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Data-Driven Coordinated Control of AVR and PSS 

in Power Systems: A Deep Reinforcement Learning 

Method 

 

Abstract— In this paper, a strategy based on deep 

reinforcement learning (DRL) as an intelligent coordinator for 

power system stabilizer (PSS) and automatic voltage regulator 

(AVR) in a two-are power grid is proposed. The proposed 

coordinator is developed to provide accurate online 

modification of the gains appearing in the structure of PSS and 

AVR which avoids unfavorable interactions between PSS and 

AVR under significant changes in the working point and 

thereby guaranteeing the stability of the power grid. A Markov 

decision manner is used to formulate the DRL problem and it is 

solved through a deep deterministic policy gradient approach 

with an actor-critic framework. Since the intelligent coordinator 

relies on the expert's science, some scaling coefficients are added 

to the coordinator body to achieve optimal performance. To 

confirm the effectiveness of the presented DRL approach, the 

design is conducted on Kundur's power grid. Simulations 

illustrate that the proposed DRL-based control can confirm the 

stability of the system and attain desired dynamic responses. 

Keywords—power system stability, deep reinforcement 

learning, coordinated control, interconnected power system 

 

NOMENCLATURE 

Power system terms 
𝜔𝑖 Rotor speed. 

𝜔0 Synchronous speed. 

∆𝜔𝑖 Rotor speed change. 
𝑉𝑇𝑖 Terminal voltage change. 
𝑉𝑟𝑒𝑓𝑖 Reference voltage of excitation system. 

𝑉𝑟𝑖 Voltage measurement output. 

𝑉𝑚𝑖 AVR’s output. 
𝑉𝑝𝑖 PSS’s output. 

𝑉𝑛𝑖 Stabilizing feedback loop. 
𝐸𝑓𝑞𝑖 Field voltage of excitation system. 

𝑇𝑟𝑖 , 𝑇𝐸𝑖 , 𝑇𝑛𝑖 , 𝑇𝑎𝑖 
Time constants associated with excitation 

control. 
𝐾𝑎𝑖 AVR’s gain. 
𝐾𝑓𝑖 Excitation’ gain. 
𝑦1𝑖 Output of PSS’s measurement block. 
𝑦2𝑖 Output of PSS’s washout block. 
𝑦3𝑖 Output of PSS’s lead-lag compensation 

block. 
𝑇𝑘𝑖 PSS’s time constants (k = 1, 2, 3, 4, 5, 6) 
𝐾𝑝𝑖 PSS’s gain. 

i Number of generators. 

 

DRL coordinator terms 

𝑅𝐴𝑉𝑅 Scaling coefficient of AVR. 

𝑅𝑃𝑆𝑆 Scaling coefficient of PSS. 

𝑅𝑝 Positive reward. 

𝑅𝑛 Negative reward. 

𝑛 Number of iterations. 
𝛼 Learning rate. 
𝛾 Discount rate. 
𝑟𝑐 Decay rate. 

𝜗 Random noise. 

𝑎 Control action. 

𝑠 State. 

𝑡 Time step. 
 

I. INTRODUCTION 

Stability of a power grid is described as the capability of a 
grid to get back operating balance after being experienced 
abnormal conditions. The abnormal conditions may be 
considered as a large change in load amount and/or in output 
of renewable energy sources, the sudden outage of a generator 
or intense faults on the tie-lines. Thus, the power systems shall 
be designed in such a way that any cascading blackout caused 
by the occurrences can be avoided. This made a motivation for 
power engineers to evaluate the power system stability based 
on various feasible operating conditions. In this regard, 
transient and small-signal stabilities under fault situations 
should be dealt with carefully in order to retain the 
synchronism between generators [1]–[2]. Hence, a highly 
effective excitation system is needed to be designed to 
improve performance goals such as steady-state errors and 
small-signal and transient stabilities. The excitation system of 
synchronous generators is constituted of two main controllers: 
power system stabilizer (PSS) and automatic voltage regulator 
(AVR). The first one gives impetus voltage adjustment and 
improves the stability in the grid under sudden intense 
perturbations [3]. The latter heightens the stability of the grid 
after being experienced small perturbations. [4]. The revealed 
investigations in the area of the excitation model can be split 
into pair main classes. The first one relies on the combination 
of PSS and AVR  using a two-stage design manner for the 
nominal condition. In this way, in order to reach the 
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predetermined voltage adjustment, firstly the AVR takes 
action and the PSS is then devised to raise the stability of the 
small signal. However, simultaneous improvement of voltage 
and stability controls is a demanding duty as PSS and AVR  
use a single control signal of excitation system [5]. Thus, in 
the second class of researches, an integrated method has been 
developed to design PSS and AVR. This kind of investigations 
claims that as power grids frequently encounter variations in 
operating points, a coordinated PSS-AVR design could make 
the electricity grid robust versus intense perturbations.  

A great deal of investigations has been done to enhance 
the grid' stability by the development of AVR and PSS 
controllers. Authors of [6] have used an adaptive control 
method to optimize the AVR performance in an 
interconnected power system. In [7], an optimized PID 
controller is utilized for AVR system to improve the dynamic 
response. In [8], the design procedure of multiple PSSs is 
examined to reduce the amplitude of the fluctuations and 
increase the stability. In [9], a consecutive conic programming 
method is proposed for the design of coordinated PSSs. These 
studies, however, concentrate on the optimal design of one of 
the controllers and do not use PSS and AVR simultaneously. 
In terms of the coordination among PSS and AVR, the authors 
of [10,11] have provided the coordination by getting a fixed 
parameter for PSS and AVR using analytical and robust 
techniques. Fixed parameters of the PSS and AVR may 
degrade the grid stability in faulty conditions. Artificial 
intelligence methods such as neural network, brain emotional 
learning, and fuzzy logic are recognized as potential options 
for coordination development among PSS and AVR in power 
grids [12-13]. The important feature of these techniques is the 
independent-model structures that allow techniques to control 
the power grid's uncertainty, intricacy, and nonlinearity. 
However, the aforesaid intelligent methods are generally only 
appropriate for a certain cycle period as suffering from the 
absence of the ability to learn online. By the fast growth in the 
field of machine learning, data-driven approaches based on 
reinforcement learning (RL), have received large attention and 
have become a strong mechanism in the development of 
intelligent networks [14]. The main concept of the RL is to 
acquire a policy along with the states and actions while 
obtaining maximum rewards through interacting with an agent 
with an environment. RL methods have attained remarkable 
success in intricate problems by combining them with a deep 
neural network, entitled deep RL (DRL). Deep Q-learning 
(DQL), as the most well-liked DRL method, is capable to give 
a fast forecast of the Q-values corresponding to each 
state/action couple, which considerably decreases the 
computational complexity in the conventional Q-learning 
[15]. Due to these advantages, the DQL has been used in 
various practical problems such as stochastic power grids [16], 
induction motor [17], and robotic [18]. However, this method 
employs discrete steps to make an estimate of the value 
function, which restricts its utilization for continuous space-
based problems. To address this challenge, in the problems 
with the multi-dimensional state variables, a deep 
deterministic policy gradient (DDPG) algorithm can be used. 
Up to now, little research has been introduced using the DRL 
strategies to ensure stability and voltage control in power 
grids. 

 

In this paper, an DRL-based intelligent structure DRL 
features is proposed to provide a coordination among AVR 

and PSS to guarantee the transient and dynamic stabilities of 
an interconnected power system. The DRL problem is solved 
by the DDPG algorithm using an actor-critic framework, 
which could update the parameters of PSS and AVR by 
providing online optimization in the face of severe 
disturbances. For implementation, each individual coordinator 
only requires local information associated with the 
synchronous generator including terminal voltage and rotor 
speed. The scaling coefficients in the intelligent coordinator 
are considered to attain an optimal performance. Some 
dynamic signals such as terminal voltages, rotor speed, rotor 
angle and acceleration of generators are illustrated to compare 
and approve the ability of the proposed intelligent coordinator. 
Simulations demonstrate that the DRL-based intelligent 
coordinator can get favorable dynamic results against large 
disturbances. 

This paper is organized as follows. Section II illustrates the 
mathematical model for PSS and AVR. Section III explains 
the DRL coordinator and states the corresponding 
methodology. Section IV provides numerical simulations and 
discussion. Finally, concluding observations are provided in 
the last section. 

II. MTHEMATICAL MODEL OF PSS AND AVR 

Each synchronous generator is equipped with three 
controllers in power grids, including AVR, PSS, and 
governor-turbine. AVR offers adjustability for the generator 
voltage to hold it in a constant amount. Furthermore, AVR 
offers a steady performance of the grid if it experiences intense 
perturbations. In this study, the model of AVR with type 
DC4B is considered [19]. The dynamic equations associated 
with IEEE-DC4B excitation are expressed in (1-4). 

�̇�𝑟𝑖(𝑡) =
1

𝑇𝑟𝑖

(𝑉𝑇𝑖(𝑡) − 𝑉𝑟𝑖(𝑡)) (1) 

�̇�𝑚𝑖(𝑡) =
1

𝑇𝑎𝑖

((𝑉𝑟𝑒𝑓𝑖(𝑡) + 𝑉𝑃𝑖(𝑡) − 𝑉𝑟𝑖(𝑡)

− 𝑉𝑓𝑖(𝑡))𝐾𝑎𝑖 − 𝑉𝑚𝑖(𝑡)) 

(2) 

�̇�𝑛𝑖(𝑡) =
𝐾𝑓𝑖

𝑇𝐸𝑖𝑇𝑛𝑖

(𝑉𝑚𝑖(𝑡) − (𝐾𝐸𝑖 + 𝑆𝑒𝑖)𝐸𝑓𝑞𝑖(𝑡))

−
1

𝑇𝑛𝑖

𝑉𝑛𝑖(𝑡) 

(3) 

�̇�𝑓𝑞𝑖(𝑡) =
1

𝑇𝐸𝑖

(𝑉𝑚𝑖(𝑡) − (𝐾𝐸𝑖 + 𝑆𝑒𝑖)𝐸𝑓𝑞𝑖(𝑡)) (4) 

where subscript i refers to the generator number. 

A PSS operates to generate a suitable torque on the 
generator's rotor. PSS is responsible to compensate for the 
phase lag between the exciter input and electrical torque. The 
block diagram associated with the dynamic models of PSS and 
AVR can be found in [13]. The PSS-PSS1A model used in 
this work is described as [20]. Figure 1 depicts the diagram of 
a synchronous generator together with excitation control. As 
the figure illustrates, the PSS output is entered to adjust the 
voltage field. 
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Fig. 1. Schematic veiw of a generator with excitation control. 
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𝑇6𝑝𝑖

(𝜔𝑖(𝑡) − 𝜔0(𝑡)) −
1

𝑇6𝑝𝑖

𝑦1𝑖(𝑡) (5) 

�̇�2𝑖(𝑡) =
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1
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−
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𝑦1𝑖(𝑡)

+
𝑇3𝑝𝑖

𝑇4𝑝𝑖
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1

𝑇2𝑝𝑖
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1
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) 𝑦2𝑖(𝑡)
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1
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) 𝑦3𝑖(𝑡)

−
1

𝑇3𝑝𝑖

𝑉𝑃𝑖(𝑡) 

(8) 

The generator is provided with a control command to 
convince the two conflicting control commands. In other 
words, the AVR and PSS raise the grid's stability including 
oscillation stability and terminal voltage control by a single 
control command. In general, AVR is provided with a high 
gain to give a quick reaction for raising stability indexes. In 
this case, the small-signal stability may be affected [21]. By 
contrast, although PSS increases the small-signal stability, the 
voltage regulation and oscillation stability improvement may 
be affected [22]. Thus, the AVR and PSS require coordinating 
their parameters for ensuring an appropriate performance in 
different operating points of the grid. 

III. DRL BASED INTELLIGENT COORDINATOR 

As mentioned in earlier section, developing a coordinator 
among AVR and PSS is required. For this end, in this paper, a 
DRL based intelligent control is developed as an intelligent 
coordinator among AVR and PSS to rehabilitate the 
deficiencies between them under substantial variations in the 

operating point of power systems. Figure 2 shows how the 
DRL coordinator acts to make coordination. 
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Fig. 2. Proposed coordinated control for AVR and PSS 

As shown in Fig. 2 the coordinator is provided with two 
inputs including the terminal voltage (∆𝑉𝑇𝑖) and rotor speed 
(∆𝜔𝑖 = 𝜔𝑖 − 𝜔0 ) changes. The outputs are supplementary 
parameters to reform the constant parameters of the AVR and 
PSS against perturbations. Two scaling coefficients 𝑅𝐴𝑉𝑅 and 
𝑅𝑃𝑆𝑆 are included as the outputs of the DRL coordinator. The 
scaling coefficients are obtained in a trial-and-error method to 
achieve an optimal system control. The coefficients are 
computed offline, hence the time and computational 
complexity are not of high significance. 

The DRL problem can be expressed as a Markov decision 
procedure. The DRL agent is trained through interacting with 
the environment (i.e., power system) using rewards. The aim 
of an agent is to obtain efficient actions so that transient and 
small-signal stabilities can be ensured. At per time step t, 
according to the running state, the agent provides an action for 
the power system and takes a different state and reward. The 
agent retains repeating this process until it gets in a final state. 
The inputs (states) for the agent are as system data (∆𝜔𝑖  and 
∆𝑉𝑇𝑖) which can be measured by phasor measurement units. 
In this paper, ∆𝜔𝑖  and ∆𝑉𝑇𝑖 are considered to train the DRL 
agent. The reward 𝑅𝑖.𝑡 for each time step is calculated as 

𝑅𝑖.𝑡 = 

{
𝑝𝑜𝑠𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑(+𝑅𝑝.𝑡). ∀ ∆𝜔𝑖 . ∆𝑉𝑇𝑖 ∈ 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑(−𝑅𝑛.𝑡). ∃ ∆𝜔𝑖 . ∆𝑉𝑇𝑖 ∉ 𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎
 
(9) 

The final reward 𝑅𝑇𝑖 of all iterations can be shown as 

𝑅𝑇𝑖 = ∑ 𝑅𝑖.𝑡

𝑛

𝑡=1

/𝑛 (10) 

In continue, the DDPG algorithm is employed to design 
the DRL agent. This algorithm comprises an actor network 
together with a critic network [23]. The critic network 
approximates action-value function 𝑄(𝑠. 𝑎) using a Bellman 
equation, which is defined as follows: 

𝑄𝑡+1
(𝑠.𝑎)

= 𝑄𝑡
(𝑠.𝑎)

+𝛼[𝑅𝑖.𝑡 + 𝛾𝑚𝑎𝑥𝑄𝑡

(𝑠′.𝑎′)
− 𝑄𝑡

(𝑠.𝑎)
] (11) 

A policy gradient theorem is used to update the actor-
network. The gradient approximation for the coefficients of 
actor-network can be calculated as follows: 

∇𝜃𝜇𝐽

≈
1

𝑁
∑ ∇𝑎 𝑄(𝑠. 𝑎)|𝑠=𝑠𝑡.  𝑎=𝜇(𝑠𝑡)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑡

 
(12) 

where 𝜇(𝑠|𝜃𝜇) represents a parameterized actor function; and 
𝜃𝜇 represents the policy coefficient. In DDPG, a deep neural 



network calculates directly the control action a so that a 
continuous state-action space is provided. Besides, to update 
the trained actor and critic networks slowly, a target network 
is created, which remarkably raises the learning stability [23]. 
Throughout the action exploration procedure, a random noise 
𝜗 is added to develop the exploration policy 𝜇′ as 

𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇

)+𝜗𝑡 (13) 

where 𝜗𝑡+1 = 𝜗𝑡 × 𝑟𝑐 . In this paper, the actor-network is 
employed to assess the property of the actions. While the critic 
network is developed to generate the supplementary 
parameters for AVR and PSS to achieve minimum steady-
state error for the power grid. The action network is provided 
with a vector state of the ∆𝜔𝑖  and ∆𝑉𝑡𝑖 in time step t (i.e., 𝑠𝑡 =
[∆𝜔𝑖.𝑡 . ∆𝑉𝑇𝑖.𝑡] ) as input, and gives a continuous action 

𝜇(𝑠𝑡|𝜃𝑡
𝜇

) as output. The state 𝑠𝑡  and action 𝜇(𝑠𝑡|𝜃𝑡
𝜇

) are then 

entered to the critic part and it produces a Q-value 

𝑄(𝑠𝑡 . 𝜇(𝑠𝑡|𝜃𝑡
𝜇

)) as output. Figure 3 shows the structure of the 

actor-critic network. 
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Fig. 3. The structure of the actor-critic network. 

 

IV. RESULTS AND DISCUSSION 

The simulation analyses are accomplished on Kundur's 
power system. The system is divided into two control area, 
each of which includes two synchronous generators. The 
single-line view of the power grid is depicted in Fig. 3. The 
areas are connected to each other by two tie-lines. In normal 
performance, the power exchange between two areas is 413 
MW. The load model in each area is a constant impedance 
model.  

The system has a base frequency of 60 Hz. The values 
associated with base voltage and power for each generator are 
equal to 20 KV and 900 MVA, respectively. The AVR and 
PSS are installed on all the generators. The gains of AVR (𝐾𝑎) 
and PSS (𝐾𝑝 ) are 200 and 30, respectively. The detailed 

information of the system model can be found in [24]. It is 
assumed that generator 4 in the second area is provided with 
the DRL coordinator. It should be noted that the DRL 
coordinator can also be installed on other ones, which implies 
a multi-agent learning problem. However, to simplify the 
learning process, one agent is trained corresponding to 
generator 4. Table I summarizes the parameters of DRL agent. 

 

(a) 

 

(b) 
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Fig. 4. Time-domain responses of rotor angle, rotor speed, accelerator power, 

and terminal voltage of the generators without DRL coordinator. 

TABLE I.  THE PARAMETERS OF DRL AGENT 

Parameter Value Parameter Value 

n 5000 𝑟𝑐 0.9995 

𝛼 0.001 𝛾 1 

 

 



One fault scenario is investigated to prove the capability 
of the proposed DRL-based intelligent coordinator. In this 
scenario, generator 3 is disconnected which has the highest 
generation capacity in the system. The power grid operates in 
the steady condition before the fault. Fig. 4 illustrates the 
dynamic responses including rotor angle, rotor speed, 
accelerator power, and generators' voltage without DRL 
coordinator after the disconnection of generator 3. As the 
figure implies, the accelerator power fluctuates around zero so 
that a stable performance is not achieved. The rotor angle of 
generator 4 fluctuates with a big amplitude. Furthermore, the 
voltage of generator 4 is oscillating around zero. The rotor 
speed implies that area 2 is separated in the first seconds. That 
is, area 2 has been interrupted and the load amount of area 1 
is only supplied by generators 1 and 2. Thus, the grid is 
unstable as it misses the total generation of area 2. Figure 5 
shows the plot of the rotor angle, terminal voltage, rotor speed, 
and accelerator power with the DRL coordinator after the 
outage of generator 3. As seen, the operating conditions of the 
power grid are stable with the DRL coordinator. It implies that 
generator 4 continues its stable behavior in case of the fault 
and after. The accelerator power of steady-state becomes zero 
that represents a safe operation among the electrical and 
mechanical powers. The generators' rotor angles (Generators 
1, 2, and 3) are parallel as a stable operation. In other words, 
the DRL intelligent coordinator has stabilized the power grid 
by updating the coefficients of PSS and AVR after the outage 
of the generator 3.  It should be noted that as the design of the 
DRL coordinator or other intelligent methods relies on science 
knowledge about the controller and power grid, it might 
achieve better responses. For example, expanding the number 
of neurons or hidden layers in the structure of actor-critic 
network may yield improvement of the dynamic responses. 
However, the computational speed of the DRL coordinator 
may be affected which makes it inappropriate for dynamic 
decision making. 

V. CONCLUSIONS 

This paper proposed an intelligent method based on DRL 
for PSS and AVR in an interconnected power grid. The DRL 
coordinator was proposed to adjust the coefficients of PSS and 
AVR in an online manner. This coordinator was able to avoid 
unfavorable interactions among PSS and AVR under changes 
in the working point of the power grid. In the DRL problem, 
a DDPG algorithm based on an actor-critic framework was 
developed to produce control actions to guarantee secure and 
stable operation of the grid. Numerical simulations indicated 
that DRL intelligent coordinator could ensure the system 
stability under the fault condition. The stability studies can 
also be exercised by installing DRL intelligent coordinator on 
multiple generators (This implies a multi-agent learning 
problem) in a power grid, which can be considered as an 
extension of the studies of this paper. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 5. Time-domain responses of rotor angle, rotor speed, accelerator power, 

and terminal voltage of the generators with DRL coordinator. 
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