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Air Pollution and Mobility in the MCMA in Times of COVID-19  14 

 15 

HIGHLIGHTS 16 

• Air pollution did not decrease following the restrictions imposed due to COVID-19. 17 

• Mobility in public transit systems in the MCMA decreased by more than 65%. 18 

• Public transport mobility does not Granger-cause air pollution after COVID-19.  19 

 20 

GRAPHICAL ABSTRACT 21 

 22 
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ABSTRACT 23 

This paper analyzes the relation between COVID-19, air pollution, and public transport mobility 24 

in the Mexico City Metropolitan Area (MCMA). We test if the restrictions to economic activity 25 

introduced to mitigate the spread of COVID-19 are associated with a structural change in air 26 

pollution levels and public transport mobility. Our results show that mobility in public 27 

transportation was significantly reduced following the government's recommendations. 28 

Nonetheless, we show that the reduction in mobility was not accompanied by a reduction in air 29 

pollution. Furthermore, Granger-causality tests show that the precedence relation between public 30 

transport mobility and air pollution disappeared as a product of the restrictions. Thus, our results 31 

suggest that air pollution in the MCMA seems primarily driven by industry and private car usage. 32 

In this regard, the government should redouble its efforts to develop policies to reduce industrial 33 

pollution and private car usage. 34 

Keywords:  Pandemic; structural change; Granger-causality; particle matters; public 35 

transport 36 

 37 

RESUMEN 38 

Este artículo analiza la relación entre COVID-19, contaminación atmosférica, y movilidad en 39 

transporte público en la Zona Metropolitana de la Ciudad de México (ZMCM). Analizamos si las 40 

restricciones a la actividad económica introducidas para mitigar los contagios por COVID-19 41 

están asociados con un cambio estructural en los niveles de contaminación atmosférica y 42 

movilidad en transporte público. Nuestros resultados muestran que movilidad en transporte 43 

público se redujo significativamente dadas las recomendaciones gubernamentales. No obstante, la 44 

reducción en movilidad no fue acompañada de una reducción en contaminación atmosférica. Más 45 

aún, pruebas de Granger-causalidad muestran que la relación de precedencia entre movilidad en 46 

transporte público y contaminación atmosférica desapareció como consecuencia de las 47 

restricciones. Por lo tanto, nuestros resultados sugieren que la contaminación atmosférica en la 48 

ZMCM se asocia primordialmente a actividad industrial y movilidad en transporte privado. En 49 

este sentido, el gobierno debería redoblar sus esfuerzos para implementar políticas públicas 50 

dirigidas a reducir contaminación industrial y el uso del automóvil. 51 

Palabras clave:  Pandemia; cambio estructural; Granger-causalidad; partículas 52 

suspendidas; transporte público 53 
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1. Introduction 54 

The COVID-19 pandemic is one of the most severe health crises in recent memory. The 55 

official death toll around the world surpassed 1 million as of September 29, 2020. Considering 56 

reporting problems in some countries and that the pandemic is still not under control, the actual 57 

death toll may not be known for several years.  58 

Countries worldwide have imposed restrictions on economic activity to slow the rate of 59 

infection. Most of the restrictions can be motivated by the early results from the rate of infection 60 

in Wuhan, China (Kraemer et al., 2020; Prem et al., 2020). The restrictions on economic activity 61 

resulted in mass unemployment and reductions to GDP worldwide. If the current pandemic 62 

follows similar dynamics as previous ones, the economic effects may be felt even in the long run 63 

(Rodríguez-Caballero and Vera-Valdés, 2020). In this context, assessing the effect of economic 64 

restrictions on public transport mobility and air pollution emissions is of great importance. 65 

Most governments have imposed restrictions on public transport mobility throughout the 66 

COVID-19 pandemic. For example, Badr et al. (2020) and Cartenì et al. (2020) document the 67 

restrictions in the U.S. and Italy, respectively. These mobility limits may introduce a structural 68 

change in the global dynamic of public transport systems. As in other large cities, the local 69 

government in the Mexico City Metropolitan Area (MCMA) has imposed restrictions on the 70 

city's public mobility. The MCMA is an interesting case due to its high population density and the 71 

high number of workers in the informal sector. Therefore, it is relevant to formally study whether 72 

MCMA's restrictions cause a statistically significant reduction in passengers in the most used 73 

public transport systems: the subway system (Metro) and bus rapid transit system (Metrobus).  74 

In connection with the study of possible structural changes in public transport mobility, it 75 

is crucial to test if the government restrictions also result in lower air pollution levels. The 76 

evidence on the effect that restrictions have on pollution levels across the world is mixed. 77 

Significant reductions in Nitrogen Dioxide (NO2) are encountered in, among others, Brazil, India, 78 

and Spain (Baldasano, 2020; Shehzad et al., 2020; Nakada and Urban, 2020). However, Adams 79 

(2020) finds that Particle Matter 2.5 (inhalable particles with diameters of 2.5 micrometers and 80 

smaller) levels do not change in response to a region-wide state of emergency in Ontario, Canada. 81 

Meanwhile, Berman and Ebisu (2020) find slight declines in PM 2.5 levels in the U.S., but the 82 

results differ significantly between urban and non-urban counties. The authors argue that the 83 

different effects of economic restrictions between NO2 and PM 2.5 may be explained by the fact 84 
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that multiple non-transportation sources, including emissions from food industries and biomass 85 

burning, contribute to PM 2.5 levels. In this regard, they argue for more research on the impacts 86 

of the COVID-19 pandemic on industrial sourced pollutants. Moreover, Wang et al. (2020) find 87 

that severe air pollution events still occurred in most North China Plain areas even after all 88 

avoidable activities in China were prohibited on January 23, 2020.  89 

This paper contributes to the literature by testing the effects of social distancing 90 

restrictions on public transport mobility and air pollution in the MCMA. Furthermore, we use the 91 

Granger-causality test to show that the precedence relation between public transport mobility and 92 

air pollution vanished during the restrictions. 93 

This article proceeds as follows. The following section presents the data used in this study. 94 

Section 3 analyzes if the restrictions introduced due to COVID-19 result in structural changes in 95 

air pollution levels and mobility in the MCMA, while Section 4 presents results from Granger-96 

causality tests between mobility and air pollution in times of COVID-19. Section 5 concludes. 97 

 98 

2. Data 99 

The data comes from Mexico City’s data repository, “Portal de Datos Abiertos de la 100 

CDMX”. We gather data on air pollution (PM 10, PM 2.5, and SO2) levels at all stations and the 101 

number of passengers at all Metro and Metrobus stations. The data spans from January 1, 2017, 102 

to July 31, 2020.  103 

The data presents several missing observations and some outliers that we clean first.  104 

Outliers are detected in some of the Metro lines. A few observations (no more than 10 in 105 

total) show a thousand-fold increase compared to the rest. We attribute these differences to errors 106 

in capturing the data. We remove the outliers and impute them using observations in close 107 

proximity. It is worth pointing out that the small proportion of imputed outliers do not 108 

qualitatively alter the results.  109 

Missing data are reported for some of the air pollution measuring stations. The missing 110 

values seem to randomly occur for some days. To correct the missing values, we use the vast 111 

amount of information to construct daily indexes for the air pollution measured in the MCMA. 112 

The index's construction is motivated by the strong correlation across air pollution measuring 113 

stations (Figure 4 in Appendix C). In this regard, missing observations are smoothed out by the 114 

construction of the index. 115 
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Furthermore, the data show some seasonal patterns.  116 

For the mobility indexes, weekends and holidays show a clear seasonal pattern with a 117 

significant decrease in users. We control the seasonality by using data on nearby dates using 118 

linear imputation.  119 

For the air pollution indexes, the data shows some natural seasonal patterns related to the 120 

weather. Therefore, we control the seasonality by using monthly dummy variables as is standard 121 

in the literature. 122 

 123 

3. Structural Changes Due to COVID-19 124 

The Mexican government established "La Jornada Nacional de Sana Distancia", a 125 

National Campaign of Social Distancing (NCSD), on March 23, 2020 (Secretaría de Salud, 2020). 126 

The plan established four measures to mitigate the effects of COVID-19 on the general 127 

population.1 The goal of the plan was to impose social distancing measures and slow the spread 128 

of the virus. This section uses NCSD as a natural experiment to test if the restrictions introduced 129 

structural changes in pollution and public transport mobility. 130 

As a first step, we study the trend mechanism of the series. We employ a broad range of 131 

unit root tests: the Augmented Dickey-Fuller (1979) (ADF) (Dickey and Fuller, 1979), the 132 

Phillips-Perron (PP) (Phillips and Perron, 1988), the DF-GLS (Elliott et al., 1996), and the Ng-133 

Perron (Ng and Perron, 1995). In the unit root literature, it is well known that these tests suffer 134 

from a loss of power in the presence of structural breaks under the alternative hypothesis. As 135 

previously argued, we consider that the restrictions imposed due to COVID-19 provoked an 136 

exogenous break as in Perron (1989). Nonetheless, as a robustness exercise, we use unit root tests 137 

that allow for endogenous breaks, those not imposed by the practitioner. Therefore, we employ 138 

the tests of Zivot and Andrews (1992) (ZA92) that allows for a break under the alternative, 139 

Perron (1997) (P97) that allows for structural breaks under both the null and the alternative, and 140 

Kapetanios (2005) (K05) which allows for up to three breaks under the alternative.  141 

Table I displays the results from the seven unit-root tests considered. As seen, we reject 142 

the null hypothesis of unit root processes in our variables. Note that ADF and Ng-Perron tests fail 143 

to reject the null, possibly due to a loss of power due to the break. Nevertheless, note that the last 144 

four tests reject the possible unit root involved. Breaks in ZA92, P97, and K05 tests are located in 145 

the neighborhood of March 23, 2020. This date matches the origin of the NCSD.  146 
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Moreover, given that aggregation is used to construct the indexes, we estimate the 147 

fractional difference parameter for the series (Granger, 1980; Haldrup and Vera-Valdés, 2017). 148 

We use semiparametric estimators in the frequency domain to avoid the effect of the mean's 149 

specification to affect the results (Geweke and Porter-Hudak, 1983; Künsch, 1987; Shimotsu and 150 

Phillips, 2005). Results from the long memory estimates are presented in Table II. All tests find 151 

the data to be in the stationary range, well below the unit root scenario. Note that all stationarity 152 

tests consider the subperiod between January 1, 2017, and December 31, 2019, to avoid spurious 153 

results due to the possible structural change (Martínez-Rivera et al., 2012).  154 

Once we guarantee that our data is stationary, we consider the following specification to 155 

test for a structural change: 156 

𝑦𝑡 = 𝛼0 + 𝛽0𝑡 + 𝛼1𝐷𝑈𝑡 + 𝛽1𝐷𝑇𝑡 + 𝜀𝑡,          (1) 157 

where 𝑦𝑡 is the air pollution or mobility measure, and 𝑡 = [1,2, … , 𝑇]′, with 𝑇 the sample size. 158 

Furthermore, 𝐷𝑈 and 𝐷𝑇 are dummy variables that model the possible structural change due to 159 

NCSD. That is, 𝐷𝑈 = [0,… ,0,1, … ,1]′ , and 𝐷𝑇 = [0,… ,0,1,2, … , 𝑇1]′ , where the non-zero 160 

elements start on March 23, 2020, and 𝑇1 is the size of the subsample after that date. We test for a 161 

change in level if  𝛼1 ≠ 0, and for a change in both level and trend if 𝛼1 ≠ 0 and 𝛽1 ≠ 0. 162 

The test for structural change proceeds as follows: 163 

• Estimate the unrestricted model, Equation (1), and recover the unrestricted 164 

residual sum of squares, 𝑈𝑅𝑆𝑆, given by 𝑈𝑅𝑆𝑆 = Σ𝑒𝑡
2, where 𝑒𝑡 are the residuals 165 

from estimating Equation (1). 166 

• Estimate the restricted model, Equation (1), with 𝛼1 = 0 and 𝛽1 = 0, or 𝛽1 = 0, 167 

and recover the restricted residual sum of squares, 𝑅𝑅𝑆𝑆. The restricted sum of 168 

squares is given by 𝑅𝑅𝑆𝑆 = Σ𝑒𝑡
2 , where 𝑒𝑡  are the residuals from estimating 169 

Equation (1) imposing 𝛼1 = 0 and 𝛽1 = 0, or 𝛽1 = 0. 170 

• Compute the test statistic for the null hypothesis of no structural change by  171 

𝐹 =
𝑅𝑅𝑆𝑆−𝑈𝑅𝑆𝑆

𝑟
𝑈𝑅𝑆𝑆

𝑇−𝑘

,      (2) 172 

where 𝑇  is the sample size, 𝑘  is the number of parameters in the unrestricted 173 

model, and 𝑟 is the number of restrictions. 174 

• The test statistic follows an F distribution with 𝑟 and 𝑇 − 𝑘 degrees of freedom. 175 
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The structural change test assumes that the date of the break is known. As argued above, 176 

the restrictions due to COVID-19 are considered exogenous with a precise start date. Thus, the 177 

assumptions of the F-test are satisfied. Nonetheless, as a robustness exercise, we use the method 178 

developed by Bai and Perron (1998) to estimate the date of the break endogenously.  179 

 180 

3.1. Mobility Data 181 

Figure 1 presents the mobility indexes for Metro and Metrobus. The data ranges from 182 

January 1, 2017, to July 31, 2020. The shaded region contains the period considered in NCSD. 183 

Also plotted are the estimates from the linear model in Equation (1). We allow for both a change 184 

in level and a change in level and trend at the start of the NCSD. As can be seen from the figure, 185 

the mobility indexes' dynamics change significantly due to NCSD. 186 

Table III presents the estimates from Equation (1) allowing for a change in level and a 187 

change in level and trend and the structural change test results. The table presents some 188 

interesting findings.  189 

First, note the different results regarding the trend coefficient, 𝛽0. There is no significant 190 

trend in the number of Metro users, while a significant but small positive trend in Metrobus users 191 

over the last three years. The results suggest that more people started using public transit systems 192 

in the MCMA in the last few years. 193 

Second, note the statistically significant decrease in the level of public transport users 194 

associated with NCSD. These results are in line with those from Badr et al. (2020) and Cartenì et 195 

al. (2020) for the U.S. and Italy. For the MCMA, the structural change is quite significant. The 196 

number of users more than halved during NCSD. That is, most users seem to have followed the 197 

government's recommendations and avoided the public transport system. Nonetheless, given the 198 

lack of data on the number of private cars and their number of passengers, we cannot extrapolate 199 

this result to state that people remained at home during NCSD. Furthermore, as a robustness 200 

exercise, we test all Metro and Metrobus lines individually for a structural change (Table V and 201 

Figure 4 in Appendix C). The results from the robustness exercise are in line with the ones for the 202 

indexes.  203 

Regarding the method to estimate the break endogenously, the method finds the break 204 

date on March 21, 2020, with NCSD contained in the confidence interval. That is, the date of the 205 

break estimated endogenously coincides with the start of NCSD.  206 



  

10 

 

 207 

3.2. Pollution Data 208 

Figure 2 presents the air pollution indexes. The figure shows PM 10, PM 2.5, and SO2 209 

levels from January 1, 2017, to July 31, 2020. The shaded region contains the period considered 210 

in NCSD. Also plotted are the estimates from the linear model in Equation (1). We allow for both 211 

a change in level and a change in level and trend at the start of the NCSD. As shown in the figure, 212 

the dynamics of air pollution do not significantly change due to NCSD. 213 

Furthermore, Table III presents the estimates from Equation (1) allowing for a change in 214 

level and a change in level and trend and the structural change test results. The table presents 215 

some interesting findings.  216 

First, the estimates show a significant decreasing trend for all pollutants across the period 217 

considered. Nonetheless, the estimates from the trend parameter are relatively small. Air pollutant 218 

levels have been decreasing through the years, but the decrease seems to be occurring at a slow 219 

pace.  220 

Second, note that the null of no structural change is not rejected for both tests. The 221 

restrictions imposed by NCSD do not seem to be associated with a lower level of air pollution. 222 

These results are in line with the ones reported by Adams (2020) for Ontario, Canada. The 223 

authors find no significant reduction in PM 2.5 due to restrictions imposed due to COVID-19. 224 

Moreover, Wang et al. (2020) find that severe air pollution events still occurred in most North 225 

China Plain areas even after all avoidable activities in China were prohibited on January 23, 2020.  226 

Third, NCSD can be considered a natural experiment regarding public transport usage on 227 

air pollution. The lack of structural change in air pollution during NCSD coupled with the 228 

significant decrease in the mobility indexes point to a non-significant effect of the number of 229 

users of the public transport system on pollution. As argued before, this may relate to a higher 230 

number of private cars during NCSD. Thus, these results suggest that tackling air pollution in the 231 

MCMA requires specific policies to reduce private car usage, particularly in light of the positive 232 

willingness to pay for clean air by inhabitants of the MCMA (Rodríguez-Sánchez, 2014; Filippini 233 

and Martínez-Cruz, 2016; Fontenla et al., 2019).  234 

Finally, regarding the method to estimate the date of the break endogenously, the method 235 

does not find a break in 2020. Thus, our results are robust to an endogenous specification of the 236 

date of the break. 237 
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To properly assess the relationship between public transport and air pollution, the 238 

following section uses the Granger-causality test to assess if there exists a relation of precedence 239 

between them. Furthermore, we test if there is a change in this relationship after NCSD. 240 

 241 

4. Granger-Causality 242 

In this section, we test the type of relation that exists between public transport mobility 243 

and air pollution indexes. We use the concept of "causality" developed by Granger (1969). 244 

Although sometimes misrepresented in the literature, the test evaluates if a variable 𝑥  has 245 

explanatory power on the variable 𝑦 in the sense that 𝑥 precedes 𝑦. We interpret this precedence 246 

as changes in variable 𝑥 being related to changes in variable 𝑦. Note that this does not necessarily 247 

denote a causal relation, given that a third variable could be driving both 𝑥 and 𝑦. Nonetheless, 248 

the literature has settled on denoting this type of test as Granger-causality tests. 249 

The test for Granger causality proceeds as follows: 250 

• Estimate the unrestricted model given by 251 

𝑦𝑡 = 𝛼0 + ∑ 𝛼0𝑦𝑡−𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑥𝑡−𝑖

𝑚
𝑖=1 + 𝜀𝑡,     (3) 252 

where 𝑘,𝑚 are the number of lags included in the regression. In applied work, 𝑘 = 𝑚 253 

is common. From the estimation, we recover the residual sum of squares, 𝑈𝑅𝑆𝑆. Our 254 

analysis considers specifications with the same number of lags for both variables from the 255 

previous day and two days before. 256 

• Estimate the restricted model given by 257 

𝑦𝑡 = 𝛼0 + ∑ 𝛼0𝑦𝑡−𝑖
𝑘
𝑖=1 + 𝜀𝑡,      (4) 258 

    and recover the residual sum of squares, 𝑅𝑅𝑆𝑆. 259 

• Compute the test statistic for the null hypothesis of no structural change by 260 

𝐹 =
𝑅𝑅𝑆𝑆−𝑈𝑅𝑆𝑆

𝑚
𝑈𝑅𝑆𝑆

𝑇−𝑘−𝑚−1

,      (5) 261 

where 𝑇 is the sample size, k is the number of parameters in the unrestricted model, and 262 

m is the number of restrictions. 263 

• The test statistic follows a 𝐹 distribution with 𝑚 and 𝑇 − 𝑘 −𝑚 − 1 degrees of 264 

freedom. 265 

Intuitively, the test for Granger-causality assesses if the extra information contained in the 266 

additional variable helps explain the dynamics of the dependent variable better than the 267 
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information contained in the lags of the dependent variable alone. This additional explanatory 268 

power is denoted in the literature as a precedence relation. 269 

Granger-causality has been shown to produce spurious results (rejection of the null when 270 

the null is true) when the data follow processes with structural breaks or unit root processes 271 

(Ventosa-Santaulària and Vera‐Valdés, 2008; Rodríguez-Caballero and Ventosa-Santaulària, 272 

2014). Thus, our methodology relies on testing for Granger-causality before NCSD and contrasts 273 

the results against estimation in the period after NCSD to avoid spurious results.  274 

Table IV presents the results from the Granger-causality test for the period before NCSD. 275 

The table shows that Metrobus Granger-causes air pollution in terms of PM10 and SO2. Thus, 276 

there is statistical evidence that Metrobus usage changes are associated with PM 10 and SO2 air 277 

pollution changes. Nonetheless, recall that we cannot conclude that changes in Metrobus usage 278 

cause changes in air pollution in the typical sense, given that a third common factor for both 279 

could be the main driver behind both dynamics. In this context, more Metrobus users could be 280 

associated with more economic activity and more cars on the road. 281 

To evaluate the effect that NCSD had on the precedence relation between public transport 282 

mobility and air pollution, Table IV presents the results from the Granger-causality test for the 283 

post-NCSD period. The table shows that Granger-causality between public transport mobility 284 

variables and PM 10 and SO2 disappeared during NCSD. That is, changes in mobility indexes do 285 

not precede changes in air pollution indexes. In this regard, we argue that other sources of air 286 

pollution like industry and private car usage may be the major contributors to air pollution in the 287 

MCMA. 288 

Overall, the results from the Granger-causality analysis support the notion that the link 289 

between public transport users and air pollution was temporarily broken during NCSD. The 290 

reduction in public transport users during NCSD was not accompanied by a reduction in air 291 

pollution.   292 

 293 

5. Conclusions 294 

This paper analyzes the relation between COVID-19, air pollution exposure, and mobility 295 

in the MCMA.  296 

We test if the Mexican Government's economic and social restrictions to mitigate the 297 

spread of the virus produced a structural change in air pollution and mobility in the MCMA. Our 298 
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results show that mobility in public transportation was significantly reduced following the 299 

government's recommendations. We find that mobility in public transit systems in the MCMA 300 

decreased by more than 65%. Thus, our results suggest that a large share of the inhabitants of the 301 

MCMA stopped using public transit during this period.  302 

In connection with the structural change in mobility, we analyze if the restrictions resulted 303 

in lower air pollution in the MCMA. Our results show an overall decreasing trend in pollution 304 

levels in the MCMA throughout the years. Nonetheless, no statistically significant change is 305 

detected due to the economic restrictions imposed due to COVID-19. That is, air pollution levels 306 

and trends were not affected as a product of the economic restrictions.  307 

Furthermore, we use the Granger-causality test to analyze the existence of a precedence 308 

relation between public transport users and air pollution. Our results show that before the 309 

emergence of COVID-19, changes in public transport users were associated with changes in air 310 

pollution. Nonetheless, the precedence relation between public transport mobility and air 311 

pollution disappeared following the restrictions. These results suggest that additional factors as 312 

private car usage or industrial pollution may be more significant factors behind changes in air 313 

pollution. 314 

The results from this analysis could help in designing policies aimed to reduce pollution 315 

levels in the MCMA. Structural changes in mobility in the public system do not seem to be 316 

associated with changes in air pollution levels. In this regard, our results suggest that tackling air 317 

pollution requires policies aimed explicitly at reducing industrial pollution and private car usage. 318 

 319 
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Appendix A. Tables 412 

 413 

Variable ADF PP DF-GLS Ng-Perron ZA92 P97 K05 

PM10 -13.31*** -17.65*** -4.28*** -11.07** -16.72*** -11.06*** -14.31*** 

PM25 -13.70*** -18.74*** -2.95*** -7.84** -17.30*** -14.75*** -14.69*** 

SO2 -20.29*** -23.18*** -5.05*** -14.50*** -21.67*** -21.46*** -21.49*** 

METROBUS -2.07 -2.74* -1.32** -4.12 -10.32*** -9.11*** -9.09*** 

METRO -3.35** -13.14*** -3.04*** -13.33** -17.50*** -11.85*** -14.38*** 

 414 

Table I. Unit root tests without constant term for pollutants, Metrobus, and Metro using full-415 

sample data. Notes: Lags in ADF and DF-GLS with Schwarz information criteria. Model with constant in 416 

PP. Model with intercept in ZA92 with two lags. P97 test considering model A. *, **, and *** denote 417 

rejection of the null hypothesis (unit root) at 10%, 5%, and 1%, respectively. 418 

  419 
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Variable GPH LW ELW 

Metro 0.199 0.234 0.271 

 [-0.021-0.419] [0.063-0.405] [0.100-0.442] 

Metrobus 0.643 0.632 0.660 

 [0.423-0.863] [0.461-0.803] [0.483-0.831] 

PM 10 0.408 0.378 0.419 

 [0.188-0.628] [0.207-0.549] [0.248-0.590] 

PM 2.5 0.347 0.358 0.402 

 [0.127-0.567] [0.187-0.529] [0.231-0.573] 

SO2 0.184 0.174 0.201 

 [-0.036-0.404] [0.003-0.345] [0.030-0.372] 

Table II. Long memory estimates, confidence intervals are shown below. Standard T1/2 bandwidth where T 420 

is the sample size. GPH stands for Geweke and Porter-Hudak (1983), LW for Künsch (1987), and ELW 421 

for Shimotsu and Phillips (2005) long memory estimators, respectively. 422 

  423 
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Variable Change in level Change in level and trend 

 𝛼0 𝛽0 𝛼1 𝐹 𝛼0 𝛽0 𝛼1 𝛽1 𝐹 

Metro 4(105)*** -5.386 -3(105)*** 2086*** 4(105)*** -5.682 -3(105)*** 215* 1046*** 

Metrobus 2(105)*** 42.5*** -2(105)*** 7006*** 2(105)*** 42.4*** -2(105)*** 69.3* 3510*** 

PM 10 4.412*** -0.01*** -1.322 1.101 4.428*** -0.01*** -2.681 0.021 0.849 

PM 2.5 1.806*** -0.00*** -1.431* 3.149* 1.805*** -0.00*** -1.384 -0.001 1.574 

SO2 1.027*** -0.00*** -0.028 0.006 1.029*** -0.00*** -0.157 0.002 0.039 

Table III. Unrestricted equation estimation and test for structural change. *, **, and *** denote 424 

rejection of the null hypothesis at 10%, 5%, and 1%, respectively. 425 
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Variable-Period PM 10 PM 2.5 SO2 

 𝐺𝐶(1) 𝐺𝐶(2) 𝐺𝐶(1) 𝐺𝐶(2) 𝐺𝐶(1) 𝐺𝐶(2) 

Metro Pre-NCSD 0.269 0.169 0.170 0.201 0.873 0.691 

Metro Post-NCSD 1.315 1.470 0.680 0.506 2.170 0.667 

       

Metrobus Pre-NCSD 3.448* 3.324** 0.477 0.915 4.090** 2.860* 

Metrobus Post-NCSD 1.829 1.816 0.803 0.536 2.602 0.867 

Table IV. Test for public transport Granger-causes air pollution in the periods before and after 427 

NCSD. The tests consider specifications including lags from the previous day, 𝐺𝐶(1), and two days 428 

before, 𝐺𝐶(2). *, **, and *** denote rejection of the null hypothesis (no Granger-causality) at 10%, 5%, 429 

and 1%, respectively. 430 
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Appendix B. Figures 432 

 433 

 434 

Fig 1. Mobility indices in the Mexico City Metropolitan Area. The figure shows actual values (dotted 435 

blue) along with fitted values from the linear models with a change in level (dashed orange) and change in 436 

level and trend (dashed-dotted yellow). NCSD is shown in the shaded area.  437 



  

22 

 

 438 

Fig 2. Pollution indices in the Mexico City Metropolitan Area. The figure shows actual values (dotted 439 

blue) along with fitted values from the linear model with a change in level (dashed orange) and change in 440 

level and trend (dashed-dotted yellow). NCSD is shown in the shaded area. 441 

 442 

  443 
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Appendix C. Additional Tables and Figures 444 

 445 

C1. Structural Change Test for Individual Public Transport Lines 446 

 447 

Mobility 𝐹𝑙𝑒𝑣𝑒𝑙 𝐹𝑡𝑟𝑒𝑛𝑑 

Metro Line 1 1839*** 930*** 

Metro Line 2 1729*** 865*** 

Metro Line 3 1030*** 515*** 

Metro Line 4 1382*** 691*** 

Metro Line 5 934*** 467*** 

Metro Line 6 945*** 471*** 

Metro Line 7 953*** 476*** 

Metro Line 8 1523*** 762*** 

Metro Line 9 760*** 380*** 

Metro Line A 559*** 280*** 

Metro Line B 1878*** 943*** 

Metro Line 12 

 

1134*** 533*** 

Metrobus Line 1 5429*** 2716*** 

Metrobus Line 2 2947*** 1471*** 

Metrobus Line 3 5646*** 2824*** 

Metrobus Line 4 4993*** 2616*** 

Metrobus Line 5 4469*** 2232*** 

Metrobus Line 6 3446*** 1720*** 

Table V. Structural change test for individual Metro and Metrobús lines and the number of 448 

cyclists at several reporting stations. *, **, and *** denote rejection of the null (no structural change) at 449 

10%, 5%, and 1%, respectively. 450 

  451 
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452 
Fig 3. Mobility in the MCMA. The figure shows actual values (dotted blue) along with fitted values from 453 

the linear model with a change in level (dashed orange) and change in level and trend (dashed-dotted 454 

yellow). NCSD is shown in the shaded area. 455 

 456 

 457 

 458 

 459 
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C2. Air Pollution Measurements at Individual Station 460 

 461 

 462 

Fig 4. Air pollution measurements in all stations in the MCMA. 463 
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Notes 465 

1. The actions considered were: 466 

a) Personal hygiene recommendations. 467 

b) Suspension of activities deemed non-essential. 468 

c) Postponement of mass gathering events (more than 5,000 participants). 469 

d) Guidelines for care of the elderly. 470 

The plan was heralded by "Susana Distancia", a fictitious heroine promoting social 471 

distancing. The preventive measures ended on May 30, 2020.     472 


