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Improved External Speaker-Robust Keyword
Spotting for Hearing Assistive Devices

Iván López-Espejo, Zheng-Hua Tan, Senior Member, IEEE, and Jesper Jensen

Abstract—For certain applications, keyword spotting (KWS)
requires some degree of personalization. This is the case for
KWS for hearing assistive devices, e.g., hearing aids, where
only the device user should be allowed to trigger the KWS
system. In this paper, we first develop a new realistic hear-
ing aid experimental framework. Next, using this framework
we show that the performance of a state-of-the-art multi-task
deep learning architecture exploiting cepstral features for joint
KWS and users’ own-voice/external speaker detection drops
significantly. To overcome this problem, we use phase difference
information through GCC-PHAT (Generalized Cross-Correlation
with PHAse Transform)-based coefficients along with log-spectral
magnitude features. In addition, we demonstrate that working in
the perceptually-motivated constant-Q transform (CQT) domain
instead of in the short-time Fourier transform (STFT) domain
allows for the generation of compact and coherent features
which provide superior KWS performance. Our experimental
results show that our CQT-based proposal achieves a relative
KWS accuracy improvement of around 18% compared to using
cepstral features while dramatically decreasing the number of
multiplications in the multi-task architecture, which is key in the
context of low-resource devices like hearing assistive devices.

Index Terms—Robust keyword spotting, hearing assistive de-
vice, external speaker, constant-Q transform, generalized cross-
correlation, multi-task learning.

I. INTRODUCTION

KEYWORD spotting (KWS) is a technology concerning
the identification of pre-defined keywords in utterances.

KWS is in vogue in recent years thanks in part to virtual
assistants such as Apple’s Siri or Amazon’s Alexa that are
activated via voice using keywords [1]. The electronic devices
on which those KWS systems run (e.g., smartphones and
smart speakers) are often characterized by strict constraints in
terms of computational resources [2]. This fact has encouraged
further research on so-called small-footprint (i.e., low memory
and low computational complexity) KWS [3]–[6].

With computational constraints in mind, attention has been
progressively moving from LVCSR (Large-Vocabulary Con-
tinuous Speech Recognition)- [7] and keyword-filler HMM
(Hidden Markov Model)-based KWS [8] to KWS mainly
based on deep learning [3], [9], [10], as this technology can
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facilitate the design of compact and highly accurate models.
Specifically, convolutional neural networks (CNNs) for small-
footprint KWS, which tend to outperform classical deep neural
networks (DNNs) [3] with far fewer parameters [11], can be
considered state-of-the-art. The first attempt to use CNNs for
small-footprint KWS, by Sainath and Parada [11], was recently
improved by jointly integrating deep residual learning and
dilated convolutions [12]. This work shows outstanding KWS
accuracy results on the Google Speech Commands Dataset
[13], a real-speech corpus well-suited for KWS research.

Apart from voice-based activation of virtual assistants, KWS
has a number of other applications. For example, manual
operation of small, body-worn devices, e.g., hearing assistive
devices such as hearing aids, might be cumbersome. Changing
hearing aid settings or adjusting the volume typically involves
that elderly people, potentially with reduced fine motor skills,
have to press small buttons on a device mounted on the ear.
Even when the hearing aid can be operated by means of an
app running on a smartphone, one still needs to use the hands
and eyes, which can be problematic in certain situations, e.g.,
when driving a car. In all these scenarios, KWS can potentially
provide more comfortable user interaction. A KWS system
intended for hearing assistive devices should meet, at least,
two important requirements:

1) A small computational and memory footprint, as hearing
assistive devices are low-resource devices;

2) To only be triggered by the user of the hearing assistive
device and not by any other person, i.e., an external
speaker.

To the best of our knowledge, all of the small-footprint deep
KWS systems above are speaker-independent, which means
that any person, user or not, might trigger them. An attempt
to develop personalized, that is, speaker-dependent, KWS was
reported in [14]. In this work, a convolutional long short-term
memory (CLSTM) model is employed to jointly perform KWS
and text-dependent speaker verification. A major drawback of
this multi-task approach is that KWS performance is degraded
with respect to an equivalent system only dealing with the
KWS task. The authors of [14] hypothesize that this drawback
(which we have also observed in initial experiments) “may be
attributed to the fact that preserving speaker information may
be diluting the goal of the KWS task which attempts to derive
the keywords irrespective of the target speaker” [14].

In our previous study [15], we proposed KWS for hearing
assistive devices which was designed to be robust to external
speakers. In particular, the small-footprint deep residual neural
network of [12] was extended to jointly perform KWS and
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users’ own-voice/external speaker detection (multi-task deep
residual neural network) with a negligible increase in the num-
ber of network parameters. Thanks to exploiting 1) cepstral
features from the front and rear microphones of a hearing aid
and 2) the users’ own-voice/external speaker detection, KWS
accuracy results in the presence of external speakers are as
good as those of an equivalent state-of-the-art KWS system
[12] that does not deal with external speakers and is not con-
strained to any particular user. It is worth noting that this result
contrasts with the KWS performance degradation observed
in the aforementioned personalized (speaker-dependent) KWS
system [14].

The above KWS accuracy results [15] were obtained on a
speech database emulating a hearing aid as a sound capturing
device. To create this database, the Google Speech Commands
Dataset (GSCD) signals were filtered with impulse responses
modeling acoustic channels between speakers, including both
users and external speakers, and the hearing aid microphones.
While this database comprises speech signals uttered by many
different speakers, the impulse responses used in [15] were
only measured on a single actual person wearing a hearing aid,
which is referred to as “single-user” in this work. Nevertheless,
it is clear that such impulse responses are user-dependent as
these characterize the physical features (e.g., head size and
shape) of the users. Hence, in an effort to alleviate the lack
of realism of the single-user speech database used in [15],
a new speech corpus with multi-user impulse responses —
that is, with impulse responses measured on multiple persons
wearing a hearing aid— is created in this work. We will
experimentally show that, when employing this new multi-
user speech database, a significant performance loss in terms
of KWS accuracy can be observed for our previous multi-task
deep residual neural network [15] in the presence of external
speakers compared to an equivalent KWS system that does
not deal with external speakers and is not constrained to any
particular user [12].

Towards reducing this performance loss, we exploit the
following characteristic of our hearing assistive device set-
up: the relative position of the users’ mouth with respect to
the hearing aid front and rear microphones is virtually time-
invariant and different from that of an external speaker. Thus,
in this paper we explore the use of spectral magnitude and
phase difference information between microphone signals —
mainly intended for KWS and own-voice/external speaker de-
tection, respectively— for our multi-task deep residual neural
network for KWS robust to external speakers. In particular,
for better discrimination between users’ own-voice and ex-
ternal speakers, we deploy GCC-PHAT (Generalized Cross-
Correlation with PHAse Transform)-based [16] coefficients,
which are typically used to derive the time delay of arrival
(TDoA) between microphones [17].

For the generation of a compact input tensor (i.e., three-
dimensional matrix) integrating log-spectral magnitude and
GCC-PHAT-based features, we propose the use of the
perceptually-motivated constant-Q transform (CQT) [18] as
an alternative to the short-time Fourier transform (STFT).
Conceived for Western music processing, the CQT is char-
acterized by geometrically-spaced filters, so at lower (higher)

frequencies the frequency (time) resolution is higher. The
CQT has proven to be a powerful analysis tool for different
applications like audio separation [19], speaker verification
[20] and speaker verification anti-spoofing [21], [22].

Furthermore, we identify three personalization dimensions
which influence the microphone signals in the context of KWS
for hearing assistive devices: 1) the acoustic channel between
the user’s mouth and the hearing assistive device microphones,
2) the acoustic channels between external speakers and the
device microphones and 3) the user’s voice characteristics.
Specifically, if a completely user-specific system is developed,
strong knowledge of each dimension will be available. How-
ever, in a practical set-up, to train a user-specific system would
require either the a priori recording of a large amount of
speech data from such a specific target user or measuring
impulse responses on her/him for speech data simulation,
which would be time-consuming and expensive. Obviously,
intermediate situations could be envisioned, where some prior
knowledge is available about each dimension, e.g., gender-
dependent systems. In this paper we assess the importance of
dimensions 1) and 2) by means of variants of the multi-user
database personalizing the acoustic channel between the user’s
mouth and the hearing assistive device microphones and/or the
acoustic channels between external speakers and the user’s
device microphones. Our motivation for de-emphasizing the
study of dimension 3) is mainly a practical one: the GSCD,
upon which we base our study, does not contain a sufficient
amount of speech data from any single speaker to allow for a
fair and meaningful study of this dimension. Nevertheless, in
an attempt to assess the importance of dimension 3), at least
partly, we studied the importance of users’ voice characteris-
tics from a gender-specific point of view (which the GSCD
does allow for). However, these preliminary gender-dependent
KWS tests1 showed no statistically significant improvements
over gender-independent approaches.

The proposed CQT-based KWS system for hearing assis-
tive devices provides the following benefits in a multi-user
scenario:

1) Relative KWS accuracy improvements of around 18%
compared to using MFCCs (Mel-Frequency Cepstral
Coefficients) as in our previous study [15] and 29% with
respect to an equivalent system that does not deal with
external speakers [12];

2) A relative KWS accuracy worsening around 1% only
compared to an equivalent personalized, single-user sys-
tem (i.e., trained for a specific target user in terms of
acoustic channels). Indeed, we will show the superiority
of a user-specific system despite its aforementioned
practical disadvantages;

3) A negligible relative increase in the number of multipli-
cations of around 0.87% with respect to the original deep
residual model [12] that we extend to perform KWS
robust to external speakers. This is a prominent result in

1To perform these tests, we manually annotated the gender of the GSCD
speakers. We have made these speaker gender labels publicly available
at https://ilopezes.files.wordpress.com/2019/10/gscd_
spk_gender.zip.
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Fig. 1. General example of a residual block.

the context of low-resource devices like hearing assistive
devices.

In addition, we find out that the personalization of the acoustic
channel between the user’s mouth and the hearing assistive
device microphones is much more important to achieve a
comparable performance to a fully personalized system than
the personalization of the acoustic channels between external
speakers and the user’s device microphones. From a practical
point of view, this is an important finding, since measuring
impulse responses on a target user to only model the acoustic
channel between her/his mouth and the hearing assistive device
microphones is less cumbersome than carrying out similar
measurements to model acoustic channels between external
speakers and the user’s device microphones.

The rest of this paper is organized as follows. In Section
II, multi-task deep residual learning, considered in this work
for KWS and own-voice/external speaker detection, is revis-
ited. CQT-based features, including GCC-PHAT-based ones,
for joint KWS and own-voice/external speaker detection are
described in Section III. In Section IV, the new and more
realistic multi-user hearing aid speech corpus and its variants
are presented along with model training details. Experimental
results are shown and discussed in Section V. Finally, conclu-
sions are summarized in Section VI.

II. MULTI-TASK DEEP RESIDUAL LEARNING FOR KWS
AND OWN-VOICE/EXTERNAL SPEAKER DETECTION

Some fundamentals of deep residual learning are briefly
reviewed in Subsection II-A. Next, in Subsection II-B, we
revisit the multi-task deep residual network for joint KWS
and own-voice/external speaker detection proposed in [15].

A. Deep Residual Learning

As is well-known, depth in neural networks is of importance
to model arbitrarily complex functions [23]. Nevertheless,
training very deep neural networks is not an easy task and,
as an example of this, the extension of a well-trained model
with additional layers might even lead to higher training error
[24]. For better training of very deep models, He et al. [25]
proposed residual learning.

Residual learning models can be built by concatenation of
basic units called residual blocks. A diagram of a general
residual block is shown in Figure 1. Let xl−1 be the input
to layer l. The authors of [25] hypothesize that it might
be easier to optimize the residual mapping Hl+l

′

l (xl−1) =

TABLE I
RECEPTIVE FIELD OF THE NETWORK IN FIGURE 2, rl , AS A FUNCTION OF

THE CONVOLUTIONAL LAYER, l.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

rl 3 5 7 9 13 17 21 29 37 45 61 77 93 125

F l+l
′

l (xl−1)+xl−1 between layers l and l+l′ (l′ ∈ N) than the
original F l+l

′

l (xl−1) when networks are too deep. As can be
seen from Figure 1, residual mapping is carried out through the
so-called identity shortcut connection (which performs identity
mapping) skipping l′+1 layers. Identity shortcut connections
help to deal with the performance degradation in too deep
networks.

Deep residual learning has been successfully applied to
different tasks like noise-robust speech recognition [26] and
speaker verification [27].

B. Multi-task Architecture

The multi-task deep residual neural network for joint KWS
and own-voice/external speaker detection proposed in our
previous work [15] (which was based on [12]) is depicted
in Figure 2. This architecture is considered to be the starting
point of the present study.

For speech feature extraction, audio signals captured by the
front (i = 1) and rear (i = 2) microphones of the hearing
assistive device are band-pass-filtered considering low and
high cut-off frequencies of 20 Hz and 4 kHz, respectively [12].
Filtered signals are framed using a 30 ms Hann window with
a 10 ms shift and, then, Q = 40-dimensional MFCC vectors,
vi(t) ∈ RQ×1, i = 1, 2, are extracted from each time frame
t:

vi(t) = [vi(1, t), ..., vi(q, t), ..., vi(Q, t)]> . (1)

In this way, a two-dimensional MFCC matrix Vi ∈ RQ×T ,
that is, Vi = [vi(1), ...,vi(t), ...,vi(T )], i = 1, 2, is obtained
for each microphone signal, the total number of time frames
of which is T . Both MFCC matrices are stacked across the
quefrency dimension to produce V ∈ R2Q×T , namely,

V =

(
V1

V2

)
. (2)

Then, the input features to the model in Figure 2, Ṽ ∈ RT×2Q,
are computed from transposing V and normalizing it to have
zero mean and unit standard deviation. Each matrix element
Ṽ(t, q), t = 1, ..., T , q = 1, ..., 2Q, is defined as

Ṽ(t, q) =
V(q, t)− µV

σV
, (3)

where µV and σV are the sample mean and standard deviation
estimated from all the elements of V.

As can be seen from this figure, the multi-task architecture
is composed of batch normalization, average pooling and
fully-connected (dense) layers as well as convolutional layers
with a κ × κ kernel size, κ = 3, zero bias vectors and
45 feature maps each. This architecture uses six residual
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Fig. 2. Multi-task deep residual neural network for joint KWS and own-voice/external speaker detection.

blocks with identity mapping, each of them comprised of
two convolutional layers followed by a rectified linear unit
(ReLU) activation function. All the 14 convolutional layers
in this network except the first one, l = 1, apply dilated
convolutions [28]. The dilation rate of these convolutional
layers is (dl, dl) =

(
2b

l−2
3 c, 2b

l−2
3 c
)

, where l = 2, ..., 14 and
b·c is the floor function. Note that increasing the receptive field
of the network by means of dilated convolutions helps to cap-
ture longer-range spectro-temporal dependencies of the speech
signal. Table I shows the receptive field of the network, which
can be easily calculated as a function of the convolutional layer
l as rl = rl−1 + (κ− 1)dl, where r0 = d1 = 1. Finally, fully-
connected (dense) layers with softmax and sigmoid activations
are used for keyword classification and own-voice/external
speaker detection, respectively.

The loss function for training this model consists of the
sum of the multi-class cross-entropy loss for KWS plus
the binary cross-entropy loss for own-voice/external speaker
detection [29]. Specifically, let θ and C be the parameters
of the model and the total number of different keywords
that can be identified, respectively. Defining an additional
non-keyword class, the network must solve a (C + 1)-class
classification problem plus a parallel binary classification
task. Thus, P

(
Wc

∣∣∣Ṽ, θ) is the posterior probability, pre-
dicted by the network, of keyword (or non-keyword) Wc,
c = 1, ..., C + 1, given the input speech features Ṽ (whether
uttered by the intended user or an external speaker). Similarly,
P
(
Su

∣∣∣Ṽ, θ) is the conditional probability, predicted by the

network, that the utterance Ṽ originates from the intended
user Su. Let Se represent an external speaker, and notice that
P
(
Su

∣∣∣Ṽ, θ) = 1−P
(
Se

∣∣∣Ṽ, θ) . As a result, the total cross-
entropy loss function, L(θ), can be expressed as

L(θ) = −
C+1∑
c=1

yc log
(
P
(
Wc

∣∣∣Ṽ, θ)) −
− yo log

(
P
(
Su

∣∣∣Ṽ, θ)) − (1− yo) log
(
P
(
Se

∣∣∣Ṽ, θ)) ,
(4)

where {yc; c = 1, ..., C + 1} and yo are, respectively, the
corresponding KWS and own-voice (binary) true labels.

At test time, keyword prediction from input features Ṽ is
taken into account only if P

(
Su

∣∣∣Ṽ, θ) > PTHR. Rather than
using PTHR = 0.5 as in [15], in this paper we follow an
optimizing criterion consisting of selecting, on a model basis,

the value of PTHR that maximizes the own-voice/external
speaker detection accuracy on a validation set. In this work,
accuracy is defined as the ratio between the number of correct
predictions and the total number of predictions [30].

III. CONSTANT-Q TRANSFORM-BASED FEATURES

In this section we present the log-spectral magnitude and
GCC-PHAT-based features that we propose instead of MFCCs
as input to the multi-task deep residual neural network de-
picted in Figure 2. Our goal is to design an input feature tensor
(i.e., three-dimensional matrix) meeting the following criteria:
• Compactness: An input feature tensor with a reduced

width and height still providing a competitive KWS
performance is desired in order to limit the number of
multiplications of the deep residual model.

• Coherence: To try to ease the learning of and exploit
inter-feature correlations, it is desirable that the width
and height axes of the different types of stacked feature
matrices (in our case, log-spectral magnitude and GCC-
PHAT-based matrices) correspond to the same physical
units (e.g., linear frequency in hertz and time in seconds).

To meet the above criteria, we may compute features in
the STFT domain. In comparison with perceptually-motivated
filter banks [31], [32], the STFT is characterized by a constant
frequency resolution regardless the frequency range. As is
well-known, this may involve a disadvantage for a number of
speech and audio signal processing applications compared to
using non-linear frequency filter banks that mimic the human
hearing system, e.g., [33], [34]. Since we are also interested
in phase difference information, a widespread perceptually-
motivated filter bank for speech signals like the Mel-scale
filter bank [35], defined only for spectral magnitudes, is not a
good choice. Hence, we propose the use of the perceptually-
motivated CQT as a natural alternative to the STFT for the
calculation of a compact and coherent input feature tensor to
our deep residual model.

Note that while the CQT is closely related to the wavelet
transform [36], in general, wavelet techniques are not well-
suited for our purposes for computational complexity reasons.
For example, wavelet transforms based on iterated filter banks
require filtering the signal hundreds of times [37].

A. Constant-Q Transform

Similarly to the Fourier transform, the CQT [18], originally
developed for Western music processing, is a mathematical
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tool to transform a time data series to the frequency domain.
However, unlike the Fourier transform, the CQT is character-
ized by geometrically-spaced filters.

Indeed, both the Fourier and constant-Q transforms can be
interpreted as filter banks. With this in mind, let fk (k ∈ N)
be the center frequency of a filter k and δfk its bandwidth.
The Qk factor —which measures the selectivity of a filter—,
is defined as [38]

Qk =
fk
δfk

. (5)

In the case of the Fourier transform, Qk increases for increas-
ing filter center frequencies since the bandwidth δfk = δf =
fs/N , where fs is the sampling frequency and N is the length
of the analysis window, is fixed for all filters. In contrast, in
the CQT, the Qk factor is constant, i.e., Qk = Q ∀k, so at
lower frequencies the frequency resolution is higher, while at
higher frequencies the time resolution is higher. As a result,
the CQT is better in line with the human auditory system [39].

In the CQT, the center frequencies fk can be calculated as

fk = fmin2
k−1
B , (6)

where fmin is the center frequency of the lowest-frequency
filter and B is the number of frequency bins per octave. The
parameter B, establishing the time-frequency resolution trade-
off, is the most important CQT parameter to be set [36]. Using
(6), we can rewrite (5) in terms of B as follows:

Q =
fk

fk+1 − fk
=

1

2
1
B − 1

. (7)

To let Q be constant, the length of the analysis window, Nk,
changes for each filter k in such a way that Nk ∝ f−1k .
Specifically,

Nk =
fs
δfk

=
fs
fk
Q. (8)

For convenience, let us then draw from the STFT. Let
{x(t)(n);n = 0, ..., N − 1} be the t-th frame of the signal
x(n), the STFT of x(n), XSTFT (k, t), can be expressed as

XSTFT (k, t) =

N−1∑
n=0

w(n)x(t)(n)e−j
2πkn
N , (9)

where w(n) is the analysis window. Based on the CQT
concepts introduced above, (9) is modified to define the CQT
of x(n), X(k, t), as [18]

X(k, t) =
1

Nk

Nk−1∑
n=0

w(k, n)x(t)(k, n)e
−j 2πQn

Nk , (10)

where, now, the length of both the signal frames
{x(t)(k, n);n = 0, ..., Nk − 1} and the analysis window
w(k, n) changes for each filter k. In particular, we consider
in this paper a Hann window:

w(k, n) = 0.5−0.5 cos
(

2πn

Nk − 1

)
, n = 0, ..., Nk−1. (11)

In this work, we employ the CQT implementation included
in LibROSA [40] that is based on the recursive sub-sampling
method described in [36].
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Fig. 3. Log-spectral magnitude from the STFT (left) and the CQT (right)
of an utterance spoken by a user. This utterance, as captured by the front
microphone of a hearing aid when worn by a user, contains the word “down”
(see Section IV). Both transforms consider the same number of frequency
bins.

B. Log-Spectral Magnitude and GCC-PHAT-Based Features

Below, we explain how the input feature tensor to the model
is built from log-spectral magnitude and GCC-PHAT-based
features calculated in the CQT domain.

1) Log-Spectral Magnitude Features: Let xi(n) be the
time-domain signal captured by the i-th microphone of a
hearing assistive device, where, as aforementioned, i = 1 and
i = 2 refer to its front and rear microphones, respectively.
The CQT of xi(n) is Xi(k, t), k = 1, ...,K and t = 1, ..., T ,
where K and T are the total number of frequency bins and
time frames, respectively. Notice that T is large enough to
cover the duration of a whole keyword. Then, the log-spectral
magnitude matrices Xi ∈ RT×K , that is,

Xi =

 log (|Xi(1, 1)|) · · · log (|Xi(K, 1)|)
...

. . .
...

log (|Xi(1, T )|) · · · log (|Xi(K,T )|)

 , (12)

i = 1, 2, are jointly normalized to have zero mean and unit
standard deviation and arranged into a T × K × 2 tensor to
be used as input to the model.

Although in this paper we work on a two-microphone set-
up, notice that the above procedure can be straightforwardly
extended to an arbitrary number of microphones M to obtain
a T ×K ×M feature tensor.

Figure 3 shows a comparison between the log-spectral
magnitudes from the STFT and the CQT of an utterance,
spoken by a user, containing the word “down”. This utterance,
as captured by the front microphone of a hearing aid worn by
a user, belongs to the hearing aid speech corpora presented
in Section IV. As can be visually inspected from this figure,
the CQT pays greater attention to the lower-frequency part of
the spectrum, where most of the speech energy is condensed,
in comparison to the STFT. It should be noticed that both
transforms consider the same number of frequency bins.

2) GCC-PHAT-Based Features: A hearing assistive device
like a two-microphone hearing aid is worn by a user in or be-
hind her/his ear. As a consequence, the relative position of the
user’s mouth with respect to the microphones of the hearing
aid is virtually time-invariant. Therefore, the phase difference
between the two microphones for a particular own-voice signal
should follow a recognizable pattern that is determined by a
variety of factors such as the user’s physical characteristics
(e.g., head size and shape) and potentially influenced by the
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room acoustics. Furthermore, it is reasonable to expect that,
in general, such a phase difference pattern can be easily
distinguished from those resulting from external speakers,
whose spatial locations with respect to the microphones are
necessarily different from that of a user.

Moreover, in our previous work [15], we found that the
higher the similarities between the own-voice and head-related
transfer functions2 of the user in terms of MFCC Euclidean
distance, the less distinguishable is an external speaker from
the user. In [15], these similarities yielded a reduction in
external speaker detection accuracy and, in turn, a drop in
performance in terms of KWS accuracy. This is because
spotting a keyword uttered by an external speaker as if it were
spoken by the user is considered to be an erroneous keyword
prediction.

Hence, for better discrimination between users’ own-voice
and external speakers, we propose the use of phase difference
information through GCC-PHAT-based features in the CQT
domain.

The GCC-PHAT coefficients, GPHAT (k, t), are defined as
[16]:

GPHAT (k, t) =
X1(k, t)[X2(k, t)]

∗

|X1(k, t)[X2(k, t)]∗|

= ej(φ1(k,t)−φ2(k,t)),

k = 1, ...,K, t = 1, ..., T,

(13)

where | · | denotes magnitude, [·]∗ refers to complex conjuga-
tion, and φ1(k, t) and φ2(k, t) are the phases of the signals
from the front and rear microphones, respectively. Then, a
GCC-PHAT-based matrix A ∈ RT×K is built from the angle
of (13), ]GPHAT (k, t) = φ1(k, t)− φ2(k, t), that is,

A =

 ]GPHAT (1, 1) · · · ]GPHAT (K, 1)
...

. . .
...

]GPHAT (1, T ) · · · ]GPHAT (K,T )

 . (14)

After mean and variance normalization of A, this matrix
is stacked to the T × K × 2 log-spectral magnitude tensor
described above and defined from Xi to create a compact and
coherent T ×K × 3 input feature tensor to the model.

In case of an arbitrary number of microphones, M , a total
of CM2 =

(
M
2

)
=M(M−1)/2 GCC-PHAT-based matrices

can be calculated as in (14) from the different CM2 pairs
of microphones. In this case, the size of the feature tensor
becomes T ×K ×

(
M + CM2

)
.

IV. EXPERIMENTAL FRAMEWORK

A. Multi-user Hearing Aid Speech Corpus

A multi-user hearing aid speech database is constructed in
order to train and test various variants of the proposed system.
This multi-user hearing aid speech database is a generalization
of the single-user hearing aid speech corpus presented in
[15]. Recall that, in this paper, “single-user” and “multi-
user” allude to whether impulse responses are measured, as
described below, on a single person or on multiple persons

2These concepts are carefully defined later in Subsection IV-A.
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Fig. 4. Experimental set-up for transfer function measuring. Every external
speaker can be located in one of the 48 equidistantly spaced points (black
dots) on a circumference of 1.9 meter radius. One at a time, actual persons
and mannequins wearing a two-microphone behind-the-ear hearing aid in the
left ear are seated in the center of the circumference. The blue and red dots
refer to the front and rear microphones, respectively, of the hearing aid. The
brown circles symbolize the position of the sixteen loudspeakers.

Rear microphone
Front

microphone
1 cm

Fig. 5. Hearing aid shell mounted on the left ear of a head and torso simulator
with the front and rear microphone locations annotated [41].

wearing a hearing aid. Although the two databases have a
number of features in common, the multi-user hearing aid
speech database is described here in detail for the sake of
completeness. The database is created from the Google Speech
Commands Dataset (GSCD) [13], which is a speech corpus
that contains a total of 105,829 one-second long utterances,
each comprising one word among a set of 35 words. These
utterances were produced by 2,618 different speakers.

Figure 4 shows the experimental set-up used to generate
the multi-user hearing aid speech database from the GSCD.
Sixteen loudspeakers are arranged in a circular array, placed
equidistantly spaced around actual female and male subjects,
as well as mannequins, at eye-height in a low-reverberation lis-
tening room. Subjects and mannequins wear a two-microphone
behind-the-ear hearing aid prototype in the left ear similar
to the one in Figure 5 with an inter-microphone distance
of 10 mm. Own-voice transfer functions (OVTFs) and head-
related transfer functions (HRTFs) are measured on subjects
and mannequins one at a time. An OVTF is defined as the
pair of acoustic transfer functions between the mouth of the
subject and the front and rear microphones of her/his left ear
hearing aid. For this purpose, a close-talk microphone is placed
2 cm in front of the person’s mouth and speech sentences
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TABLE II
DISTRIBUTION PER DATA SET OF THE NUMBER OF USERS FOR WHOM

OVTFS AND HRTFS ARE MEASURED (LEFT) AND THE NUMBER OF GSCD
SPEAKERS USED TO SIMULATE USERS AND EXTERNAL SPEAKERS (RIGHT).

TRANSFER FUNCTIONS ARE MEASURED ON 67 DIFFERENT SUBJECTS
(FEMALES AND MALES) AND 3 DIFFERENT MANNEQUINS (ONE FEMALE
AND TWO MALES). WHILE HRTFS ARE MEASURED FOR ALL OF THEM,
OVTFS ARE OBTAINED ONLY FOR A SUBSET OF 29 FEMALE AND MALE

SUBJECTS.

Set No. of Users No. of Users No. of Speakers No. of External
with OVTFs with HRTFs with a Hearing Aid Speakers

Training 19 56 1,584 528
Validation 5 7 192 64
Test 5 7 187 63

Total 29 70 1,963 655

produced by the persons and captured by the close-talk and
hearing aid microphones are used to estimate person-specific
OVTFs. An HRTF is similarly defined as the pair of acoustic
transfer functions between the source, i.e., loudspeaker, and the
microphones of the person’s or mannequin’s left ear hearing
aid. More in particular, a total of 48 HRTFs are measured at
an angular resolution of 7.5 degrees by rotating the chair on
which subjects and mannequins sit. The reader is referred to
[41] for further details on this set-up.

HRTFs are measured on 67 different female and male
subjects and 3 different mannequins (one female and two
males), which results in a total of 70 head and torso profiles,
hereinafter referred to as “users” for simplicity. OVTFs are
only available for a subset of 29 female and male subjects
from those 70 users [41]. From 2 to 12 HRTF takes (i.e.,
measurement repetitions) using either one or two distinct kinds
of hearing aid prototypes similar to the one in Figure 5 are
available per user. Only 1 OVTF take is available per subject.

Three different data sets are arranged in the multi-user
hearing aid speech database: a training, a validation and a test.
To create the training, validation and test sets, the GSCD is
segmented into non-overlapping partitions of size around 80%,
10% and 10%, respectively. The 70 users are also randomly
assigned to the three data sets in the same proportions. Since
OVTFs are only available for 29 users, 56 users with 19
OVTFs are allocated in the training set, while the validation
and test sets comprise 7 users each with 5 OVTFs. In other
words, users do not overlap across sets. In addition, it is worth
noticing that all mannequin HRTFs are assigned to the training
set. The left part of Table II summarizes the distribution per
data set of the number of users for whom OVTFs and HRTFs
are measured.

For each data set, around 75% of speakers of the GSCD are
chosen in a random way to simulate users, namely, subjects
who wear hearing aids. Each of these speakers is randomly
assigned one of the 29 users with OVTFs (see the left part of
Table II). OVTFs are used to filter the corresponding GSCD
signals in order to generate user speech signals. The resulting
speech data constitute the so-called own-voice subsets. For
each data set, the remaining 25% of speakers of the GSCD
are used to simulate external speakers. Similarly, each of these
speakers is randomly assigned, depending on the data set, one

of the 70 users with HRTFs. On this occasion, HRTFs are
utilized to filter the corresponding GSCD signals to create
external speaker signals. The resulting speech data compose
the external speaker subsets. Both the HRTF take3 and the
external speaker angle with respect to the simulated user (see
Figure 4) are selected on an utterance basis in a uniform
random manner. Finally, the distribution per data set of the
number of GSCD speakers, which do not overlap across sets,
used to simulate users and external speakers can be seen in
the right part of Table II. Furthermore, the GSCD signals are
upsampled prior to filtering them with the impulse responses,
the sampling rate of which is 44.1 kHz. Filtered speech signals
are then downsampled back to 16 kHz.

As in [15], models are trained to classify the following 10
different keywords: “yes”, “no”, “up”, “down”, “left”, “right”,
“on”, “off”, “stop” and “go”. Furthermore, the unknown word
class, which is balanced across sets, is composed of the re-
maining 25 words of the GSCD. Around 10% of the utterances
contains one unknown word.

B. Variants of the Multi-user Hearing Aid Speech Corpus: The
SO-MH and MO-SH Corpora

To assess the impact of having personalized versus non-
personalized OVTFs and/or HRTFs, we create two variants of
the multi-user hearing aid speech database: the SO-MH and
MO-SH corpora.

The SO-MH (Single-user OVTF-Multiple user HRTFs) cor-
pus is just like the multi-user one except that the OVTF from
only one user U is employed for all the training, validation
and test sets. In a parallel manner, the MO-SH (Multiple
user OVTFs-Single-user HRTFs) database only differs from
the multi-user corpus in that the former utilizes HRTFs from
one user only, U , for all the data sets as well. It is worth to
notice that user U is also the same as that used to create the
single-user hearing aid speech database of [15]. In this way,
the SO-MH and MO-SH databases are subsets of the multi-
user database, while the single-user database is a subset of
both SO-MH and MO-SH.

C. Details on Model Training

Model training was implemented by means of Python and
Keras [42] on top of TensorFlow [43]. Models were trained
for a maximum of 40 epochs using early-stopping [44] with
a patience of 10 epochs. For model parameter optimization,
stochastic gradient descent with a momentum of 0.9 was
employed using a learning rate and a learning rate decay of,
respectively, 0.1 and 10−5. The minibatch size was set to 64
training samples.

For regularization purposes, data augmentation was applied
during training by following a similar procedure to that
described in [45]. Specifically, a time shift of u ms was first
applied to each utterance, where u is sampled from the uniform
distribution U(−100, 100) on an utterance basis. Then, for
each utterance, a noise segment was randomly cut with a

3Recall that from 2 to 12 HRTF takes, that is, measurement repetitions, are
available per user.
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probability of 0.8 (i.e., with a probability of 0.2, noise-based
data augmentation was not considered) from one of the GSCD
background noise signals. Each noise segment was scaled by
a random value drawn from U(0, 1), leading to signal-to-noise
ratios (SNRs) in the wide range [−30, 165] dB, before addition
to the corresponding time-shifted utterance. Finally, as in [12],
30% of these distorted training data was regenerated at each
epoch by re-applying the above procedure on the original
training speech signals in order to increase the training data
variability.

In addition, we experienced an overfitting issue leading
to poor own-voice/external speaker detection performance
(which, indeed, has a negative impact on KWS performance)
when using CQT-based features from speech data generated
from a single OVTF, i.e., the single-user database and the
SO-MH database. Thus, to improve the robustness of the
models, the generation procedure of training speech signals
described in Subsection IV-A was modified for every database
as follows. Let h(n) be a transfer function between the
mouth of either a user or an external speaker and either the
front or rear microphone of the hearing aid. On an utterance
basis, a noisy version of h(n), h̃(n), was used to filter the
corresponding GSCD training speech signal. To obtain h̃(n),
an affine perturbation was applied to h(n), that is,

h̃(n) = (1 + an)h(n) + bn, (15)

where an ∼ N (µ = 0, σ = 0.1) and bn ∼
N
(
µ = 0, σ = 10−5

)
, and N (µ, σ) denotes the Gaussian dis-

tribution with mean µ and standard deviation σ. We found that
this sort of data augmentation procedure has a regularization
effect that significantly improves the generalization ability of
the models.

V. EXPERIMENTAL RESULTS

Keyword spotting and own-voice/external speaker detection
performance is evaluated not only on the multi-user hearing aid
speech corpus but also on the single-user, SO-MH and MO-SH
databases in order to assess the impact of having personalized
versus non-personalized OVTFs and/or HRTFs. Our primary
performance metric for both KWS and own-voice/external
speaker detection is accuracy4 with 95% confidence intervals
found by means of the Student’s t-distribution. Given an ex-
periment, let µacc and σacc denote sample mean and standard
deviation values, respectively, calculated from either KWS or
own-voice/external speaker detection accuracy values provided
by n = 10 different networks trained with different random
model initialization. Thus, confidence intervals are defined as
[46][

µacc − t0.025,n−1
σacc√

n
, µacc + t0.025,n−1

σacc√
n

]
, (16)

where t0.025,n−1 ≈ 2.26 is the 97.5th percentile of the
Student’s t-distribution with ν = n− 1 degrees of freedom.

A. Evaluated Techniques

Table III lists the different techniques that are evaluated
along with their distinctive features. It is relevant to note
that all of these techniques are two-microphone methods
exploiting the front and rear microphone signals from the
hearing assistive device.

As a baseline, the deep residual model for KWS with
no own-voice/external speaker detection (architecture res15)
[12] is tested. This is done to assess the performance of current
KWS systems that do not deal with the potential presence
of external speakers. As reviewed in Subsection II-B, the
proposed multi-task architecture for KWS which is robust
against external speakers, MFCC-80× 1, is also evaluated.
As shown in Subsection V-E, MFCC-80×1 entails a relative
increase in the number of multiplications of around 105%
with respect to res15. Then, we test MFCC-40× 2 that
stacks the two MFCC matrices across the depth dimension
instead of across the quefrency one in order to make such a
relative increase in the number of multiplications negligible
(see Subsection V-E).

For tests using CQT-based features we consider a lowest-
frequency filter with a center frequency of fmin = 30 Hz,
8 octaves and B = 8 bins per octave, so that K = 64
is the total number of frequency bins. With this parameter
configuration we are close to spanning the entire frequency
range, since fs = 16, 000 Hz and the upper frequency limit
is fmax = fmin2

K
B = 7, 680 Hz . fs/2. In the recursive

sub-sampling-based CQT implementation of [40], the analysis
window shift for the highest octave that determines the amount
of time frames (see [36] for further details) has to be an
integer multiple of 2

K
B = 256: it is set to 256 samples to

maximize the amount of temporal information. With these
choices, each microphone channel (i.e., front or rear) of every
one-second long utterance with a sampling rate of 16 kHz
can be represented in the CQT domain by T = 63 time
frames with K = 64 frequency bins each, i.e., a total of
T ×K = 4, 032 CQT coefficients. In comparison, an MFCC-
based scheme leads to 101 time frames × 40 quefrency bins
= 4, 040 MFCC coefficients5. These products are directly
correlated to the number of multiplications in the model and,
hence, to its computational complexity, so the fact that they
are similar allows for a fair comparison.

The combination of our multi-task architecture along with
standalone log-spectral magnitude features in the CQT do-
main, CQT-S, as well as with log-spectral magnitude and
GCC-PHAT-based features also in the CQT domain, CQT-
S+GCC, is evaluated. The results from these tests will re-
veal the importance of using phase difference information
for improved external speaker-robust KWS. In addition, to
assess the benefits of making use of the CQT instead of a
transform characterized by linearly-spaced filters, equivalent
tests employing the STFT, namely, STFT-S and STFT-S+GCC,
are performed. For a fair comparison, T = 63 time frames and

4Recall that, in this work, accuracy is defined as the ratio between the
number of correct predictions and the total number of predictions.

5See Table III as well as Subsection II-B to remind the MFCC extraction
parameters.
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TABLE III
SUMMARY OF THE DISTINCTIVE FEATURES OF THE EVALUATED TECHNIQUES.

Technique Architecture Training Data Feature Domain Type of Features Input Dimension

Baseline res15 [12] (KWS only) Own voice Cepstrum MFCCs 101× 80× 1
MFCC-80×1 Multi-task Own & external voice Cepstrum MFCCs 101× 80× 1
MFCC-40×2 Multi-task Own & external voice Cepstrum MFCCs 101× 40× 2
STFT-S Multi-task Own & external voice STFT Log-magnitude 63× 64× 2
CQT-S Multi-task Own & external voice CQT Log-magnitude 63× 64× 2
STFT-S+GCC Multi-task Own & external voice STFT Log-magnitude & GCC-PHAT angle 63× 64× 3
CQT-S+GCC Multi-task Own & external voice CQT Log-magnitude & GCC-PHAT angle 63× 64× 3

K = 64 linear frequency bins are considered by the STFT to
represent each channel of every one-second long utterance.

B. Own-Voice/External Speaker Detection Results

The left part of Table IV shows the own-voice/external
speaker detection accuracy results6. Own-voice/external
speaker detection accuracy is not only measured over the
whole test set (overall) but also over the own-voice and exter-
nal speaker subsets of the test set separately to check possible
biases towards detecting own voice or external speakers.

In the more realistic multi-user scenario (bottom row of
Table IV), our previous proposal MFCC-80×1 yields poor own-
voice/external speaker detection performance (around 84.26%
accuracy), which is partially overcome by rearranging the
input features as in MFCC-40×2. Unlike in MFCC-80×1,
in MFCC-40×2, first-layer convolutions are performed over
a (101×40×2) volume in such a manner that both channels
(front and rear) are merged and correlations between them
are exploited in an early stage to better estimate whether
the user or an external speaker is trying to trigger the
KWS system. Moreover, CQT-S+GCC provides the best own-
voice/external speaker detection performance so that the ac-
curacy gain on the external speaker subset with respect to
the other techniques is statistically significant. By comparing
CQT-S+GCC and STFT-S+GCC against CQT-S and STFT-
S we verify the convenience of exploiting GCC-PHAT-based
features for differentiation between users’ own-voice and
external speakers. Furthermore, STFT-S is superior to CQT-
S, whereas CQT-S+GCC performs better than STFT-S+GCC.
This might indicate, due to the higher frequency resolution of
the CQT at lower frequencies, that phase differences at lower
frequencies comprise relevant information for discrimination
between users’ own-voice and external speakers. Besides, note
that, according to performance, to work in the spectral domain
is preferable to doing it in the cepstral domain.

Considering now the own-voice/external speaker detection
accuracy results for the variants of the multi-user database
(single-user, SO-MH and MO-SH databases) we can observe
that these results are better than those from the multi-user cor-
pus. In particular, the best results are achieved with the single-
user and SO-MH corpora with no statistically significant

6As explained in Subsection II-B, these results are achieved by using a
sigmoid decision threshold PTHR, which is obtained, on a technique basis,
as the threshold value maximizing the own-voice/external speaker detection
accuracy on the corresponding validation set.

differences between them. The main characteristic of these
corpora is that they employ one OVTF only. A statistically
significant degradation in own-voice/external speaker detection
performance can be noticed when using multiple user OVTFs
and single-user HRTFs (MO-SH database) and, even further,
when employing multiple user OVTFs and HRTFs (multi-user
database). It is important to bear in mind that while a single-
user OVTF comprises one pair of acoustic transfer functions
only, single-user HRTFs comprise 48 different pairs, that is,
one per angle (see Subsection IV-A). We performed additional
tests by using multiple user OVTFs and an HRTF at a single
angle from a single user (modified MO-SH corpus with a
single HRTF). Own-voice/external speaker detection results
from these tests on a modified MO-SH corpus (not reported
in this paper) are comparable to those obtained on the SO-
MH corpus. Therefore, we may conclude that superior own-
voice/external speaker detection performance on the single-
user and SO-MH databases is due to one of the two speaker
classes (i.e., the own-voice class) being fully characterized
by a single OVTF that is well-learned by the neural network
models.

Besides the above accuracy results, detection error trade-
off (DET) curves for own-voice/external speaker detection are
plotted in Figure 6. Each of these curves represents pairs
of false alarm rates and false reject rates as a function of
the sigmoid decision threshold, which is swept from 0 to
1. In addition, Table V summarizes estimates of the area
under the curve (AUC) for the different DET curves plotted
in Figure 6. Notice that the smaller the AUC, the better a
system is. As can be seen from Tables IV and V, own-
voice/external speaker detection accuracy results and AUC
values are strongly correlated. From Table V, it is interesting to
note how employing multiple OVTFs and/or multiple HRTFs
yields larger AUC values due to worse own-voice/external
speaker detection performance. Still, CQT-S+GCC provides
the lowest AUC values for all databases but for MO-SH.

Finally, Figure 7 plots the normalized external speaker
detection accuracy as a function of the angle between the
external speaker and the hearing aid user. To some extent,
as already discussed in [15], relationships between OVTFs
and HRTFs may account for the contours of these curves. In
particular, we found that OVTFs and HRTFs are more alike,
in terms of Euclidean distance of input features, at angles
where a relative accuracy drop can be observed. While this is
particularly true for the single-user and SO-MH databases, it
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TABLE IV
OWN-VOICE/EXTERNAL SPEAKER DETECTION AND KWS ACCURACY RESULTS, IN PERCENTAGES, WITH 95% CONFIDENCE INTERVALS.

Own-voice/External speaker detection Keyword spotting
Own-voice subset External speaker subset Overall Own-voice subset Overall

Single-user database

Baseline — — — 94.77 ± 0.28 72.06 ± 0.18
MFCC-80×1 99.46 ± 0.20 97.67 ± 0.80 98.99 ± 0.18 94.99 ± 0.11 95.40 ± 0.15
MFCC-40×2 99.93 ± 0.04 99.56 ± 0.18 99.83 ± 0.05 95.44 ± 0.24 96.49 ± 0.19

STFT-S 99.98 ± 0.03 99.66 ± 0.18 99.89 ± 0.04 95.47 ± 0.36 96.56 ± 0.26
CQT-S 99.97 ± 0.04 99.84 ± 0.14 99.93 ± 0.03 95.57 ± 0.27 96.67 ± 0.21

STFT-S+GCC 99.96 ± 0.03 99.82 ± 0.08 99.93 ± 0.02 95.60 ± 0.27 96.68 ± 0.20
CQT-S+GCC 99.99 ± 0.42 99.85 ± 0.10 99.95 ± 0.03 95.64 ± 0.20 96.74 ± 0.15

Single-user OVTF-
Multiple user HRTFs

(SO-MH) database

Baseline — — — 94.97 ± 0.28 71.49 ± 0.19
MFCC-80×1 99.37 ± 0.43 97.22 ± 0.64 98.79 ± 0.23 95.19 ± 0.28 95.38 ± 0.30
MFCC-40×2 99.82 ± 0.13 99.59 ± 0.18 99.76 ± 0.09 95.71 ± 0.29 96.68 ± 0.26

STFT-S 99.93 ± 0.09 99.29 ± 0.67 99.76 ± 0.17 95.90 ± 0.16 96.80 ± 0.13
CQT-S 99.96 ± 0.02 99.59 ± 0.26 99.86 ± 0.06 95.88 ± 0.31 96.88 ± 0.25

STFT-S+GCC 99.95 ± 0.03 99.86 ± 0.16 99.93 ± 0.04 95.77 ± 0.24 96.86 ± 0.16
CQT-S+GCC 99.96 ± 0.06 99.92 ± 0.09 99.95 ± 0.05 95.96 ± 0.16 97.02 ± 0.13

Multiple user OVTFs-
Single-user HRTFs
(MO-SH) database

Baseline — — — 94.00 ± 0.38 73.70 ± 0.28
MFCC-80×1 96.38 ± 1.02 59.38 ± 6.48 87.87 ± 0.79 93.30 ± 0.42 83.79 ± 0.87
MFCC-40×2 98.61 ± 0.83 91.72 ± 3.64 97.03 ± 0.61 94.31 ± 0.29 92.79 ± 0.59

STFT-S 99.88 ± 0.06 98.09 ± 0.44 99.47 ± 0.10 94.59 ± 0.41 95.34 ± 0.37
CQT-S 99.56 ± 0.24 97.68 ± 0.64 99.13 ± 0.15 94.53 ± 0.31 94.97 ± 0.28

STFT-S+GCC 99.98 ± 0.03 98.57 ± 0.83 99.65 ± 0.19 94.67 ± 0.34 95.57 ± 0.18
CQT-S+GCC 99.97 ± 0.03 98.90 ± 0.34 99.72 ± 0.07 95.25 ± 0.13 96.08 ± 0.15

Multi-user database

Baseline — — — 93.81 ± 0.27 73.88 ± 0.23
MFCC-80×1 92.64 ± 1.39 55.36 ± 4.43 84.26 ± 0.45 93.27 ± 0.30 80.45 ± 0.55
MFCC-40×2 97.03 ± 1.81 87.18 ± 2.06 94.81 ± 1.20 94.32 ± 0.21 90.78 ± 1.16

STFT-S 98.60 ± 0.95 95.03 ± 1.10 97.80 ± 0.53 94.30 ± 0.34 93.59 ± 0.64
CQT-S 98.44 ± 0.87 92.12 ± 2.39 97.02 ± 0.44 94.60 ± 0.31 93.19 ± 0.52

STFT-S+GCC 98.61 ± 1.30 96.40 ± 1.21 98.11 ± 0.93 94.23 ± 0.57 93.77 ± 0.99
CQT-S+GCC 99.49 ± 0.47 98.67 ± 0.36 99.31 ± 0.33 94.81 ± 0.26 95.34 ± 0.32
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Fig. 6. Detection error trade-off curves for own-voice/external speaker detection. Different plots correspond to different databases. From left to right: single-user,
SO-MH, MO-SH and multi-user databases.

TABLE V
ESTIMATION OF THE AREA UNDER THE DETECTION ERROR TRADE-OFF
CURVES PLOTTED IN FIGURE 6. THE SMALLER THE AREA UNDER THE

CURVE, THE BETTER A SYSTEM IS. BEST RESULTS FOR EACH DATABASE
ARE MARKED IN BOLD.

Technique/Database Single-user SO-MH MO-SH Multi-user

MFCC-80×1 7.87 34.04 652.07 1,286.15
MFCC-40×2 0.37 0.64 57.69 220.78
STFT-S 0.06 0.51 2.68 45.42
CQT-S 0.04 0.16 7.66 75.79
STFT-S+GCC 0.04 0.03 0.49 24.88
CQT-S+GCC 0.02 0.02 0.67 3.87

is not so clear when exploiting MFCC features under the MO-

SH and multi-user corpora. The latter may be as a result of the
more complex frameworks where the own-voice and external
speaker classes are characterized by multiple acoustic transfer
functions each, which might have a regularization effect. In
this way, the neural network models might be able to learn
relevant features for discrimination between the user’s own-
voice and an external speaker rather than fitting to a particular
pair of acoustic transfer functions. As can be seen from Figure
7, all of the evaluated techniques but our previous proposal
MFCC-80×1 perform very good external speaker detection
on the single-user and SO-MH corpora. External speaker
detection performance of CQT-S+GCC stands out in the multi-
user scenario in comparison with the other techniques, e.g., at
the shadow side, namely, between 240° and 300°. Moreover,
the drop in performance of CQT-S+GCC at around 60° might
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Fig. 7. Normalized external speaker detection accuracy as a function of the angle between the external speaker and the hearing aid user. The head of the
users is centered in the origin and faces towards 0°. Different plots correspond to different databases. From left to right: single-user, SO-MH, MO-SH and
multi-user databases.

be attributed to similar own-voice and external speaker phase
differences.

Since having a computational and memory footprint as
small as possible is important for hearing assistive devices,
we perform equivalent technique evaluations by using an even
lighter multi-task architecture based on res15-narrow [12].
The difference between res15-narrow and res15 is that
the former employs convolutional layers with 19 feature maps
each instead of 45. The left part of Table VI reports the
corresponding own-voice/external speaker detection accuracy
results for the multi-user scenario. While the above discussion
on own-voice/external speaker detection performance holds
true also in this case, average accuracy results are, in general,
lower when utilizing the multi-task architecture based on
res15-narrow rather than on res15.

C. Keyword Spotting Results

KWS accuracy results are shown in the right part of
Table IV. Apart from results on the overall test set, KWS
accuracies on the own-voice subset are also presented in order
to assess the degradation owing to the presence of external
speakers. Thus, own-voice/external speaker detection is taken
into consideration in overall KWS accuracy computation so
that correct predictions are made in the following cases:

1) A user utters a keyword: The KWS system detects user’s
own-voice and the correct keyword.

2) A user utters a non-keyword or an external speaker
utters either a keyword or a non-keyword: The KWS
system detects user’s own-voice and a non-keyword, or
it spots an external speaker and either a keyword or a
non-keyword.

From Table IV we can see that Baseline KWS accuracies are
substantially higher on the own-voice subsets of the different
databases than in the presence of external speakers (overall test
sets). For example, in the multi-user scenario, Baseline KWS
accuracy on the own-voice subset, which is around 93.81%,
drops to 73.88% in the presence of external speakers. Accord-
ing to Table IV, the rest of the evaluated techniques tends to
close this gap through the integration of own-voice/external
speaker detection. Bearing in mind that KWS accuracy on the
own-voice subsets is in the approximate range of 93% to 95%

for all techniques, the reader can observe, as expected, a strong
correlation between own-voice/external speaker detection and
overall KWS accuracy. Thus, CQT-S+GCC is the best method
also in terms of overall KWS accuracy and in a statistically
significant manner for the multi-user and MO-SH databases. In
the more realistic multi-user scenario, this method (∼95.34%
acc.) achieves overall KWS accuracy relative improvements of
around 18% compared to our previous proposal MFCC-80×1
(∼80.45% acc.) and 29% with respect to Baseline (∼73.88%
acc.).

As presented in Section I, one of the first attempts to develop
personalized (speaker-dependent) KWS [14], through joint
KWS and text-dependent speaker verification, suffers from a
major drawback: KWS performance is degraded with respect
to an equivalent system only dealing with the KWS task. On
the contrary, regardless the database, there are no statistically
significant differences between the own-voice subset KWS
accuracies from MFCC-80×1 and Baseline (even though own-
voice detection on the own-voice subsets is not flawless),
which uses the same input features as MFCC-80×1. Therefore,
we can state that the above major drawback is solved by
our multi-task architecture. This may be attributed to the
fact that we exploit two different kinds of information for
KWS and personalization (own-voice/external speaker detec-
tion), i.e., spectral and spatial information, respectively. By
contrast, in [14], both KWS and personalization, which is
carried out through tackling a more difficult task (i.e., speaker
verification), may exhibit a certain degree of interference as
they rely on the same set of spectral features.

Except for the fact that the single-user database comprises a
number of different speakers, results on this database may be
considered an upper bound7 for the performance of a fully per-
sonalized KWS system, that is, a system that is intended for a
specific target user. Notice that CQT-S+GCC yields an overall
KWS accuracy relative worsening around 1% only between
the single- (∼96.74% acc.) and the multi-user (∼95.34%
acc.) scenario. Thus, apparently, CQT-S+GCC helps closing
the gap between a non-personalized KWS system which is
robust to external speakers and a fully personalized KWS

7For instance, remember that the OVTF is time-invariant and does not take
into account different factors that can alter it such as the room acoustics.
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TABLE VI
MULTI-USER OWN-VOICE/EXTERNAL SPEAKER DETECTION AND KWS ACCURACY RESULTS, IN PERCENTAGES, WITH 95% CONFIDENCE INTERVALS.

TECHNIQUE NAMES WITH SUFFIX -N REFER TO THE USE OF A LIGHTER MULTI-TASK ARCHITECTURE BASED ON RES15-NARROW [12].

Own-voice/External speaker detection Keyword spotting
Own-voice subset External speaker subset Overall Own-voice subset Overall

Multi-user database

Baseline-n — — — 92.53 ± 0.47 73.15 ± 0.31
MFCC-80×1-n 90.83 ± 2.40 58.11 ± 8.48 83.47 ± 0.91 92.45 ± 0.31 79.13 ± 0.88
MFCC-40×2-n 97.25 ± 2.02 84.24 ± 6.05 94.33 ± 1.17 92.69 ± 0.30 89.12 ± 1.22

STFT-S-n 99.01 ± 0.59 92.46 ± 1.81 97.53 ± 0.22 92.93 ± 0.65 92.39 ± 0.57
CQT-S-n 97.67 ± 1.64 91.12 ± 2.74 96.20 ± 1.04 92.96 ± 0.70 91.20 ± 1.19

STFT-S+GCC-n 98.44 ± 1.41 94.26 ± 2.33 97.50 ± 0.79 92.45 ± 0.40 91.87 ± 0.86
CQT-S+GCC-n 98.92 ± 0.86 97.94 ± 0.69 98.70 ± 0.59 93.02 ± 0.67 93.38 ± 0.67

system. This is a remarkable result, especially considering the
practical disadvantages of a fully personalized KWS system
as discussed in Section I. Moreover, when comparing KWS
accuracy results from the SO-MH and MO-SH databases,
we see that having a personalized OVTF is much more
important than having personalized HRTFs. In fact, KWS
accuracy results from the single-user and SO-MH corpora are
very similar. Thus, we can conclude that we may only need
personalized OVTFs to achieve a comparable performance to
a fully personalized system. As already mentioned in Section
I, this is an important finding from a practical point of view, as
measuring OVTFs on a specific target user is less cumbersome
than measuring impulse responses to model acoustic channels
between external speakers and the user’s device microphones,
i.e., HRTFs.

Finally, note that the right part of Table VI reports the KWS
accuracy results for the multi-user scenario when employing
the lighter multi-task architecture based on res15-narrow.
KWS accuracy trends are similar to those from using the
multi-task architecture based on res15, whereas accuracy
performance is generally better in the latter case in a significant
manner (see Table IV for comparison).

D. Streaming Keyword Spotting

Real-life application of KWS generally involves that KWS
systems have to process a continuous stream of audio data
where the delimitation of the spoken words is unknown.
Furthermore, it can reasonably be expected that, most of
the time, KWS systems will hear other things rather than
keywords. Hence, to figure out how our CQT-based proposal
performs under these circumstances, we carry out streaming
KWS evaluations in this subsection.

We train the KWS systems to recognize an additional
class consisting of silence/background noise. As above, all
the classes are approximately balanced for training. On the
other hand, we generate a test audio stream by concatenation
of test speech and silence/background noise segments. The
test audio stream is comprised of around 400 keywords of
each of the 10 considered types and near 7,000 non-keywords
uttered by both users and external speakers. All types of
words are randomly mixed along the audio stream, the total
duration of which is, approximately, 3 hours and 46 minutes.
For testing, we employ a one-second long sliding window
with a hop of 250 ms. For streaming KWS performance

evaluation, we process the sequence of modified posteriors
P̃
(
Wc

∣∣∣Ṽ, θ) = P
(
Wc

∣∣∣Ṽ, θ) δu as in [47], where

δu =

{
1 if P

(
Su

∣∣∣Ṽ, θ) > PTHR,
0 otherwise.

(17)

Since accuracy can be a misleading metric for data sets
with rather imbalanced classes, streaming KWS performance
is measured by means of DET, precision/recall and F-score
curves, which are computed for each of the keywords and,
then, averaged across them. Figure 8 plots these average curves
for the more realistic multi-user scenario and the most relevant
evaluated techniques (and Baseline). Note that the larger the
area under the precision/recall and F-score curves, the better a
system is. Thus, CQT-S+GCC is the best performing method.

E. Computational Complexity

1) CQT versus STFT: Although the recursive sub-
sampling-based CQT of [36] is a computationally efficient
approach, it involves additional non-negligible computational
load in comparison with the STFT. For instance, this CQT
approach entails a number of low-pass filterings that is pro-
portional to the number of octaves and around twice the fast
Fourier transform computations compared to the STFT [36].

The computational burden of LibROSA’s [40] CQT and
STFT implementations employed in this work was evaluated
on an Intel Xeon E5-2680 CPU with a clock frequency of
2.4 GHz. Processing each microphone channel for a single
one-second long utterance takes 26.19 ms ± 0.112 and 1.61
ms ± 0.001 for the CQT and the STFT, respectively. These
execution times were estimated over a set of around 10,000
utterances.

Similarly, extracting MFCCs from each microphone channel
of a one-second long utterance takes 117.55 ms ± 1.027.
In addition, one forward pass of the multi-task architecture
takes 66.84 ms ± 0.55 for CQT-S+GCC and STFT-S+GCC
and 204.46 ms ± 0.90 for MFCC-80×1. In summary, despite
calculating the CQT is more computationally expensive than
calculating the STFT, our CQT-based proposal is around 3.7
times faster than our previous system MFCC-80×1. Further-
more, computing MFCCs, which are used by some small-
footprint KWS systems (e.g., [12]), is more computationally
expensive than computing the CQT.
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Fig. 8. Streaming KWS performance in the multi-user scenario. From left to right: detection error trade-off, precision/recall and F-score curves.

TABLE VII
NUMBER OF PARAMETERS, BROKEN DOWN BY LAYERS, OF THE

MULTI-TASK ARCHITECTURE FOR JOINT KWS AND
OWN-VOICE/EXTERNAL SPEAKER DETECTION. THE TOTAL NUMBER OF

PARAMETERS DEPENDS ON THE DEPTH OF THE INPUT FEATURE TENSOR,
D.

Layer(s) No. of Parameters

Shallowest Conv. P1 = 405×D
Residual Block (×6) P2 = 219, 780
Deepest Conv. P3 = 18, 225
Batch Norm. P4 = 90
Avg. Pooling P5 = 0
Softmax P6 = 506
Sigmoid P7 = 46

Total 405×D + 238, 647

2) Number of Parameters: Table VII reports the number
of parameters, broken down by layers, of our multi-task
architecture for joint KWS and own-voice/external speaker
detection. The total number of parameters depends on the
depth of the input feature tensor, D. Based on Table VII, the
left part of Table VIII presents the number of parameters of
the different techniques evaluated in this work and res15
[12]. From Table VIII, relative increases in the number of
parameters of the evaluated techniques with respect to the
speaker-independent res15 can be esteemed negligible.

TABLE VIII
NUMBER OF PARAMETERS (LEFT) AND MULTIPLICATIONS (RIGHT) OF THE

EVALUATED TECHNIQUES AND RES15 ALONG WITH RELATIVE
INCREASES, IN PERCENTAGES, WITH RESPECT TO RES15.

Technique No. of Relative No. of Relative
Param. Inc. (%) Multip. Inc. (%)

res15 [12] 239,006 — 897,237,540 —
Baseline 239,006 0 1,841,697,540 105.26
MFCC-80×1 239,052 0.02 1,841,697,585 105.26
MFCC-40×2 239,457 0.19 898,761,195 0.17
STFT-S 239,457 0.19 903,539,295 0.70
CQT-S 239,457 0.19 903,539,295 0.70
STFT-S+GCC 239,862 0.36 905,071,005 0.87
CQT-S+GCC 239,862 0.36 905,071,005 0.87

3) Number of Multiplications: Let H and W be the height
and width of the input feature tensor, respectively, and let F =

TABLE IX
NUMBER OF PARAMETERS (LEFT) AND MULTIPLICATIONS (RIGHT) OF

CQT-S+GCC-N AND REFERENCE TECHNIQUES ALONG WITH RELATIVE
INCREASES, IN PERCENTAGES, WITH RESPECT TO RES15-NARROW .

Technique No. of Relative No. of Relative
Param. Inc. (%) Multip. Inc. (%)

res15-narrow [12] 43,122 — 161,397,552 —
Baseline-n 43,122 0 331,289,472 105.26
CQT-S+GCC-n 43,484 0.84 163,549,055 1.33
CQT-S+GCC 239,862 456.24 905,071,005 460.77

45 be the number of feature maps. Moreover, recall that C is
the number of different keywords that can be identified. Again
based on Table VII, it can be shown that the number of multi-
plications in our multi-task architecture can be approximated
by (H−2)×(W−2)×(P1+P2+P3+P4)+F+(P6−(C+1))+
(P7−1) = (H−2)×(W−2)×(405×D+238, 095)+585. The
right part of Table VIII reports the number of multiplications
of the evaluated techniques and res15. We can see that, in
contrast to our previous proposal MFCC-80×1 (and Baseline),
arranging the input features to exploit the depth dimension
makes the relative increases in the number of multiplications
with respect to res15 negligible.

Similarly, Table IX reports the number of parameters
and multiplications of CQT-S+GCC-n and reference tech-
niques. The relative increase in the number of both param-
eters and multiplications of CQT-S+GCC-n with respect to
res15-narrow is minor in comparison with that of CQT-
S+GCC. In return, as shown above, CQT-S+GCC is statis-
tically significantly superior to CQT-S+GCC-n in terms of
KWS accuracy.

VI. CONCLUSIONS

In this paper we have carried out a study on external
speaker-robust keyword spotting for hearing assistive devices.
Initially, we built a multi-user hearing aid experimental frame-
work that is more realistic than the single-user one proposed
in our previous research. Under this new framework, we
have observed that the KWS performance of our multi-task
architecture for joint KWS and own-voice/external speaker
detection exploiting MFCC features drops substantially.

To strengthen our KWS system against external speakers,
we have explored the use of phase difference information
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through GCC-PHAT-based coefficients. We have demonstrated
that their use along with log-spectral magnitude features
provides a significantly improved KWS performance in the
presence of external speakers as well as significant gains are
achieved when working in the perceptually-motivated CQT
domain with respect to the STFT domain. We hypothesized
that the latter is due to phase differences at lower frequencies
comprising relevant information for discrimination between
users’ own-voice and external speakers, since the CQT has a
higher frequency resolution at lower frequencies in comparison
with the STFT. In turn, such a good performance has been
achieved while dramatically decreasing the number of multi-
plications with respect to our previous MFCC-based proposal.
This is an important result, as hearing assistive devices, like
hearing aids, are low-resource devices.

We can conclude that our findings help for closing the gap
between a non-personalized KWS system robust to external
speakers ready to be used by any user with no tuning and
a fully personalized KWS system, which exhibits serious
practical disadvantages.

Finally, although the GSCD, upon which our experimental
framework was based, was recorded in real-life conditions
(i.e., including noisy conditions), future work includes a
systematic study on noise robustness of our KWS system.
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