Aalborg Universitet AALBORG

UNIVERSITY

An uneven game of hide and seek
Hiding botnet CnC by encrypting IPs in DNS records
Andersen, Martin Fejrskov; Pedersen, Jens Myrup; Bock, Leon; Vasilomanolakis, Emmanouil

Published in:
2021 IEEE Conference on Communications and Network Security, CNS 2021

DOl (link to publication from Publisher):
10.1109/CNS53000.2021.9705029

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Andersen, M. F., Pedersen, J. M., Bock, L., & Vasilomanolakis, E. (2022). An uneven game of hide and seek:
Hiding botnet CnC by encrypting IPs in DNS records. In 2021 IEEE Conference on Communications and
Network Security, CNS 2021 (pp. 164-172). IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/CNS53000.2021.9705029

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 17, 2025

https://doi.org/10.1109/CNS53000.2021.9705029
https://vbn.aau.dk/en/publications/d4fece33-5dda-4914-b770-0700cd2e2ce8
https://doi.org/10.1109/CNS53000.2021.9705029

An uneven game of hide and seek: Hiding botnet
CnC by encrypting IPs in DNS records

Martin Fejrskov Jens Myrup Pedersen
Technology, IP Network and Core Cyber Security Group

Telenor A/S
Aalborg, Denmark Copenhagen, Denmark
mfea@telenor.dk jens@es.aau.dk

Abstract—Botnets frequently use DGA and fast-flux techniques
to ensure the availability of their command and control (CnC)
infrastructure. However, the CnC IP addresses are still exposed
in plain-text in publicly available DNS A records, which can be
exploited by defenders to disrupt botnet operations. This paper
presents the concept of the IP Generation Algorithm (IGA) as
a novel method, usable by botmasters, to encrypt the CnC IP
address in DNS records to avoid plain-text IP address exposure.
This raises the bar for blacklisting malicious IP addresses, and
can also be combined with existing techniques to further harden
the CnC. For use by defenders, an IGA botnet detection method
based on the combination of DNS and NetFlow data is presented
and validated using an emulated botnet and an ISP data set.

Index Terms—Botnet, NetFlow, DNS, encryption, detection

I. INTRODUCTION

Many botnets use the DNS protocol and infrastructure to
establish command and control (CnC) connections between a
bot and the botmaster. Defenders can identify the botnet related
domain names and block them in the DNS infrastructure. This
is typically made significantly harder by the botmasters by
using Domain Generation Algorithms (DGAs) to frequently
create and register new domain names [1]. As the DNS re-
sponses to the DGA domains still reveal the IP address of the
CnC host, defenders can choose to block DNS requests relating
to that IP address, or block IP connections towards the CnC host
IP address. This is made more difficult by the botnets by using
fast-flux (FF) to frequently change the IP address registered
with the DGA generated domain name.

The scarce resource in this game of hide-and-seek is the
IP address. A usable IP address must represent an infected
host, whereas the domain names can be freely chosen. For the
botmaster, it would therefore be attractive not to expose the
plain-text IP addresses of the CnC host in DNS records.

In this paper, we propose the IP Generation Algorithm (IGA)
as a novel technique to encode the CnC host IP address. The
botmaster would use the IGA to encode the plain-text CnC host
IP address using a time-variable key, and register the domain

Funded by Telenor A/S and Innovation Fund Denmark, 2021. Copyright
2021 IEEE. Published in the 2021 IEEE Conference on Communications and
Network Security (CNS). Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Aalborg University Technische Universitdt Darmstadt

Emmanouil Vasilomanolakis
Cyber Security Group
Aalborg University
Copenhagen, Denmark
emyv @es.aau.dk

Leon Bock
Telecooperation Lab

Darmstadt, Germany
boeck @tk.tu-darmstadt.de

with the encoded version. The bot would use the IGA to decode
the retrieved address to reveal the plain-text IP address of the
CnC host. Similar to a DGA, the purpose of the IGA is to
generate random, legitimate looking IPs. However, as opposed
to a DGA, the IGA is a two-way function.

A botmaster using the DGA and IGA techniques in combi-
nation could choose not to flux the IP address at all, effectively
bypassing any FF detection techniques. Alternatively, the bot-
master could use FF with a much higher frequency with IGA
encoded IP addresses, as the amount of IP addresses available
is not longer a limiting factor. In both cases, the botmaster does
not reveal the plain-text IP addresses in the DNS messages.

The defender, however, faces potentially severe conse-
quences. First, FF detection methods can be irrelevant when
identifying malicious domains and IP addresses. Second, it
would become impossible to generate IP address blacklists by
only studying DNS data, as it does not reveal the plain-text
IP address. Third, a defender unwittingly blocking an encoded
IP address could result in the blocking of a benign host that
matches the encoded address.

The primary contributions of this paper are:

o The IGA concept and a Python based implementation for
encoding and decoding the CnC IP address.

¢ A DNS and NetFlow based IGA detection algorithm
validated using Internet Service Provider (ISP) data and
an emulated IGA botnet.

Section II of this paper introduces the threat model. Section
IIT describes the IP Generation Algorithm, Section IV describes
an IGA detection method that is validated in Section V. Section
VI summarizes related work and VII concludes the paper.

II. THREAT MODEL

The goal of the botmaster is to use the DNS infrastructure
to find one or more IP addresses AND subsequently create a
connection towards the discovered IP address for CnC purposes.
The botmaster is assumed:

« not to have control of any type of DNS servers.

« not to be able to actively obfuscate, spoof or modify the
addresses and ports in the TCP/UDP/IP layers.

e to only use A-type DNS records (although the method
presented in this paper could be extended to other types).

o to be able to create decoy connections towards any IP
addresses present in clear-text in A-type DNS responses.

The defender is assumed to be able to inspect/modify/block
DNS traffic at the application layer and CnC connections at the
transport and network layer. Also, the defender is assumed not
be obstructed by the use of DNS-over-TLS or DNSCrypt, such
as the case where the defender controls the resolvers. Thus, a
typical ISP can assume the role of defender.

The botmaster could choose to combine IGA with DGA/FF
techniques and thereby be subject to existing detection methods
for these techniques. This paper will assume that such tech-
niques are not used, and will not depend on them for detection.

III. THE IP GENERATION ALGORITHM

This section describes the proposed implementation of the
IGA. The objective of the IGA is to encode a globally routed,
plain-text IP address into an encrypted version, that can also
be represented in the form of a globally routed IP address.

The proposed IGA encoding implementation contains three
steps: ranking, encryption and mapping. The description in this
section will, for brevity, focus on the encoding only. The de-
coding process is simply the reverse of the encryption process.
These three steps are depicted in Figure 1 and elaborated in the
following paragraphs. The four coloured dots in Figure 1 each
represent a CnC IP address and visualize how the encryption
process changes their position in the respective value ranges.

Legend: = 4 example Not used for encryted Not used for Not globally
: IP values or encoded IPs ranked IPs reachable IPs
intmax
Key+tweak
cryptmax—- | JETSSSSREN B
rankmax 4+ L o RN R
/‘ /‘ /, \\
E y / \
[Ranklng ~< Encryptlon >—
© / e /
m g =) \ /
3
< Plain-text IP Ranked IP Encrypted IP Encoded IP

Fig. 1. Conceptual illustration of the IGA encoding procedure containing three
steps: ranking, encryption and mapping.

A. Ranking

The purpose of ranking is to create a consecutive ordering
of all globally reachable IP addresses in order to minimize
the probability that the encryption and mapping steps will
output an address that is not globally reachable. This excludes
for example private, link-local, loopback nets etc. [2] [3].
An IPv4 address is represented by a 32 bit integer in the
range [0..intmaz] where intmar = 232 — 1. A total of
R = 592708608 IP addresses are not globally reachable,
these are represented by red colour in Figure 1. The pool
of reachable IPs can be ranked by representing them in the
interval [0..rankmaz] where rankmaz = intmax — R. The
values never provided as output by the ranking function are
represented by blue colour in Figure 1, and the size of the blue
area is the sum of sizes of the red areas.

TABLE I
Options for the selection of radix and input/output length

Characters | Radix | cryptmax-rankmax
2 60847 | 98722

3 1547 35636

4 247 19839394

5 82 5139745

B. Encryption

The input and output for the format-preserving encryption
is not an integer, but two or more characters, each character
consisting of a symbol from an alphabet. The number of
different symbols in the alphabet is called the radix, radix
€ [2..216] [4]. Using this terminology, an IP address can be
represented by four characters (bytes) and a radix of 256, as
each byte can have a value in the range [0..255]. The integer
representation of the input and output values is therefore the
range [0..cryptmazx], where cryptmaz = radizcharacters _ 1

The number of characters and the radix should therefore be
chosen such that rankmax = cryptmaz, as this would ensure
that a globally reachable IP address could be mapped one-to-
one to another reachable IP address, but unfortunately this does
not have an integral solution. Choosing rankmax > cryptmaz
would make it impossible to encode a part of the reachable
address space. This is very undesirable to a botmaster, as this
would make it impossible to use those addresses for CnC.
Choosing rankmax < cryptmax is also undesirable, as the
output of the encryption would then need to be mapped to a part
of the IP space that is not reachable, indicating that the IP may
be encrypted. For this paper, we will assume that botmasters
prefer to create DNS A records with unreachable IP addresses
rather than being unable to use certain IP addresses for CnC,
and therefore opt for the rankmax < cryptmax approach.

Solving min(cryptmax — rankmaxz) < R for integral
characters and radix reveal four options listed in Table I as well
as the cryptmazx — rankmax difference. Two Python-based
encryption/decryption libraries have been found. One supports
only radixz < 37 [5], which is not compatible with the options
listed in Table I. Another supports only an even length and
a radix < 256 [6], which matches only one possible option
in Table I, namely a length of 4 and a radix of 247 yielding
cryptmaz = 247* — 1. Note that a botmaster could choose to
use a different library with different limitations, and therefore
be able to choose a better length and radix combination.

C. Mapping

The purpose of this step is to map the encrypted IP addresses
([0..cryptmax]) to a reachable IP addresses ([0..intmazx]).

The green areas in Figure 1 represent the output values of
encrypting the values in the blue area between rankmax and
cryptmaz. This is illustrated by the summed size of the green
areas being the same size as the blue area between rankmax
and cryptmax. As values between rankmax and cryptmazx
are never output by the ranking step, the values in the green
areas are never output by the encryption step (for a given key).

TABLE II
Examples of plain-text IPs and their associated encoded version.

Plain-text Encoded
193.0.2.255 192.238.197.236
8.8.8.8 154.141.220.55
152.13.43.124 | 32.72.64.180
212.220.255.3 | 199.22.251.26

However, as the specific, unused output values of the encryption
depend on the key in use, the mapping function is unable to
exclude these unused values before performing the mapping.
Therefore, the mapping takes as input the range [0..cryptmaz]
rather than [0..rankmaz].

If it was possible to set rankmax = cryptmaz, the mapping
operation would be the reverse of the operation performed by
the ranking step. Instead, the mapping function is split into two
functions. First, a function operating on encrypted IP values
< rankmaz that performs the reverse operation of the ranking
function, marked with an ”R” in Figure 1. Second, a function
that operates on encrypted IP values > rankmax, marked
with an ”X” in the figure. The latter values are mapped to
a segment of the IP address space that is not reachable, and
for the implementation provided by this paper, the 224.0.0.0/4
subnet reserved for Multicast is used.

D. General notes

A note on the use of a tweak is important. A tweak can
be considered as a non-secret key, that should vary with each
instance of the encryption [4]. In an IGA context, an obvious
choice for the tweak is the DGA generated domain name:
This will ensure that a single (plain-text) IP address would be
encoded into several different IP addresses, one for each domain
name, even though the key is held constant. As the DGA
algorithm already includes time variability, using the domain
name as tweak also eliminates the need for time variability in
the encoding/decoding step of the IGA.

Without the ranking and mapping steps, the probability
that the encryption would output a non-reachable IP address
is —f— = 0.138. By including the ranking and mapping

intmax . - &
steps, this probability is reduced to <TYPEAZ-—TANTMAL
intmazx

(7'ad”dmmd2:t:n2;(i"t"m‘”_R) = 0.005. With a crypto imple-
mentation supporting an odd number of characters (3) and a
higher radix (1547) (as seen in Table I), this probability could
be reduced even further to 8.3 - 1076,

Python code implementing the IGA algorithm described
above is available in [7]. The implementation uses the FF1
encryption and decryption scheme provided by [6], which
unfortunately does not support the use of tweaks. Table II
contains examples of encoding using the key “someGoodKey”.

Although the rank-and-encipher approach is proposed by
[2] as a method for semantic-preserving encryption, our paper
significantly extends it by considering multiple IP scopes and
the associated ranking method, by introducing and solving the
problems of differing set sizes for the ranking output and the
encryption input, and by providing an implementation.

E. Summary

This section describes the IP Generation Algorithm and the
three steps used to encode a globally routed, plain-text IP
address into an encrypted version, that can in most cases also
be represented in the form of a globally routed IP address. The
encryption step maps a plain-text IP address into an encrypted
IP address, and using the DGA generated domain name as
tweak ensures time variability in the encrypted IP address.
The ranking and mapping steps reduce the probability of the
encoded IP being outside the globally reachable address space,
thus decreasing the suspiciousness of the encoded IP.

IV. DETECTING IGA BOTNETS

The purpose of this section is to outline a method to detect
the presence of an IGA-based botnet by using DNS and
NetFlow data. The key idea of the method is to identify sets
of source IPs that exhibit the group behavior expected by IGA
bots: They resolve the same set of domain names and then
create unnamed flows towards the same set of destination IP
addresses. Each of the steps are described in more detail in the
following subsections. The results of applying the method to a
real dataset will be the topic of Section V.

Throughout this section, it is assumed that the DGA used by
the botnet will generate a domain per day, as this is a common
domain validity period for time-dependent DGAs [1]. Adapting
the proposed method to a different frequency should be trivial.

A flow is defined as the daily aggregation of all packets
sharing the same 5-tuple (protocol and source/destination IP
address/ports), timestamped using the first-seen timestamp ob-
served in NetFlow records for that 5-tuple.

As the algorithm is based on identifying source IPs that
exhibit the same behaviour over k days, it is a requirement
that DNS and NetFlow data is observed > k days. From an
adversary perspective, it is likely undesirable not to allow the
majority of bots to establish CnC communication at least once a
day. Therefore, the choice of k can be based on data availability.
It is demonstrated in Section V that k£ > 3 is a necessity to avoid
a high number of false positives in the detection.

A. Dataset reduction

The first step in the detection algorithm is to apply systematic
white-listing so that irrelevant data is disregarded (such as flows
or DNS request related to popular domains or CDN IPs). The
main purpose of this is to reduce the processing requirements
for the following steps. Therefore, not all reduction operations
may be relevant to apply for all datasets. The remaining parts
of this paper will refer to the result of applying all the desired
reduction operations as two sets, a set of DNS Resource
Records (RRS), D,cquced, and a set of flows, F.cquced-

The detection method proposed in this paper is considered
complementary to existing DNS-only or NetFlow-only meth-
ods, therefore a black-listing approach based on such methods
is intentionally not used. The following notation is used:

o Dy All collected A type DNS RRs.
o DrdatalP: The unique rdata IPs in Dy

. D%ZQDN: The unique qname FQDNs in D,

o Dgﬁdlevel: The unique second level domains found by
extracting these from all entries in DZ?DN

e F,;;: The flows in all collected NetFlow packets.

1) Outside originated flows: All flows originating from
outside the network under observation should be white-listed, as
the DNS requests related to these flows will not be observable.
Notice that when using sampled NetFlow, it is often not
possible to identify the flow origin.

2) Frequent second level domains: Two techniques can be
used to white-list both DNS RRs and flows based on frequently
seen second level domains:

A popular white-listing technique is to disregard any domain
names found in lists of popular second level domains (such
as the Alexa Top list), which will be denoted Waygievei-
The rationale of this is that is unlikely that a botmaster can
retain long-term, unnoticed control of either domains or servers
used by such high-volume organisations. The list is used to
find the white-listable RRS, D pitetisted = Dati X Wondievel»
which can then be used to find two reduced sets, D,cquced =
Dall \ thitelisted = Dall > WQndlevel = Dall > Di{]l—fﬁiyfslted
and Freguced = Fau > D;‘f%‘él]iite 4» that do not include RRs or
flows relating to the white-listed second level domain names.
The threshold Tsccondievel = L is defined to indicate
how large a fraction of DNS RRs is retained.

Another technique is to white-list any DNS RRs with qnames
or rnames containing FQDNSs or second level domains, that are
requested by more than T),,,.b0ts Source IPs, the set of white-
listed DNS RRs denoted Wongievel(Tmaxbots). The rationale
of this is that a specific DGA FQDN will never be requested
by a benign client, therefore FQDNs requested by more than
Tnazbots source IPs will be benign, if the number of bots in the
observed network is < T}, azpots- This can be used to construct
Dieduced and Fieguceq In a similar way as described above.
This technique should only be used to white-list flows if the
botnet is not assumed to deploy CnC hosts on servers also
serving benign content.

Although these two techniques overlap, practical experiments
show that both provide distinct dataset reductions.

3) Frequent rdata IPs: It seems tempting to also white-
list DNS RRs and flows based on frequently observed rdata
IP addresses. This is, however, not a feasible strategy, as the
botmaster has unlimited control over the contents of the rdata
IP address, and could therefore choose to implement an IGA,
that only uses frequently seen IP addresses (CDN IPs etc.) as
output space for the IGA algorithm.

4) Frequent destinations: Two techniques can be used to
white-list flows based on frequently seen flow destinations:

For NetFlow data, a popular technique is to disregard Content
Delivery Network (CDN) IPs, denoted Wo pn, solely serving
static/benign content, such as Youtube, Facebook and Akamai
CDNs (but not for example Amazon or Azure CDNSs, as these
can host private virtual servers). The rationale of this is that it
is unlikely that a botmaster can retain long-term, unnoticed
control of such servers. Notice that as ISPs deploy CDNs
locally in their networks, the CDN IPs will likely differ between

Dreduced

ISPs. This can be used to construct a reduced set of flows,
Fredqucea = Fauu > Wepn.

Another technique is to construct a set of white-listed flow
destination endpoints (defined by a destination IP, protocol and
port combination), denoted Wacstination(Lmazbots)s such that
a flow is in this set if more than T},,.10ts source IPs contact
a specific endpoint. The rationale of this is that a specific
botnet CnC endpoint will never be requested by a benign
client (assuming that the CnC software does not share the
destination port with benign software, such as Apache). This
can be used to construct a reduced set of flows, Frequced =
Fall > Wdestination (Tmawbots)'

Although these two techniques also overlap, practical exper-
iments show that both provide distinct dataset reductions.

5) Domains seen yesterday: FQDNs and second level do-
main names seen in DNS requests the day before the day under
analysis form a large white-list, Wycsterday. The rationale of
this is that the purpose of a DGA algorithm is to create a
new and unique FQDNs each day, so that a listing of the
domain name on a free or commercial domain name blacklists
becomes irrelevant. This can reduce the set of DNS RRs to

_ 2ndlevel FQDN
Dyeduced = Dan > Wyeste'r'day > Wyesterday'

B. Unnamed flows

It is an inherent property of using an IGA that the DNS
RRs and flows will only be explicitly related by the source IP
address. The A record IP in the DNS response is encoded, and
therefore not identical to the destination IP in the flow.

Any flows for which a matching DNS record can be found
is called a named flow, Fomed = Freduced X Dgajyi. These
flows are not relevant for IGA detection and can be white-
listed, leaving only the unnamed flows, Funnamed = Freduced \
Framed = Freduced™Dqir. The matching criteria are source IPs,
timestamps, rdata record and destination IP.

When identifying named flows, the aspect of time is relevant.
A flow could be named by the first preceding DNS record, or
by all preceding DNS records within a certain time window,
for example the window set by the TTL or the window of the
current day. In order to make F),,nqmeq as small as possible
by making the white-list F),4meq as large as possible, a time
window of the current day seems to be a reasonable approach.

Notice that DNS requests for which a related NetFlow record
can be found should not be white-listed, as the botmaster could
choose to initiate traffic towards the encoded IP address in the
DNS request as a decoy to avoid detection.

C. Re-named flows

Given a set of flows, Finnamed, that have no related DNS
response, and given a set of DNS responses, D,cguced, the
purpose of the remaining steps of the detection algorithm is
to identify the specific entries from each set that are actually
created by the IGA botnet. To facilitate this, this section
introduces the concept of a re-named flow.

A re-named flow is a flow from F,;ameq augmented with
a relevant DNS RR from D,.cgyceq- A DNS RR is considered
relevant, if the flow and the DNS request originate from the

same source IP address, and if the start time of the flow is
within a certain time window, Tgejqaymaz» Of the DNS response.
The set of re-named flows, R, is therefore given by the
theta-join, or selected cartesian product, R = Fynnamed Xo
Dyeduced = 00 (Etnnamed X Dreduced)’ the 6 condition being
the source IP and time window constraints.
The choice of Tyeiaymas requires further consideration, as
a DNS request should not be expected to be immediately
followed within few seconds by an observed NetFlow record.
There are multiple reasons for this: A botmaster could deliber-
ately introduce a variable time delay between the DNS lookup
and the CnC connection in order to evade detection, including
a delay exceeding the TTL of the DNS RR. Also, the NetFlow
data used can be sampled, and therefore the observed flow start
timestamp is not necessarily equal to the actual flow start time.
Note that DGA domains are typically registered with a
low TTL in order to enable fast-flux. However, as the IGA
eliminates the need for fast-flux in the CnC phase, such low
TTLs cannot be assumed to be used for IGA based botnets.
R contains a number of entries that are irrelevant for the
following IGA detection steps. Only the gname, source IPs and
the destination IP are relevant, and R,.cgyceq 1S constructed from
R by removing any other information and removing duplicates.
Following the assumption that DGA algorithms generate a
new domain name on a daily basis, the processes of reducing
the dataset, and identifying unnamed and re-named flows can
be performed on a daily basis as well. Therefore, given that
DNS and NetFlow data is available for k£ days, k sets of re-
named flows, R};e'(fuced, can be constructed on an individual
basis to form U = U¥_| R?

reduced’

D. Vertices and edges

The next step of the IGA detection algorithm is to build a
graph based on all of the re-named flows, U. The purpose of
the graph is to identify sets of source IPs that exhibit the same
behaviour by resolving the same domain names and connecting
to the same destination IPs.

1) Vertices: Subsets of U are created, where a subset con-
sists of the entries of U that share a specific combination
of gname, destination IP and day. The size of a subset is
equal to the number of unique source IP addresses with this
combination. Subsets containing < T},;npots source IPs are
discarded. Subsets containing > Tj,;npots €ntries form the set
V, after removing the destination IP information and duplicates.
V' is therefore a set of source IP, qname and day triplets.

Subsets v;...n of V are created, where a subset v; consists
of all the source IPs that share a specific combination of qname
and day. In other words, v; represents the source IPs that resolve
the same domain name on a specific day. Each of the subsets
of V are represented by vertices in a graph.

2) Edges: A bidirectional edge connects two vertices if the
Jaccard similarity, J(), of the two sets of source IPs, v; and
vj, is larger than a given threshold, Tj,ccarq determined as
Tjaccard > J(vi,v) = 2iflY; - Calculating this only for vertices

v;Uvjy
representing different days répresents the expected behaviour of

a set of IGA bots (represented by their source IPs) resolving a
different domain each day.

The similarity threshold T}4ccards 0 2> Tjaccara = 1 should
be chosen sufficiently high to eliminate false positives and
sufficiently low to make it unattractive for the botmaster to
try to avoid detection by generating many DGA domains each
day, or by instructing too high a fraction of bots to not create
CnC connections each day.

E. Cliques and communities

Having constructed a graph where two vertices are connected
if they share a certain fraction of their associated source IPs
enables the final steps of the detection algorithm: Clique and
community detection.

A k-clique is a set of vertices that are fully connected to
at least k& — 1 other vertices, representing sets of source IP
addresses that resolve the same set of domain names and then
create unnamed flows towards the same set of destination IP
addresses across all k days.

As several DGA domains could be created each day by
a botnet, a botnet may be represented by several k-cliques.
Therefore, the graph is used to identify k-communities: A k-
community is the union of all cliques of size k that can be
reached through adjacent (sharing k-1 nodes) k-cliques [8].

A k-community could represent an IGA botnet, where the
source IPs related to the community represents the bots. How-
ever, a community could also represent other structures than
IGA botnets, such as regular botnets generating traffic to some
other, common destination (e.g. for attack purposes) based
on information obtained through the CnC channel (thereby
creating an unnamed attack flow).

F. Summary

This section describes the steps of the IGA detection al-
gorithm, which includes a number of possible data reduction
techniques. Based on DNS responses and NetFlow records
collected over k days, a number of k-cliques are found that may
represent an IGA botnet. Several properties are worth noting:

o No assumptions are made about the similarity of two
different gnames when identifying cliques, as is the case
for example in semantic based DGA detection methods.

o The rdata IP value is only used for data minimization and
to identify unnamed flows, but is not used in the re-naming
of flows or the clique identification. The rdata IP value is
often key in DGA detection methods for example when
identifying IP addresses with many associated gqnames.

« No assumptions are made about the distribution or sim-
ilarity of source or destination port numbers (except for
when performing white-listing), which is often the case
for NetFlow-based detection methods.

« The flow sizes (packets, bytes or time) are not used, which
is often the case for NetFlow-based detection methods.

As the botmaster has almost full control of all of the aforemen-

tioned features, these properties should be considered important
to any detection algorithm.

1 | for sourceip in $sourceiplist; do

2 dnsflood -n 1 —-s $sourceip $botdomain S$resolver

3 sleep 1s

4 | done

5 | sleep 10s

6 | let sourceport=SRANDOM

7 | for sourceip in $sourceiplist; do

8 for ((i=1;i<=512;i++)); do

9 sendip —p ipv4 —is $sourceip —-p tcp —ts
$sourceport —td 23 —tfs 0 12.34.56.78

10 done

11 let sourceport++

12 sleep 1s

13 | done

Listing 1. IGA traffic emulation script.

V. VALIDATION OF DETECTION METHOD

In this section, IGA botnet traffic will be injected into
DNS and NetFlow data from an ISP to validate the IGA
botnet detection method described in the previous section. The
following subsections describe in further detail the ISP data
available, how emulated IGA traffic is injected into the ISP
data, and the specific values chosen for the various thresholds
used in the detection algorithm. Finally, the results of running
the detection algorithm are presented and discussed.

A. ISP DNS and NetFlow data

DNS and NetFlow data for the 1,5M mobile and 100k broad-
band subscribers of Telenor Denmark is used for validation.
NetFlow data is collected at the Border Gateway Protocol
(BGP) Autonomous System (AS) border routers using a sample
rate of 1:512. This traffic therefore represents all Internet traffic
entering and exiting Telenor Denmark’s network. DNS data
is collected at DNS resolvers by collecting all DNS response
packets. The resolvers are only accessible to Telenor Denmark
subscribers, and they are the default choice for all subscribers.

NetFlow and DNS data are anonymized for legal reasons
by truncating the internal (subscriber) IP to a /24 prefix for
non-NAT’ed subscribers (or truncating the port for NAT ed
subscribers) as well as a number of other measures less relevant
to this paper. The anonymization policy applied follows the
guidelines of [9] except that varying levels of anonymization is
applied to the NetFlow destination IPs and the DNS rdata IPs in
order to evaluate the effect of anonymization on the results. Due
to anonymization of source IPs, all traffic will originate from
only approximately 15k prefixes, each representing somewhere
between 0 and 256 customers.

B. Proof-of-concept IGA botnet data

To emulate the behaviour of an IGA botnet, the Bash script
available in Listing 1 is used. The script is run once every day
to emulate the behaviour of an IGA botnet consisting of 30
bots among the Telenor customers, each of which contact the
botnet CnC infrastructure once a day by means of a single DNS
lookup and a TCP flow.

The fixed set of 30 IP addresses used as faked source IP
addresses are selected from the various prefixes used by Telenor
for customers. For each source IP, a single DNS request is

TABLE III
Thresholds used for validation.

Metric Symbol Value
Number of days observed k 3-5
Ratio of retained DNS RRs Tsecondlevel 0.05
Number of whitelisted IPs [Wednip| 1.3-10°
Maximum number of bots expected Tmazbots 500
Maximum delay from DNS request to flow | Tyciaymaa 10 min
Jaccard similarity threshold Tiaccard 0.24
Minimum number of bots expected Trninbots 4

created of type A for the domain bot-test.testlab.telenor.dk,
giving the response value 192.0.2.3. For each source IP, 512
TCP packets are then created with a random source port,
and destination 12.34.56.78:23. This emulates the IGA bot
behaviour of decoding the IP address 192.0.2.3 to the plain-
text IP address 12.34.56.78, and knowing the destination port
number by some other means. The choice 512 packets is made
in order to increase the probability that at least one of the
packets from each bot is represented in the collected NetFlow
records that use a sample rate of 1:512.

As the domain registration process is not scripted,
the emulated botnet will always resolve the name bot-
test.testlab.telenor.dk. This specific domain is therefore made
exempt to the minimization step that removes domains seen
the day before. This is implemented in practice by prefixing the
domain name with the number of the day of the observation,
such as 1.bot-test.testlab.telenor.dk.

C. Detection algorithm parameters

All of the recommended methods for reducing the datasets
described in Section I'V-A are applied. The choices of the detec-
tion threshold parameters used for validation are summarized
in Table III, and where relevant, the choice of each parameter
is elaborated in the following paragraphs.

1) k: Data is collected in two periods, p; from 20210318
to 20210321 (4 full days) and py from 20210418 to 20210418
(5 full days). Values of k from 3 to 5 are used, always starting
at the first day of the period.

2) Tsecondievelr: To white-list frequent second level domain
names, the 1500 most popular second-level gnames and the
200 most popular second-level rnames (where rnames and
gnames differ) were white-listed. The qname approach causes
approximately 95% of all responses to be white-listed. This
is approximately equal to removing second-level domains for
which there is more than 100k queries per day. The rname
approach causes approximately 95% of all RRs to be white-
listed, yielding Tsccondiever = 0.05. This is approximately equal
to removing RRs where more than 170k RRs per day contain
a particular second level domain.

3) Tjaccara: For the Jaccard similarity threshold, a value of
Tjaccara = 0.24 is chosen, meaning that at least a fourth of
the source IP addresses in two vertices must be common to the
two vertices, for the vertices to be considered connected.

TABLE IV
Example validation data metrics from the first day of the first time period.

Metric Symbol Count
Total DNS responses [D 3.64 - 10Y
Total flows |Fanl 150 - 106
Minimized DNS responses | |Dreduced| 631 - 103
Minimized flows Fyreduced| 17.9 - 106
Unnamed flows Funnamed| | 13.3-10°
Relevant re-named flows Rirecduced| 33.0-10°
TABLE V
Validation data detection results.
Result set 1 2 3 4 5 6 7
Period 1 1 2 2 2 2 2
k 3 4 3 4 5 4 4

Destination IP /32 /32 /32 | /32 /32 24 | /16
Vertices 333 | 395 | 530 | 691 853 | 1037 | 598
k-cliques 4k | 24k | 16k | 49k | 111k 60k | 22k
k-communities 6 2 9 5 18 22 8

D. Results

Seven different result sets are collected and summarized in
Table V. The different result sets vary in which of the two
time periods are used, how many days of data is used. Also,
two result sets are using a truncated version of the destination
IP addresses (using the /24 and /16 version of the IP address),
in order to evaluate the effect of anonymizing the destination
IP adress. Example reference metrics can be found in Table IV.

The full graph for result set 2 is found in Figure 2. The
graph for result set 1 (k=3) is structurally similar. The IGA
detection algorithm detects two communities. The community
in cluster 1 contains the vertexes representing the 4 domains and
26 of the 30 source IPs used in the emulated IGA botnet. The
community in cluster 2 contains the vertices representing 124
domains (for example ecy.eu, rfn.de, rae.biz, pms.mx, egln.vg,
pbp.ru) and 7 source IPs. Although other clusters exist, they
are not 4-communities.

The graphs for result set 3-7, which are all from the same
time period, are structurally similar to each other. They all
depict the IGA botnet as a separate cluster, less than 10 smaller,
non-community clusters, and finally one very large cluster
containing the remaining vertices and communities.

E. Discussion

For all result sets, the IGA detection algorithm successfully
detects the k-community (containing a single k-clique) with the
bot-test.testlab.telenor.dk domains that represent the emulated
botnet (cluster 1 in Figure 2). However, additional communities
are also detected in all result sets, showing that further data
processing is needed. Although this does indicate a high false
positive rate for the detection algorithm, we still consider the
detection algorithm successful, as it reduces a nationwide traffic
data set to a manageable number of 6-22 positives.

As can be deduced from Figure 2 that depicts k=4, using
k=2 would provide many false positives. Using k=3 results in
six 3-communities and using k=4 results in two 4-communities,
which we consider a quite low number given the size of the

observed network. As expected, the number of vertices and
cliques seem to grow when data from additional days is used.
Interestingly, the number of communities detected is lower for
k = 4 than for £ = 3 or k = 5. This could indicate a sweet
spot in the balance of too little or too much data.

Anonymizing the destination IP address by removing the
last octet yields result set 6 and removing the two last octets
as recommended by [9] yields result set 7. In both cases, the
emulated botnet is identified as a k-community and as a distinct
cluster. This, combined with the total number of k-communities
still being relatively low, could indicate that the IGA algorithm
may be feasible to run on anonymized data.

Cluster 2 in Figure 2 could be an IGA botnet, however further
investigations in this area were inconclusive. A cluster with
similar domain names could not be found in period 2.

Some of the non-community clusters, such as cluster 3,
include domain names that look like they could be created
by a DGA, and these are probably regular (non-IGA) botnets.
Although regular bots do not produce unnamed flows, they pro-
duce a lot of DNS requests, and these may by random chance be
attributed to non-white-listed, unnamed flows towards common
destinations. This indicates that the IGA detection could be an
novel method for identifying non-IGA botnets as well.

Cluster 4 contains a lot of mailserver-related names. Al-
though this is not a 4-community, it is surprisingly densely
connected. By eliminating day 1 and only looking at at dataset
for days 2 to 4, this cluster is reduced to a much smaller cluster
of 6 vertices. The cluster is not found in the dataset for period
2. Although this cluster could be non-IGA botnet related as
well, it could also belong to SMTP mail servers lookup up the
IP address of the sending domain in order to verify the sender,
verify SPF/DMARC records or similar. As for the non-IGA
botnets, this would create a lot of DNS requests that are by
random chance attributed to non-white-listed, unnamed flows.

VI. RELATED WORK

The related work falls into current and proposed IGA imple-
mentations and IGA detection techniques. Both categories have
related work focusing on DNS tunnelling techniques, however,
these presuppose that the botmaster has control of the DNS
server infrastructure, and are therefore incompatible with the
threat model of this paper.Similarly, work focusing on DNS-
over-TLS or DNSCrypt techniques is not considered relevant.
These techniques describe application-layer encryption between
the client and the resolver, whereas the IGA technique describes
record-level encryption between the client and the botmaster.

A. IGA implementations and encoding schemes

The Sage 2.0 botnet uses a conceptually different, but
similarly named IP Generation Algorithm (using the IPGA
acronym) to randomly contact CnC servers among 7702 ad-
dresses within four predefined /16 subnets [10]. Most of these
addresses are expected to be benign, and the actual CnC
IP addresses are not conveyed through the DNS system as
suggested in this paper. Therefore, the IPGA and suggested
IGA techniques differ significantly.

enableneronline. 2

3

www.photocgsket.com. 2

veckanbetattar.pw. 4

b '!ﬂ

7 bot-test testhdb telenor.dk. 3 www.locolobo.net. 3

m.ekaep- 1 . i 3
SHomobeachvilla.com. 4 the”“"%'ﬂﬁﬁﬁ%@ﬁboumive_ 4

tetd 24metrics.com. 4

discovernorthepr

operatingdemoliionmore.com. 4

wirelesseuropgbalmy.com. 3

dominienprotectioncandle.com. 4

xmil.userw m., 1.
WWW.my. fiends.com. 3

" extranet.infarmed pt. 2
acknowledge b ERhREIIGR L b o1 2
m0n9183.secundwellﬁ%g%géﬁ3;&

g ﬁ?nwm%gﬂ nger.live. 4
oG e e faspd dk 3

ip226.ip-51 ey 2
P P zxﬁ%&?&rﬁf rics.co
gone237coldpagg%¥_\;_r"e.c]6m 4

Fig. 2. A graph depicting the results of the IGA detection algorithm for result set 2, using p1, k = 4 and no destination IP address truncation. Green numbers

identify clusters for reference.

The purpose of Cryptographically Generated Addresses
(CGAs) is to generate an IPv6 address with an embedded public
key [11]. This scheme transforms the IPv6 address, but does
not hide the real IP address. This technique is therefore also of
less relevance to our paper.

Much work is available various techniques to anonymize
IP addresses [12] [13]. The focus in these papers is typically
privacy preservation using one-way mapping functions, such
as truncation or hashing. However, the IGA technique requires
a two-way mapping as well as an encryption/decryption key,
as bots need to be able to obtain the plain-text version of the
IP address. This can be achieved using semantic- and format-
preserving encryption as described in [2] using cryptographic
algorithms as described in [14] and [4]. Preserving semantics
is important, as not all possible IP addresses should appear
in DNS records. Preserving the format is important, as an
encoded IP address must consist of exactly 4 bytes, the length
used for IPv4 addresses. If an encoded IP address does not
adhere to normal semantics and formats, it will be easy to
detect. A different encryption scheme focusing on prefix-
preservation is introduced in Crypto-PAN [15], however, the
prefix-preservation is an undesired property in our use case,
and furthermore the scheme is not semantics-preserving.

A technique for using DNS resolvers as bridge in a two-
way communication between two hosts without control of the
DNS infrastructure is presented in [16]. However, only clients
sharing the same DNS resolver can communicate.

B. IGA detection

To show that a DNS record is implicitly, but not explicitly
related to a CnC flow, it is necessary to analyse both DNS and
flow data. For this paper, NetFlow/IPFIX data will be used to
represent flow data, as this is the simplest, standardized method.

Although commercially available products are difficult to
survey due to lack of detailed information, it is appropriate to
include for completeness. For NetFlow based detection, Cisco
Stealthwatch provides by far the most in-depth documentation
of detection capabilities and methods [17]. For DNS based
detection, the deepest documentation seems to be provided by
Cisco Umbrella (formerly OpenDNS) [18], Infoblox Advanced
DNS protection [19] and HP Arcsight DNS Malware Analytics
(formerly Damballa) [20]. None of the surveyed products
document the ability to perform behavioural analysis on the
combination of DNS and NetFlow features, which suggests that
commerciall products will not be able to detect IGAs.

Based on academic survey papers, it seems that combining
the DNS and NetFlow feature sets may not be a widespread
approach. Some papers use NetFlow analysis on DNS packets
only, by simply detecting an abnormal amount of DNS traffic
within a specific time period for specific hosts [21] [22]. This is
still considered a NetFlow-only based approach not applicable
to IGA detection, as no layer 7 information is used from the
DNS packets, only general knowledge about the DNS protocol.

IP source address entropy derived from NetFlow logs and the

ratio of nxdomain responses derived from DNS logs are used
by [23] as detection and validation methods. It is, however,
not clear if the two methods are used in combination or
independently, thus effectively being a NetFlow based method
combined with an DNS based method, rather than a method that
combines DNS and NetFlow data before applying the method.

Fuzzy pattern recognition is applied by [24] to both DNS
and network flows in a two-stage approach. The DNS related
features used are based on the inter-arrival time of requests,
and total and failed number of responses. The NetFlow related
features used for each destination address are based on the
request-response time interval, the number of requests and the
payload size. The pattern recognition is then applied in each of
these phases, thus analyzing DNS and flow data separately.

IP flows that can not be related to a previous DNS lookup
(denoted unnamed flows or non-DNS connections) is one of the
topics of [25] and [26]. Such flows account for 5-10% of all
internally originated flows in one of the available datasets [25].
As IGA flows will appear unnamed, this property is clearly
relevant to exploit in IGA detection.

The topic of [27] is to use traffic analysis on encrypted DNS
traffic (DNS-over-TLS etc.) to identify nxdomain response pat-
terns from DGA based botnets. The paper shows that time series
analysis and packet size diversity can be used to create IoCs
for several specific botnet families. The presented techniques
could make it possible to extend the threat model of our paper
to allow encrypted DNS traffic as well.

VII. CONCLUSION

This paper presents the novel concept of the IP Generation
Algorithm (IGA) as a method usable by botmasters to avoid
exposing the CnC IP address in plain text in DNS A records.
An implementation of the concept is provided, and a detection
method is presented and validated using an emulated botnet and
data from Telenor Denmark’s network. Although the results do
not indicate that any botnets currently use the IGA method, the
method could in the future potentially supplement or replace
existing DGA and fast-flux methods.

Modifications to the detection algorithm, or entirely different
detection algorithms, suitable for real-time threat prevention by
firewalls should be developed, as the method outlined in this
paper is very reactive, as it requires several days of retained
data for detection.

Looking further into the detecting and eliminating potential
decoy flows or applying existing DGA detection methods on top
of the detection method described in this paper could potentially
reduce the number of false positives, and could therefore also
be interesting topics to address in future work.

REFERENCES

[1] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-

Padilla, “A Comprehensive Measurement Study of Domain
Generating Malware,” USENIX Security = Symposium, 2016.
[Online]. Available: https://www.usenix.org/system/files/conference/

usenixsecurity 16/sec16_paper_plohmann.pdf

[2] G. Ladi, “Semantics-Preserving Encryption for Computer Networking
Related Data Types,” AIS: International Symposium on Applied
Informatics and Related Areas, 2017. [Online]. Available: https:
/Iwww.crysys.hu/publications/files/Ladi2017ais.pdf

[3]

(4]

(5]

(6]
(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Internet Assigned Numbers Authority, “IANA IPv4 Special-Purpose
Address Registry,” 2020. [Online]. Available: https://www.iana.org/
assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
M. Dworkin, “Recommendation for Block Cipher Modes of Operation:
Methods for Format-Preserving Encryption,” National Institute of
Standards and Technology. [Online]. Available: http://dx.doi.org/10.
6028/NIST.SP.800-38G

K. P. Dyer, “FFX,” 2018. [Online]. Available: https://github.com/kpdyer/
libffx

W. J. Buchanan, “FFX schemes,” 2020. [Online]. Available: https:
/lasecuritysite.com/encryption/ffx

M. Fejrskov, “IGA: A python module for format- and semantics
preserving encryption and decryption of IP addresses,” 2021. [Online].
Available: https://github.com/Fejrskov/IGA

NetworkX, “NetworkX algorithms, k clique communities,” 2002.
[Online]. Available: https://networkx.org/documentation/stable//reference/
algorithms

M. Fejrskov, J. M. Pedersen, and E. Vasilomanolakis, “Cyber-
security research by ISPs: A NetFlow and DNS Anonymization
Policy,” International Conference on Cyber Security And Protection
Of Digital Services, 2020. [Online]. Available: https://doi.org/10.1109/
CyberSecurity49315.2020.9138869

Swiss Government Computer Emergency Response Team,
“Sage 2.0 comes with IP Generation Algorithm (IPGA),”
2017. [Online]. Available: https://www.govcert.admin.ch/blog/27/sage-2.
0-comes-with-ip- generation-algorithm-ipga

T. Aura, “Cryptographically Generated Addresses
[Online]. Available: https://tools.ietf.org/html/rfc3972
N. Dijkhuizen and J. Ham, “A survey of network traffic anonymisation
techniques and implementations,” ACM Computing Surveys, 2018.
[Online]. Available: https://doi.org/10.1145/3182660

E. Boschi and B. Trammel, “IP Flow Anonymization Support, RFC
6235,” 2011. [Online]. Available: https://doi.org/10.17487/RFC6235

M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-Preserving
Encryption,” SAC: Selected Areas in Cryptography, 2009. [Online].
Available: https://doi.org/10.1007/978-3-642-05445-7_19

J. Xu, J. Fan, M. Ammar, and S. Moon, “Prefix-preserving IP
address anonymization: measurement-based security evaluation and a
new cryptography-based scheme,” IEEE International Conference on
Network Protocols, 2002. [Online]. Available: https://doi.org/10.1109/
ICNP.2002.1181415

D. Bernit, “Domain Name System as a Memory and Communication
Medium,” SOFSEM 2008: Theory and Practice of Computer Science,
2008. [Online]. Available: https://doi.org/10.1007/978-3-540-77566-9_49
Cisco, “Threat detection, Cisco Stealthwatch at work,” 2019. [Online].
Available: https://cisco.bravais.com/s/SXhrFcFSKfsqInOUyF2J

, “Cisco Umbrella Investigate,” 2019. [Online]. Available: https:
//docs.umbrella.com/investigate-ui/docs/

Infoblox, “Infoblox advanced DNS protection,” 2019.
[Online]. Available: https://www.infoblox.com/wp-content/uploads/
infoblox-datasheet-infoblox-advanced-dns-protection.pdf

HP, “HP ArcSight DNS malware analytics datasheet,”
2015. [Online]. Available: http://www.hp.com/sbso/hpinfo/newsroom/
DNSMalwareAnalyticsDataSheet.pdf

M. Grill, 1. Nikolaev, V. Valeros, and M. Rehak, “Detecting DGA
malware using NetFlow,” IFIP/IEEE International Symposium on
Integrated Network Management, 2015. [Online]. Available: https:
//doi.org/10.1109/INM.2015.7140486

D. Huistra, “Detecting reflection attacks in DNS flows,”
2013. [Online]. Available: https://pdfs.semanticscholar.org/4ad8/
24537£212f70e25e4cbab55498f5a8e43942.pdf

R. Hananto, C. Lim, and H. P. Ipung, “Detecting network security threats
using domain name system and NetFlow traffic,” ICCSP: International
Conference on Cryptography, Security and Privacy, 2018. [Online].
Available: https://doi.org/10.1145/3199478.3199505

K. Wang, C.-Y. Huang, S.-J. Lin, and Y.-D. Lina, “A fuzzy pattern-based
filtering algorithm for botnet detection,” Computer Networks, 2011.
[Online]. Available: https://doi.org/10.1016/j.comnet.2011.05.026

M. Janbeglou, “Understanding and Controlling Unnamed Internet
Traffic,” 2017. [Online]. Available: https://researchspace.auckland.ac.nz/
handle/2292/36323

B. Rahbarinia, R. Perdiscil, A. Lanzi, and K. Li, “PeerRush: Mining for
Unwanted P2P Traffic,” Journal of Information Security and Applications,
2014. [Online]. Available: https://doi.org/10.1016/j.jisa.2014.03.002

(CGA),” 2005.

[27] C. Patsakis, F. Casino, and V. Katos, “Encrypted and covert DNS queries
for botnets: Challenges and countermeasures,” Computers & Security,
2019. [Online]. Available: https://doi.org/10.1016/j.cose.2019.101614

