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On the Explainability of Black Box Data-Driven
Controllers for Power Electronic Converters

Subham Sahoo, Huai Wang and Frede Blaabjerg
Department of Energy Technology, Aalborg University

Aalborg, Denmark
e-mail: {sssa,hwa,fbl}@et.aau.dk

Abstract—This paper proposes to explain the black-box feature
of data-driven machine learning (ML) models used for controlling
power electronic converters for the first time. As the name sug-
gests, their ”black box” feature prevents a clear understanding
of the physical insights behind these ML models. It remains
a fundamental aspect, if one plans to take action based on a
prediction, or deploy a new ML model. Moreover, leaked and
corrupted data during the training process can easily augment
unexplainable actions from them. To address these issues, we
first interpret the actions of the black box models by calculating
a conditional entropy for each input with respect to an output.
Using this metric, the averaged relationships between each input-
output can be mapped and representative conclusions are firstly
drawn on identifying erroneous data. Finally, these abnormal
data are then removed from the training database to improve
the interpretability & classification abilities of the ML model.
We illustrate our findings on the performance of a regression
based learning tool used for controlling a grid-connected voltage
source inverter (VSI).

Index Terms—Machine learning, artificial intelligence, power
electronics, explainability, black box controller

I. INTRODUCTION

VOLTAGE source inverters (VSIs) are an integral asset in
the power electronic energy paradigm, as they serve as

one of the most common energy conversion interfaces between
renewable energy sources and the grid [1]. They have been
valued as a substantial resource in improving the flexibility and
sustainability of the power grid. In this regard, the advent of
machine learning (ML), artificial intelligence (AI) techniques
and communication infrastructures has been a key enabling
technology for power electronics offering new features, such
as enhanced accuracy and cognitive reasoning [2]-[3]. Apart
from energy conversion, AI has been applied across various
sectors, such as image & speech recognition, computer vision,
etc. Meanwhile, research in related aspects on data science and
edge computing by extorting qualitative data has laid a solid
foundation for AI & ML in power electronics [4]-[6].

To facilitate key drivers such as controllability and energy
efficiency, data-driven ML algorithms are seen as an emerging
trend by solving and determining non-deterministic variables
[7]-[9]. While the accuracy of these algorithms is highly
dependent on training data adequacy and availability, another
intricate feature is the quality of data, which can serve multiple
purposes by providing in-situ information. However, these
data-driven algorithms provide no explanation for variation in
output due to the abnormal class of data. This abnormality
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Fig. 1. Three-phase VSI equipped with a current control loop and phase
locked loop (PLL). Further, an ensemble based regression controller is
appointed to learn the relationships between the inputs {vd, vq , id, iq , idref ,
iqref} and outputs {md, mq}.

could result from manipulation via an adversary or even
corrupted due to unfortunate accidents [10]. As a result,
it creates many uncertainties and brings critical limitations
on the deployment of these algorithms for power electronic
converters. Hence, multi-fold challenges are raised, which can
be summarized using the following questions:

1) How can the prediction of an AI/ML algorithm be trusted
for power electronics?

2) How can the physical insights behind these black box
tools be explained for power electronics?

To answer these questions, we propose an explainable
framework for data-driven controllers for the first time in the
realm of power electronics. Firstly, we map the conditional
entropy to show the marginal effects each input has on the
predicted output. This entropy plot can identify the relationship
between the input and output, either linear, monotonic or
complex. Using these conditional plots, the pattern conform-
ing to the physical insights can be formalized. Finally, any
perturbed/corrupted data, which falls outside the operational
bounds of the said plot, will then be removed from the
training database to minimize its sensitivity on the data-driven
tool. We validate our studies using a data-driven regression
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Fig. 2. Designed neural network depicting a hypothesis space H, which has
been trained using specified inputs x and outputs y.

tool deployed for active and reactive power control of grid-
connected VSI. We illustrate various explainability aspects of
the regression controller and how its operation is affected using
multiple case studies with random perturbations in the training
data.

II. PROBLEM FORMULATION

To illustrate the efficacy of the proposed explainable frame-
work, we consider a simple example of controllability of a 2-
level, 3 phase grid-tied VSI using a machine learning model.
As shown in Fig. 1, the control structure has been imple-
mented in the dq0 frame. Using the Park’s transformation,
the measured voltage and current signals are transformed into
{vd, vq} and {id, iq}, respectively. Moreover, the phase angle
information θ is obtained through a SRF-PLL. As the grid-tied
VSI operates with different active and reactive power reference
points given by idref and iqref respectively, the corresponding
data have been obtained from the control platform to train
an ensemble regression based learning model to imitate the
control response. Finally, the predicted targets in the form
the modulation indices for the d and q axes given by {md,
mq}, respectively are obtained from the data-driven controller
and is ultimately fed into the PWM stage. The system and
control parameters (used in the physics guided approach for
data extraction) can be found in Table I.

Following up on the control schematic in Fig. 1, the filter
plant can be represented by:

Gplant(s) =
1

Lf .s+Rf
(1)

where, Lf and Rf denote the filter inductance and resistance,
respectively. To compensate for these dynamics, a PI based

(a)

(b)

Voltage Sag of 50%

Voltage Sag of 50%

Fig. 3. Comparative performance between two predictors: (a) predictor h
with unperturbed inputs x, (b) predictor h′ with perturbed inputs x’ – the
prediction accuracy in the regression curve and their performance do not
match, mandating the need of explainability of the black box data-driven
tool.

TABLE I
SIMULATION PARAMETERS

Parameter Variable Value

DC Voltage vdc 600 V

Grid Voltage (L-L) vabc 400 V

Grid Frequency fnom 60 Hz

Filter inductance Lf 2 mH

Filter capacitence Cv 10 µF

Filter resistance Rf 0.5 Ω

Inverter Switching Frequency fsw 10 kHz

Current Controller Proportionate Gain K
GI
p 0.3

Current Controller Integral Gain K
GI
i 20

current controller is designed based on the following equations
in dq frame:

Lf
did
dt

= −Rf id + Lfωiq +
vdc
2
md − vd (2)

Lf
diq
dt

= −Rf iq − Lfωid +
vdc
2
mq − vq (3)

where ω is the angular frequency. It is worthy notifying that
the cross coupling terms Lfωiq & Lfωid couple (2) and (3),
thereby making them non-linear. To decouple and linearize
the dynamics [11], md and mq are determined based on the
following control laws:

md =
2

vdc
(vdi − Lfωiq + vd) (4)

mq =
2

vdc
(vqi + Lfωid + vq) (5)

where, vdi and vqi are the inverter terminal voltages in dq
frame respectively. Encompassing (2)-(5) to imitate the current
controller employed for the grid-tied VSI using a data-driven
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Fig. 4. Explaining the predictions of data-driven algorithms and their physical insights for power electronics – this method will not only improve the accuracy,
but will also interpret the uncertainties behind erroneous results.

tool, we first obtain data corresponding to the inputs x = {vd,
vq , id, iq , idref , iqref} and the outputs y = {md, mq} under
a wide range of operation, which has been shown in Fig. 2.
Further, the regression curves by fitting the inputs and outputs
using a neural network are obtained. This operation is carried
out by firstly training the network with a majority of the
available data and then validating them with the rest to finalize
the regression task. It is worth notifying that the number of
data used for training, validation and testing remains uniform
throughout the paper.

The regression analytics of the derived ML tool are as
follows: a total of 700001 samples (sampled at a frequency
of 100 kHz) are obtained for each input defined in Fig. 2 to
obtain a formidable regression map in the prediction surface.
It is worth notifying that the dataset is obtained under different
operating conditions to establish the robustness and reliability
of the ML tool to cover a wide range of actions. Finally, 70%
of the obtained data is used for training the network and the
rest is used for both validation and testing purposes. A neural
network model is then achieved with 10 hidden neurons, 6
inputs and 2 outputs (as shown in Fig. 2) to test its accuracy
and performance.

Although there are many efficient learning algorithms that
can decimate the behavior of non-linear and complex systems
quite easily, they are always projected as a black box model,
since their prediction analytics can not really be explained. As
a result, there are various ways in which a black box model
or its evaluation can go wrong. Some of the typical ones are
enlisted here:

• Data leakage [12]
• Adversarial data [13]
• Insufficient data [14]

Data leakage can be defined as an unintentional leakage of data
from the dataset during the training/validation stage, which
goes missing when deployed. Further, adversarial data is the
injection of random signals into the dataset that can be put by
any adversary. This issue is quite relevant in the cybersecurity

investigations for power electronic converters [15]. The third
category is very common, which entails missing data from
various set of operation modes. For example, if the obtained
data in Fig. 1 have not accounted the operation of grid-tied
VSI under voltage sags/faults, then the qualitative assessment
of the ML tool can be poor.

In general, the designed artificial neural network (ANN) to
imitate the current controller in Fig. 1 can be represented as a
hypothesis space, which comprises all functions that are ob-
tained from compositions of matrix operations and associated
non-linearitieis. This hypothesis space can be written as:

H := {h(w)(x) = wT x : w ∈ Rn} (6)

where, h(x) is a linear predictor and w is a weight matrix.
Moreover, each element h(w) of the hypothesis space H in
(6) is a function from R

n to R, which maps from x to the
value wT x. Based on the hypothesis space used for regression,
a loss function L can be calculated, which specifies the loss
of using the defined predictor map h to predict the output y
based on the input x. This loss function can be denoted by:

L = (y− h(x))2 (7)

To illustrate the research gap in the explainability of black
box models, we consider a simple example where one of
the inputs in x, i.e., vd is subjected to random perturbed
values in Z = {z}700001 x 1, which are bounded within [-
0.05,0.05]. It should be noted that the non-zero values are
randomly allocated in Z, where the number of non-zero values
considered for this test case are only supp(Z) = 5000. Finally,
the perturbed input matrix is denoted by x’, which includes
the perturbed information z in vd. Using the perturbed inputs,
another predictor space h′ is designed for the system in Fig. 1.
Finally, the regression curve for both the predictors h (using
unperturbed inputs x in Fig. 3(a)) and h′ (using perturbed
inputs x′ in Fig. 3(b)) are compared in Fig. 2. It can be seen
that even though the prediction accuracy is quite close (≈
0.9999) for both the cases, their performances differ by a
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Fig. 5. Flowchart of the explainability framework for black box data-driven
tools in power electronics.

large margin. As compared to the balanced voltage vdi in Fig.
3(a), the performance is drastically affected with unbalancing
among the three phase voltages due to the perturbed inputs
in Fig. 3(b). Moreover, when a voltage sag disturbance of
50% is introduced at t = 0.2 sec, it can be seen that the
voltage unbalancing factor (VUF) for vdi increases in Fig.
3(b). This becomes a very common discrepancy where the
performance metrics of the power electronic system for the
designed black box tool do not accord with their corresponding
regression principles. As a result, the missing physical insight
and lack of understanding for the said black box tool makes
it unexplainable.

This problem has also been highlighted in Fig. 4, where it
mandates the need for an explainable framework for the black
box model. For example, although it can be seen in the zoomed
regression curve in Fig. 3(b) that there is a slight deviation
in regression between the obtained data and the fitness line,
it is not enough to predict this behavior, which could be

either due to model inaccuracy or erroneous data. Power
electronics practitioners often select and assess an ML model
based on their prediction accuracy and computational time.
However, the previous case study mandates that considerable
attention needs to be provided to analyze and interpret both the
data and model. Hence, this paper proposes an explainability
diagnostics for the first time, namely a conditional entropy
mechanism, which calculates the marginal effects between
each input-output of the black box ML model. More details
regarding this framework are discussed in the next section.

III. PROPOSED EXPLAINABILITY FRAMEWORK FOR
POWER ELECTRONIC CONVERTERS

In this section, the black box data-driven models designed
for power electronic converters will be explained. A detailed
explainability framework can be seen in Fig. 5. It should be
further clarified that the term ”conditional” has been used in
this paper to explore interpretability using conditional proba-
bility density functions of the elements in x. As discussed in
Section II, the coupling between d and q xes for a given system
determines the system non-linearity. Based on the given case
study where the active and reactive power inputs co-exist
together in the input data, the conditional probability density
function will be an effective way to assess their individual
impact on the otuput based on the degree of decoupling. The
explainability stages in relation to Fig. 5 are discussed below.

A. Conditional Entropy

This stage calculates the conditional entropy any specific
input may have on the predicted outcome of a learning based
model. It can be calculated using:

ĥxi
= Ey[h(w)(xi, xj)] =

∫
h(w)(xi, xj)Pxj |xi

(xj |xi)dxj (8)

where, P·|·(·|·) denotes the conditional probability density
function for x, with the subscripts indicating its specific
elements. An estimate of (8) for a range of given values in
xi is written as:

ĥxi
=

1

n

n∑
i=1

h(w)(xi, xj) (9)

where, n is the number of data points.
In Fig. 5, the estimate for md in (9) in the conditional

entropy stage, illustrated as the solid red line, is actually the
average of all the data-points obtained for different values of
vd. It is worth notifying that each grey line in the figure repre-
sents individual prediction. As a result, a visual representation
of the dependence for different values of vd.

B. Conditional Entropy Weights

This stage describes how the extracted features influence
the predicted output of an ML model on average by returning
conditional prediction weights. Hence, the impact of coupling
interactions between each input can be assessed via their
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Fig. 6. Comparative evaluation of conditional entropy plots, where the output data md is captured for: (a) only 1 p.u. vd values, (b) 20% sag in vd, (c) 50%
sag in vd. In (a), the unavailability of data below 1 p.u. vd can make it unexplainable for even the smallest voltage sag due to the constant entropy line (in
red).

respective entropy weights. This is done by calculating the
node risk probability, Ki for ith input:

Ki = Pxi .MSE (10)

where, MSE is the mean squared error, given by:

MSE =
1

n
(yi − h(xi))2 (11)

Using the node risk probabilities calculated in (10), the partial
weights bi for ith input can finally be given by:

bi =
1

n
(Ki −

j∈n∑
i 6=j

Kj) (12)

Finally, the weights obtained in (12) can be normalized to
obtain the conditional entropy weights ci for ith input using:

ci =
bi∑n
i=1 bi

(13)

Using (13), the impact of co-related features from the black
box model is formalized using the condition entropy weights.
In a similar manner, it can be seen in Fig. 5 that the
weights corresponding to each data point have been plotted for
{vd,id,iq} in relation to the output md. Additionally, this stage
will provide a guideline on critical deviation in the prediction
by pursuing the input data with the highest weight.

C. Outliers Determination

This stage aims to remove the corrupt data in the training
dataset, which complicates the interpretability of the data-
driven tools. As enlisted in Section II, the prediction may
go wrong due to erroneous inputs in the form of missing
or adversarial data. Hence, to remove the heterogeneity, we
consider having a visual representation for identifying the
outliers among the training data. For example, if a particular
perturbed data point xp (which is perturbed) does not interact
with the identified feature in the hypothesis space, the predictor
h can then be written as:

hw(x) = hw(xp, xc) = g(xc) + h(xp) (14)

so that, ∂h(x)
∂xp

= h’(xc). As a result, it can be concluded that
the relationship between xc (= x – {xp}) and h does not

depend on xp. Hence, the conditional entropy plot for xc and
would display a set of n − 1 curves with a common pattern,
however one outlier will differ by a level shift according to
the perturbed values in xp.

In this way, the outliers are removed from the training
dataset to furnish the black box data-driven model with
enhanced interpretability and accuracy.

IV. RESULTS

In this section, the validation of the proposed explainability
framework employed for the black box data-driven controller
in the test system is presented. Two test cases have been ac-
counted in this section to illustrate the efficacy of the proposed
framework to provide a visual and logical representation of
the training data. In the first test case, the inefficacy of pre-
diction capability of the black box controller is demonstrated
under insufficient data. Whereas in the second test case, its
performance is validated under erroneous data, where it is
randomly perturbed at multiple points by an adversary. Finally,
when the dataset is equipped for a voltage sag of 50%, it
can be seen in Fig. 6(c) that the feature mapping is more
authentic with different levels of predictions at each voltage
level. As a result, the proposed explainability framework not
only justifies the non-trivial logic that multi-featured training
data will provide the most accurate prediction/imitation but
also provides a visual representation of the feature mapping
between each input and output.

A. Test Case I

In this scenario, training datasets under different conditions
have been obtained from the system shown in Fig. 1. These
conditions can be enlisted here:

1) No voltage sag (as shown in Fig. 6(a))
2) A voltage sag of 20% (as shown in Fig. 6(b))
3) A voltage sag of 50% (as shown in Fig. 6(c))

As it can be seen in Fig. 6, the condition entropy plots justify
that the unavailability of sufficient training data will affect
their interpretability. In Fig. 6(a), since the training data are
captured at only 1 p.u. voltage, it can be seen that the predicted
output md remains constant even though the voltage drops to
0.5 p.u. As a consequence, the systen runs in an open loop
during voltage sags with the first set of training data. Further,
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Fig. 7. Test case II – Comparative evaluation of outlier plots for the test case studied earlier in Fig. 2: (a) predictor h with unperturbed inputs x, (b) predictor
h′ with perturbed inputs x’. In (b), the outliers (in blue), calculated using (14), resulted due to perturbations in the training data.

Fig. 8. Test case II – Performance of the designed neural network in Fig. 1
after removal of outliers (in Fig. 7) from the training data.

when the second dataset is considered in Fig. 6(b), it can be
seen that md changes accordingly as per (4), however this
hypothesis can be guaranteed for only up to a voltage sag of
20% and not beyond that.

B. Test Case II

This test case aims to investigate the problem of erroneous
data and its impact in Section II using Fig. 2. As mentioned
before, vd is subjected to a randomly distributed set of per-
turbed values in Z = {z}700001 x 1. which are bounded within
[-0.05,0.05]. It should be noted that the non-zero values are

randomly allocated in Z, where the number of non-zero values
considered for this test case is only supp(Z) = 5000. Finally,
the perturbed input matrix is denoted by x’, which includes
the perturbed information z in vd. Using the perturbed inputs,
another predictor space h′ is designed for the system in Fig.
1.

As shown in Fig. 7(a), no outliers were detected as per (14)
for the predictor h without any perturbed inputs. However in
Fig. 7(b), subjecting the perturbed dataset Z into vd disorients
the mapping, outlaying a constant prediction ranging from
0.4-0.8 p.u. values of vd. Moreover, few predicted trajectories
of md are close to the modulation limits, which may trigger
unnecessary clipping of capacitor voltages. Another interesting
observation in Fig. 7(b) is that some data for vd have been
captured for values larger than 1 p.u., which can be typically
attributed to the magnitude of the perturbed data. Using (14),
these outliers can be removed from the training data by
sighting the scatter plots.

V. CONCLUSION

In this paper, we propose a comprehensive framework to
explain the physical insights behind a black box data-driven
controller for the first time in the realm of power electronic
converters. As often reported, their predictions may go wrong
even with the slightest involvement of any abnormal data. To
address this issue, we devise a conditional entropy stage that
maps the feature between each input and output. Based on
the accepted norms for applications such as control, design or
maintenance, we authenticate the said mapping, determine the
entropy weights and then identify the abnormal data based on
a derivative policy of the conditional entropy mechanism. In
sum, this paper provides a visual and logical representation



of the black box data-driven controller for power electronics.
The proposed mechanism offers several advantanges:

1) It reduces the dimensionality and size of the training
dataset by removing abnormal setpoints

2) It increases the quality of data
3) It provides an offline diagnosis platform for the predicted

values from data-driven tools based on acknowkedged
norms of physics

4) It can act as an exemplary guideline to understand the
system uncertainties and data requirements

As a future scope of work, we aim to study the explainablity
of data-driven tools for power electronic applications having
multiple features.
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