had recorded.  

Step four was like step two in that teachers would develop and experiment with 

mathematical activities in their own practice. Now, all teachers taught fractions to 

both the first group and the delayed group. Unlike step two, however, step four would 

further require teachers to observe their students’ difficulties or progress.  

Step five was the final course day. Teachers would present their experiences from the 

classrooms and evaluate how they experienced the fraction instruction period. 

In addition, I followed two classes during the fraction instruction time, made 

observations and interviewed students during my visit. This was done to obtain a first-

hand observation of how the instructional material was used by the teachers and how 

the students worked with the material. These qualitative observations were important 

for me as a researcher because they provided unique insights in the classrooms 

regarding students’ reasoning about fractions during their regular school day. 

However, I did not use this qualitative data explicitly in any studies although they 

were important implicit observations from daily school life which informed the 

research process.  
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6.3 Ethical considerations 

Ethical considerations were a central concern during the project, both in connection 

with the participants and the quality of research. The studies were conducted under 

the Danish Code of Conduct for Research Integrity (Ministry of Higher Education and 

Science, 2014). I have striven to be transparent and honest in the description of the 

analytical approach so it may be replicated, and the data verified. All data are securely 

stored on the computer and server. All students’ written assessments, such as the 

reading test, were securely stored in a locked room in a locked closet. All school 

principals gave permission for the research project, and consent letters were sent to 

parents under the Danish Code of Conduct and General Data Protection Regulation  

GDPR (Regulation (EU) 2016/679) . In the classes where I observed and interviewed 

students, all parents gave their active consent for their children to participate (see 

Appendix F). All regulations and forms were handled and supervised by the legal 

department of VIA University College. All students’ data were anonymised as soon 

as possible during the data cleaning process. Research ethics involve more than simply 

following rules and regulations. During the project, I dealt with different issues and 

problems that required reflection on how to act ethically. In the following section, I 

provide examples of how I dealt with them. 

6.3.1 Teacher level 

The director of the municipality agreed to participate in the project. The teachers were 

assigned to be a part of the research, which ensured that the teachers participating in 

the project could be considered representatives of teachers, but it also produced 

dilemmas. The teachers were not necessarily positive about the project, the 

instructional material, or adjusting their practice. In addition, due to the requirement 

of assessing their students during the school year, it was important that the curriculum 

based measurement (CBM) be as short as possible.  

The fact remained that the project was forced on the teachers, and they did not 

volunteer to participate. We addressed this issue at the informational meeting where 

we emphasised that their participation was really appreciated. We also voiced our 

concerns and informed the teachers that we hoped they would appreciate the 

opportunity to be a part of the project once they received more information.  

Consideration for the students’ daily lives and school and teacher autonomy was 

central. Consequently, I created a delayed group in Study 5 that could not start 

simultaneously because of local differences in school year activities. During the 

project, I also attempted to ensure that the teachers’ need for support and freedom was 

acknowledged and emphasised that they were active participants in the project, not 

passive pieces in a chess game. This was a collaborative process in which I needed 

their help. It was important that the teachers did not feel that they were being evaluated 



CHAPTER 6: STUDYING FRACTIONS IN A DANISH SCHOOL CONTEXT   

 104 

through their students’ results. My interest was in the students’ progress, and in a way, 

I was evaluating my instructional materials.  

6.3.2 Student level 

An introductory letter was sent to all parents or guardians who had children 

participating in the project. All students’ parents were asked to give consent for their 

child to participate in the project. Because of the size of the project, we chose passive 

consent when collecting large-scale data. In other words, the parents were supposed 

to write if they did not want to let their child participate. This was discussed in the 

research group and with the legal department. Danish Data Protection Agency rules, 

which are based on EU regulations, and Danish Data Protection Regulations do not 

require active consent according to the legal department. However, I would still have 

preferred to find ways to obtain active consent without overwhelming the teachers.  

Because these data have statistical purposes, they were transformed into anonymous 

data as soon as possible so measures would no longer be connected to any student by 

name or UniC. This process had limitations; therefore, the age, school identification 

(ID), and class ID variables remained to give some information about the students and 

the school size. All data were stored on a research server with the highest security 

level, meaning that secured research computers would have access. I was very 

concerned about the measurement situation and about whether students found the test 

situation intimidating. On the teacher course I emphasised that the students should by 

all means not have a bad feeling about the measurement situation and that the teachers 

needed to talk about it was for helping getting knowledge about how students over all 

develop their knowledge and not whether how well each student did. It was likewise 

important whether the students developed or not. The students were not given the 

measurement result directly after the measurement, which meant that the results did 

not generate a competition between the students by comparing results. It was 

emphasised that the teachers could make a judgement whether some students should 

not participate because they found that the students were not comfortable in the 

situation. If they excluded students they just needed to make a notification to me. No 

teacher excluded students. The importance of the short measurement and the time 

limitation was also emphasised as an important aspect when the teachers evaluated 

the students’ well-being when taking the measurement, therefore it did not take too 

much time, and students could overview the task. This made the student feel fine while 

conducting the measurement. 

As mentioned, during the intervention phase 4 connected to the time line in the project, 

I made observations and conducted interviews with students so I could follow the 

interventions in the classroom. For this part of the study, I chose to actively collect 

parents’ consent; the children of parents who did not respond were not filmed or 

interviewed. The problem with passive consent is that not all parents have the 

resources or energy to read a message about the study and their child’s role and to 
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give permission. Therefore, some children do not have the same protection as those 

whose parents have the energy to read this type of information. When consent must 

be given actively, all children receive the same protection. Previous studies have 

shown that students who return parental consent are less likely to come from ethnic 

minority backgrounds and more likely to be female, live with both parents, and have 

more highly educated parents (e.g., Esbensen et al., 2008). Accordingly, on the one 

hand, there is a risk of bias.  

When I was interviewing students, I always began by emphasising that they were free 

to refuse to participate, and if they got tired during the interview, they were always 

welcome to say they wanted to stop the interview at any time. I furthermore 

emphasised that their faces would not be seen on the recording and explained what it 

meant to be anonymous with words fourth graders could understand. Power structure 

(Brinkmann, 2014; Kvale & Brinkmann, 2015) is a consideration when minors are 

interviewed, and I, an adult, could be found frightening. Therefore, I did not interview 

students during the first weeks of instruction; I wanted students to feel safe around me 

and know my face before they sat down with me.  

An important part of my research was to distribute the knowledge generated through 

the project. I was asked by the Mathematics Teachers Association and the Ministry of 

Education to share information about the project with teachers. As a part of these talks, 

I wanted to show five minutes of a recording where a student explained how to 

compare two fractions. The students were anonymised in the film, but I chose from 

films of both gifted students and students who showed difficulties with fractions. I 

selected a recording of high-performing students’ explanations because I thought that 

they would not have the same vulnerability as low-performing students who reveal 

great difficulties. Even though I had already received consent from both the parents 

and the students, I anticipated that the students might regret this consent later and 

become self-conscious about revealing their difficulties to others even though they 

were fully anonymous. Thus, I had to collect their active consent once more because 

the parents and the students had only given their consent for the recordings to be 

shown in research, not as part of a broader scale of communication about the project.  

My research project should not be a burden on teachers or their students, so the courses 

about fractions had to be planned so they could be placed at appropriate times in the 

school year without interfering too much with the teachers’ instructional obligations.  
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Chapter 7: Quantitative data collection 

As previously mentioned, the theoretical framework of pragmatism is typically 

connected to qualitative research studies, not quantitative, because measurements are 

often a central data collection method in the quantitative research process. 

Measurements were not often central to the methodology of pragmatism when used 

in the Danish educational research field. However, Dewey emphasised that the 

problem determined what method should be used in the inquiry process ([1933]1986, 

[1938]1986). Using a measurement tool generating quantitative data, I try to explore 

the overarching problem: How can we investigate and explain students’ difficulties 

with developing the multifaceted concept of fractions in fourth grade? Using 

quantitative methods does not conflict with the methodology of pragmatism. The 

relative lack of quantitative research studies based on pragmatism might be explained 

by the fact that knowledge is seen as warranted assertibility within this framework, 

and knowledge generated from statistical analyses is traditionally viewed as 

unchangeable fact. However, this does not mean that the quantitative method by 

nature cannot be used in the framework of pragmatism. Whether to use these methods 

depends on the question we want to investigate. Nonetheless, when using the method, 

the knowledge derived from the analyses must be seen as warranted assertibility. The 

quantitative method in the form of a measurement provides new possibilities to link 

actions and their outcomes. For example, it is interesting examining the outcome from 

using the fraction instruction material in the classroom. It might result in an 

improvement of the students’ answers and measurement. Whether there is any 

improvement or not, it is still an outcome. Even though knowledge is warranted 

assertibility, the measurement tool provides an opportunity to determine a result. In 

other words, the measurement tool makes it possible for the inquirer to transform the 

indeterminacy in any given circumstance in each classroom into a determined 

situation. 

 

When collecting data through measurement, it is central to secure the accuracy of the 

measurement tool. Even though the first study validated the measurement tool 

developed for this project, I chose to write a separate chapter about how to secure both 

the reliability and validity of the measurement tool used. Hence, it is central for the 

findings in the inquiry process of empirical studies in this PhD project, especially 

Study 5, where the students’ fraction proficiency was followed. Therefore, this 

chapter will be a brief introduction to the central terms and considerations required 

when developing a measurement.  

 

7.1 What is a measurement? 

This research project is based on a quantitative approach in which curriculum-based 

tests are used to collect data. For this study, I developed a curriculum based 

measurement (CBM) for measuring fractions, which I called CBM-fractions. The 

CBMs are characterised as short measurements targeting the curriculum or part of the 
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curriculum (Anselmo et al. 2017; Deno 2003; Fuchs et al. 1999). However, within the 

test terminology field, there are many different terms, and clarification may be in 

order. A mathematical test is supposed to measure one’s learning outcome – each 

student’s ability within a specific topic, differentiating between what students have 

already mastered and have yet to master. A test can be defined as a measuring method 

of a person’s ability, knowledge or performance in a particular domain. A test can also 

be explained as a systematic procedure for describing or observing one or more 

characteristics of a person using a numerical category system (Nitko, 1983).  

A test is defined as: ‘An evaluative device or procedure in which a systematic sample 

of a test takers’ behaviour in a specified domain is obtained and scored using a 

standardised process’ (American Educational Research Association et al., 2014, p. 

224). 

An assessment in mathematics has been defined as a means of judging the student’s 

mathematical capability, performance, and achievements. An assessment addresses 

the outcome of mathematics teaching at the student level (Niss, 1993).  

These two terms have been used synonymously, but the two definitions reveal that 

test is more connected to test takers, whereas an assessment is broader and also 

connected to programmes that need to be evaluated. In different definitions, 

measurement properties are constantly being used within various scientific and 

cultural contexts. The COSMIN Project Initiative began in 2006 to develop a 

taxonomy of measurement properties and a consensus of definitions for evaluating 

Patient-reported Outcome Measures (Mokkink et al., 2018; Prinsen, et al., 2018). It is 

an international initiative that consists of multidisciplinary researchers from areas 

such as psychometrics, epidemiology, and qualitative research. These researchers 

developed a taxonomy of measurement properties that is relevant for evaluating a 

measurement’s instrument. This framework creates great insight into what kind of 

validity and reliability analysis is necessary for evaluating the accuracy of a 

measurement. However, even though it is a multidisciplinary research, it is founded 

in a psychological or medical approach for measuring. Therefore, I needed to develop 

this taxonomy to fit better into the framework of educational research. For obtaining 

better educational terminology, I included the Standard for Educational and 

Psychological Testing Developed (SEPTD) by the American Educational Research 

Association (AERA), the American Psychological Association (APA) and the 

National Council on Measurement in Education (NCME) published in 2014. An 

example of this integration of the psychological (COSMIN) and educational (SEPTD) 

approaches to measurement is, for example, the COSMIN model uses the term patient, 

whereas SEPTD, of course, uses the term student. Another term, for example, 

predicted validity, is not present in the COSMIN model. However, the term is present 

in SEPTD, and other terms from COSMIN are not present in SEPTD. The sections 

below aim to create an overview of what kind of analysis is needed for evaluating the 

measurement developed for this project. 



LEARNING AND UNDERSTANDING THE COMPLEXITY OF FRACTIONS  

 109 

Overall, there are two key elements in the evaluation process of measurements and 

assessments: validity and reliability. See Fig. 20. 

 

Fig. 20 Two key elements in evaluating the quality of a measurement 

7.2 Reliability 

Reliability is a key issue in the theoretical framework of measurement studies. It can 

be defined as how reliable a measurement instrument is in a consistent and predictable 

way. For the scale to be reliable, the score must represent some true state of the 

variable being assessed, meaning that the score should not change unless there is an 

actual change in the variable (DeVellis, 2017). Reliability has been defined by two 

approaches. First, reliability is the correlation between two summarised scores on two 

equivalent tests – presuming that conducting one test does not influence the second 

time the test is conducted. The second term, associated with reliability, has been used 

more generally to describe the consistency of scores across replications of procedures 

(e.g., terms of standard errors; (American Educational Research Association et al., 

2014). In the framework of COSMIN, reliability contains three properties: internal 

consistency, retest reliability, and measurement error (Mokkink et al., 2018; Prinsen 

et al., 2018). See Fig. 21. 

Internal consistency is defined as the internal relations of each item and the total 

variance in the score(American Educational Research Association et al., 2014). 

Furthermore, it is important to highlight that it is the degree of interrelation among 

items on a scale, and it is often reported as Cronbach’s alpha. The importance of a 

unidimensional scale is high when Cronbach’s alpha is reported; therefore, the alpha 

should be calculated for each of these scales. It is closely connected to structural 

validity because the construction and validation of the scale affects its internal 

consistency (Mokkink et al., 2018; Prinsen et al., 2018). In this project, Cronbach’s 

alpha was used to estimate the intermediate consistency reported in Study 1 as α = .90 

(N = 663), which is considered good (Cortina, 1993). As explored in Study 1, it could 

be discussed whether the developed measurement tool contained two subscales: 

Meaning and Symbol. If I had chosen this division, Cronbach’s alpha needs to be 

reported for each of the subscales.  

Quality of the 
measure

Reliability Validity
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Retest reliability is connected to stability as well as the test-retest study and can be 

defined as the reliability coefficient obtained by conducting the same test a second 

time with the same practitioners after a time interval and the correlation between the 

two test scores (American Educational Research Association et al., 2014). Often, the 

Pearson’s correlations (PPC) have been used to estimate this coefficient. However, an 

infraclass correlation, two-way mixed model may be preferred because the model 

takes both the variance within the portion and between multiple time points into 

account (Mokkink et al., 2018; Prinsen et al., 2018). The test-retest reliability was 

reported to be PCC (147) = .90, p < 0.0001. Correspondingly, the individual test-retest 

value is considered acceptable (American Educational Research Association et al., 

2014).  

A measurement error, or an error of measurement, can be defined as the disparity 

between an observed score and the true score. It is also called the standard error 

measurement, systematic error, random error, or true score(American Educational 

Research Association et al., 2014). A measurement error can be defined as a 

systematic and random error of a student’s test score that is not connected to the true 

changes in the topic or area to be measured (Mokkink et al., 2018; Prinsen et al., 

2018). This process led to the following analysis. The internal consistency was 

estimated using Cronbach’s alpha while the retest reliability was estimated by the 

Pearson correlation, which is reported in study one.  

 

 

Fig. 21 Three kinds of reliability 

 

  

Reliability

Internal 
consistency 

Test retest
Measurement 

error
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7.3 Validity 

A test is considered valid if it measures what it claims to measure (Kelley, 1927). 

Validity is connected to a test’s development in that it evaluates whether the test can 

accumulate evidence to support a specific interpretation of a score. Overall, there are 

three primary types of validity connected to tests: criterion, constructed and content 

validity. See Fig. 22. 

 

Fig. 22 A diagram of the types of validity 

7.3.1 Content validity  

Content validity is defined as the extent to which a test measures a proper sample of 

the topic that we want to study. For example, if the measurement is developed to study 

fraction proficiency in fourth grade, content validity can be defined as how well the 

item represents the topic fractions at that level. In the context of this study, content 

validity is based on experienced teachers’ evaluations of the test items after a pilot 

test in their classes as described in study one. In my future work, I will be the teacher 

and can rank each item with (+, 0, –) besides a more qualitative evaluation. This was 

done in a study by Al-Shehhi et al. (2019). 

  

7.3.2 Criterion validity  

Criterion validity or criterion-related validity is defined as the degree to which the 

scores of a test or measurement are an adequate reflection of a ‘gold standard’ 

measurement (Mokkink et al., 2018; Prinsen et al., 2018). This concept leads to 

consideration of what can be defined as a ‘gold standard’. As Christ et al. (2005, 2008) 

explored in the context of CBM, what is a suitable ‘gold standard’? There is currently 

no other standardised fraction test in a Danish or Scandinavian context. 

Internationally, Rodrigues et al. (2019) has three fraction measures under 

development; however, their studies were published late in the process of the current 

dissertation. This means no tests can be considered perfect for use as a gold standard 

for the new test. We used the National Tests with Grade 3 validations. In another study 

connected to the previously mentioned large longitudinal research project Teacher 
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Routine and Content Knowledge on Teacher Education at VIA University College, 

the teacher’s rating of the student’s level in mathematics was collected (rating from 1 

to 5) and had been used to validate the overall CBM at the beginning of fourth grade, 

where one of the subscores was the current CBM-fractions. The analysis from this 

study showed CBM-fractions, and a teacher rating showed r (179) = .63 (p < 0.001). 

Criterion validity is often categorised into three types: concurrent validity, predictive 

validity, and retrospective validity. Concurrent validity can be defined as the degree 

to which two measurement scores are related. The two measurements must be 

conducted about the same time (American Educational Research Association et al., 

2014). Predicted validity is how well a measurement score correlates with another 

measurement conducted at some point after the first (American Educational Research 

Association et al., 2014). Many CBM-studies have been conducted to make a 

predicted validation (e.g., Kettler & Albers, 2013; Shapiro & Gebhardt, 2012). The 

last type of criterion validity is retrospective, defined as the extent to which a present 

measurement can show a correlation to a previously obtained measurement. Because 

the national test was conducted one year before the measurement tool was developed 

for this study, we may consider this validation for retrospective validation. However 

because I consider the validation form primarily to be based on convergent validity 

(will be described below) I do not go further into the retrospective criterion validity. 

7.3.3 Construct validity 

Construct validity can be defined as the degree to which the measurement scores 

match the hypothesis of what the measurements evaluate; this could be the 

relationship or distinctions between the measurement score and other measurement 

scores. Unlike criterion validity, there is no demand for a ‘gold standard’ for the 

measurements used for validation (Mokkink et al., 2018; Prinsen et al., 2018). There 

is no consensus on what sub element this type of validation consists of. In the context 

of this study, the focus is structural validity and convergent and divergent validity.  

Structural validity can be defined as the degree to which measurement scores are 

sufficient for an evaluation of the dimensions of the constructed scale or subscale. 

Therefore, this validation is closely connected to the reliability of the internal 

consistency analyses (Mokkink et al., 2018; Prinsen et al., 2018). Often an item to a 

response/Rasch or confirmatory factor analysis is a way to evaluate structural validity 

in the project.  

Convergent validity is an evaluation of which levels of measurement scores have a 

strong relationship with scores from measurements that are conceptually similar to the 

measurement (American Educational Research Association et al., 2014). This validity 

is closely connected to criterion validity, but the criterion validity demands of the 

golden standard are not present in the convergent validity (Mokkink et al., 2018; 

Prinsen et al., 2018). In this context, it can be discussed whether the National Test 
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should be considered a gold standard for fraction proficiency so it can be considered 

criterion validity, or if it is more appropriate to compare the validation against the 

National Test as convergent validation. I would argue that the validity evaluation in 

Study 1 must be seen as a convergent validation. 

Divergent or discriminant validity is the opposite of convergent validity: an evaluation 

of the degree to which a measure diverges from another measure. Therefore, the other 

measure can be considered conceptually unrelated to the first measure. In this context, 

it could be related to the reading test score to evaluate whether the test measures the 

students’ reading skills rather than their fraction proficiency. 

7.4 Summary  

The quality of the measurement consists of several levels and considerations. In the 

context of this study, the assessment needs to be short and effective and not take up 

more teaching time than necessary, but it must still have a high degree of accuracy. 

To secure quality, several analyses were conducted and described in Study 1. 

Developing a measurement is a long process, and the measurement may still need to 

be further developed. It is important to emphasise that because it is a computerised 

test, it provides limited data about the students’ problem-solving process. This will be 

further discussed in Chapter 9. 

The methodological choice of using a measurement tool to collect quantitative data 

must be a central question in the enquiry process. Indeed, which kind of data the 

developed knowledge is based on will always be central in a scientific enquiry. I could 

have chosen another method to inquire into my observed and experienced problem: 

How can we investigate and explain students’ difficulties with developing the 

multifaceted concept of fractions in fourth grade? This choice would have contributed 

to other insights, but it is the premises when making a methodical choice, and as 

outlined in Chapter 2, the choices influences the insights that can be developed.  

 

 

  

https://dictionary.apa.org/discriminant-validity
https://dictionary.apa.org/discriminant-validity
https://dictionary.apa.org/discriminant-validity
https://dictionary.apa.org/discriminant-validity
https://dictionary.apa.org/discriminant-validity
https://dictionary.apa.org/discriminant-validity
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Chapter 8: Summary of the five studies 

In this chapter, each study and its corresponding article is summarised with a focus 

on the purpose, analysis, and results. The full texts of the five articles are included at 

the end of the dissertation and sent to the assessment committee. The articles are not 

included in the published dissertation – therefore two of the articles have not yet been 

accepted or published. As described in the Methodology chapter, the knowledge 

generated in each study is considered part of the enquiry process. However, as shown 

in Chapter 6.4, the studies overlap, and the knowledge of each does not equally inform 

the others (see Fig. 23). However all studies inform the overarching research question. 

 

 

Fig. 23 Information flow between the five studies 
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A more complex flow diagram of the five studies’ interaction is shown in Fig. 23. As 

previously described in the introduction, Study 1 contains the development and 

evaluation of a measurement tool targeting fractions in fourth grade. This developed 

measuring tool can be seen as the basis for the data collection in this PhD project, and 

therefore the other four studies are connected directly or indirectly to this. 

Consequently, it is of methodological importance to utilise an accurate measurement 

tool when collecting quantitative data. In the process of analysing the students’ 

answers, I found a difference in their responses when comparing fractions. When they 

compared the equal fractions 
1

4
 with 

2

4
, they showed a different pattern than when they 

compared  
5

11
 with 

3

5
. Comparing 

1

4
 with 

2

4
 was found to be significantly more difficult. 

This finding motivated me to question and enquire further into this observed 

difference. This led to Study 2, in which the students’ answers to fraction comparison 

tasks were related to their answers to whole number arithmetic tasks (addition, 

subtraction, multiplication, and division). My curiosity about why equivalence was 

particularly difficult led me to explore the conceptions of equivalence further in Study 

3, which examines two conceptions of fraction equivalence theoretically. 

The findings from Study 2, showing the students’ difficulties comparing fractions, led 

me to explore how I could explain the students’ different types of wrong answers and 

how some of these answers could be explained by the influence of natural numbers in 

Study 4 (Natural-Number Bias Patterns in Answers to Different Fraction Tasks). As 

shown in Fig. 23, Study 5, (regarding the differences in high- and low-performing 

students’ fraction proficiency development) was primarily connected to Study 1. 

Therefore the measurement tool used in Study 5 was developed in Study 1.  
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8.1 Study 1  

Development and evaluation of a curriculum-based measurement 

targeting fractions in fourth grade 

I co-wrote this paper with Professor Rasmus Waagepetersen (Aalborg University).  

Manuscript will be submitted to Assessment for Effective Intervention. 

The first paper described a study aimed at explaining and investigating a measurement 

tool that would evaluate the curriculum-based measurement that was designed for the 

project. Consequently, the aim was to investigate the validity and reliability of this 

newly developed, robust indicator. Investigating how different kinds of reliability and 

validity are defined or related has previously been described in Chapter 7. The 

theoretical framework used for developing this measurement was Kieren’s five 

subconstructs, which are described in Chapter 3.3. 

Resume of study 1 

The measurement tool developed for this PhD project was named CBM-fractions. The 

measuring tool was founded in the curriculum-based measurement (CBM) approach. 

CBM was originally developed during the mid-1970s by Stan Deno at the University 

of Minnesota’s Institute for Research on Learning Disabilities (Stecker et al., 2005). 

The CBMs are characterised as fluency and short measurements (e.g., Anselmo et al. 

2017; Deno 2003; Fuchs et al. 1999). The CBM-fractions measurement was 

computerised and had a time limitation of 10 minutes. It contained 36 test items, all 

targeting fractions.  

The primary research question for this CBM development study is as follows: The 

study addressed the following overarching question: How accurate is the CBM-

fractions instrument for measuring fourth grade students at the end of the school 

year? To elaborate this, we addressed the following research questions in Study 1: 

1. What is the validity, of the CBM-fractions instrument including structural, 

convergent, and divergent validity? 

2. What is the reliability of the CBM-fractions instrument including internal 

consistency and test-retest? 

 

Methods used in Study 1 

First, the structural validity of the CBM-fraction was evaluated using a Generalised 

subdimension (GSM) model. A one-factor model and a two-factor model were 

compared using the Akaike information criterion (AIC) and Bayesian information 
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criterion (BIC). We then constructed a one-parameter logistic IRT (Rasch) model to 

estimate the difficulty level for each item. Next, we estimated the different kinds of 

reliability evaluations. The internal consistency was evaluated by Cronbach’s alpha. 

A Pearson’s correlation coefficient (PCC) was estimated to evaluate the test-retest 

reliability. Finally, convergent, and divergent validity was calculated using PCC for 

the CBM-fraction and the different national test scores.  

 

Results from Study 1 

The first analysis to evaluate the structural validity GSM-analysis was conducted by 

examining a one-factor and a two-factor model. The analysis showed that the two-

factor model had  a marginally better fit (AIC = 15131.67 and BIC = 15459.94) with 

smaller AIC and  BIC compared to the one-factor model (AIC = 15191.66 and BIC = 

15515.43). Hence, a high correlation was found between the two latent variables (.85). 

We argue that the high correlation consequently shows a close relation between the 

two factors, which supports that the developed measurement tool can be seen as a 

robust indicator of fraction proficiency. Meaning that it makes little sense to separate 

the measurement into two subscales (see Table 11). 

Table 11 Indicators of the CFA Models 

 Obs  11(model) Df AIC BIC Corr 

All students         

One-factor 663  -7519.737 73 15185.47 15513.74  

Two-factor 663  -7489.037 74 15126.07 15458.83 .85 

Note. Including common gender effect (part of Table 4, Study 1) 

To further evaluate the structural validity, a Rasch scaling analysis was conducted. 

This showed that the items ranged in difficulty level from -1.86 (item 2) to 4.10 (item 

15.2).  

Reliability was reported as an internal consistency of Cronbach alpha α = .90 (N = 

663), which is considered good but is influenced by the number of items (Cortina, 

1993). The test-retest reliability was evaluated to be PCC (147) = .90, p < 0.0001. As 

a result, the individual test-retest value is considered acceptable (Koo & Li, 2016). 

Convergent validity was evaluated by the PCC for the CBM-fraction by the three 

national tests’ subscore, whereas the divergent validity was evaluated by a sentence 

reading test (Sætningslæseprøve fra Hoegrefe). The estimations showed that all 

correlations were significant (p < 0.0001) (see Table 12).  
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Table 12 Correlation between the CBM-fractions and validity measures 

 1 2 3 4 5 6 

1 CBM-fractions  1 

(663) 

     

2 NT total points .57* 

(632) 

1 

(632) 

    

3 NT: Numbers and algebra  .51* 

(632) 

.82* 

(632) 

1    

4 NT: Geometry .45* 

(632) 

.83* 

(632) 

.59* 

(632) 

1   

5 NT: Probability and   

   statistics 

.50* 

(632) 

.87* 

(632) 

.64* 

(632) 

.61* 

(632) 

1  

6 Reading NB .31* 

(575) 

.33* 

(575) 

.28* 

(575) 

.25* 

(575) 

.32* 

(575) 

1 

Note. *p < 0.0001, NB (_) = N for each correlation. Not all students took the reading tests, 

and one school was not required to take national tests 

 
Discussion of Study 1 

The evaluation of a measurement is important for the project investigation of the 

overarching problem of How can we investigate and explain students’ difficulties with 

developing the multifaceted concept of fractions in fourth grade? Specifically, ‘How 

can we investigate?’ is what Study 1 attempts to explore. 

 

Even though the measurements were valid, it does not mean that they could not be 

developed further (e.g., the test-retest correlation might be improved if the test time 

was longer, meaning that the time restriction could be set to 15 minutes rather than 

10).  

 

When a test is computerised, it always brings limited information about the students’ 

solving process. Therefore, the information contained in each answer must be 

narrowed down as right or wrong. The order of each item should also be reconsidered 

to ensure the right progression in the measurement. However, overall, the results 

confirm that the CBM developed for this project provides a valid test score of 

students’ fraction proficiency. 
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8.2 STUDY 2  

Students’ ability to compare fractions related to proficiency in the 

four operations 

I co-wrote this paper with Senior Researcher PhD Peter Sunde (Aarhus University).  

Published in CERME-Eleventh Congress of the European Society for Research in 

Mathematics Education (2019). 

As previously mentioned, the second paper was founded on my curiosity to explore 

and describes a study where I investigate why answers in fraction comparison tasks 

differ, and why fraction equivalence tasks in particular show a different pattern. The 

difference was found when looking into the students’ answers in the process of 

developing the measurement tool in Study 1. This data was collected during the first 

data collection phase in the project (phase 3), where I was in the process of developing 

the measurement tool and pilot testing the design. Hence, the measurement was a pilot 

where the items were evaluated by students and teachers. This first test contained more 

items (110 items), including problems on the four operations, fractions, and algebra 

as well as word problems. The test was time restricted to 45 minutes.  

Resume of Study 2 

The second paper reports a study that investigated the relationship between fourth-

grade students’ ability to solve three fraction comparison tasks 
1

4
>

1

5
 , 

1

4
=

2

8
 , and 

5

11
 < 

3

5
 and their ability to solve a whole number arithmetic task for each of the four 

operations: 68 + 753, 547 – 64, 12 × 74 and 78 ÷ 3.  

The overarching research question is as follows: How do students’ abilities to solve 

arithmetic tasks in the four operations (e.g., division) relate to their abilities to answer 

items that require them to compare fractions?  

Our hypothesis was that the students’ proficiencies in division and multiplication 

would show a stronger association with their abilities to compare fractions than 

between their proficiency in addition or subtraction and their ability to compare 

fractions. For these reasons, we hypothesise that the concept of fraction is more 

closely connected to multiplicative reasoning.  

Methods used in Study 2 

Participants were fourth-grade students (ages 10–11), and the test was conducted at 

the end of the school year 17/18. The test was computerised and had a time limitation 

of 45 minutes; therefore, only the students who reached the fraction items (items 50 
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and 52) were included in the study (N = 99). First, we compared the students’ 

responses to the three fraction comparison tasks to each other and examined the 

different patterns in the correct, wrong, and missing answers.  

Hereafter, the analysis focused on how the different answers to one fraction 

comparison were associated with the other fraction tasks and with the answers to the 

four arithmetic operation items. The analysis was conducted as a binary logistic 

regression function. The p-values for the significance of associations were estimated 

using 2 x 2 contingency Х2-test logistic regression models. 

Results from Study 2 

The analysis showed that the students had greater difficulties solving the equivalent 

fraction item 
1

4
=

2

8
. Only about 30% of the students answered 

1

4
=

2

8
 correctly, whereas 

49% answered 
5

11
 < 

3

5
 correctly. The two non-equal fraction items showed ‘different’ 

answer patterns; therefore, both items had about 50% of the students answering 

correctly, while approximately 30% answered incorrectly, and 20% chose not to 

answer (Fig. 24). 

The results of the non-equal fraction item 
5

11
 < 

3

5
 were highly significantly positively 

associated with the results of both the multiplication items (OR = 4.5, p = 0.0009) and 

division items (OR = 3.9, p = 0.003). In contrast, the results of equal fraction items 
1

4
=

2

8
 were only associated positively with the division item (OR = 2.6, p = 0.02) 

(Table 13). The lowest associations were found between the results of two fraction 

items, the results of addition and subtraction items (all four ORs: 1.7–2.4: non-

significant) and between equal fraction items 
1

4
=

2

8
 and multiplication items (OR = 

2.1: non-significant). 

 

 

Fig. 24 Percentage of correct, incorrect or no answer to the three fraction items (N = 99). (Fig. 
2, Study 2)  
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Table 13 Coefficients of association (log-odds ratios, see text). (Table 1, Study 2)  

 

1

4
=

2

8
  

 

5

11
<

3

5
 

 

68  + 775 

 

547 – 64 

 

12 ×74 

 

78 ÷ 3 

 

5

11
<

3

5
 

 

2.40 **** 
    

                

68+753 0.85   0.53                   

547-64 0.75   0.88   1.91 ****             

12×74 0.72   1.51 *** 0.83   1.60 ***         

78 ÷ 3 0.96 * 1.36 ** 1.02 * 0.68   1.68 ****     

N  99   99   142   142   142   142  

 

Discussion of Study 2 

Overall, the statistical analysis showed that the equal fraction task differs from non-

equal fraction tasks. Only about 30% of the students answered the equal fraction item 

correctly, whereas approximately 50% answered the two non-equal fraction items 

correctly. This result was unexpected because the equal fraction tasks consist of the 

commonly known unit fraction 
1

4
, which frequently occurs in instructional material of 

fractions in fourth grade, whereas the fraction 
5

11
 in the non-equal fraction task is a 

rare fraction notation in the school curriculum overall. The same pattern was found in 

later independent data collections in the intervention phase in the time line of the 

project (phase 4), confirming this pattern. When looking at the pattern, it needs to be 

questioned whether the reason could be the design of the item. This means that it 

tested the students’ knowledge about the symbols >, <, and =. However, the same item 

design existed earlier in the test, but in these the student had to compare decimal 

numbers, and the answers to these tasks did not show that the item including the equal 

sign was more difficult than other items. 

When examining the differences in the two fraction items associated with the four 

operation items, the result of the non-equal 
5

11
 < 

3

5
 fraction was highly associated and 

significant to the results both for multiplication and division. However, there was no 

significant association with the results of either the addition or subtraction items. This 

pattern result agrees with our hypothesis that fractions have a stronger relationship to 

multiplicative reasoning than additive reasoning.  

The same pattern was not found in an association between the non-equal fraction item 

and the four arithmetic items. There was only a modest association between the 

fraction task and division. Hence, the equal fraction item differs from the for non-
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equal fraction item. Overall, these results support the notion that an understanding of 

fractions is closely connected to multiplicative reasoning; however, it is essential to 

pursue further investigation since there seems to be a different pattern in the students’ 

concept of fraction comparison when the comparison is based on equivalence 

compared to non-equivalence. This difference could be based on different kinds of 

natural number bias.  
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8.3 Study 3  

Two conceptions of fraction equivalence 

I co-wrote this paper with PhD Mette Bjerre (VIA University College). 

Published in Educational Studies in Mathematics. 

This third study reported in Paper 3 was founded on my curiosity to explore fraction 

equivalence. This curiosity was based on my analysis of students’ answers in Study 2 

to the fraction comparison tasks 
1

4
=

2

8
. As reported in Study 2, almost 50% of students 

could not answer correctly on this test item by the end of fourth grade. This made me 

wonder whether and why fraction equivalence was an important concept, and what 

kinds of conceptions are connected to fraction equivalence. This study is a theoretical 

study in which equivalence is investigated through a semantic framework of fractions. 

Resume of study 3 

The fourth paper’s study consisted of a mathematical analysis that distinguished two 

different approaches to equivalence: proportional equivalence and unit equivalence. 

These two approaches have distinctly different approaches to concepts and meanings 

when developing an understanding of fraction equivalence. The first unit equivalence 

is based on unit understanding, while the other proportional equivalence is grounded 

in proportionality understanding. The implicit research question is as follows: How 

can we define fraction equivalence, and why does fraction equivalence matter? 

Method used in Study 3 

First, we defined the mathematical definition of equivalence and distinguished the two 

different conceptions of fraction equivalence: unit equivalence and proportional 

equivalence. Our theoretical analysis is based on the different fraction subconstructs 

defined by Kieren (1976). We use his framework to analyse how the two conceptions 

are present in each of the five subconstructs. Hereafter, we analyse the equivalence 

influences on fraction arithmetic reasoning, in particular, focusing on fraction addition 

and subtraction. 

Results and discussion of Study 3 

When looking at the two fractions 
2

3
 and 

4

6
 they obviously represent the same 

magnitude. A way to understand that these two fractions are equal and thereby that 

their equivalence would be to draw two circles, partitioning one circle into three equal 

parts and painting two parts, then partitioning the second circle into six equal parts 

and painting four. In this way, it can be seen that the two fractions are in fact equal 
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because an equal area of the two circles is painted. However, that will only be true if 

the two circles have the same size to begin with, meaning that the unit is the same 

(Fig. 25). We define this as unit equivalence. However, fractions can also be 

interpreted differently as the ratio between the numerator and denominator, so we can 

also interpret the equivalence of fractions when they describe the same 

proportionality. This type of equivalence we call proportional equivalence. An 

example could be: ‘A boy has eaten two pieces of his small kid-sized pizza, which 

was in six equal pieces. His father eats one piece of a family-sized pizza, which was 

in three equal pieces. The boy and his father have eaten the same fraction of each of 

their pizzas. It is central to emphasise that unit equivalence automatically contains 

proportional equivalence, but proportional equivalence does not contain unit 

equivalence. 

Unit equivalence includes proportional 

equivalence 

Proportional equivalence does not 

include unit equivalence 

 

 

Fig. 25 Two conceptions of equivalence (Fig. 3, study 3) 

In the first part of the analysis, we found that the part-whole, quotient, measure, and 

operator subconstructs contained both proportional and unit equivalence. In contrast, 

we found that the ratio subconstruct, which is based on a proportional relation 

between the numerator and denominator, contained only proportional equivalence. 

This means that the two equivalence conceptions can develop a parallel interpretation 

of equivalent fractions. 

The analysis revealed new mathematical conceptions and perspectives on 

equivalence. Furthermore, the analysis detected different areas where the knowledge 

of fraction equivalence was necessary for developing an understanding of fraction 

arithmetic within addition and subtraction. With respect to the alterable perspectives 

of the multifaceted concept of a fraction, our analysis revealed mathematical concepts 

and potential perspectives on equivalence that had not previously been combined into 

one framework. 

The importance of equivalence was further elaborated in the analysis of different 

fraction arithmetic reasoning. For example, a whole number subtracted by a fraction 
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first partitioning of the wholes is needed when subtracting a fraction from a natural 

number. This could be the task 2 −  
1

4
, where one of the two wholes must be partitioned 

before performing the subtraction. This operation requires an understanding of 

equivalence where 2 can be seen as either equal to 1
4

4
 or 

8

4
 (Fig. 26). 

 
Fig. 26 Different partitioning approaches (Fig. 17, Study 3) 

The different perspectives on equivalence could provide new insights into known 

difficulties with fractions for students. Students’ proficiency in both equivalences 

might lead them to be better prepared to learn algebra, percentages, and linear 

proportionality; for example, it should be understood that the ratio or the proportional 

relationship stays the same when 
2(3𝑎+5𝑏)

4
=

3𝑎+5𝑏

2
 is reduced. 
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8.4 Study 4 

Natural number bias pattern in answers to different fraction tasks 

I co-wrote this paper with Professor Rasmus Waagepetersen (Aalborg University). 

Published in Bringing Nordic mathematics education into the future. Papers from 

NORMA 20. Preceedings of the Ninth Nordic Conference on Mathematics Education 

(In press). 

As previously described, this fourth study further explores the different answer 

patterns in the fraction measurement tool. The data for this study was collected in the 

intervention phase (Phase 4) where the design of the fraction measurement tool was 

further developed. This aim of this study was to investigate the different answer 

patterns. I began in Study 2, where I investigated the different answer patterns 

between whole number arithmetic and fraction comparison tasks. I wanted to explore 

how different incorrect answers could be explained by the natural number bias 

aspects. Review 2 about natural number bias was made primarily while this study was 

conducted 

Resume of study 4 

In this study, the role of natural number bias was further investigated. The data from 

the first data collection came from the developed test administered at the beginning 

of fourth grade. Here, we focused on two students’ wrong answers and coded whether 

they were based on one of the four aspects of natural number bias: representation, 

density, operations, or size. The hypothesis was that the four different natural number 

bias aspects could be closely related; thus, students with a tendency to transfer their 

concept of natural numbers in one context are more likely to make the same transfer 

into others. The aim was to investigate if and how these four aspects are related.  

The primary research question for this paper is as follows: How are students’ different 

natural number biases related to each other, and is there a pattern that indicates an 

overall tendency towards natural number bias? 

Methods used in Study 4 

The data used in this study consist of answers from 484 fourth-grade students from 

the beginning of the 2018/19 school year. In total, 235 girls and 249 boys took part in 

the study. The test consisted of 36 items and was time-restricted (10 minutes), which 

meant that not all students finished the test. Therefore, we only included the 484 

students who finished all items from 1 to 22 in the test. We selected 14 items where 

the students could provide answers that were influenced by natural number bias 

aspects: R (representation), S (size), D (density), and O (operations). 
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The analysis consisted of three steps: First, the different natural number bias aspects 

were coded from the students’ answers. Next, a descriptive statistics analysis of each 

of the 14 items was conducted to obtain an overview. The aggregated variables were 

obtained by counting the number of natural number bias aspect errors. We accounted 

for non-normality in the distribution of the data by studying the relations between the 

four variables, using Spearman’s rank-order correlation coefficient (rs). To correct for 

multiple testing, a Bonferroni correction was used to estimate the significance level.  

Results from Study 4 

In general, most of the wrong answers can be explained by a natural number bias 

aspect. The highest proportions of correct answers were found in the items connected 

to representation (0.60–0.70), while the lowest proportions of correct answers were 

found in the items connected to operations (0.01–0.00). Table 14 The correlation 

matrix between the four aspects of natural number bias is shown in Table 14. The 

proportion of natural number bias mistakes associated to the aspect of representation 

ranged from 0.11 to 0.30, whereas the proportion of natural number bias mistakes 

associated with the aspect of size ranged from 0.47 to 0.54. No strong correlation was 

found between any of the four aspects, and none of them were statistically significant 

(see Table 14).  

Table 14 The correlation matrix between the four aspects of natural number bias 

Aspect of natural 

number bias  

1 2 3 4 

1. Representation 1    

2. Size -.001 (ns) 1   

3. Density 0.117 (ns) 0.035 (ns) 1  

4. Operation 0.051 (ns) 0.050 (ns) -0.065 (ns) 1 

Note. Spearman’s rank-order correlation coefficient (rs), significance levels: p < 0.05 

(overall) and p < 0.0083 (Bonferroni corrected) for individual correlations, (ns): not 

significant (Table 3, Study 4) 

Discussion of Study 4 

The analysis followed three perspectives: 

First, natural number bias could explain why a majority of the students provided the 

wrong answers in the fraction tasks. The lowest proportion of wrong answers 

influenced by a natural number bias aspect was in the four items linked to 

representation while items connected to operations demonstrated the highest 

proportion of answers influenced by natural number bias. This finding might be 

explained by the fact that the tests were conducted at the beginning of fourth grade 
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when students had little experience with fraction addition and based their solving 

processes on their knowledge of natural numbers (Kainulainen et al., 2017; Ni & 

Zhou, 2005; Van Hoof, Vandewalle, et al., 2015). This strategy could be viewed as a 

mediating phase in the integrated conceptual change framework, which I developed 

and argued for in Chapter 4.4.3, where I combined the two theoretical frameworks 

integrated theory (e.g., Tian & Siegler, 2017) and conceptual change theory (e.g., Van 

Dooren et al., 2015). There is movement through their expansion of their number 

knowledge.  

Second, Spearman’s correlations (Table 14) indicated that the four aspects of natural 

number bias are not significantly related to each other. This finding contradicted the 

hypothesis that the students who have a tendency to apply their knowledge of natural 

numbers to fractions will show the same tendency across different aspects.  

Third, the correlations between the four aspects have led to a discussion on whether 

we should define four natural number bias aspects as types instead of aspects. The 

term ‘aspect’ indicates a close connection between aspects of the same natural number 

bias, which does not seem to be the case here. Hence, it would be better to define them 

as types of natural number biases. 
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8.5 Study 5 

Differences in high- and low-performing students’ fraction 

proficiency development 

I co-wrote this paper with Professor Rasmus Waagepetersen (Aalborg University), 

PhD Pernille Sunde (VIA University College), PhD Mette Bjerre (VIA University 

College), and Professor Pirjo Aunio (University of Helsinki). 

The fifth study reported in Paper 5 investigated the differences in the development of 

fraction proficiency for high- and low-performing students during their fourth-grade 

school year. The study’s data collection was finished during the intervention phase in 

the timeline of the project (phase 4). The developed fraction instruction material 

used in the intervention is elaborated in Chapter 6.6.2. The study aimed to 

follow the students’ development of fraction proficiency over time and see how the 

development differed (or not) between the high-and low-performing students. Study 

5 was a major focus when I started on my PhD project, and it took a lot of 

planning, information, design, and development. The study is primarily 

connected to Study 1, and the measurement tool developed in this study was the 

foundation for the data collection. 

Resume of study 5 

The data consisted of 21 fourth-grade classes (N = 398) from which two groups were 

selected: the first group included the highest performing 25% of students (n = 99), and 

the second group contained the lowest performing 25% students (n = 100) according 

to national test scores. The fourth-grade students’ fraction proficiency was studied for 

eight months at five distinct measurement time points. The research design allowed 

the observation during this time span, and all classes followed the same instruction 

structure for these topics throughout the school year. At the beginning of the school 

year, multiplication and division were introduced, and then an instruction period for 

fractions followed. Finally, equation instructions were introduced. This action made 

it possible to investigate how other mathematical topics (e.g., multiplication, division, 

and equations) influenced fraction proficiency. This study addressed the following 

overarching research question: How do high- and low-performing students differ in 

their development of fraction proficiency during fourth grade, and how do the 

different groups benefit from different forms of instruction? 

During this period, the students were instructed in fractions for seven weeks. This 

instruction used different representations with the aim of creating an inclusive 

classroom environment.  
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Methods used in Study 5 

Due to local curriculum activities, the fraction instruction periods were delayed by 

four weeks at six schools. The delayed data set was therefore considered a control or 

confirmation of the identified pattern in the first data set.  

The primary parameters of interest were the changes in the mean test scores for each 

test for the low- and high-performing students and the differences in these changes. 

The analysis was founded on the test scores using a multiple linear regression model 

based on the following parameters: α, β1ow, βhigh,  λ12, λ23, λ34, λ45 and δ12, δ23, δ34, δ45. 

In addition, we added gender as a variable with the associated parameter α to assess 

the expected differences in scores between the two genders.  

Results from Study 5 

The analysis showed that the high-performing group developed their fraction 

proficiency beyond the period where they received instruction in fractions (see Table 

15).  

Table 15 The results of a mixed-model analysis for the first and delayed data sets (Table 2, 

Study 5)  

 First data Delayed data 

 Coef. Std. 

Erro

r 

t  Pr(>|t|)  Coef Std. 

Error 

t  Pr(>|t|) 

βlow 4.66 0.90 5.15 <0.0001 *** 5.88 0.84 6.99 <0.0001 *** 

λ12 -0.03 0.63 -0.05 0.96  -0.27 0.60 -0.45 0.65 

λ23  3.59 0.65 5.53 <0.0001 *** 0.88 0.62 1.43 0.16 

λ34 0.61 0.69 0.88 0.38  3.29 0.64 5.12 <0.0001 *** 

λ45 -0.31 0.69 -0.46 0.65  -0.05 0.63 -0.08 0.94 

βhigh- βlow 5.18 1.06 4.88 <0.0001 *** 4.28 1.05 4.08 <0.0001 *** 

Α 3.97 0.91 4.37 <0.0001 *** 0.745

90 

0.94 0.79 0.43 

δ12 2.48 0.87 2.87 0.004 ** 3.91 0.86 4.53 <0.0001 *** 

δ23 -0.48 0.89 -0.54 0.59  0.19 0.89 0.21 0.83 

δ34 1.84 0.94 1.96 0.05  -0.81 0.94 -0.86 0.39 

δ45 0.47 0.93 0.50 0.62  1.36 0.93 1.47 0.142 

η12 2.45 0.59 4.14 <0.0001 *** 3.64 0.62 5.83 <0.0001 *** 

η23 3.11 0.61 5.09 <0.0001 *** 1.06 0.64 1.67 0.10 

η34 2.45 0.63 3.90 <0.0001 *** 2.49 0.68 3.64 <0.0001 *** 

η45 0.16 0.63 0.25 0.81  1.31 0.68 1.94 0.05 

Note The Pr(>t) column contains a p-value for each parameter that is based on a t-test for the 

hypothesis that the parameter is zero 
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They also developed their fraction proficiency when they received instruction in 

multiplication and division. In contrast, the low-performing students only developed 

their fraction proficiency during the first weeks of the fraction instruction period. 

The results indicated that there were significantly disparate changes (parameter 𝛿12) 

for high- and low-performing students between the first and second test. In other 

words, a difference was found in the changes between low- and high-performing 

students during the first period where they received instruction in multiplication and 

division in both data sets. (see Figs. 27 and 28). 

 

Fig. 27 A multiple linear regression model with 95% confidence intervals shown for the first 
data set  

 

Fig. 28 A multiple linear regression model with 95% confidence intervals shown for the delayed 
data set 
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Discussion of Study 5 

The two groups (high-performing and low-performing) differed in their development 

of fraction proficiency during the school year. One important distinction was that low-

performing students did not develop their fraction proficiency unless they were 

instructed in fractions, and this pattern was found for both low-performing groups 

only. In contrast, both of the  high-performing student groups showed another pattern; 

their fraction proficiency also developed outside the fraction instruction period and 

was supported during instruction in whole-number multiplication and division. 

However, instruction in equations did not have any influence on their fraction 

proficiency score, and this pattern was found in both the high- and low-performing 

groups.  

It is noteworthy that the effects of instructions in other mathematical topics were not 

present for low-performing student groups. In other words, high-performing groups’ 

fraction proficiency seemed to be supported when they had instruction in 

multiplicative principles in form of division and multiplication, while the same 

development was not found in low-performing groups. Overall, high-performing 

students showed no negative growth during the entire period while low-performing 

students only demonstrated significant positive growth if they received extra fraction 

instruction on a basic level. The gap between the two groups was widened primarily 

outside the fraction instruction period. I argue that this finding may indicate that high-

performing students have a more integrated concept of mathematics compared to low-

performing students. Meaning that they develop a web of knowledge (Hiebert & 

LeFevre, 1986). However, more research needs to be done to explore this in the future. 
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Chapter 9: Discussion 

Knowledge generated from this PhD project shall not be seen as universal or 

unchangeable, but as warranted assertibility. Every finding must be seen in light of 

this so each finding is reported from the current point in the ongoing inquiry process. 

Consequently, the discussion in this chapter is based on my asserted findings from the 

five studies and the recommendation for classroom practices indicated by those five 

studies. This chapter discusses the results from the studies, the project, its methodical 

choices, implications for education, and contributions to the field. 

9.1 Results from the five studies 

In this PhD project, I sought to address the following research question: How can we 

investigate and explain students’ difficulties with developing the multifaceted concept 

of fractions in fourth grade? I explored and investigated the question by engaging in 

the outlined inquiry process. This section addresses the fundamental question above, 

focusing on results concerning the students’ difficulties in developing their concept 

of fractions. The discussion is structured around three main results that are founded 

in the five studies: a) aspects of natural number bias, b) fraction equivalence, and c) 

development of fraction proficiency. Each of the five studies varies in how they 

contribute to and inform these three main outcomes. Therefore, denotative boxes 

indicate which studies contributed primarily to which part of the discussion. Study 1 

is not mentioned in any of the boxes but must be seen as implicit underlaying all the 

studies because it was the base of the quantitative data collection). 

 

9.1.1 Types of natural number bias  

As previously outlined in Chapter 4.4.3, my suggested framework, integrated 

conceptual change, proposes an understanding of number knowledge development 

that combines integrative and conceptual change theories. This theory is compound 

and consists of both the process and the shift during time and includes natural number 

bias. Integrated conceptual change framework includes and combines different 

explanations for expanding students’ number knowledge – namely, that students need 

a conceptual change in their number knowledge and this change must be seen as an 

integrated process over time. This means that in order to develop their number 

knowledge from natural numbers to also include rational numbers, the students 

develop conceptual change in their number knowledge. These needed changes can be 

found in the different types of natural number bias. Whether to use the term types or 

aspects can be discussed, and as outlined in Study 4, I argue for the use of the term 

types. However, at the same time it is not a new separate knowledge of numbers – the 

number knowledge must be seen as one integrated knowledge, including new aspects 

of numbers.  

Study II 

Study IV 
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Previously, natural number bias has been defined with three or four aspects: density, 

operations, size, and sometimes representation (see the review in Chapter 4.3). My 

findings in Study 4 showed that the four aspects of natural number bias were not 

related or intricately connected. This is contrary to the findings of a previous research 

study by Van Hoof, Verschaffel, et al. (2015) where an overall natural number bias 

was found. Their conclusion on the overall whole number bias was that three aspects 

(density, size, and operation) were found across grades. Hence, their study showed 

the natural number bias was not found to be equally strong for each of the three aspects 

in their study, indicating that the aspects differ. However, the results from Study 4 in 

the present PhD project led to the conclusion that it is difficult to define natural 

number bias as one overall tendency of natural number bias when analysing the 

correlation between the students’ answers coded as containing natural number bias. 

Instead, the study found that it could be better to use the term ‘types’ or ‘kinds’ to 

emphasise that there seems to be different whole number biases at stake. The 

discrepancy between my study and the study by Van Hoof, Verschaffel, et al.’s (2015) 

could be explained by the fact that my Study 4 had another aim, which was not finding 

the natural number aspect across grades but across each student’s answers, thereby 

determining whether some students have an overall tendency toward natural number 

bias. This is a methodical explanation for the different conclusion. In addition, other 

methodical differences between the two studies make it difficult to compare the two 

conclusions. For example, item design for future research in a Danish context where 

the same test item is used as in Van Hoof, Verschaffel, et al. (2015) would be a better 

avenue for discussing results between studies.  

Another important perspective to include in the discussion of Study 4’s findings that 

the four aspects were not related to each other is that the data used in this study were 

obtained at the beginning of fourth grade and that the pattern that was found in this 

study could change as students move through the school system. However, for the 

present, the four aspects of natural numbers (density, operation, representation, and 

size) do not seem to be closely connected. Therefore, it might be wrong to see them 

as aspects of the same natural number bias. In Study 4, I argue that it might be more 

appropriate to use the term ‘natural number bias types’ instead of ‘natural number bias 

aspect’. However, this demands further research on this particular area, and the current 

PhD project’s knowledge is, as stated, warranted assertibility. 

Another discussion is whether the three or four types of natural number biases are an 

adequate or fulfilling framework for understanding the biases. Fraction equivalence 

might be a fifth type of natural number bias because it appears that the equivalence 

task differs from the other non-equal comparison tasks. For example, the 

understanding that 
1

3
 is bigger than 

1

4
 even though 4 is larger than 3, and that 

1

4
 is equal 

to 
2

8 
 represent two different mathematical concepts that need to be changed in 

students’ number knowledge. The first, that 
1

4
 is smaller than 

1

3
, can be seen as a new 

understanding of how number notation’s size or magnitude differs between natural 

number and fraction notations. Developing the understanding that 
1

4
 is equal to 

2

8 
 can 
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be seen as a conceptual change wherein each natural number represents a unique 

magnitude or amount, whereas in the understanding of fractions, two different 

notations can represent the same magnitude or amount. Van Hoof, Vandewalle et al. 

(2015) argue that the representation aspect includes the understanding that fractions 

and decimals can represent the same number and that 
1

2
 is seen as one number (

1

2
 = 

0.5). This could include fraction equivalence, meaning that according to students’ 

perception, 
1

2
 = 

2

4
 = 0.5. However, it is noteworthy that fraction equivalence classes 

must also be connected to the subconstruct ratio. Therefore, ratio is connected to 

understanding fractions as equivalent classes: [
1

2
] = {

2

4
,

4

8
,

6

12
, . . . } (Behr et al. 1983; 

Kieren 1976, 1980), as also concluded in the theory of fraction equivalence 

conceptions in Study 3. This means that to fully understand fraction equivalence, the 

student must also understand the invariance between the numerator and denominator 

and see the proportional relationship between the two integers.  

Equivalence is not conceiving of fraction equivalence as based only on the 

understanding of a fraction as ‘one number’ or a decimal. I therefore hypothesise that 

it would be better to define equivalence as a bias type of its own. This seems to differ 

in answer patterns compared to non-equal fraction comparison tasks according to 

Study 2. Therefore, the figure presented in Chapter 4.4.3 might be incomplete and at 

least one more type of natural number bias, equivalence bias, must be added into the 

figure (see Fig 29). 

 

Fig. 29 The suggested five types of natural number biases. Note: Equivalence is separated from 
size 
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9.1.2 Fraction equivalence 

I argue that fraction equivalence is a major concept in understanding fractions because 

it is a way to support students’ development of their fraction knowledge, both 

procedural and conceptual. For example, finding the common denominator when 

adding 
1

4
 and 

1

3
 makes little sense if the students do not see the equivalence between 

1

4
=

3

12
 and 

1

3
=

4

12
 (whether this is founded in a procedural or conceptual understanding 

depends on the individual student’s solving process). After reviewing the content of 

Danish mathematics books (see Chapter 5.2), I found that little attention has been paid 

to the development of the interpretation of equivalence.  

As detected and analysed in Study 3, there are two different conceptions of 

equivalence: proportional and unit equivalence. The two different approaches work 

together and are combined. For example, unit equivalence will always contain 

proportional equivalence. To further elaborate the two different approaches in overall 

number knowledge development when a child learns natural numbers, the child learns 

to connect a set of entities to a unique number symbol (Levine et al., 2010). For 

example, the number four refers to an exact amount across different representations: 

four pencils, four chairs, four flowers and so forth. Children learn to see that the 

natural number represents a specific magnitude across different representations. 

However, when the child is learning fractions, they must learn to recognise the number 

as a proportional relation. For example, one dog out of four dogs, one piece of pizza 

out of four or – even more difficult – two boys out of eight children. All these different 

representations stand for the fraction 
1

4
. All show the proportional equivalence 

between the different representations. Recognising, for example, four in different 

representations allows for counting or adding the different entities. However, 

recognising one quarter requires the proportional relation between two integers. 

Previous studies have shown that different representations create different advantages 

or challenges for students in their learning processes with fractions (e.g., Hamdan & 

Gunderson, 2017; Sidney et al., 2019), and therefore different representations also 

create differences in their understanding of equivalence. Study 3 further revealed how 

different representations support or confuse the two conceptions of fraction 

equivalence. 

Furthermore, fraction equivalence can be interpreted as a quotient (Behr et al., 1992; 

Charalambous & Pitta-Pantazi, 2007; Kieren, 1980), meaning the invariance of the 

multiplicative relationship between the numerators and a denominator (Behr et al., 

1992; Ni, 2001). In Study 2, the results revealed the only significant relation between 

the equal fraction comparison task and one of the four arithmetic operations. This 

relation was the operation division, but the relation was small. However, the pattern 

between the division and the fraction equivalence comparison tasks indicates that 

there is a relation between division and fraction equivalence. This is not surprising; 

division of two whole numbers is the only operation whose result can be a fraction – 

a quotient. As mentioned in Chapter 3.4, this led me to further develop the figure of 

the five subconstructs and to emphasise the subconstruct quotient in the figure so that 

Study II 

Study III 
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the subconstruct quotient shares the same role as the subconstruct part-whole in the 

illustration (see Fig. 8). This is aligned with Kieren’s (1993) later-developed 

framework, which also emphasised the importance of the quotient. The relation 

between division was also found in Study 5 in the high-performing students who 

developed their fraction proficiency while receiving instruction in both multiplication 

and division. 

As outlined in Study 3, fraction equivalence can be viewed as an important part of 

developing an understanding of the fraction in connection to other mathematical 

concepts, for example, in order to support the understanding of algebra (
𝑎2+𝑎

4a2+8a
=

𝑎+1

4𝑎+8
) and percentages (

1

4
=

25

100
= 25%). The conclusion from this theoretical study 

can be supported by future empirical studies. 

9.1.3 Development of fraction proficiency over  time and in 

relation to other topics 

One primary outcome of the research was to explain how to support students’ 

understanding of fractions. Two of the studies found that multiplicative understanding 

influenced the students’ answers (Studies 2 and 5). First, students showed that their 

ability to solve whole number multiplication and division arithmetic was reflected 

positively in their responses when comparing fractions. The same pattern was not 

observed when reviewing whole number operations in addition or subtraction. 

Second, instruction in topics such as multiplication and division can support students’ 

development of fraction proficiency. This pattern was found in Study 5, where 

instruction in multiplicative concepts in particular was found to be influential in high-

performing students’ fraction proficiency. The vital role of multiplicative reasoning 

in fraction learning is well-known (e.g., Lamon, 2012). However, the question of 

whether instruction in multiplicative concepts may influence high-performing 

students’ fraction proficiency had not previously been investigated. Low-performing 

students only learn fractions when they receive instruction. 

I argue that the high-performing students in Study 5 seem to demonstrate a more 

integrated concept of numbers where topics influence on each other, whereas the same 

integrated mathematical development was not found in the low-performing group. 

Thereby, the study reveals that the gap between low-performing and high-performing 

students’ fraction proficiency will continue to widen over time because of the different 

pattern in how they learn. In other words, this can be simplified to the claim that high-

performing students learn mathematics, whereas low-performing students learn topics 

in mathematics. This can be seen as a fundamental difference in their conceptual 

knowledge; low-performing students do not show the same web of knowledge as 

high-performing students. To use the landscape metaphor often employed in a Danish 

cultural context (Lindenskov, 2006, 2010), high-performing students can see the 

entire landscape. In contrast, low-performing students only see small parts of the maps 

and cannot connect them; they see one mountain and not the mountain range. The 

Study II 

Study V 

IV 
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implication of this finding of this difference for classroom practices will be discussed 

in Chapter 9.3. 

When looking at number knowledge development through an integrated conceptual 

change framework perspective (my suggested combined framework in Chapter 4.4.3), 

the finding of the difference between the high- and low-performing students could be 

explained by the difference in the level of integrated understanding between the two 

groups. In other words, high-performing students show an integrated development in 

their number knowledge, whereas low-performing students have potential for 

developing an understanding of fractions, decimals or percentages, but these topics 

are not integrated and are not part of an overall number knowledge that also includes 

natural numbers.  

9.2 Project and methodical choices 

Mathematical education research is an interdisciplinary field, and this project reflects 

this (Ernest et al., 2016; Niss, 2007; Sierpinska et al., 1993; Williams et al., 2016), 

providing a small picture of the complexity this multifaceted field involves. Hence, 

the project consists of studies with a more psychological approach founded in 

empirical educational studies and a more theoretical approach founded in the 

mathematical concept of fractions. I could argue that there may be a lack of 

exploration into the sociological characteristics of this field, for example, analysing 

observation of students’ and teachers’ interaction within the instruction situations. 

However, the methodical choices were determined by questions within the inquiry 

process, meaning questions connected to the overarching research question, How can 

we investigate and explain students’ difficulties with developing the multifaceted 

concept of fractions in fourth grade?  

These served as the foundation for my choices. Therefore, it makes little sense to state 

that other methods could be used; it is better to inquire whether other questions could 

have been asked or whether there was another method to use for this investigation into 

possible answers. As outlined in Chapter 2, questions are central for the 

methodological framework of pragmatism. My actions, in the form of methodical 

choices, lead to these findings from the studies. Though enquiry is always embedded 

in the framework of biological and cultural operations, the knowledge developed from 

this PhD project must also be seen as embedded in the Danish school system both in 

classrooms and schools but also in university and teacher education, where my 

research project is based. 

 

9.2.1 Discussion of the data collection through measurement 

As outlined, pragmatism is not connected to one method but is based on observing a 

problem and investigating it. As outlined in Chapter 2, the current PhD project is based 
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on the problems I have observed regarding students’ difficulties with developing an 

understanding of fractions. When trying to investigate the problem, I developed a 

measurement tool whose aim was to measure students’ fraction proficiency (analysed 

in Study 1). This raises the question of whether this measurement can capture the 

multifaceted structure of fractions. The quantitative measurement will have some 

limitation in capturing the complexity of the topic and, for example, qualitative 

interviews of students might be a better way to investigate this complexity. However, 

conducting qualitative interviews does not guarantee capturing the students’ 

understanding and difficulties with the multifaceted concept of fractions; it will only 

be an external representation of students’ understanding (Goldin & Shteingold, 2001; 

Rittle-Johnson & Alibali, 1999). However, future analyses of the conducted 

interviews during intervention phase 5 might reveal new insights into the complexity. 

The benefits from using the developed measurement tool provide possibilities of 

finding patterns in students’ answers that would otherwise not have been possible. If 

I had not used a quantitative data collection method, it would not have been possible 

to investigate an overall pattern of different types of answers (Study 2) or to determine 

an overall difference between high- and low-performing students’ fraction proficiency 

during time period (Study 5).  

Another question that needs to be raised regarding the use of a measurement tool is 

whether students are being given the opportunity to show their understanding of 

fractions in a given test. The students’ performance on a test must be viewed as their 

performance in a specific test situation; this is a limitation. In addition, the students’ 

problem-solving process was not captured in the computerised test. The students’ 

fraction proficiency may have been different than the test results shown if it had been 

investigated through observation during regular instruction in a classroom. It is 

plausible that the students know or understand more than they show under 

measurement conditions. Future analyses of the interviews made in a more informal 

setting in the classroom will undoubtedly reveal new insights as well as new 

questions. As stated, the knowledge developed through this PhD project is seen as 

warranted assertibility. 

A third question would be whether and how measurements could be further developed 

and improved. The long development process of these measurements shows that it is 

an ongoing process. It is important to continually improve and question measurement 

tools in the inquiry process; this is a central part of the data collections. This means 

also determining what I investigate and even more importantly, what I do not 

investigate. The fraction proficiency measurement could be further developed, 

specifically the two-string productive disposition strategic competence defined by the 

National Research Council (2001). This aspect of proficiency was not captured due to 

my choices in measurement design. The time limitation of the test demanded that cuts 

be made. Future development of these strings could be included, but test time would 

have had to been extended. It was unfortunate that this test was not completed before 

the intervention. However, to ensure that the content validity was as high as possible, 
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outside experts (fourth-grade teachers) confirmed that the test measured fractions as 

taught in the Danish curriculum. 

Lastly, I find that it is important to raise a question related to the quality of the 

measurement: were we measuring what we think we were measuring? How high was 

the content validity? Was the CBM measuring fraction proficiency? Study 1 was 

essential for addressing these questions and took a great majority of my time. When 

evaluating content validity, different test items might have been added to target 

density differently. An example would be asking a student to write a fraction between 
1

5
and 

1

4
. However, my knowledge at the beginning of the project was lacking and 

evolved during the inquiry process study. In other words, I would now recommend 

adding items. In addition, I would have had the teacher rate each item to ensure 

content validity, as Al-Shehhi et al. (2019) did. 

The computerised tests have some limitations in their design. However, an attempt 

was made to overcome some of these limitations by observing and interviewing 

students. A perfect way to explore students’ knowledge does not exist. The methods 

used will simply be a representation of students’ thinking. The computerised test made 

it possible to have a large dataset that could confirm our findings and thereby support 

the Inquiry’s Scientific Phase VI. Therefore, it offered a way to explore and create a 

picture of the students’ difficulties with learning fractions. 

9.2.2 Discussion of the intervention’s research design 

As previously mentioned in Chapter 1.3, when I started on the PhD. project the plan 

was to use a quasi-experimental design with a control group. However, this design 

changed during the first year of my project for several reasons.  

Primarily, an important reason for not using quasi-experimental design was that the 

control group would not have a designed intervention. Therefore, students in the 

control group received regular instruction based on the three mathematics books 

analysed in Chapter 5.3. Even though I attempted to gather data on the instruction 

about fractions in the control group, the results were insufficient because many 

teachers did not respond to the survey. As a result, it was not possible to include 

accurate variables about the length of fraction instruction in the control group. 

Consequently, any attempt at comparison would be unreasonable because the length 

of fraction instruction in the intervention group was seven weeks; I did not know how 

long the instruction period lasted in the control group. Without this information, I 

might compare students with seven weeks of fraction instruction in the intervention 

study to students who only received three weeks of comparable instruction in the 

control group. 

A designated control group would be preferred, though due to study limitations, I was 

unable to construct another intervention design for the control group. Instead, I 

changed the design to focus primarily on high- and low-performing students’ fraction 

proficiency development during grade four. Therefore, as described in Study 5, the 
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project was designed as a delayed project component. As described in the chapter on 

methodology, the project is based on a process of inquiry in which the project 

continues to be developed and explored. As a result, the theoretical knowledge about 

quantitative studies grew, prompting the change in the research design. In addition, 

the difficulty with quasi-experimental designs and their effect size lies in the 

importance of a longitudinal view because the effect might decrease over time and 

therefore a delayed post-test would be important for the quality of the quasi-study 

(Aunio et al., 2005). These reservations influenced my choice to avoid a study based 

on a quasi-experiment.  

A way to improve the research design might be to use a cross-over design (Maclure 

& Mittleman, 2000), in which the first group would start with multiplication/division 

and after that, fractions. In contrast, the delayed group would start with fractions, 

followed by instruction in multiplication/division. This approach would help analyse 

several concepts, such as whether multiplicative reasoning improves if the instruction 

takes place after – as opposed to before – the fraction instruction period. 

Another improvement could be to consider a mixed-method design in which the 

interviews conducted during intervention phase 4 would be used in an integrated 

investigation of the field. Despite these reconsiderations and drawbacks, I found that 

my PhD. project contributed to how the quantitative data can be useful when 

investigating student difficulties in developing their understanding of fractions. 

9.2.3 The included students 

The composition of the group of included students in the five studies must be taken 

into consideration and examined. 

In Study 1, when analysing the accuracy of the GSM model, I chose to include both 

students who had answered all items in the measurement and students who had started 

on the measurement in the evaluations of structural validity of the measurement. This 

was done to secure that we found the same pattern in the indicators when comparing 

the results for the two evaluations.  

Because of time limitations in the CBM, not all students were able to answer all 

questions. This inclusion or exclusion of students may have created a bias, especially 

in Study 2, but as explained there I emphasise that the included students must be 

considered to be above average and thereby further emphasise the problem with 

comparing equal fractions. In addition, the implication must be considered that 

knowledge may be associated with students demonstrating a certain speed when 

solving a task. Future studies must consider this effect. 

In Study 5, I set the cut-off score at 25% before I started on the analysis. This means 

that the 25% was taken out of the total population, not taken out of each class. The 

consequent was that some classes had two students in the low group and other classes 

had eight students in this group. Nevertheless, all classes had both students in the low- 
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and high-performing group, confirming that the variance between schools and classes 

were not high (also shown in Study 5). Overall, as outlined in Chapter 6.2.1, the 

schools and classes can be seen as average Danish fourth-grade classes, and therefore 

the students included in the cut-off score of 25% must be seen as including students 

characterised as those with mathematic difficulties.  

A cut-off score other than 25% could have been discussed or applied. The estimated 

cut-off score varies across studies (Geary, 1994; Mazzocco, 2007; Swanson et al., 

2018). These cut-off points have ranged from the 5th to the 46th percentile (Mazzocco, 

2007; Swanson et al., 2018). In the intervention review in Chapter 4.4, the highest cut-

off score was the 40th percentile (Westenskow & Moyer-Packenham, 2016). There is 

no consensus, and the cut-off score is often used as a means to have an operational 

way to delineate the students with mathematical difficulties. There has been some 

consensus among researchers when using norm-referenced math scores that scores 

below the 7th or 11th percentile identify students with math learning disabilities. 

Further, scores between the 11th and 25th percentile identified students with math 

difficulties (Mazzocco, 2007; Mazzocco et al., 2013; Mazzocco & Räsänen, 2013; 

Swanson et al., 2018). That percentile is also the cut-off score used in Study 5, in 

which the 25 lowest and highest performing students in the national test’s sub-score 

numbers and algebra were used. However, it is important to emphasise that several 

studies have shown that each subgroup’s heterogeneity when using strict cut-off score 

criteria is changing (Swanson et al., 2018; Mazzocco et al., 2007). Therefore, each 

group’s differences varied. For example, students’ cognitive measures varied greatly 

within the group (Geary, 2011; Mazzocco, 2007; Swanson et al., 2018). Moreover, 

the students in both the high- and low-performing groups in Study 5 cannot be seen 

as homogeneous. However, the study aimed to follow students’ development during 

that time, and a pattern appeared to differ significantly between the high- and low-

performing students. This pattern was confirmed in the delayed groups.  

Another consideration could be whether it was appropriate to only use the national 

test score in numbers and algebra, or if the overall score from the other sub-scores in 

the national test should have been taken. I found that the numbers and algebra variable 

best explained the difficulties with numbers and was the best indicator of high- or 

low-performing students. I must emphasise that the Danish national test has been 

criticised for not being accurate when using it on a student level (VIVE – The Danish 

Center for Social Science Research, 2020) – it is only accurate on a school or class 

level. Therefore, I need to emphasise that when I choose to use the National Test score 

it is because of the high number of participating students (N=199). The high number 

made it possible to look at an overall tendency rather than on a separate unique 

students’ level. The use of National Test score was an operational choice I made.  

9.2.4 Concerns about following the development during time period 

Lastly, a central consideration for the inquiry process of the overarching research 

question How can we investigate and explain students’ difficulties with developing 

the multifaceted concept of fractions in grade four? is the concerns connected to the 
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limited time (eight months) in which the students were followed. Hence, following 

the students’ development over only eight months in Study 5 did not allow sufficient 

time to detect the full impact of the instruction on fraction proficiency. Especially for 

the low-performing group, a longitudinal study following the students during a period 

of three to five years will provide more insights and knowledge about student 

development. As previously mentioned, studies have found that low-performing 

students showed little growth in their fraction knowledge during their time in the 

school system (Jordan et al., 2017; Siegler & Pyke, 2013). Therefore, following the 

students over a longer period would be important: Do the high performing students 

maintain their progress? Alternatively, do the low performing students start their 

growth in fraction proficiency later? 

Time as a factor is also an important perspective in evaluating the fact that we did not 

find any relation between the different types of natural number biases (in Study 5). 

This may be because the students were just beginning the process of learning fractions 

and would later develop different generalisations across the multi-conceptual 

framework of fractions. Additionally, the process of their rational number knowledge 

development had just started. Therefore, the concept and difficulties with the concept 

were not fully developed within the students. The integrated development is still in 

progress, as I argue in my developed theoretical framework of integrated conceptual 

change. Therefore, following the students over a longer period and evaluating their 

natural number bias and fraction proficiency would be valuable for the inquiry’s 

Scientific Phase VI. The question is, can we rediscover the same patterns in later 

grades and thereby confirm the findings?  

9.3 Recommendations for classroom practice 

This section offers three perspectives relevant to the teaching and learning of fractions 

in the classroom. The first recommendation is that teachers should offer their students 

sufficient opportunities to acquire fraction equivalence concepts and understand the 

two constructions of equivalence: proportional or unit equivalence. More attention on 

equivalence can support the conceptual understanding for developing a flexible 

concept of fractions. This means that fraction equivalence can support the 

understanding of fraction arithmetic (e.g., common numerator), the connection 

between fractions and percentage (e.g., 
4

25
=

16

100
= 16%) and between fraction and 

algebra (e.g., 
4(𝑎+3𝑏)

8
=

𝑎+3𝑏

2
) (Study 3). 

Second, teachers must have time to identify the concepts that students need in order 

to understand how rational numbers, including fractions, differ from natural numbers, 

but also how natural numbers are included in rational numbers. Teachers must pay 

attention to the integrated conceptual change the students need to experience while 

overcoming their natural number biases. Because the different kinds of natural 

number biases do not seem to be related, as pointed out in Study 4, overcoming one 

bias does not mean overcoming all natural biases.  
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Third, students with mathematical difficulties may benefit from direct instruction, as 

previously recommended by the review of Shin and Bryant (2015). However, these 

detailed instructions should also focus on how different mathematical subjects are 

integrated. They must be supported in an integrated development so that students do 

not only learn ‘division’ or ‘fractions’, but also learn general mathematics. 

Specifically, their multiplicative understanding is a foundation to support fraction 

understanding (Study 2 and 5) 

9.4 Contributions and future research 

As mentioned, I see the knowledge developed during this PhD project as ‘warranted 

assertibility’. Therefore, when answering the overarching research question, these 

answers must not be seen as universal or unchangeable answers or contributions.  

How can we investigate and explain students’ difficulties with developing the 

multifaceted concept of fractions in fourth grade? 

 

I addressed the first part of the question, How can we investigate students’ difficulties 

with developing the multifaceted concept of fractions in fourth grade? in Study 1, 

where I developed a measurement targeting fraction proficiency. As outlined in 

Chapter 9.2.1, this type of computerised measurement has both limitations and 

advantages. However, it is a way to investigate the complex field of difficulties with 

fractions.  

 

The second part of the question, How can we explain students’ difficulties with 

developing the multifaceted concept of fractions in fourth grade? was addressed 

through the following studies in the PhD project. The three primary contributions to 

answer this part of the question are founded on three main perspectives: Different 

natural number bias types, equivalence, and development over time. This means that 

students’ difficulties can be explained and founded on their tendency to different kinds 

of natural number biases, the difficulties with conceptions of equivalence, and their 

fraction proficiency not being connected or supported by their multiplicative concepts 

of whole numbers. These three primary contributions were developed during 

exploration and inquiry into the complex research field of fractions and will be further 

outlined in the following sections covering different kinds of natural number biases, 

equivalence, and development over time. 

9.4.1 Different kinds of natural number biases 

Natural number bias must be seen in the light of the broader development of number 

knowledge. As I argue in Chapter 4.4.3, it is important that the two theories of 

conceptual change and integrative theory are not considered opposites to each other, 

but combined as an integrated conceptual change framework (Fig. 11). In my 

combined framework, the process of transitioning from whole numbers to rational 

numbers can be seen as an integrated type of development in which whole numbers 

play an essential role in the emergence of the concept of rational numbers. Thereby, 
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rational numbers act as an expansion of students’ overall number concepts. However, 

when the starting and ending points of the expanding process are examined separately 

from the process, the difference between the two number concepts may be interpreted 

as a change in concept, for example, change in the understanding of density or size.  

Several subconstructs such as the quotient are needed in the student’s expanding 

process of number knowledge. Subconstructs must support a change in the students’ 

concepts and help overcome their natural number biases. However, as demonstrated 

in Studies 2 and 5, natural numbers shall not be seen narrowly as distractors; they also 

offer support in the learning process of fractions. 

In summary, my suggested integrated conceptual change framework expresses 

conceptual change as the comparison between points in time, whereas integrated 

development is defined by movement through time between the points. Natural 

number biases can be seen as a concept of numbers that need to be changed when 

developing an understanding of fractions. However, fraction understanding is still an 

integrated part of the overall number knowledge. This framework needs to be further 

investigated as argued in Chapter 4.4.3. 

9.4.2 Equivalence 

A more theoretical contribution of this PhD project is defining the two equivalence 

types and how they are essential for developing flexible understanding when 

performing fraction arithmetic. Study 3 theoretically explores the importance of 

understanding that proportional equivalence differs from unit equivalence. Future 

empirical research on the two equivalence conceptions is needed to elaborate on their 

significance, especially the similarity between learning natural and rational numbers. 

For example, when learning natural numbers, it is essential that one counts the 

numbers of different things (e.g., spoons, pencils, etc.) and realises that there can be 

both three spoons and three pencils present, meaning there are the same amount 

present in this case. However, this does not mean that three pencils are equal to three 

spoons. The child recognises the relationship between the number and the amount. 

When learning fractions, students must develop the ability to recognise the 

proportional equivalence instead of the counted amount. For example, instead of 

counting to three, one must focus on the proportional relation when recognising 

fractions. 

9.4.3 Development of fraction understanding 

Finally, it appears that high- and low-performing students differ in their development 

of fraction proficiency. High-performing students’ fraction proficiency seems to be 

supported by instruction in multiplication and division, whereas the same support does 

not appear for low-performing students.  

As shown in Studies 2 and 5, natural number arithmetic, especially multiplication and 

division, seems to play a role in the understanding of fractions, and thereby the 



CHAPTER 9: DISCUSSION   

 148 

importance of multiplicative understanding within natural numbers is a central aspect 

for the development of fraction understanding. As shown in Study 5, the gap between 

the two groups widens outside the fraction instruction period. This finding may 

indicate that high-performing students have a more integrated concept of mathematics 

than low-performing students. Future research needs to explore how low-performing 

students can be supported in order to develop a more integrated concept of 

mathematics or be able to make a transfer of knowledge between mathematical 

concepts and thereby develop their web of knowledge as well. 

Overall, from a mathematical theoretical standpoint, rational numbers are not separate 

from natural numbers, but both number concepts are included in the overall rational 

number knowledge. Therefore, seeing it as an integrated expanding process is 

important. Though my suggested framework, integrated, conceptual change leaves 

several important questions of how to interpret the integrated conceptual change in 

the framework of mathematical knowledge containing both procedural and conceptual 

knowledge. To further develop the framework in the future, it could be central to 

actively add ‘procedural’ into the framework – making it an integrated conceptual 

and procedural change. Hence, as I argued in Chapter 4.2.3, procedural and 

conceptual knowledge must be seen as parts of an iterative process (Rittle-Johnson et 

al., 2001; Star, 2005; Star & Stylianides, 2013). Consequently, a change in concept 

knowledge will most likely also lead to a change in procedural knowledge, and vice 

versa. However, future empirical and theoretical research needs to further investigate 

the framework. 
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Appendix A. Databases included  

Databases 

Academic Search Elite         

Australian Education Index (AUEI) 

British Education Index 

Education Research Complete 

Education Resources Information Center (ERIC) 

FIS Bildung Literaturdatenbank 

Idunn 

NORA (Norwegian Open Research Archives) 

ProQuest Education Journal 

PsycCRITIQUES 

PsycINFO 

ScienceDirect 

Teacher Reference Center 

The Danish National Research Database 

Web of Science Core Collection 

Other locations 

MoNa (MONA - Matematik- og Naturfagsdidaktik) (Journal peer review) 

Tangenten - Caspar Forlag AS – Tidsskrift for matematikkundervisning (Journal) 

NOMAD: Nordic Studies in Mathematics Education (Journal peer review) 

Nämnaren (Journal)  

http://ncm.gu.se/namnaren-aktuellt-nummer
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Nationellt Centrum för Matematikutbildning (NCM) 

Matematikksenteret, Nasjonalt senter for matematikk i opplæring  

Google Scholar 

The Danish Evaluation Institute (EVA) 

UC Knowledge 

2. Word and phrase search 

The searches were conducted in EBSCOhost with chosen databases: 

Academic Search Elite 

British Education Index 

Education Research Complete 

ERIC (Education Resource Information Center) 

PsycCRITIQUES 

Teacher Reference Center 
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Appendix B. First Review: Mathematical 

knowledge and fraction proficiency 

First Conceptual and procedural knowledge 

 

 

Search words: (“conceptual knowledge” OR “procedural knowledge”) 

AND “learning” AND “fraction*” AND (“elementary school” OR 

“primary school”) 
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Fraction proficiency 

 

 

Search 1: “fraction proficiency” OR “rational number proficiency” 

Search 2: “fraction*” OR “proficiency” 
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Appendix C. Second Natural Number bias 

 

Search words: (“whole number bias” OR “natural number bias”) AND 

“fraction*” 
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Appendix D. Third Review – Number 

knowledge development

 
 

Search 1 “conceptual change theory” AND “mathematic*” 

AND “learning*” NOT “motivation*” NOT “neuro science” 

Search 2 “integrative theory” OR “integrated theory” OR “numerical 

development” AND “rational number*” 
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Appendix E. Fourth review: Fraction 

interventions 

 
 

 

 

Search words: (“fraction intervention” OR “fraction instruction”) AND 

“struggling learner*” AND “learning difficulties” AND “math*”  
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Appendix F. Consent letter 

Kære forælder på x 

Jeres barns matematiklærer har sagt ja til, at klassen må deltage i et forskningsprojekt om ”elevers udvikling 

af brøkbegrebet”. Når klassen i deres årsplaner arbejder med brøker, vil jeg derfor gerne komme ud og 

observere i klassen. Da klassen tidligere er blevet fulgt i første klasse i forbindelse med ”tal og regning” er 

det en unik mulighed at følge klassen igen, idet det giver mulighed for at følge elevernes matematiske 

udvikling over en længere tidsperiode. Som en del af projektet vil udvalgte matematiktimer blive 

videooptaget, og elevernes faglige udvikling vil blive fulgt gennem forskellige aktiviteter. 

Videooptagelserne vil blive brugt i fuldt anonymiseret form til forskning. Det vil ikke på nogen måde være 

muligt at genkende dit barn i artikler eller generelle forskningsresultater. 

Desuden vil cirka seks elever blive tilfældigt udvalgt i samråd med klassens matematiklærere til at deltage 

i tre små interviews gennem de fire uger, hvor klassen arbejder med brøker. Det vil sige, hver elev deltager 

i et interview i starten af brøkforløbet, ét i midten og ét i slutningen. Hvert interview tager cirka 20 minutter. 

Interviewene vil blive videooptaget, så de kan indgå i en analyse af, hvordan brøker bliver forklaret og 

forstået gennem arbejdet med dem. De små interviews foretages, når det passer ind i planlægningen, og når 

det kan lade sig gøre gerne i den understøttende undervisning.  

Det er vigtigt, at vi får ny viden om elevers udvikling og forståelse af brøkbegrebet, da brøker har vist sig 

at være et centralt område at forstå for elevernes fortsatte matematiske udvikling. Det er derfor værdsat, at 

klassens matematiklærere har givet lov til, at jeg må komme ud på x. Jeg skal derfor bede om dit samtykke 

til at bruge optagelserne af dit barn til forskning. Derfor skal du angive nedenfor, hvad du vil give tilladelse 

til, underskrive og sende brevet med retur til klassens matematiklærer. Du skal også udfylde og sende sedlen 

retur, hvis du ikke ønsker, at dit barn skal deltage. Har du spørgsmål er du velkommen til at kontakte mig 

X, mobil: XXXXXXX 

De bedste hilsner 

Pernille Ladegaard Pedersen, lektor ved læreruddannelsen i Aarhus og ph.d.-studerende ved AAU 

Undertegnede giver følgende tilladelser vedr. mit barns deltagelse i forskningsprojektet i skoleåret 

2018/2019 (Sæt kryds): 

JA NEJ 

1. Mit barn må videofilmes i forbindelse med matematikundervisningen

2. Mit barn må udtages og filmes i individuelle interviews om dets forståelse af 

brøker. Barnets fulde navn Fødselsdato og år 

Dato  Forældreunderskrift 
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