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Abstract—In the case of a hand amputation, the affected person 

can use a myoelectric prosthesis to substitute the missing limb and 
regain motor functions. Unfortunately, commercial methods for 
myoelectric control, although robust and simple, are unintuitive 
and cognitively taxing when applied to an advanced multi-
functional prosthesis. The state-of-the-art methods developed in 
academia are based on machine learning and therefore require 
long training and suffer from a lack of robustness. This work 
presents a novel closed-loop multi-level amplitude controller 
(CMAC), which aims at overcoming these drawbacks. The CMAC 
implements three degrees-of-freedom (DoF) control by 
thresholding the muscle contraction intensity during wrist flexion 
and extension movements. Unique features of the controller are 
the vibrotactile feedback that communicates the state of the 
controller to the user and a scheme for proportional control. These 
components allow exploiting the full dexterity of the prosthesis 
using a simple two-channel myoelectric interface. The CMAC was 
compared to a commonly implemented pattern-recognition 
method (linear discriminant analysis – LDA) using clinically 
relevant tests in 12 able-bodied and 2 amputee subjects. The 
experimental assessment demonstrated that CMAC was similarly 
fast as LDA in dexterous tests (clothespin and cube manipulation), 
while it was somewhat slower than LDA during a simple, single 
DoF task (box and blocks). In addition, in all the tasks, LDA and 
CMAC resulted in a similarly low error rate. On the other hand, 
to an amputee that could not generate six distinguishable classes 
using LDA, the CMAC still enabled the control of all the prosthesis 
DoFs. Importantly, the overall setup and training time in CMAC 
were significantly lower compared to LDA. In conclusion, the 
novel method is convenient for clinical applications, and allows 
substantially higher control dexterity compared to what can be 
normally achieved using conventional two channel EMG. 
Therefore, CMAC provides performance comparable to advanced 
machine-learning algorithms and the robustness and ease of use 
that is characteristic for the simple two-channel myoelectric 
interface. 

Index Terms—myoelectric control, pattern classification, multi-
amplitude control, vibrotactile feedback, functional tasks 
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I. INTRODUCTION 
LECTRICALLY powered hand prostheses are the 
contemporary state of the art in substituting the functions 

of the amputated limb. The current commercial prostheses are 
multi-articulated and offer several controllable DoFs that are 
operated by means of electrical muscle activity. The user 
generates distinguishable electromyographic (EMG) signals in 
the residual muscles, which are then mapped to the movements 
performed by the artificial limb. However, the implementation 
of a myoelectric human-machine-interface (HMI) is not always 
straightforward primarily due to lack of residual muscles, which 
could be used as control inputs [1]. In fact, it is largely 
considered nowadays that it is the HMI and not the 
mechatronics that is the bottleneck to the prosthesis 
performance and usability [2].  

A popular method for the implementation of myoelectric 
control is the use of machine learning to estimate user motor 
intention from a multichannel EMG recording. In this approach, 
the controller is trained to assign inputs (i.e., muscle activity) to 
outputs (i.e., prosthesis function) based on the examples that 
demonstrate the desired mapping (training dataset). This 
requires that the user produces reproducible and stable 
myoelectric patterns in order to train the system to perform a 
reliable input-output association. Traditionally, pattern 
recognition has been the method of choice [3] but it allows 
activating only one specific movement at a time (e.g., wrist 
flexion followed by hand closing) [4]. More recently, 
regression algorithms have been tested to enable simultaneous 
and proportional control of several DoFs (e.g., wrist flexion 
while closing the hand). However, these methods are so far 
limited to a maximum of three DoFs in virtual tests [5], [6], and 
only two DoFs in functional tasks with a prosthesis [7], [8]. In 
general, machine-learning based control approaches perform 
well offline as well as in laboratory conditions. The reported 
classification accuracy is usually > 95% for up to six classes 

M. A. Schweisfurth is with the Faculty of Life Sciences, University of 
Applied Sciences (HAW) Hamburg, Ulmenliet 20, 21033, Germany (email: 
meikeannika.schweisfurth@haw-hamburg.de) 

S. Dosen is with The Faculty of Medicine, Department of Health Science 
and Technology, Center for Sensory-Motor Interaction, Aalborg University, 
Aalborg Denmark (email: sdosen@hst.aau.dk) 

Closed-loop multi-amplitude control for robust 
and dexterous performance of myoelectric 

prosthesis  
Marko Markovic, Marc Varel, Meike A. Schweisfurth, Arndt F. Schilling, and Strahinja Dosen, 

Member, IEEE 

E 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

[9], [10]. However, it has been demonstrated that the offline 
accuracy is a poor predictor of the online control performance 
[2], [11] and that the lack of a broader commercial 
implementation is primarily caused by the poor reliability in 
daily use. Namely, the non-stationarities like transient changes, 
electrode shift, and variation in limb positioning or load [1], 
[12]–[14] alter the muscle patterns generated by the user and 
this can significantly deteriorate the performance of machine 
learning algorithms from day to day [2], [11]. Despite decades 
of research, first commercial systems for prosthesis control 
based on pattern classification have been introduced only 
recently [15], [16]. Altogether, so far the lack of robustness of 
pattern classification and regression is “limiting its clinical 
applicability and acceptance” [17]. 

Consequently, the control of most commercial prostheses 
still relies on the direct proportional and sequential control 
scheme, which was invented decades ago [10], [18]. In this 
approach, a monopolar myoelectric signal determines the 
velocity of prosthesis movement in a specific direction (e.g., 
hand closing). Therefore, at least two muscles are needed for 
proportional control of a single DoF (e.g., hand closing and 
opening). This scheme can be easily extended to multiple DoFs 
by using a dedicated switching signal, such as a co-activation 
of both muscles, to change the function. However, such control 
is slow and tedious for the multifunction prostheses, because 
the user needs to switch sequentially through all the DoFs. 
Grouping related functions in a state machine can improve the 
performance [19], [20], [21]. Alternatively, the signal 
amplitude can be divided into several ranges, where each range 
is associated to a specific function, which is known as multi-
amplitude (MAC) or amplitude-coding control [22], [23]. For 
example, light flexion can activate closing in palmar and strong 
flexion in lateral grasp. The advantage of this approach is that 
the user can directly activate a function, without the sequential 
switching. However, the number of functions that can be 
controlled is limited since it can be difficult for the user to 
modulate the muscle activation across the amplitude levels. In 
literature as well as commercially, MAC has been used with at 
most two levels per electrode [22], [23]. In addition, 
proportional control can be challenging with MAC, because the 
signal needs to be modulated within a narrow amplitude. If the 
signal comes out of the range, the subject inadvertently 
switches the function.  

Hence, the users’ discontent with commercial HMIs in terms 
of their speed/intuitiveness in case of direct control or poor 
reliability in case of machine learning solutions motivate the 
implementation of novel control schemes. Here, we present a 
novel approach for the closed-loop multi-amplitude control 
(CMAC) using only two EMG channels to accommodate three 
DoFs, namely, grasping, rotation, and flexion/extension of the 
wrist in an advanced myoelectric prosthesis. The main novelty 
of CMAC, compared to conventional MAC, is the integration 
of vibrotactile feedback and a proportional control scheme. 
Importantly, the vibrotactile stimulation did not transmit the 
state of the prosthesis as usually done in literature [24], [25]; 
instead, the role of feedback was to communicate the state of 
the CMAC controller to the subject. These novelties allowed 

reliable selection as well as proportional control of six 
prosthesis functions, which would not be possible using 
conventional MAC.  

In the present study, we compared the performance of 
CMAC versus commonly used pattern classification controller 
(linear discriminant analysis, LDA). The results demonstrated 
that CMAC performed similarly to the more advanced LDA 
controller in dexterous functional tasks. Additionally, CMAC 
had substantially shorter setup and training time than LDA. 
Therefore, the novel method provides the robustness of a 
simple, commercial two-channel control combined with the 
dexterity of machine learning algorithms developed in 
academia. Thereby, the new system closes the gap between the 
user’s needs for robust control and feedback, and the limitations 
of the state of the art pattern-recognition control.  

II. MATERIALS AND METHODS  

A. Experimental setup and hardware implementation 
The experimental setup for evaluating CMAC prototype in 

able-bodied subjects consisted of components shown in Fig. 1: 
1) a Michelangelo prosthesis with three degrees of freedom 
(Ottobock Healthcare GmbH, Vienna, Austria) coupled with a 
control unit and two dry EMG electrodes with integrated 
amplifiers (type: 13E200, Ottobock Healthcare GmbH, Vienna, 
Austria), 2) a feedback component including three C2 tactors 
(Engineering Acoustics, Inc., Casselberry, Florida, USA) 
generating vibrotactile stimulation, and 3) a desktop PC (Dell 
Optiplex 7010, Intel i5, Windows 7). 

 
Fig. 1. The setup for evaluating CMAC prototype. Two-channel EMG signal is 
recorded and transmitted to the controller. After the muscle activation level has 
been classified into one of the three sub-ranges, the signal is sent to the tactor 
unit generating vibrations to indicate the selected functions and provide EMG 
biofeedback. (A) Vibrotactors are positioned at the ventral (1), medial (2) and 
lateral (3) side of the upper arm. (B) The anterior and posterior view of the 
lower limb together with the positioning of EMG electrodes, Channel 1 and 2, 
at the flexor carpi radialis and extensor carpi ulnaris, respectively. 
 

In able-bodied subjects, a left-hand Michelangelo prosthesis 
was attached to a socket covering the subjects’ left forearm 
(Fig. 1, grey component). The CMAC used two electrodes (Fig. 
1B) placed on the dorsal and volar side of the forearm above the 
hand and wrist flexor (Channel 1) and extensor muscles 
(Channel 2), respectively. Due to the lack of space, the 
electrodes as well as the vibration motors were placed on the 
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contralateral side. This was only a matter of convenience and, 
in the normal use, all the system components are supposed to 
be on the ipsilateral side, ideally integrated in the prosthesis 
socket. The vibrotactors were strapped equidistantly and 
circumferentially around the upper arm using a rubber band: 
tactor 1 was placed on the ventral side, tactor 2 on the medial, 
and tactor 3 on the lateral side of the upper arm (Fig. 1A). In 
amputee subjects, the prosthesis was connected to a custom-
made socket with embedded EMG electrodes. The socket was 
placed on the residual limb and the vibrotactile feedback was, 
due to the space constraints, positioned on the ipsilateral upper 
arm, proximal to the elbow at one third of the upper arm length.  
Therefore, even though the vibrotactors were not integrated in 
the socket the setup in amputees closely resembled the 
envisioned application of the system.  

The experimental setup in LDA condition differed from 
CMAC only in the number of electrodes (eight dry EMG 
electrodes in LDA) and the absence of vibrotactile feedback.  

Importantly, although Michelangelo prosthesis was able to 
perform lateral grasp, this preshape was not utilized in the 
present experiment. Introducing an additional class would make 
the control less reliable, and we decided to prioritize system 
robustness over dexterity. Put differently, the primary goal was 
that the prosthesis operates in a stable and reproducible manner. 
Furthermore, when mapping available classes to prosthesis 
commands, we prioritized the wrist function with respect to 
hand dexterity. This decision was based on our own experience 
but also on the recent scientific evidence which demonstrates 
that in the context of prosthesis control, having a dexterous 
wrist could be more relevant for activities of daily living than 
having dexterous fingers [26], [27]. 

B. Algorithm implementation 
1) CMAC system 

The CMAC control was based on amplitude thresholding. 
The two electrodes with integrated pre-amplifiers were used to 
record surface EMG signals. To obtain the level of muscle 
activation, the root mean square (RMS) of EMG was computed 
over the sliding window (150 ms) with 80% of overlap and low-
pass filtered using a 2nd order Butterworth filter with the cutoff 
frequency at 2.5 Hz. The RMS from both EMG channels was 
normalized by linearly mapping the values between the baseline 
activity and the maximal prolonged voluntary contraction 
(MPVC, [3]) to the range 0-100%. To produce MPVC, the 
subjects were asked to activate the muscles strongly but at the 
level that they could maintain for 10 seconds. The control 
signals were normalized to MPVC (instead of MVC) in order 
to ensure that the subjects did not need to produce excessive 
muscle contractions when controlling the prosthesis. The 
baseline RMS activity was heuristically adjusted to minimize 
the chance for accidental prosthesis activation. The MPVC was 
measured five times and the smallest value was adopted as the 
MPVC to minimize the chances that subjects would get fatigued 
during the experiment. During online control, the normalized 
myocontrol channel with the higher activation was compared 
against the thresholds at 35% and 80% in order to determine the 
amplitude range, and each range was associated to a specific 

prosthesis function (Table I). Since the system operated with 
two electrodes and three ranges per electrode, it could control 
up to six prosthesis movements (i.e., three DoFs). A light 
contraction of the wrist flexor muscles activated wrist 
pronation, a medium contraction closed the hand in pinch grip 
and a strong contraction led to wrist flexion. The contraction of 
the wrist extensor muscles actuated the same DoFs in the 
opposite direction. Furthermore, the majority-voting filter of 
180 ms (150 ms overlap) was applied. The prosthesis function 
was activated only if 70% of the samples were from the same 
class.  

TABLE I 
MAPPING BETWEEN ACTIVATION RANGE, PROSTHESIS MOVEMENT AND 

VIBROTACTORS ACTIVATION  
Muscle 

activation 
(% of the 

normalized RMS) 

Prosthesis activation Feedback 

Medial EMG 
(wrist flexor) 

Dorsal EMG 
(wrist extensor) 

ARa 1: < 30 Pronation Supination Ventral tactor 
AR 2: 30 - 85 Fine pinch Hand open Medial tactor 

AR 3: > 85 Flexion Extension Lateral tactor 
aAR: Amplitude range 

 The prosthesis was velocity controlled (Fig. 2). The wrist 
was operated using gated-ramp controller [28] and hand 
opening/closing was based on classic proportional control 
scheme. The gated-ramp control was therefore implemented in 
amplitude range 1 (wrist pronation/supination) and 3 (wrist 
flexion/extension). When the myoelectric signal was in these 
ranges, the prosthesis started rotating/flexing in the selected 
direction at a minimum velocity. The velocity was then linearly 
increased with time (constant acceleration) until a predefined 
maximal velocity was reached. The minimum and maximum 
velocity as well as the acceleration (slope) were adjustable 
parameters. In the present study, the maximum speed was 
reached in 0.9 s from the movement onset. Contrary to this, the 
prosthesis control in the amplitude range 2 (hand 
opening/closing) was proportional to the muscle activation to 
allow fine and reliable control of grasping force; the muscle 
activation in this range was mapped linearly to the prosthesis 
velocity, i.e., 85% of the normalized RMS corresponded to 
maximum closing speed and thereby maximal grasping force. 
The proportional controller was activated when the user entered 
the amplitude range 2 by increasing the muscle activation 
(transition from range 1 to 2). However, in order to avoid the 
sudden hand opening/closing at the maximum speed, the 
transition from range 3 back to 2 did not activate proportional 
control but instead it triggered the gated-ramp controller (same 
operation as when controlling the wrist).  

Three vibrotactors were activated according to Table I. The 
currently selected range (prosthesis function) was indicated to 
the user by activating the respective vibrotactors, i.e., ventral, 
medial and lateral for the amplitude range 1, 2 and 3, 
respectively. Therefore, by modulating his/her muscle 
activation the subject perceived a vibration pattern, which was 
moving circumferentially around his upper arm from ventral 
over medial to lateral tactor for increasing and in the opposite 
direction for the decreasing muscle contraction. Since the 
overall control loop incorporated both mechanical (e.g., inertia 
of the prosthesis actuators) and signal-processing delays (e.g., 
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majority voting filter) the selected amplitude range was 
perceived by the user not only before the prosthesis actually 
moved but also even before the control algorithm reached the 
decision. Therefore, the user was directly aware of his/her 
myoelectric command (EMG biofeedback [28], [29]) and 
he/she could use this to act predictively. For example, by 
sensing that the vibration “jumps” between two adjacent tactors 
he/she could anticipate the switching of the prosthesis function 
and modulate his/her muscle activity towards the range 
(function) that he/she actually wants to activate. When 
amplitude range 1 or 3 was triggered, ventral or lateral tactors, 
respectively, vibrated at the maximal intensity. However, when 
proportional control in amplitude range 2 was active, the 
vibration amplitude was modulated between 30% and 100% of 
the maximal intensity. In this case, the feedback indicated both 
the selected function (hand open/close) and the actual amount 
of prosthesis speed. Therefore, the subjects could use this 
information to finely adjust prosthesis force. The vibration 
frequency was set to 230Hz. 

 
Fig. 2. Example of an input signal for CMAC controller, namely, filtered and 
normalized RMS of EMG of wrist flexor muscle, (A) and the corresponding 
velocity command generated by CMAC and sent to the prosthesis (B) plotted 
against time in seconds. Threshold 1 and 2 (red lines) depict the myoelectric 
control thresholds that switch between prosthesis functions (red dotted lines). 
Note that proportional control is available only in the middle amplitude range, 
which corresponds to prosthesis opening/closing (see Table I). 
2) LDA classifier 

LDA classifier used eight EMG electrodes and the Hodgins 
time-domain feature set (Hudgins, Parker, & Scott, 1993), 
which is considered as a benchmark for pattern classification 
prosthetic control [29], [3]. The features of the EMG were 
extracted using a time window of 150 ms with an overlap of 
120 ms, the control module operated at a sample rate of 33 Hz. 
The classification was performed for seven movements (rest, 
fine pinch, hand opening, wrist pronation, supination, flexion 
and extension). The majority-voting filter computed the 
‘winning class’ using a sliding window of 180 ms (150 ms 
overlap). For the decision to be reached, at least 70% of the 
samples (i.e., four out of six) had to belong to the same class. A 

second order low-pass Butterworth filter with a cut-off 
frequency of 2.5 Hz was used to smooth the control signal sent 
to the prosthesis. 

C. Experimental evaluation: comparison between CMAC and 
LDA 
1) Subjects 

The study was approved by the Ethics committee of the 
University of Göttingen (22/04/2016). All experiments were 
conducted in accordance with the declaration of Helsinki, and 
the subjects signed an informed consent form prior to 
participation in the experiments. A total of twelve able-bodied 
(age: 25±5; 3 females, 9 males) and two amputee subjects were 
recruited (age: 59 and 61 years old, both males). Nine subjects 
were right handed, four left handed, and one was ambidextrous. 
Nine out of twelve subjects were naïve to myoelectric 
prosthesis control. 

2) Experimental tests 
Three tests of gradually increasing complexity were 

conducted to assess the practical applicability of the novel 
myoelectric control system (Fig. 3). In addition to these, 
subjective workload and feedback perception were evaluated 
using questionnaires.  

Test 1: Box-and-Blocks Test (BOX). The BOX, first 
described in Cromwell (1976), is a standardized test in which 
the subjects are given 60 seconds to transfer as many blocks 
(size 2.5cm3, maximally 32 blocks) as possible from the left to 
the right compartment of a wooden box (Fig. 3A) (Cromwell, 
1976). This was defined as one run. Therefore, the subjects 
needed to control a single degree of freedom – opening and 
closing of the hand. The test protocol was implemented as in 
[30], except that we allowed the subjects to get familiar with the 
procedure before starting the test.  

Test 2: Clothespin-Reallocation Test (PIN). This method 
assesses the capabilities of dexterous manipulation of an object 
while maintaining a stable grasp [31]. Here, it has been slightly 
modified: the task was to relocate four, instead of three, plastic 
clothespins as quickly as possible from a horizontal to a vertical 
bar (Fig. 3B). Hence, two DoFs had to be controlled to 
accomplish the task (i.e., hand closing/opening and wrist 
rotation). The four pins were modified with two different spring 
resistances (two red pins: min. force = 13N, max. force = 23N; 
two blue pins: min. force = 29N, max. force = 38N). In addition, 
they have been equipped with a switch and a small LED (Fig. 
3B) [32]. Applying too much force on a pin led to triggering the 
switch and activating the LED, which simulated the breaking of 
the pin. Therefore, the subjects had to apply the appropriate 
amount of grip force to open the pin. Dropping a pin or 
activating the LED resulted in a repetition of the complete trial 
from the beginning. 

Test 3: Cube-and-Block-Transportation Test (CUBE). 
CUBE test was based on the design of [29] for evaluating the 
dexterity of control in transradial amputees. Here, the task has 
been adapted in order to assess the control performance for 
three DOFs. The subjects transported two objects, a cube (5 
cm3) and a block (15 cm x 5 cm x 3 cm), sequentially. First, the 
cube was transferred from the left side of an upper shelf to a 
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lower shelf (Fig. 3C1) performing the following sequence of 
prosthesis movements: flexing the wrist before grasping the 
cube, supinating the wrist at ~180 degree, extending the wrist 
and placing the cube within the marked area by opening the 
hand. Then, the block lying flat on one side in the lower shelf 
was transported to the upper shelf in an upright position (Fig. 
3C2). In this case, the subjects pronated the wrist at ~180° and 
slightly flexed, if necessary. After grasping the object, the wrist 
was supinated at ~90°, the block was placed within the marked 
area on the upper shelf and released by opening the prosthesis. 
Dropping the object during the manipulation resulted in 
repeating the trial from the beginning.  

 
Fig. 3. (A) Box-and-Blocks Test. The subjects transported as many blocks as 
possible from the left to the right box within 60 seconds. (B) Clothespin-
Relocation Test. The subjects needed to relocate four pins from the starting 
(horizontal bar) to the final positions (vertical bar). The clothespins are 
equipped with an LED indicator that lights up when too much force is applied. 
(C) Cube and Block Transport Test. The subjects were asked to reallocate the 
two objects from the starting positions on the left to the final positions on the 
right-hand side. 
 
3) Experimental protocol 

All able-bodied subjects performed the full experimental 
protocol in two control conditions (LDA and CMAC). Three 
able-bodied subjects additionally performed full experiment 
using CMAC without vibrotactile feedback to assess the 
importance of feedback (MAC condition). Each experimental 
condition was performed in two sessions - one practice and one 
evaluation session. One amputee subject used CMAC and LDA 
with a reduced number of classes (hand open/close and wrist 
pronation/supination) since he could not produce six 
distinguishable muscle activation patterns. The other amputee 
used CMAC and LDA both with full (LDA-6) and reduced 
number of classes (LDA-4). The CUBE task was not performed 
with LDA-4, as the task required the full dexterity. The order of 
conditions was pseudo-randomized across subjects (Fig. 4). 

The practice session was used to train the myoelectric control 
and become acquainted with the experimental tests, while the 
outcome measures were collected in the evaluation session. The 
break between two adjacent sessions was between one and three 
days. The sessions lasted between 90 and 150 minutes. The 

experimental protocol was divided into five phases (Fig. 4): I) 
control introduction, II) calibration, III) training, IV) tests 
introduction, and V) testing phase (performed only in the 
evaluation session). Both sessions followed this protocol except 
that the practice session did not include the testing phase (V) 
and the evaluation session did not include the control 
introduction (I).  

 
Fig. 4. Experimental protocol during evaluation session for three control 
methods – MAC, CMAC and LDA. The protocol was divided into five phases: 
I) introduction, II) calibration, III) training, IV) tests introduction and V) test 
phase. *The recording of the calibration data in phase II is done in LDA 
condition only. **The feedback testing was performed in CMAC condition 
only. 

I) Control introduction. The CMAC was introduced in two 
steps. First, the visual feedback depicting the preprocessed and 
normalized RMS signals was shown to the subject (Fig. 2A). 
This visual feedback was used to explain how modulating 
muscle contraction triggers different activation ranges (AR) and 
how they relate to prosthesis functions. Then, the vibrotactile 
feedback was explained. The participants received a 
combination of visual and vibration feedback in order to learn 
how to utilize the vibrotactile coding scheme. Finally, the visual 
feedback was removed, and the participants focused on the 
vibration only.  

In LDA, the introduction included training subjects to 
generate distinct muscle activation patterns for the six 
movement classes. This was achieved by visually inspecting a 
polar plot showing the RMS of EMG acquired from each 
electrode as a vector [33]. 

II) Calibration phase. In CMAC, the MPVC was measured 
for two motions: wrist flexion and wrist extension. The subjects 
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were instructed to activate the muscles strongly to the level that 
could be comfortably maintained for 3-5 s, five times in a row.  
Then, the minimum and maximum myocontrol activation 
thresholds that were used for RMS signal normalization were 
gradually adjusted until the user was satisfied with the overall 
controllability and no accidental activations of the prosthesis 
functions were observed. 

In LDA, the MPVC was determined for six motions: wrist 
ulnar and radial deviation, hand and close, wrist flexion and 
extension; these motions were used in phase IV to control the 
respective prosthesis functions, where wrist abduction and 
adduction were mapped to wrist pronation and supination. LDA 
was calibrated as recommended in the literature [9], [34]. The 
subjects performed each movement at three activation levels 
(30%, 50%, and 80% of MPVC) by tracking a reference 
trajectory shown on the computer screen. Since the electrodes 
for able-bodied subjects were placed on the contralateral side, 
the subjects did not need to move the arm during the functional 
tests in phase V. Therefore, it was not necessary to train the 
algorithm in more than one arm position. However, for amputee 
subjects who wore electrodes on the ipsilateral side the training 
was performed in three arm positions to accommodate for the 
limb-position effect [35].  

III) Training phase. The training phase consisted of a target-
reaching task, performed on a computer screen. The task was to 
reach a pre-defined target by moving a cursor, which was 
controlled by a selected control method (CMAC or LDA). The 
subject had six seconds to reach the target area and then 
maintain the cursor within the target for at least one second 
(dwell time). The targets were presented in random order and 
they required activation of different DoFs (all DoFs included). 
The runs were repeated until the average success rate of 85% 
was reached across the last three runs.  

In CMAC, the subjects had to perform additional training 
with the feedback in order to demonstrate that they were able to 
discriminate between the tactors and stimulation levels and 
utilize it for prosthesis control. The subjects were asked to 
select randomly chosen prosthesis functions (determined by 
experimenter) by relying only on vibrotactile feedback (eyes 
closed). Only upon repeatedly demonstrating that they can 
reliably activate every prosthesis DoF, the subjects could 
proceed further with the tests introduction phase. 

IV) Tests introduction. In this phase, the participants tried the 
experimental tasks (BOX, PIN and CUBE) with the prosthesis. 
The control parameters were optimized if subjects had trouble 
in actuating the prosthesis during the test. In CMAC, the 
adjustable parameters were the activation threshold and the 
maximal muscle activation level. In LDA, the same parameters 
were adjusted but for each class separately. 

V) Testing phase. The experimental tests were presented in 
the order of increasing complexity (BOX, PIN and CUBE). The 
BOX test was repeated six times, whereas PIN and CUBE were 
performed until six successful trials (no drops/breaks) were 
recorded. All tests were performed in an upright standing 
position in front of a table or a shelf. The height of the table and 
shelf were adjusted to the hips and shoulder level of the subject, 
respectively. The subjects filled in the NASA-TLX 

questionnaire after each test. The sensory feedback 
questionnaire (SFQ) was presented once at the end of the 
experimental session in each condition.  
4) Experimental outcome measures 

The primary outcome measures were the number of 
successfully transferred blocks (BOX), the time to accomplish 
the trial (i.e., reallocate 4 clothespins in PIN) and the total time 
to transport both objects (CUBE). The secondary outcome 
measure was the error rate, defined as the number of dropped 
blocks (BOX) and the number of repeated trials (PIN and 
CUBE).  

The NASA TLX questionnaire was used to assess the task-
specific workload according to mental, physical, and temporal 
demand as well as performance, effort and, frustration [36], 
[37].  

A sensory feedback questionnaire (SFQ) has been developed 
in order to assess the subjective impressions about vibrotactile 
feedback. The SFQ was divided in two parts. Part A was 
completed once after each control condition (CMAC and LDA). 
It consisted of three questions evaluating the overall benefit of 
implicit feedback sources, i.e., visual feedback, sound and 
vibration of the prosthesis as well as proprioceptive feedback 
from the muscles. Under muscle proprioception, we regarded 
the ability of the subject to perceive his/her muscle contraction 
intensity and its effect on the prosthesis control. Part B was 
applied in CMAC condition only and it included four additional 
questions evaluating the usability of the vibrotactile feedback 
(benefit, comprehension, concentration, and sensation). A 
visual-analog scale between 0 to 100 points (in steps of five) 
was used to evaluate the questions. 

Finally, the cumulative training time (CTT) was measured 
during the evaluation session only. It reflected how much time 
was needed to mount, train, test (using target reaching task) and 
fine-tune the prosthesis control with each of the systems 
(CMAC or LDA). The CTT was measured from the beginning 
of the evaluation session until the start of the experimental tests 
(phase IV). 
5) Data analysis 

The performance was computed for each subject by 
averaging the primary outcome measures and the error rate 
across six successfully performed trials and over all 
unsuccessful trials, respectively. Due to the oversight, two 
participants in CMAC and LDA condition did not fill out the 
SFQ questionnaires. Therefore, the SFQ and NASA TLX 
outcome measures were collected and analyzed for ten out of 
twelve subjects. 

As the data did not pass a normality test (Kolmogorov test), 
the results are reported as median (interquartile range). The 
Friedman test was used to assess statistically significant 
differences within a control condition (CMAC, LDA). For the 
pairwise comparison, Tukey’s honestly significant difference 
criterion was applied. The Wilcoxon signed rank test was 
employed to compare the results across the conditions. The 
threshold for statistical significance was set to p < 0.05.  

III. RESULTS 
1) Able-bodied subjects 

Fig. 5 depicts the primary (A1, B1, and C1) and the 
secondary outcome measures (A2, B2 and C2), as well as the 
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NASA TLX results (A3, B3 and C3) and questionnaires (D, E) 
in two control conditions (CMAC and LDA).  

The average time to transfer a block in BOX was 5 (2) s with 
CMAC, and this was significantly slower compared to LDA (3 
(1) s / block; p = 0.009). The error rate in both conditions was 
similar. Participants rated the overall workload significantly 
higher when using CMAC than when using LDA (Fig. 5A3; 
67% (20%) vs. 53% (16%); p = 0.0327). In PIN test, there was 
no statistically significant difference in the time to accomplish 
the task between CMAC and LDA (Fig. 5B1; 56 (14) s vs. 44 
(14) s). Additionally, neither the error rate (Fig. 5B2; CMAC 3 
(2), LDA 2 (2)) nor the workload (Fig. 5B3; CMAC 62% 
(20%), LDA 55% (21%)) differed significantly between the 
conditions.  The users exhibited similar performance with LDA 
and CMAC in CUBE test in all the outcome measures, 
including the time to accomplish the task (Fig. 5C1; CMAC 37 
(10) s, LDA 33 (10) s), error rate (Fig. 5C2; CMAC 1(1), LDA 
0 (1)) and workload (Fig. 5C3; CMAC 56% (27%), LDA 49% 
(32%)).  

The summary results from the questionnaire about the use of 
implicit sensory feedback are shown in Fig. 5D. The subjects 
relied on the visual assessment of the prosthesis state 
significantly more in LDA (90% (20%)) than in CMAC (77% 
(35%), p = 0. 0078). Moreover, during LDA and in contrast to 
CMAC, the vision was perceived as the dominant feedback 
source as it was rated significantly higher than both sound and 
vibration cues of the prosthesis motor (60% (20%)) as well as 
muscle proprioception (67% (35%)). Overall, the subjects rated 
the supplementary vibrotactile feedback (Fig. 5E) as beneficial 
(75% (30%)), comprehensive (87% (15%)) and pleasant (60% 
(30%)). However, with a minimum of 25%, a maximum of 
90%, and a median of 60% the subjects displayed a high 

variability in rating the concentration effort necessary for 
integration and utilization of the vibrotactile feedback. 

The cumulative training time (CTT), was significantly lower 
in CMAC (40 (15) minutes) compared to LDA (50 (20) 
minutes, p = 0.03).  

In the MAC in which the feedback was unavailable, the 
performance was substantially worse than in the CMAC 
condition (BOX: 8 (1) s / b; PIN: 72 (14) s; CUBE: 55 (14) s).  
2) Amputee subjects 

TABLE II 
RESULTS FROM AMPUTEE SUBJECTS 

 Amputee 1 
LDA-4 classes LDA-6 classes CMAC 

Perf. Work. Perf. Work. Perf. Work. 
BOX 3 ± 0.4  

s/block 
X 5 ± 0.4s 

s/block 
56 
 

4 ± 0.4 
s/block 

60 

PIN 57 ± 8s 
2 errors 

X 58 ± 1s 
0 errors 

38 60 ± 9s 
2 errors 

61 

CUBE X X 45 ± 8s 
0 errors 

62 45 ± 3s 
0 errors 

16 

 Amputee 2 
BOX 3 ± 0.2  

s/block 
32 X X 6 ± 0.5 

s/block 
38 

PIN 38 ± 4s 
2 errors 

35 X X 61 ± 8s 
6 errors 

48 

CUBE X X X X 67 ± 6s 
5 errors 

74 

The summary results for amputees are presented in Table II. 
For amputee 1, the overall trend was similar to that observed in 
able-bodied subjects. The performance was similar with CMAC 
and LDA-6 in both primary and secondary outcome measures. 
When he used LDA with four classes, the performance 
improved in BOX test. The second amputee, who could not 
control six classes with LDA, was able to exploit the full 
dexterity of the prosthesis with CMAC. He successfully 
performed all three tasks. When using a reduced number of 

Fig. 5. (A, B, C) Average trial completion time (primary outcome), errors (secondary outcome) and workload score across the experimental tests (BOX, PIN, 
CUBE) and conditions (CMAC, LDA). The performance of CMAC was similar to that of LDA in PIN and CUBE tasks. (D,E) Sensory feedback questionnaire 
(SFQ) results. The ratings are between 0 and 100%. The boxplots depict the median (circles), interquartile range (boxes), maximal/minimal values (whiskers). 
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classes (LDA-4), he was substantially better compared to 
CMAC, but he could not perform the CUBE task, which 
required wrist flexion/extension. The workload slightly 
increased in CMAC in most of the cases. It was substantially 
higher in PIN test in amputee 1 but also substantially lower 
compared to LDA-6 in CUBE test in the same amputee.  

IV. DISCUSSION 
This study presents a novel myoelectric interface based on 

closed-loop multi-level amplitude control (CMAC) using two-
channel EMG and three-channel vibrotactile feedback. CMAC 
was implemented as a proportional controller capable of 
controlling three prosthesis DoFs using three amplitude ranges 
per EMG electrode, while simultaneously transmitting the 
current activation level back to the user (biofeedback). The 
novel control scheme was compared to the conventional MAC 
as well as to the commonly used pattern-recognition algorithm 
(LDA) in able-bodied and amputee subjects, who performed 
functional tasks with increasing level of complexity. The 
evaluation addressed both objective and subjective 
performance measures. 

The CMAC and pattern classification are substantially 
different approaches to prosthesis control both in terms of 
hardware and data processing (e.g., 2 versus 8 EMG channels). 
Nevertheless, they provide the same functionality, that is, 
direct, sequential control of prosthesis DoFs. The CMAC uses 
the same number of EMG channels as the SoA myocontrol but 
eliminates the need for manual switching through prosthesis 
functions (e.g., cocontraction). The switching is not only 
tedious but also extremely slow for multi-DoF prosthesis 
control. Two recent studies demonstrated that LDA 
substantially outperformed two-channel control with switching 
[29], [38] Therefore, although in the present experiment the 
CMAC was not directly compared to the SoA two-channel 
myocontrol, it is highly likely that it would be substantially 
better especially in terms of task execution speed, which was 
the primary outcome measure in this study.  
1) CMAC allows dexterous control using simple myoelectric 
interface and feedback. 

The provision of vibrotactile feedback was fundamental for 
the effectiveness of CMAC control. The feedback provided the 
information on the current level of muscle activation, thereby 
allowing the subjects to modulate the muscle activity across the 
three amplitude ranges in reliable and controlled manner. 
Indeed, removing the feedback in the MAC condition resulted 
not only in substantially worse performance (decrease of 
between 30% to 40% across all tests) but the subjects also 
reported that it was very difficult and frustrating to navigate the 
3-level MAC control without the feedback information. This 
led to higher number of errors, such as involuntary object drops, 
and we consequently decided not to proceed with this 
experimental condition after assessing it in three able-bodied 
subjects. Therefore, in CMAC, the feedback assists the subject 
in function selection (levels 1-3) as well as in proportional 
control (level 2), and the present experiment shows that both 
were important (CUBE and PIN tasks, respectively). However, 
in the PIN task, the individual contributions of the two feedback 

mechanisms to the subject performance cannot be clearly 
separated. 

 Thanks to closing the loop and the use of range-specific 
controllers (gated ramp and proportional scaling) CMAC 
scheme provides the level of control dexterity that substantially 
surpasses the capabilities of the conventional two-channel 
methods such as sequential switching, and conventional open-
loop MAC. CMAC allows direct activation of six prosthesis 
functions, which could be provided so far only using machine 
learning. However, since CMAC reduces the stimulation range 
that is available for proportional control (in order to allow 
feedback-driven function selection), it could happen that LDA 
and/or two-channel SoA interface would provide better 
proportional control in some tasks, especially if they are also 
supported by the feedback.  

Due to the nature of CMAC operation, the tactile feedback 
was dynamic: short periods of stimulation that was jumping 
from tactor to tactor. This has minimized the habituation that is 
typically observed during a prolonged constant stimulation 
[39]. And indeed, none of the tested subjects reported any 
difficulties in feedback perception and/or interpretation. In 
addition, the vibrotactile interface did not interfere with EMG 
recording and myoelectric control. 
2) CMAC is similar to the state of the art machine learning in 
dexterous tasks. 

Overall, the performance of CMAC in able-bodied subjects 
and one amputee was comparable to that of LDA with six 
classes in the two complex tasks (PIN and CUBE) in terms of 
both speed (time necessary to complete the task) as well as 
reliability (number of errors). There was no clear advantage for 
either of the two methods regarding the perceived workload 
reported by the subjects. Therefore, not only that CMAC 
provides the same number of commands as LDA, but it also 
allows these commands to be activated by the user in a fast and 
reliable manner, despite the fact that it uses a simple scheme 
that is not based on pattern classification. This simplicity is an 
important advantage. Those subjects that cannot produce 
enough commands through pattern classification, like amputee 
2 in the present study, can still utilize full prosthesis dexterity 
by using CMAC. Importantly, the implementation of LDA was 
substantially more complex compared to CMAC since it used 
1) more EMG features: root mean square, zero crossing rate, 
slope sign change and wave length; 2) more EMG electrodes 
(eight vs. two); and 3) more complex computation (matrix 
multiplication vs. simple amplitude thresholding). 

The fact that CMAC performed worse than LDA in the 
simplest, single DoF task (BOX) can be easily explained by the 
specific implementation used in the present study. Namely, 
BOX relies on a seamless activation of a single DoF, prosthesis 
opening and closing. However, in CMAC control scheme, these 
functions were associated to the middle activation ranges 
(Table I). Therefore, the user needed to activate and maintain 
the flexor and extensor muscles between 30 and 85% of the 
normalized RMS. This is a more difficult task then simply 
activating the flexors and extensors at any level above the 
resting threshold, which was enough to close and open the hand 
in LDA. Therefore, CMAC introduced control overhead that 
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resulted in a significant increase of the workload during the 
BOX task (Fig. 5C1). Nevertheless, this could be easily 
corrected by rearranging the mapping between the ranges and 
functions in Table I (e.g., allocating opening/closing to the 
range 1); however, optimal mapping was outside the scope of 
the present study and remains to be investigated in the future.  

Finally, during all the tests CMAC was as reliable as LDA 
with the same number of classes: the number of errors was 
similar in both conditions, independent of the task complexity. 
This result is specifically relevant in PIN. Here, the need for 
precise and fast myoelectric control is crucial for task success 
since closing the prosthesis too fast would lead to “breaking” 
the clothespin. Therefore, CMAC not only allows for dexterous 
switching between the DoFs but also for proportional 
myoelectric control, in which the user can regulate the 
prosthesis movement velocity. The vibrotactile EMG 
biofeedback enabled the subject to modulate the muscle 
contraction within the second range (proportional control) 
despite the fact that the range was limited by both lower and 
upper threshold (30-85% of the normalized RMS). Such 
constrain does not exist with LDA where the full range from 
zero to maximum was available for the modulation of the speed 
within each of the classes. 
3) CMAC substantially decreases the training and setup time. 

The CTT reflected the total time needed to mount, train and 
calibrate the control system. When compared to the LDA this 
time was approximately 10 minutes lower in CMAC condition. 
Since in both experimental conditions, we used dry EMG 
electrodes that were placed in an elastic band, which is simply 
strapped around the lower arm - a process that takes well below 
one minute to complete - the difference in CTT could be traced 
back to the system training and calibration and not to the 
electrode placement time. Moreover, the setup time of the 
CMAC system, although very short, was certainly longer than 
that of LDA since it required mounting of additional feedback 
component and careful placement of the EMG electrodes on the 
wrist flexor and extensor muscles. Indeed, the shortening of the 
training and system calibration time is important since 
myoelectric control is inherently unstable and prone to the 
influence of non-stationarities. Therefore, it may happen that 
the recalibration needs to be performed often (e.g., on a daily 
basis) [13]. While an amputee using LDA would need to retrain 
the movements that are not functioning, the recalibration of 
CMAC system is straightforward and does not differ much from 
calibrating the conventional two-channel myoelectric control. 
In addition, contrary to LDA, which requires a long initial 
training (data collection), the CMAC includes a minimal setup. 
This setup reduces to measuring the baseline activity and 
MPVC to determine the activation thresholds, followed by fine-
tuning of the thresholds and vibration intensities, which is the 
likely reason behind 10 minutes difference in CTT. 
4) CMAC decreases the reliance on the visual feedback 

The results of the implicit feedback questionnaire (Fig. 5D) 
suggest that the subjects in LDA condition relied predominantly 
on visual cues. Thus, the control loop was primarily closed 
through vision. In CMAC condition, this trend has changed as 
the subjects payed less attention to visual cues. This can be 

explained by the fact that vibrotactile feedback in CMAC 
communicated the selected prosthesis function even before the 
prosthesis started moving, as explained in section II.B. 
Therefore, the subjects did not need to focus that much on the 
prosthesis itself. In LDA, the movement of the prosthesis was 
the only way for them to confirm they have successfully 
activated the proper class. This kind of perceptual shift (from 
visual to supplementary feedback) is already observed in our 
recent studies [32], [40]. Therefore, the subjects integrated the 
vibrotactile feedback into their control scheme. This was 
confirmed additionally by the high subjective rating of the 
vibrotactile feedback (Fig. 5E) regarding benefit (75 (30)) and 
comprehension (87 (15)).   

In conclusion, the presented study demonstrated that a 
reliable dexterous control can be achieved by using a simple 
method that is easy to setup. Compared to LDA, CMAC 
requires substantially shorter training and yet provides similar 
performance in dexterous tasks. Therefore, we demonstrate that 
methods based on non-intuitive mapping between muscle 
activations and prosthesis functions can still lead to a good 
performance, as also shown in the studies with myoelectric 
abstract decoders [41], [42] and postural control [43]. The 
control loop  is closed by transmitting the (bio) feedback to the 
prosthesis user. The EMG biofeedback is a novel and versatile 
paradigm in prosthesis control, recently proposed by us [44], 
[45] and developed further by other groups [46], [47]. The 
present study is a demonstration of how this feedback method 
can be used to substantially improve the performance of a 
simple control approach (multi-level thresholding) to the level 
that it becomes comparable to the state of art pattern 
classification. In principle, similar feedback could be also 
integrated in the control methods based on pattern classification 
and/or switching, however, this is outside the scope of the 
present study. 
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