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A B S T R A C T   

Background: Alzheimer’s Disease (AD) is a complex and multifactorial disease and novel approaches are needed 
to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein 
regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, 
since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their 
utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived 
metabolites to add insigts to the pathological mechanisms of AD. 
Methods: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 
healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 ◦C with a wash. Metabolites from 
serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic 
resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered me-
tabolites in cognitively impaired individuals. 
Results: While no significant EV-derived metabolites were found differentiating patients from healthy individuals, 
six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC 
= 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC 
= 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and 
histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to 
controls. 
Conclusion: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms 
possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a 
biological material for AD-related metabolomics studies.   

Abbreviations: Aβ, Amyloid-β; ACE, Addenbrooke’s cognitive examination; AD, Alzheimer’s Disease; AUC, Area under the curve; BBB, Blood-brain barrier; BCAA, 
Branched-chain amino acid; CNS, Central nervous system; CSF, Cerebrospinal fluid; CV, Cross-validation; EVs, Extracellular vesicles; FAQ, Functional activities 
questionnaire; FDR, False discovery rate; MMSE, Mini-mental state examination; MCI, Mild cognitive impairment; PCA, Principal component analysis; p-tau, 
Phospho-tau; ROC, Receiver operating characteristics; sPLS-DA, Sparse partial least squared discriminant analysis; t-tau, Total-tau. 
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1. Introduction 

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease and 
comprises the largest part of dementia subtypes [1]. The amyloid hy-
pothesis has for a long time been the main focus in AD research and the 
development of therapeutic interventions [2]. However, clinical trials 
are continuously failing [3], which has led researchers on new paths to 
uncover the complexity of this multifactorial disease [4]. Furthermore, 
with the current diagnostic methods, such as positron emission tomog-
raphy and cerebrospinal fluid (CSF) proteins, some limitations hinder 
their use as first-line diagnostic or even screening tools. CSF provides for 
a biological fluid in close contact with the brain parenchyma, allowing 
identification of brain-related molecules in higher concentrations 
compared to that in peripheral blood samples. This biofluid may be 
useful for the analysis of brain metabolic alteration [5], but limitations 
associated with scanning methods and CSF sampling could be circum-
vented by blood-based biomarkers, as a minimally invasive diagnostic 
tool [6]. Blood is a versatile body fluid being in close connection with 
every organ, thus potentially reflecting their state [7]. The blood-brain 
barrier (BBB) becomes disrupted during AD pathogenesis, potentially 
allowing brain metabolites to be reflected in a blood sample [8]. 

With blood providing a complex matrix for biomarker investigations 
and AD being a multifactorial disease, integration of in-depth technol-
ogies and large data structures are needed. The term “systems biology” 
describes the understanding of the biological system as a whole, rather 
than paying attention to single factors in disease pathologies. This 
analytical power was realized by the omics-era [9]. Metabolomics is one 
of the newest fields in the omics family [9] being the study and explo-
ration of all metabolites (<1,500 Da) in a cell, organ, or organism, and 
comprises lipids, amino acids, vitamins, peptides, and minerals, among 
others [10]. Since metabolites are the endpoints of genes, transcripts, 
and protein regulations, minor changes in the level of the upstream 
molecules can cause significant alterations in metabolites [11]. Not only 
disease progression can cause such changes, but also medication, 
nutrition, and environmental factors can affect metabolites [12]. Lastly, 
metabolic pathways are evolutionarily conserved across species, making 
them ideal targets for clinical studies [13]. 

The two most common methods for metabolomics studies are mass 
spectrometry (MS)-based metabolomics and nuclear magnetic reso-
nance (NMR) spectroscopy [14]. Utilizing these two methods in com-
bination can overcome several of their limitations, thus providing 
greater coverage of the metabolome, with MS-based metabolomics 
identifying low abundance metabolites and NMR identifying core me-
tabolites in key metabolic pathways [12,13]. Interestingly, perturba-
tions in metabolic pathways have been shown to be one of the first 
measurable changes to occur before manifestations of clinical symptoms 
[15]. Several studies have also examined metabolic alterations in AD, 
presenting different metabolic panels specific for AD [16–18]. 

Extracellular vesicles (EVs) are nano-sized particles, surrounded by a 
lipid-bilayer, and packed with active biomolecules such as proteins, 
lipids, and genetic material [19]. They are released by all cell types, 
including cells present within the central nervous system (CNS) [20], 
and hence, are important players in intercellular communication in 
physiological and pathological conditions. EVs can be identified in a 
wide variety of biofluids, including blood [19]. Several studies have 
investigated their role in AD in relation to the spreading [21] and 
clearing [22] of amyloid-β (Aβ). In addition, EVs have been shown to be 
able to bypass the BBB through various suggested mechanisms [23]. 
These features of EVs as potential sources of biomarkers have included 
them in the term “liquid biopsies” [24]. With both metabolomics and 
EVs being relatively new fields, the combination of the two in search for 
biomarkers is therefore also scarce. Few studies have examined the 
metabolome of EVs, mostly focused on biomarkers for various cancer 
types [25]. To the knowledge of the authors, no study has yet explored 
EV-derived metabolites in AD. 

Therefore, this study aimed to explore metabolic perturbations 

related to pathological changes in AD, through the combined effort of 
MS- and NMR-based metabolomics approaches. Both serum and EV- 
derived metabolites were examined from patients with AD or Mild 
Cognitive Impairment (MCI) and compared to that of healthy controls. 
We identified several interesting metabolites distinguishing between 
diseased and healthy individual samples. Also, serum seemed to be a 
more suitable biological matrix for studying metabolic changes in AD; 
however, further optimization is needed for EVs in order to become a 
biological matrix of choice for future metabolomics studies. 

2. Methods 

2.1. Study participants 

A total of 30 participants were enrolled for this study, distributed in 
three groups with 10 AD patients, 10 MCI patients, and 10 healthy 
controls. The patient groups were consecutively included from the 
Department of Neurology at Aalborg University Hospital. Study inclu-
sion was at their time of diagnosis and blood samples were drawn prior 
to initiation of treatment. The diagnosis of mild to moderate AD patients 
was based on the International Classification of Diseases and Related 
Health Problems 10th Edition (ICD10) criteria [26] and the National 
Institute of Neurological and Communicative Disorders and Stroke and 
the Alzheimer’s Disease and Related Disorders Association (NINCD-
S-ADRDA) [27]. For MCI patients, the diagnosis was made based on the 
Petersen criteria [28]. Paraclinical measurements of patients were per-
formed when necessary for diagnostic certainty and included the 
Mini-Mental State Examination (MMSE), Addenbrooke’s Cognitive Ex-
amination (ACE), Function Activities Questionnaire (FAQ), CSF Aβ, CSF 
phospho-tau (p-tau), and CSF total-tau (t-tau). 

For comparison with patient groups, age- and sex-related donors 
were recruited from the blood bank at Aalborg University Hospital. 
Donors were required to be of age 65 or older and complete a ques-
tionnaire regarding physical and mental health, stating information 
about i.e. fatigue, chest pain, and memory impairment. All included 
participants signed a consent form prior to study inclusion. The study 
was conducted in accordance with the Declaration of Helsinki and 
approved by the local North Denmark Region Committee on Health 
Research Ethics (N-20150010). 

2.2. Sample collection and routine analyses 

Collection and handling of blood samples were performed as previ-
ously described [29]. Briefly, using the median cubital vein as access 
point and a 21-gauge needle, blood samples (plasma and serum) were 
collected in 9 mL 0.105 M (3.2%) trisodium citrate (Vacuette, Greiner 
Bio-One, Austria) and 10 mL clot activator tubes (BD Vacutainer, UK). 
After blood collection, samples were subjected to double centrifugation 
at 2,500×g for 15 min at room temperature to obtain either platelet-free 
plasma or serum. Plasma and serum were aspirated until 1 cm above the 
buffy coat or pellet. Aliquots of plasma and serum samples were 
snap-frozen in liquid nitrogen and stored at – 80 ◦C until further 
processing. 

In addition, routine analyses were applied as previously described to 
ensure that study participants presented with no co-morbidities [29]. 
Briefly, measurements of normal system functioning and markers of 
organ function and damage were investigated by; alanine transaminase, 
albumin, carbamide, cholesterol, creatinine, C-reactive protein, glucose, 
high and low-density lipoprotein, haemoglobin, lactate dehydrogenase, 
and triglycerides. 

2.3. Enrichment of extracellular vesicles 

For MS, EVs were enriched from 1 mL plasma. A two-step centrifu-
gation process at 100,000×g for 1 h at 4 ◦C was performed using an 
Avanti J-30i centrifuge together with a J A-30.50 fixed angle rotor, k- 
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factor 280 (Beckman Coulter, Brea, CA, USA). In-between centrifuga-
tions pellets were washed with 1 mL 0.22 μm filtered buffer (10 mM 
ammonium acetate in HPLC grade water). The resulting final EV pellets 
were resuspended in 100 μL of the same buffer. For NMR analysis, EVs 
were enriched from 1 mL plasma in triplicates for one sample per group. 
A two-step centrifugation process at 100,000×g for 1 h at 4 ◦C was 
performed using a LKB 2331 Ultrospin 70 (LKB, Bromma, Sweden). In- 
between centrifugations pellets were washed with 1 mL 0.22 μm 
filtered phosphate-buffered saline. The resulting final EV pellets were 
resuspended in 150 μL of the same buffer, and due to the dilution of 
samples and relatively high metabolite concentration requested for NMR 
analysis (>1 μM), samples were pooled resulting in three samples in 
total, one EV isolate from each group. Furthermore, we have previously 
characterised pellets of EVs from the same enrichment, thus comfirming 
their presence in our samples [30]. 

2.4. Mass spectrometry analysis 

For MS-based metabolomics analysis, both serum and EV samples 
were investigated. Samples were thawed on ice and four times volume 
extraction solvent was added, followed by vigorous vortexing. For 
serum, the extraction solvent comprised of methanol/acetonitrile/H2O 
(5:3:2), and for EVs methanol/acetonitrile (5:3) was used. Samples were 
then centrifuged at 16,000×g for 15 min at 4 ◦C. The supernatant was 
aspirated, lyophilized, and stored at – 20 ◦C. Prior to liquid 
chromatography-mass spectrometry (LC-MS) analysis, samples were 
dissolved in 0.1% formic acid (30 μL) and centrifuged at 16,000×g for 5 
mintutes at room temperature. 

The samples were analysed as in Dall et al. [31]. In brief, 5 μL was 
injected using a 400 μl/min and the following composition of eluent A 
(0.1% formic acid) and eluent B (0.1% formic acid, acetonitrile) sol-
vents: 3% B from 0 to 1.5 min, 3%–40% B from 1.5 to 4.5 min, 40%–95% 
B from 4.5 to 7.5 min, 95% B from 7.5 to 10.1 min and 95%–3% B from 
10.1 to 10.5 min before equilibration for 3.5 min with the initial con-
ditions. The flow from the UPLC was coupled to a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific) for mass spectrometric analysis 
in both positive and negative ion modes. The raw data were also pro-
cessed as in Dall et al. [31] using MZmine (v 2.53) [32]. 

2.5. Nuclear magnetic resonance spectroscopy analysis 

NMR spectroscopy was used to investigate serum and EV-derived 
metabolites. Samples were thawed for 30 min at 4 ◦C, vortexed, and 
centrifuged at 12,100×g for 5 min at 4 ◦C using a multifuge 3 S-R 
centrifuge (Heraeus, Hanau, Germany). A total of 400 μL serum super-
natant or EV isolate was mixed with 200 μL buffer (0.2 M NaPO4, 99% 
D2O, pH 7.4), as previously described [33,34]. Samples were aliquoted 
in 5 mm NMR tubes and kept on ice until analysed. A PULCON sample 
consisting of glucose and buffer was used as an internal standard. 

A Bruker AVANCE 800 MHz NMR spectrometer (Bruker BioSpin, 
Rheinstetten, Germany) equipped with a cryogenically cooled, triple- 
resonance (1H, 13C, 15N) CPP-TCI probe, and operated at 298.1 K 
(25 ◦C) was used to record 1H NMR spectra. T2 filtered Carr-Purcell- 
Meiboom-Gill (CPMG) experiments with water presaturation were ob-
tained using the following parameters; 65536 data points covering a 
spectral width of 20 ppm using 256 scans for serum and 128 scans for 
plasma (EV) samples, with 32 dummy scans, a fixed receiver gain of 203, 
and a relaxation delay (D1) of 4 s. Presaturation of the water resonance 
was achieved during D1 by continuous irradiation at γB1/2π = 25 Hz. T2 
filtering was then performed with a τ-180◦-τ (τ = 300 μs) pulse 
sequence, which was repeated 256 times for 80 ms. The TopSpin 3.1 
software (Bruker BioSpin, Rheinstetten, Germany) was used for spectral 
acquisition and processing, including enhancement of spectral resolu-
tion using artificial zero-filling by adding digital data points to the free 
induction decays, line broadening (0.3 Hz), Fourier transformation, 
phase and baseline correction, and calibration to the L-alanine methyl 

peak (1.48 ppm), as previously described [35]. Metabolite annotation 
was performed using 2D 1H–1H total correlation spectroscopy and 
1H–13C heteronuclear single-quantum correlation spectra, the Human 
Metabolome Database (HMDB) [36], and literature [33,37,38], while 
quantification was based on integrating the sum of all points within a 
signal of interest, as previously described [38]. 

2.6. Data analysis 

For LC-MS, in serum and EV samples a total of 130 and 65 features 
were annotated on MS2 level, respectively and were subsequently cor-
rected for signal drift using the statTarget R package [39]. For NMR 
spectroscopy a total of 38 metabolites were identified. Prior to multi-
variate analysis, data were generalized log-transformed and auto-scaled 
using MetaboAnalyst 5.0 (Xia Lab, Quebec, Canada) [40]. Supervised 
sparse-partial least squared discriminant analysis (sPLS-DA) was used to 
detect metabolites related to cognitive impairments. A five-fold cross--
validation (CV) repeated 100 times was employed. Scores plots of 
sample grouping and loadings plots of selected metabolites are pre-
sented. Receiver operating characteristics (ROC) curves for group 
discrimination were created based on the CV adjusted models. The area 
under the curve (AUC) and 95% confidence intervals (CI) were used to 
report the sensitivity and specificity of the models. Multivariate analysis 
was performed using the mixOmics R package [41]. R script and files for 
sPLS-DA can be accessed in Supplementary Materials File S1 and 
Table S1 – S3. 

Correlations were performed for metabolites identified by both MS 
and NMR to assess methods’ compatibility using Pearson’s ρ (Supple-
mentary Material File Fig. S1). Data are presented as means ± standard 
deviations (SD). Group comparisons were performed using analysis of 
variance (ANOVA) with Tukey’s honestly significant difference (HSD) 
post hoc test in IBM SPSS Statistics 27 (SPSS, Chicago, IL, USA). 
Benjamini-Hochberg false discovery rate (FDR) was applied for multiple 
correction. Fold changes (FC) were calculated for between-group com-
parisons. A p-value < 0.05 was considered statistically significant. 
GraphPad Prism 9.1.1 (GraphPad Software, La Jolla, CA, USA) was used 
for data visualization. 

Network analysis was conducted using MetScape version 3.1.3 [42] 
for serum metabolites differentiating AD patients and healthy 

Table 1 
Demographics and clinical data of study groups. The presented values are 
shown as mean ± standard deviation. Abbreviations; Aβ: amyloid-β, ACE: 
Addenbrooke’s Cognitive Examination, AD: Alzheimer’s Disease, Con: healthy 
controls, CSF: cerebrospinal fluid, FAQ: Functional Activities Questionnaire, 
MCI: Mild Cognitive Impairment, MMSE: Mini-Mental State Examination, p-tau: 
phospho-tau, t-tau: total-tau. *Ages 51–70. Interval <500 for ages 71–90.   

Con (n 
= 10) 

MCI (n =
10) 

AD (n = 10) p- 
value 

Reference 
interval 

Demographics 
Female/ 
male (n) 

6/4 8/2 6/4 – – 

Age 
(years) 

65 ±
0.5 

72 ± 5 70 ± 5 0.005 – 

Cognitive performance 
ACE – 85.0 ± 5.6 

(n = 6) 
58.7 ± 16.5 

(n = 3) 
0.007 – 

FAQ – 4.0 ± 2.0 (n 
= 3) 

10.4 ± 4.6 
(n = 5) 

0.066 – 

MMSE – 27.4 ± 2.3 23.6 ± 4.6 0.041 – 
Paraclinical measurements 

CSF Aβ – 998. 5 ±
428.6 (n =

4) 

626.3 ±
260.9 (n =

6) 

0.148 > 500 

CSF t-tau – 563.0 ±
363.9 (n =

4) 

628.2 ±
288.9 (n =

6) 

0.760 < 61 

CSF p-tau – 98.0 ± 61.3 
(n = 4) 

80.5 ± 29.5 
(n = 6) 

0.556 < 450*  
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individuals. Networks were build using KEGG IDs. Log2 FC was used to 
indicate whether the affected metabolic pathways were altered in 
diseased compared to healthy individuals. Tables for MetScape analysis 
can be accessed in Supplementary Material File Table S4. 

3. Results 

3.1. Subject characteristics 

The measured biochemical parameters, test results of cognitive 
performances, and paraclinical measurements have been presented in 
earlier studies by Nielsen et al. [29,30]. Briefly, most biochemical 
measurements were within standard reference intervals, however, with 
few individuals presenting elevated levels of LDL cholesterol and 

triglycerides. A small but significant difference in age was found be-
tween healthy and diseased individuals (p = 0.005). AD patients pre-
sented with significantly lower scores of cognitive testing based on 
MMSE (p = 0.04) and ACE (p = 0.007) tests, and higher scores on the 
FAQ test, compared to MCI patients. For paraclinical measurements of 
CSF markers, AD patients were observed to have slightly lower levels of 
Aβ and p-tau and higher levels t-tau (Table 1). 

3.2. Metabolic signatures of cognitive impairments 

For this study, serum samples were measured by both LC-MS and 
NMR, while EVs only by LC-MS due to samples being too diluted for 
NMR, resulting in few signals obtained on the NMR spectrum (Supple-
mentary Material File Fig. S2). 

Fig. 1. Metabolic signatures related to cognitive 
impairment through MS- and NMR-based ap-
proaches. Sparse-partial least squared discriminant 
analysis (sPLS-DA) models for serum metabolites, 
together with receiver operating characteristics 
(ROC) curves for each of the models. For LC-MS 
serum samples (A) scores plot, (B) loadings plot, 
and (C) ROC curves were shown. For NMR serum 
samples (D) scores plot, (E) loadings plot, and (F) 
ROC curves were shown. Each score represents a 
sample and the loadings represent the variation in 
a specific metabolite. The size of the bars indicates 
their importance for the sample grouping, and the 
color-coding indicate their importance for one of 
the groups. Based on the selected metabolites, the 
ROC curves compare their ability to distinguish the 
three study groups from each other for the data-
sets. The area under the curve (AUC) and the 
respective 95% CI are presented for each of the 
ROC curves. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the Web version of this article.)   
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To facilitate the identification of possible metabolites associated 
with cognitive impairment sPLSDA was performed. A small overlap 
across the groupings could be observed for the serum samples measured 
by LC-MS and NMR (Fig. 1A – F). Among the 130 measured metabolites 
by LC-MS, 15 were found discriminating between groups by using 2 
latent variables, with a classification error of 0.56 (Fig. 1A and B) and an 
AUC = 0.70 (95% CI = 0.51–0.88) for AD patients compared to MCI 
patients and controls, an AUC = 0.79 (95% CI = 0.62–0.95) for the MCI 
group compared to AD patients and controls, and an AUC = 0.98 (95% 
CI = 0.94–1.00) for healthy controls compared to patient groups 
(Fig. 1C). For NMR, five metabolites were found significantly 

contributing to sample grouping (Fig. 1D and E), with a classification 
error rate of 0.50, and an AUC = 0.84 (95% CI = 0.69–0.98) for AD 
compared to the MCI and control groups, an AUC = 0.61 (95% CI =
0.40–0.81) for MCI compared to the AD and healthy individuals, and an 
AUC = 0.94 (95% CI = 0.85–1.00) for healthy controls compared to 
patient groups (Fig. 1F). A less distinct separation was observed for the 
EV samples with a greater classification error rate of 0.62 (Supplemen-
tary Material File Fig. S3), indicating lower accuracy of EV-based me-
tabolites in distinguishing patients from healthy individuals. 

Several serum metabolites were found to be significantly altered, 
with 6 of these being significant after FDR correction (Table 2) for LC- 

Table 2 
21 differentially altered metabolites in serum samples measured by mass spectrometry comparing all groups. Abbreviations; AD: Alzheimer’s Disease, ANOVA: analysis 
of variance, Con: healthy controls, FC: fold change, FDR: false discovery rate, MCI: Mild Cognitive Impairment.  

Metabolites Mean ± SD [Intensities] ANOVA FDR AD |Con MCI |Con AD |MCI 

Con MCI AD FC p FC p FC p 

1-Pentadecanoyl-sn-glycero-3-phosphocholine 970.2 ± 282.5 1249.8 ±
478.9 

507.9 ±
210.0 

0.0004 0.020 0.5 0.021 1.3 0.213 0.4 0.0003 

Allopurinol riboside 1829.6 ±
1293.6 

296.5 ±
193.8 

444.4 ±
330.8 

0.0004 0.020 0.2 0.002 0.2 0.001 1.5 0.915 

Inosine 1626.3 ±
1014.0 

404.7 ±
258.1 

496.4 ±
361.9 

0.0005 0.020 0.3 0.002 0.2 0.001 1.2 0.950 

Guanosine 1809.1 ±
1069.5 

401.2 ±
387.7 

590.5 ±
556.7 

0.0006 0.020 0.3 0.004 0.2 0.001 1.5 0.848 

1-Palmitoyl-sn-glycero-3-phosphocholine 997.1 ± 246.8 1109.8 ±
283.7 

625.4 ±
222.1 

0.001 0.025 0.6 0.011 1.1 0.615 0.6 0.001 

13-cis-Retinol 876.4 ± 207.2 1244.9 ±
467.0 

590.3 ±
293.7 

0.001 0.032 0.7 0.194 1.4 0.073 0.5 0.001 

4-Pyridoxic acid 815.4 ± 119.9 1234.5 ±
309.8 

1288.6 ±
393.5 

0.004 0.074 1.6 0.006 1.5 0.016 1.0 0.921 

1-Myristoyl-sn-glycero-3-phosphocholine 1170.2 ±
527.6 

1198.8 ±
534.9 

548.9 ±
271.9 

0.009 0.139 0.5 0.021 1.0 0.991 0.5 0.016 

2-Isopropylmalic acid 769.4 ± 209.3 1164.1 ±
319.1 

1135.1 ±
311.0 

0.011 0.147 1.5 0.029 1.5 0.017 1.0 0.974 

Leu-Leu 842.5 ± 223.6 946.4 ±
319.7 

1366.4 ±
488.3 

0.011 0.147 1.6 0.013 1.1 0.816 1.4 0.051 

7-Methylguanine 1021.0 ±
141.6 

1040.4 ±
165.1 

1308.5 ±
298.9 

0.013 0.156 1.3 0.021 1.0 0.980 1.3 0.033 

2-Phenylethanol,sulfate 724.1 ± 390.3 845.6 ±
503.7 

1570.6 ±
882.6 

0.017 0.164 2.2 0.021 1.2 0.912 1.9 0.054 

1-Oleoyl-sn-glycero-3-phosphocholine 971.3 ± 289.9 1070.1 ±
270.7 

674.4 ±
289.6 

0.017 0.164 0.7 0.086 1.1 0.742 0.6 0.017 

L-Lysine 1138.1 ±
312.3 

795.2 ±
150.8 

1085.9 ±
280.5 

0.019 0.164 1.0 0.904 0.7 0.023 1.4 0.060 

5-Androsten-3β,17β-diol-3-sulfate 777.0 ± 490.1 696.2 ±
513.6 

1478.9 ±
775.1 

0.020 0.164 1.9 0.053 0.9 0.957 2.1 0.028 

1-Palmitoyl-2-hydroxy-sn-glycero-3- 
phosphoethanolamine 

892.4 ± 397.8 1094.5 ±
336.2 

633.7 ±
217.4 

0.020 0.164 0.7 0.230 1.2 0.399 0.6 0.015 

9(10)-Epoxy-12Z-octadecenoic acid 694.8 ± 412.9 1342.5 ±
685.4 

768.1 ±
379.0 

0.023 0.179 1.1 0.950 1.9 0.032 0.6 0.061 

3-Methylglutarylcarnitine 600.8 ± 190.9 995.2 ±
420.7 

1214.7 ±
695.4 

0.037 0.251 2.0 0.031 1.7 0.211 1.2 0.604 

D-erythro-Sphingosine-1-phosphate 905.0 ± 247.9 1156.4 ±
454.3 

732.4 ±
255.8 

0.039 0.251 0.8 0.523 1.3 0.263 0.6 0.031 

Glycodeoxycholic acid 1370.1 ±
869.5 

837.6 ±
691.7 

527.0 ±
314.6 

0.039 0.251 0.4 0.032 0.6 0.226 0.6 0.590 

Lys-Trp 827.9 ± 106.5 736.1 ± 47.4 774.3 ± 47.9 0.041 0.251 0.9 0.278 0.9 0.032 1.1 0.515  

Table 3 
Seven altered metabolites in serum samples measured by nuclear magnetic resonance spectroscopy comparing all groups. Abbreviations; AD: Alzheimer’s Disease, 
ANOVA: analysis of variance, Con: healthy controls, FC: fold change, FDR: false discovery rate, MCI: Mild Cognitive Impairment.  

Metabolites Mean ± SD [μM] ANOVA FDR AD |Con MCI |Con AD |MCI 

Con MCI AD FC p FC p FC p 

Valine 118.4 ± 17.6 96.6 ± 13.5 91.8 ± 10.7 0.001 0.016 0.8 0.001 0.8 0.009 0.9 0.730 
Histidine 36.7 ± 2.4 33.7 ± 3.0 31.7 ± 2.2 0.001 0.016 0.9 0.001 0.9 0.048 0.9 0.232 
Formate 4.6 ± 0.9 3.0 ± 0.8 4.1 ± 0.8 0.001 0.016 0.9 0.415 0.7 0.001 1.4 0.026 
Myo-inositol 40.2 ± 5.9 33.6 ± 3.8 34.6 ± 4.2 0.013 0.121 0.9 0.044 0.8 0.016 1.0 0.902 
Glutamine 308.4 ± 33.3 277.0 ± 18.0 283.0 ± 14.9 0.020 0.154 0.9 0.075 0.9 0.023 1.0 0.852 
Dimetylamine 5.6 ± 2.2 4.0 ± 1.3 3.6 ± 0.8 0.025 0.159 0.6 0.027 0.7 0.092 0.9 0.834 
Isoleucine 44.8 ± 8.9 37.3 ± 7.0 36.5 ± 6.0 0.046 0.248 0.8 0.062 0.8 0.096 1.0 0.974  
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MS analysis. For NMR, seven metabolites were significantly altered, 
with three of them being significant after FDR correction (Table 3). In 
contrast, EV samples only showed 5 significantly altered metabolites, 
and none of them being significant after FDR correction (Supplementary 
Material File Table S5). Fig. 2 depicts the most important serum me-
tabolites found to differentiate between groups, including allopurinol 
ribosine, inosine, 4-pyridoxic acid, guanosine, valine, and histidine. 

3.3. Dysregulated pathway analysis related to cognitive impairment 

To extrapolate metabolic changes possibly related to disease pa-
thology, pathway analysis was performed (Fig. 3). 4-pyridoxic acid 
involved in vitamin B6 metabolism (log2 FC = 0.7, p = 0.003) was found 
to be the most elevated metabolite, while inosine (log2 FC = − 1.7, p =
0.006) and guanosine (log2 FC = − 1.6, p = 0.007), both from the purine 
metabolism were the most decreased metabolites. Other impaired 
pathways included histidine and branch-chained amino acids (BCAAs, 
valine, leucine, and isoleucine) metabolisms. 

4. Discussion 

In this study, we investigate serum and EV-derived metabolites 
possibly related to cognitive impairments, including MCI and AD. Using 
multivariate and univariate statistics, we identified altered metabolic 
signatures in serum able to differentiate cognitive affected from healthy 
individuals. 

For serum samples, we investigated the metabolome using both LC- 
MS and NMR to obtain a broader coverage of the metabolome. Although 
LC-MS has a higher sensitivity and coverage (130 identified metabo-
lites), the reproducibility and robustness of NMR present great clinical 
applicablitity [43] since the 38 identified metabolites could be 

quantified (μM concentration). 
Important serum metabolites revolved around BCAAs (valine, 

leucine, and isoleucine), purine (inosine and guanosine), and histidine 
metabolisms, which were found decreased, while 4-pyridoxic acid was 
increased in AD patients. BCAAs have previously been associated with 
increased risk for AD and dementia [44], hence, our study confirms 
previous findings. Valine is the most extensively studied of the BCAAs in 
relation to AD, and its levels were previously been found decreased in 
AD patients [45]. Also, valine levels showed correlation with the 
cognitive decline in patients [17]. A function of BCAAs is part of the 
glutamate metabolism [46]. Glutamine is converted to glutamate, acting 
as principal excitatory neurotransmitters in the CNS [47]. Decreased 
levels of BCAAs, as we observed, could affect this conversion of gluta-
mine and glutamate, thereby decreasing neurotransmission. In line with 
this observation, we found lower levels of glutamine in the cognitively 
affected individuals, and a previous study has also reported decreased 
levels of glutamate in AD patients [48]. In addition, a study found a 
correlation between peripheral and CSF glutamine levels [49]. 

Guanosine possesses protective effects for neurons by i.e. modulating 
neurochemical processes, reducing oxidative stress, and regulate 
glutamate excitotoxicity and inflammation [50]. Inosine also provides 
benefical effects on the CNS, by improving memory and learning, as well 
as providing anti-inflammatory effects [51]. We also found decreased 
levels of allopurinol riboside, a metabolite which inhibits the effects of 
purine nucleoside phosphorylase on inosine [52]. This could be a 
response to the already observed lower levels of the purines inosine and 
guanosine, thereby partially preventing the conversion of inosine to 
hypoxanthine and guanosine to guanine. 

Histidine, a precursor to an important component in the immune 
response histamine, was found decreased in AD in our study. Histidine 
has been shown to possess multiple neuroprotective functions in relation 

Fig. 2. Important serum metabolites identified for discrimination of cognitively affected and healthy individuals. Boxplots representation with medians, interquartile 
ranges, and whiskers for minimum and maximum measurements. Significance is indicated by ** <0.01 and * <0.05. Allopurinol riboside, inosine, 4-pyridoxic acid, 
and guanosine were measured by LC-MS, while valine and histidine were measured by NMR. 
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to cerebral hypoperfusion, promoting neurogenesis and BBB integrity 
post disruption [53]. Furthermore, treatment with this amino acid 
reduced glial scarring and promoted migration of astrocytes towards the 
core, thus providing long-term neuroprotection [54]. Hence, our find-
ings may indicate possible derangements in the overall immune 
response mechanisms. 

Hyperhomocysteinaemia is a modifiable risk factor of AD and de-
mentia. Studies have shown that dietary supplementation with B vita-
mins, such as folate, B12, and B6 have the ability to lower homocysteine 
levels, improve upon cognition, and decrease the progression of MCI and 
AD [55]. 4-pyridoxic acid is the catabolic product of vitamin B6 [56], 
and thus, our observations of an increased level in AD and MCI patients 
could be due to preventive measurements by the study participants 
taking these dietary supplements. 

As part of their biogenesis, EVs are packed with molecular compo-
nents from their parental cell, including metabolites at possibly sub- 
nanomole concentrations. Thus, even with the use of the more sensi-
tive MS methodology, adequate detection levels might still be difficult to 
achieve [57]. This was evident in our study, both through a more limited 
number of metabolites measured by MS when compared to serum, but 
also when performing NMR analysis, since we were unable to recover 
adequate metabolite information not even after pooling of several 
samples per measurement. According to Gézsi and co-workers [58], the 
detection limit, as well as an adequate volume for analysis complicates 

the usage of EVs in omics studies. Despite our limited findings, few 
studies in cancer research have investigated the EV metabolome, con-
firming that EVs are able to modify the metabolome of the recipient cell 
[59]. Hence, several challenges remain to be resolved, including pre-
analytical and analytical steps related to enrichment procedure and 
global consensus and standard operating procedures, before their usage 
in metabolomics can be harnessed [25,60]. Thus, in terms of usage for 
metabolic investigations, our study indicates serum as preferable 
compared to EVs. 

Although our study showed promising indications of metabolic sig-
natures in blood for AD, some limitations are to be mentioned. Firstly, 
our study population consisted of small cohorts of patients and healthy 
controls. However, even with small sample subset, clear differences 
between diseased and healthy individuals were observed. Secondly, 
although patient groups were verified clinally, not all patients had 
paraclinical measurements or neuropsychological tests, as it was 
deemed unnecessary for the diagnosis made by the physician. Thirdly, 
the healthy individuals were on average younger compared to AD and 
MCI patients, since recruitment of older blood donors was not feasible. 
The difference in age was found to be significant, however, this was 
possibly also due to the narrow age span in the control group, compared 
to that of patients, although their age spans overlapped. In addition, 
including CSF samples for disease characterisation using metabolomics 
alongside blood samples could possibly strengthen the identification of 

Fig. 3. Dysregulated metabolic pathways related to AD pathology. Hexagonal nodes indicate altered metabolites in the study and circular nodes represent me-
tabolites involved in the pathway not identified in the study. Color codes represent the log2 FC values, with red representing upregulated metabolites and blue 
representing downregulated metabolites. Mapped metabolites are based on KEGG IDs. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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CNS-related affected pathways reflected in the peripheral system, but 
CSF sampling was not available in most of the patients and controls. 
Lastly, characterising metabolic changes might provide targets for the 
implicated molecular processes, which in turn could aid in alleviating 
AD-related pathological processes such as neuro-inflammation and 
–transmission. 

Our findings aided in the search for molecular signatures related to 
AD using untargeted metabolomics strategies, although, for such 
discovery-based approaches, further validations are needed to confirm 
these candidates in larger independent cohorts. 

5. Conclusions 

In this study, we identified several serum metabolite alterations in 
AD and MCI patients related to BCAAs, purine, histidine, and 4-pyridox-
ate metabolisms. Also, serum provides a more suitable matrix for 
investigating metabolic alterations in relation to AD pathology 
compared to that of EVs, however, additional optimization is needed for 
EVs to confirm this finding. 
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[58] Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to 
investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 
2019;51:1–11. https://doi.org/10.1038/s12276-019-0226-2. 

[59] Lopes-Rodrigues V, Di Luca A, Mleczko J, Meleady P, Henry M, Pesic M, et al. 
Identification of the metabolic alterations associated with the multidrug resistant 
phenotype in cancer and their intercellular transfer mediated by extracellular 
vesicles. Sci Rep 2017;7:44541. https://doi.org/10.1038/srep44541. 

[60] Dudzik D, Macioszek S, Struck-Lewicka W, Kordalewska M, Buszewska-Forajta M, 
Waszczuk-Jankowska M, et al. Perspectives and challenges in extracellular vesicles 
untargeted metabolomics analysis. Trac Trends Anal Chem 2021;143:116382. 
https://doi.org/10.1016/j.trac.2021.116382. 

J.E. Nielsen et al.                                                                                                                                                                                                                               

https://doi.org/10.1111/j.1365-2796.2004.01380.x
https://doi.org/10.3390/biomedicines8070199
https://doi.org/10.1038/s41598-021-97969-y
https://doi.org/10.1038/s41598-021-97969-y
https://doi.org/10.1111/acel.13342
https://doi.org/10.1186/1471-2105-11-395
https://doi.org/10.1007/s11306-016-1018-5
https://doi.org/10.1007/s11306-016-1018-5
https://doi.org/10.1111/jcmm.16522
https://doi.org/10.1038/s41597-020-0545-0
https://doi.org/10.1093/nar/gkx1089
https://doi.org/10.1007/s11306-019-1569-3
https://doi.org/10.1007/s11306-019-1569-3
https://doi.org/10.1038/srep40275
https://doi.org/10.1038/srep40275
https://doi.org/10.1016/j.aca.2018.08.002
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1093/bioinformatics/btr661
https://doi.org/10.1093/bioinformatics/btr661
https://doi.org/10.1016/j.dmpk.2020.11.008
https://doi.org/10.1016/j.jalz.2018.01.003
https://doi.org/10.1016/j.jalz.2018.01.003
https://doi.org/10.1007/BF02252924
https://doi.org/10.1093/jn/135.6.1539S
http://refhub.elsevier.com/S2589-9368(21)00049-9/sref47
http://refhub.elsevier.com/S2589-9368(21)00049-9/sref47
http://refhub.elsevier.com/S2589-9368(21)00049-9/sref47
https://doi.org/10.1177/1533317511421780
https://doi.org/10.1177/1533317511421780
https://doi.org/10.1002/acn3.50956
https://doi.org/10.3389/fncel.2018.00376
https://doi.org/10.1021/pr800439b
https://doi.org/10.1021/pr800439b
https://doi.org/10.1128/AAC.48.4.1089-1095.2004
https://doi.org/10.1128/AAC.48.4.1089-1095.2004
https://doi.org/10.3389/fphys.2018.00662
https://doi.org/10.1038/srep15356
https://doi.org/10.1007/s12291-017-0646-5
https://doi.org/10.1016/B978-0-12-813050-6.00009-7
https://doi.org/10.1016/B978-0-12-813050-6.00009-7
https://doi.org/10.3390/ijms21228550
https://doi.org/10.1038/s12276-019-0226-2
https://doi.org/10.1038/srep44541
https://doi.org/10.1016/j.trac.2021.116382

