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Abstract: Cascaded multilevel converters based on medium-frequency (MF) AC-links have been
proposed as alternatives to the traditional low-voltage inverter, which uses a bulky low-frequency
transformer step-up voltage to medium voltage (MV) levels. In this paper, a three-phase cascaded
DC-AC-AC converter with AC-link for medium-voltage applications is proposed. Three stages
integrate each DC-AC-AC converter (cell): a MF square voltage generator; a MF transformer with
four windings; and an AC-AC converter. Then, k DC-AC-AC converters are cascaded to generate
the multilevel topology. This converter’s topological structure avoids the per-phase imbalance;
this simplifies the control and reduces the problem only to solve the per-cell unbalance. Two sets
of simulations were performed to verify the converter’s operation (off-grid and grid-connected
modes). Finally, the papers present two reduced preliminary laboratory prototypes, one validating
the cascaded configuration and the other validating the three-phase configuration.

Keywords: AC-link; medium-frequency magnetic link; photovoltaic; multilevel converter; cascaded
converter; AC-AC converter; matrix converter

1. Introduction

At the end of 2019, the global renewable generation capacity was 2537 GW. Solar
energy was the renewable energy with the most significant growth reaching a global
capacity of 586 GW (23% of the global renewable generation capacity) [1] According to
the global weighted-average levelized cost of energy (LCOE), the cost for electricity from
utility-scale photovoltaics (PV) plants has fallen 82% in the last decade. Similarly, crystalline
solar PV modules’ price has fallen 90% in Europe in the same period [2].

The fall in prices and the photovoltaics’ growth in the last years have required tech-
nologies and innovations advances in power electronic converters to connect large-scale
PV power plants to the grid. Nowadays, the most widespread utility-scale topology to
interface solar PV modules to the medium-voltage (MV) grids is the two- or three-level
low-voltage (LV) centralized inverter [3–5]. This topology commonly consists of multiple
PV arrays (the number of PV modules could easily reach millions of them [6]) attached to a
DC-DC converter, increasing the PV array voltage and correctly feeding the low-voltage
centralized inverter. Finally, a low-frequency (LF) transformer steps up the LV AC to
generate the required voltage for a utility-scale grid (6–36 kV) [7–11].

This classic configuration faces some disadvantages. The main drawback is the line-
frequency transformer. Even though manufacturers are trying to reduce and optimize
the transformer’s space and volume, it is still huge, making installation and maintenance
complex and expensive [8,12,13].

Another issue is the limitation (normativity and insulations) to 1 kV on the DC side. In
addition, a high total harmonic distortion (THD) makes the use of line-frequency passive
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filter mandatory; nevertheless, due to the medium-frequency switching harmonics and
high current levels, the filter’s efficiency is impaired.

As it was mentioned, the main problem with the classic configuration is the large
transformer; hence, other works have tried to stay away from using it [14–17]. Thus,
transformerless alternatives have been considered. These alternatives consist of using
high-rated switches, but even with the state-of-the-art switches (6.5 kV), there is a limit in
the inverter’s AC output voltage; in the best case, it could be 3.582 kV.

Another possibility of implementing the classic configuration to reach MV levels
involves the series connection of multiple high-rated switches. This approach brings its
challenges: problematic physical construction, intricate gate driver design, use of snubber
networks, large filters, and high conduction losses due to the on-state voltage drop [18].

Multilevel converters have been proposed and used to overcome some of the pre-
viously discussed problems [12,19–23]. Multilevel converters show interesting features
like direct integration to the MV grid if a suitable number of levels are applied; there-
fore, this converter could be considered a transformer-less converter for MV-grid inte-
gration [11,24,25]. Due to the high number of levels in a staircase form, the waveform in
the converter’s output is closer to a sinusoidal signal; this implies that the THD could be
minimal [10,25,26]. The two formers features can be achieved without using high-rated
voltage switches; in other words, to achieve the MV levels and a low THD, commercial
switches can be implemented [10]. The only issue to overcome is that the voltage required
will increase accordingly to the MV-grid level.

Several multilevel converters have been proposed since the seventies, such as diode
clamped also known as neutral point clamped (NPC), flying capacitor (FC), cascaded
h-bridge (CHB), and the modular multilevel converter (MMC), among others. Still, the
previous four are fundamental structures [27]. The diode clamped remains in use in the
industrial environment [28,29]. The number of voltage levels produced by this converter is
m, and requires m − 1 capacitors [30]. The capacitors are used as DC sources; therefore,
the switches must block the capacitor’s voltage. The flying capacitor’s output levels are
generated by the capacitors that float with respect to the ground potential; hence, the switch
must block this voltage [31,32]. This topology provides redundant switching states that
can balance the voltage in the flying capacitors [33]. The CHB converter is built cascading
k full-bridge converters and requires multiple isolated DC sources [30]. The number of
levels m and DC sources k are related as m = 2k + 1; therefore, a high number of DC
sources are required [34]. PV farms commonly use multiple PV strings, and each PV string
generates its own DC voltage. The MMC converter provides an alternative multilevel
topology [35,36]. Three legs integrate an MMC converter, and each leg has two arms,
and each arm has k cascaded converters; the MMC has a common DC source. The most
common implementation is the HB converter. The main drawback in the use of MMC
includes the circulating current between legs.

The newest and more complex multilevel converters are based on these four, and
in some applications, the line-frequency transformer is required by means of isolation,
normativity, or security. The sizing and design methods for eleven cascaded multilevel
converter (CMC) were addressed in reference [20]. The authors also provide considerations
and a detailed procedure for the power stage. A three-cell seven-level CHB was evaluated
in reference [19], and the control method was based on traditional voltage-oriented control.
This standard control scheme required the addition of two stages: one stage considers the
maximum power point tracking (MPPT) for each module or string, and the other stage
controls the DC-link voltages drift. In reference [22], a current-control technique and the
switching scheme of a cascaded five-level inverter with a single-phase photovoltaic grid-
tied system were introduced. In reference [23], a cascaded H-Bridge multilevel converter
for photovoltaic systems without voltage or current sensors at the DC-side was proposed.
The effectiveness of the proposed structure was experimentally validated on a 2 kW single-
phase seven-level CHB laboratory prototype.
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In the last decade, MF transformers have been considered to minimize the size and
weight of the line frequency transformers in traditional PV farms connected to the grid;
but this MF link requires an additional step to transform the MF-AC square voltage to
line-frequency AC voltage. There are two options to perform the frequency transformation:
the first option is a two-step power conversion (AC-DC/DC-AC), in which a MF rectifier
produces a new DC link that feeds an inverter converter [37,38]. Reference [12] presents a
high-performance solution based on a power electronic transformer (PET); it included a
medium-frequency transformer, DC-links, and multilevel converters on the low-voltage
or on the high-voltage side. In reference [21], a high-frequency link-cascaded medium-
voltage converter was proposed for direct grid integration of renewable sources. The
common magnetic link generates several isolated and balanced DC sources for feeding all
the h-bridge inverter cells of the MMC converter.

A direct stage conversion (AC-AC) is the second option to transform an MF-AC
voltage to low-frequency AC voltage [39–43]. In reference [44], a direct method conversion
was implemented. The converter has four stages of energy conversion: DC-DC/DC-
AC/AC-AC/AC-AC. The converter uses a switching frequency of 2880 Hz and the work
focuses on the designing and operation of the converter under unbalanced insolation.
Finally, presenting an experimental test: in three-phase (3PH) and in single-phase (1PH)
cascaded configuration, in which it reports an operating of 450 W. Besides, there are tests
to validate the zonal power balancer, but there are not close-loop experimental tests of the
proposed converter neither in three-phase configuration nor cascaded configuration.

This paper presents a multilevel medium-voltage power converter with MF-AC links
that simplifies the grid integration of large-scale PV farms. This proposal overcomes some
drawbacks related to grid-tie PV plants: use of line-frequency transformers and filters;
avoiding using high-rated switches (>6.5 kW) or the use of series connection switches;
elimination of the MF rectifying stage; and promoting modularity.

This three-phase multilevel converter is built cascading some converters intercon-
nected with each other via medium-frequency multiple winding transformers. These
transformers generate a MF-AC link. In the primary side, there is only one winding sup-
plied by a square-wave converter. There are three windings on the secondary side; each
winding plus a suitable converter generates each of the three-phase output voltages.

This topology has been selected because it has some exciting features: (1) It includes
medium-frequency AC links (MF transformer). (2) MF switching, which allows the re-
duction of passive elements. (3) AC-AC direct conversion from MF-AC voltage to LF-AC
voltage eliminates the necessity of a medium-frequency rectifier. (4) Multiple DC links.
(5) Multilevel output voltage that in consequence, permits interfacing with medium-voltage
utilities with a low THD. (6) Does not require a line-frequency transformer. (7) Modularity
(multiple DC-AC-AC converters can be cascaded) [45].

The rest of the document is organized as follows: Section 2 describes the proposed
converter topology, its modulation strategy, and the proposed converter’s design. Section 3
discusses the three-phase multilevel converter’s control strategy. Section 4 shows simula-
tions to validate the operation of the proposed topology in open-loop under off-grid mode
as well as in close-loop under on-grid mode. Section 5 discusses experimental tests over
two laboratory prototypes. Finally, in Section 6, the discussion is presented.

2. Grid-Tied Converter with AC Link

Besides many other state-of-the-art topologies, the one proposed in this paper is
integrated by some conventional converters that combined present exciting features. In
Figure 1, the proposal multilevel grid-tied converter with MF-AC links is depicted in
the form of a block diagram. The suggested converter facilitates the incorporation of
utility-scale PV plants into the MV utility. Figure 2 shows the block diagram of the
conventional two-levels centralized converter for medium-voltage levels in comparison
with the proposed converter.
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Figure 2. Classic configuration to interconnect PV arrays to the medium-voltage (MV) grid.

This proposed topology is built cascading k three-phase DC-AC-AC converters. Some
converters integrate this DC-AC-AC converter; one is referred to as the input converter and
the others as the output converters. The input and output converters are interconnected
through a medium-frequency multiple winding transformer that isolates the PV arrays from
the utility. The multiple winding transformer involves four windings. The first winding is
the primary, and it is connected with the input converter. The rest of the windings integrate
the secondary; thus, the secondary and its corresponding output converter (each winding
is connected to one output converter) generate a three-phase electrical system.

To cascade the DC-AC-AC converter and achieve the multilevel output voltage, the
converters connected to the MF transformers’ secondary windings are cascaded with their
corresponding windings from other multiwinding transformers. The multilevel output
voltage will present a low THD that depends on how many converters are cascaded. This
work considers three cascaded converters to simplify the analysis and the simulations’
running time, but in general, the number of cascaded converters (cells) may be k.
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2.1. The Single-Phase DC-AC-AC Converter

To understand how the entire proposed topology works, Figure 3 shows the block
diagram of the DC-AC-AC converter in a single-phase configuration. The series connection
of more than one 3PH DC-AC-AC converter builds the multilevel structure.
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Figure 3. Block diagram of a single-phase DC-AC-AC converter.

The block diagram is explained from left to right because the power flow from the PV
plant goes in that direction:

• The PV modules are the first stage; they are interconnected in serial parallel arrays to
satisfy the design and regulations’ power levels. For the purposes of this explanation,
the PV modules are replaced by ideal DC power supplies.

• The second stage converts the DC voltage from the PV modules to a medium-frequency
square AC voltage. Many converters can do this work half-bridge, full-bridge, push-
pull, flyback, dual-active-bridge, and others.

• The third stage consists of a ferrite-based medium-frequency transformer, which
isolates and steps up the voltage. The primary winding is plugged into stage two, and
the secondary winding feeds stage four.

• The fourth stage has the task to convert a MF-AC voltage to a low-frequency AC
voltage. There are two methods to accomplish that task: a two-step (involves a MF
rectifier and an inverter) and a direct approach. The direct method could eliminate
the MF-rectifier, get bidirectional power flow, and improve efficiency.

Figure 4 presents a schematic view of the DC-AC-AC converter. As in Figure 3, the
PV arrays were interchanged by ideal DC power supplies to facilitate the explanation. The
DC supply feeds a push-pull converter that works as a MF square wave voltage generator
(second stage).

Electronics 2021, 10, x FOR PEER REVIEW 5 of 21 
 

 

2.1. The Single-Phase DC-AC-AC Converter 
To understand how the entire proposed topology works, Figure 3 shows the block 

diagram of the DC-AC-AC converter in a single-phase configuration. The series connec-
tion of more than one 3PH DC-AC-AC converter builds the multilevel structure. 

DCi 1i 2i +
VPWM

−

1   :   n

 
Figure 3. Block diagram of a single-phase DC-AC-AC converter. 

The block diagram is explained from left to right because the power flow from the 
PV plant goes in that direction: 
• The PV modules are the first stage; they are interconnected in serial parallel arrays to 

satisfy the design and regulations’ power levels. For the purposes of this explanation, 
the PV modules are replaced by ideal DC power supplies. 

• The second stage converts the DC voltage from the PV modules to a medium-fre-
quency square AC voltage. Many converters can do this work half-bridge, full-
bridge, push-pull, flyback, dual-active-bridge, and others. 

• The third stage consists of a ferrite-based medium-frequency transformer, which iso-
lates and steps up the voltage. The primary winding is plugged into stage two, and 
the secondary winding feeds stage four. 

• The fourth stage has the task to convert a MF-AC voltage to a low-frequency AC 
voltage. There are two methods to accomplish that task: a two-step (involves a MF 
rectifier and an inverter) and a direct approach. The direct method could eliminate 
the MF-rectifier, get bidirectional power flow, and improve efficiency. 
Figure 4 presents a schematic view of the DC-AC-AC converter. As in Figure 3, the 

PV arrays were interchanged by ideal DC power supplies to facilitate the explanation. The 
DC supply feeds a push-pull converter that works as a MF square wave voltage generator 
(second stage). 

+

−
+
−

iDC

iQ2

+
VDC

− Q2 Q1

v1
v2

Z3 Z4

Z1 Z2

i2

iZ1
1   :   n

+
VPWM

−

 
Figure 4. A singles-phase DC-AC-AC converter’s proposal. 

The push-pull converter uses a transformer action to transfer power from the pri-
mary side to the secondary side. This converter requires two switches operating alterna-
tively (Q1 and Q2); this means that only one switch is ON for the entire duration of the 
switching period. This operation could be reflected in lower conduction losses. In addi-
tion, this symmetric configuration of the switches reduces the radiated electromagnetic 
emissions (also, minimizing the transformer’s leakage inductance is vital to minimize the 
electromagnetic interference. Moreover, the two identical low-side switches’ implemen-
tation requires only one DC supplier for the gate driver. The transformer action regulates 
the output voltage in v2 in a feed-forward manner; therefore, the output voltage solely 

Figure 4. A singles-phase DC-AC-AC converter’s proposal.

The push-pull converter uses a transformer action to transfer power from the primary
side to the secondary side. This converter requires two switches operating alternatively
(Q1 and Q2); this means that only one switch is ON for the entire duration of the switching
period. This operation could be reflected in lower conduction losses. In addition, this
symmetric configuration of the switches reduces the radiated electromagnetic emissions
(also, minimizing the transformer’s leakage inductance is vital to minimize the electromag-
netic interference. Moreover, the two identical low-side switches’ implementation requires
only one DC supplier for the gate driver. The transformer action regulates the output
voltage in v2 in a feed-forward manner; therefore, the output voltage solely depends on
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the transformer turn ratio and the DC power supply value. The magnetic core is efficient
because the flux accumulation in one polarity is canceled in the other due to the bipolar
operation. One overcome is that the switches have to support two times the voltage of
the DC power supply. Due to the features mentioned above, the push-pull converter is
implemented in the second stage.

Regarding the fourth stage, a couple of converters can directly convert a MF-AC
voltage to line-frequency voltage (also known as AC-AC converters or Matrix converters);
the half-bridge converter and the full-bridge are the most widespread. Because of the
push-pull converter, it is impossible to ensure zero volts systematically; only +VDC and
−VDC are possible; therefore, it is necessary to choose the full-bridge converter. The final
objective of this converter is to inject the sinusoidal current waveform into the utility.

There are two switching strategies to operate an AC-AC converter: switching con-
trolled by current and switching controlled by voltage [46–48]. The second one is the
most convenient solution for the proposed DC-AC-AC converter because the push-pull
converter and the full-bridge converter can be synchronized easily [49]. It is essential
to determine that the standard sign over the load voltage is always retained. Hence, to
operate the converter correctly, the commutation strategy should change the polarity on v2
from the load point of view. For example, if the voltage on VPWM is required to be positive
when v2 is negative, then Q2, Z2, and Z3 must be ON; in this case, the voltage on the VPWM
terminals will be negative.

2.2. Modulation Strategy for a Single-Phase DC-AC-AC Converter

The modulation strategy must synthesize a square MF-AC voltage from v2 into an
equivalent sinusoidal pulse width modulation (SPWM) in the VPWM’s terminals of the full-
bridge converter. The input and output converters must be synchronized and commuting
at the same frequency rate to reach this objective. A variant of the unipolar SPWM is the
modulation implemented on AC-AC converter. Compared with bipolar SPWM, the unipo-
lar SPWM can effectively double the switching frequency. This benefit is appreciated in the
harmonic spectrum of the output voltage waveform. The harmonic components related to
the switching frequency and their sidebands are canceled; besides, the dominant harmonic
located at the double the switching frequency is withdrawn but not their bands [50]. Due
to the actual DC-AC-AC converter being a three-phase system, there are three AC-AC
converters. The previous strategy is extended using three modulation waveforms and its
counter-phase waveforms; thus, each pair of the modulated signal is shifted 120◦ from
each other.

The output voltage of the proposed converter (Figure 1) is multilevel; hence, it is
important to apply a proper modulation technique. Due to its benefits [51], phase-shifted
multicarrier sinusoidal PWM (PSPWM) modulation is chosen. The effective switching
frequency (m − 1)fc obtained with the PSPWM modulation in the output voltage VPWM is
an attractive feature. In other techniques, this frequency is not as high as in PSPWM. A
direct effect of implementing the PSPWM, considering a low-frequency modulation ratio
mf, is a widely free zone of switching harmonics; the most significant harmonic appears at
(m − 1)fc. In this modulation, the amplitude and frequency of all triangular signals are the
same, but they are 360◦/(m − 1) phase-shifted from each other, and the number of carriers
is (m − 1).

2.3. Design of Seven-Levels 3PH DC-AC-AC Converter

As stated earlier, multilevel topologies allow for high-voltage levels, effectively in-
creasing the output frequency [33,44,50], and low THD due to the lower harmonic content.
Other exciting features come from three-phase systems; the magnetic link makes it pos-
sible to cancel the single-phase component found twice in the line frequency in the DC
current waveform. In Table 1 are the main parameters that this design will consider for the
seven-levels 3PH DC-AC-AC converter.
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Table 1. Design parameters of the cascaded 3PH DC-AC-AC converter.

Parameter Acronym Value

Rated Power Po 324.16 kW
Output voltage VLL 13.20 kV
DC-link voltage VDC 1 kV

Switching frequency fsw 9.96 kHz
Output levels m 7

Inductor Li 60 mF
Capacitor C 100 nF

Line-frequency f 60 Hz

Let m be the number of voltage levels at the output, then the required number of
independent DC sources is

k = (m− 1)/2 = 3, (1)

and each independent DC source should have the same voltage amplitude. Due to each
AC-AC converter producing a fundamental frequency component Vo1, Vo2, and Vo3, then
the Vo is given by the output voltages addition of each cascaded converter

Vo = Vo1 + Vo2 + Vo3, (2)

considering that the phase to neutral voltage (Vo) is Vo = Vop sin(ωot), with ωo = 2πf. It is
known from the three-phases electrical system that the rated output power of a converter is

Po =
3Vop Iop

2
=
√

3VLL Io = 3Vo Io, (3)

and when contemplating the values from Table 1, the root meand square (RMS) output
current (Io) results in 14.17 A and RMS Vo is 7.62 kV. With the output current, the equivalent
resistive load per phase is

Ro =
3V2

o
Po

= 537.52 Ω (4)

When the modulation index is 0.9, the transformer turns ratio results in

n =
Vop

kmaVDC
= 3.99, (5)

and it should warrant the system’s operation with a minimum voltage in the input supply
and the maximum load, considering that the modulation index at 0.9 is high. Hence, let n
be 4.5; this results in a new modulation index of 0.7983.

As the value of the DC source is known as well as the transformer turn ratio; then, the
MF-transformer’s voltages across the three secondary windings are

|v2| = nVDC = 4.50 kV, (6)

and its corresponding peak current can be calculated as

i2p =
√

2 Io = 20.05 A (7)

If there are no losses in the process of energy transformation, the average and peak
current [52] in each of the k DC input supplies are

IDC =
Po

k VDC
= 72.03 A, (8)

IDCp =
3ni2p√

2
= 191.40 A. (9)
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correspondingly. Finally, the selection of the DC-link capacitor is calculated as follows

Clink =
P

2π fo∆vDCvDC
= 6878.88 µF. (10)

3. Control Strategy

Figure 5 displays the control scheme of the proposed converter. A 3PH phase-locked
loop (PLL) is implemented to synchronize the converter with the grid; an inductance-
capacitance-inductance (LCL) filter interconnects the multilevel converter with the utility.
As usual in grid-tied converters, one external loop and one internal regulates the con-
verter by means of the voltage-oriented control (VOC) under the synchronous rotating
reference frame.
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The cascaded DC-AC-AC converters will work together as a controlled current source
feeding the utility, as shown in Figure 1. Because PV arrays work as a current source, their
voltages are dependable on the current extracted and the level of light intensity; in other
words, the PV arrays’ output voltages depend on the operating point in the PV curves
(current versus voltage and power versus voltage). Note that the cascaded DC-AC-AC
converters have the same circulating current in each phase (ia, ib, and ic); therefore, it is
challenging to carry an independent grid current-control loop to regulate each DC-link
voltage. Thus, the k DC-link voltages’ average must be computed into a single cascaded
grid current-control loop as was proposed in [53].

The current-control loop (the inner loop) in practice should be designed to be faster
than the outer loop to follow the given reference. Hence, the inner loop controls the current
injected to the utility employing a simple PI controller through dq→abc transformation,
considering decoupling between Id and Iq control. va, vb, and vc are generated after the
transformation from dq frame to abc of the control signals Vd and Vq.

In the external control loop Gc2(s), the k DC-link voltages’ average is regulated to
control the cascaded converters’ output power. If the DC link is controlled to be constant,
then the energy extracted from the PVs can be injected into the grid by charging and
discharging the DC-link capacitors. To achieve this, the PV power and the active output
power should be in equilibrium employing the instantaneous power theory [54]. In general,
the outer control loop will generate the current reference for the inner loop Gc3(s). The
previous sentence means that the deviation of the averaged of the k DC-link voltages from



Electronics 2021, 10, 409 9 of 21

the reference value is reflected in the inner current loop to adjust the control signals V*
d

and V*
q.

The signals va, vb and vc cannot be directly applied to the SPWM generator to control
the converter. If this happened, then the DC-link capacitors would suffer a voltage deviation
because of different operating conditions created by unequal power distribution between
the cells. Commonly, there are two types of power imbalance: per-cell and per-phase.

Because of this converter’s nature and configuration, the per-phase power imbalance
does not occur; this is an outstanding advantage compared to other topologies in the
state-of-art. In those topologies, each phase and each cascaded converter are fed with an
independent source of powers (PV + DC/AC converter). On the contrary, in this paper’s
proposed topology, the three-phases of each cascaded converter (DC-AC-AC converter)
are fed with the same source of power; this is a natural balance due to the magnetic link.
Therefore, the problem is reduced to solve the per-cell imbalance. In reference [55], a
power-imbalance method was described. This method is based on sharing the cascaded
converters’ usage equally in the same amount of the imbalance.

The per-cell imbalance occurs when each DC-AC-AC converter’s power processes are
not equal (Pa1 6= Pa2 6= Pak). The per-cell imbalance affects the DC link since it is controlled
like the average of the k DC-sources; thus, there is no certainty on how each DC-link voltage
will react, but a voltage drift of the DC links will happen, distorting the converter voltage.
To surmount the drift problem in the DC-link capacitors, it is necessary to compensate
the voltage reference signals va, vb and vc in the modulation stage using a feed-forward
mechanism that considers each of the DC-link voltage deviations.

The k DC-link voltages pass through the controller Gc1k(s) to perform feed-forward
compensation. The output of the controller reflects each deviation of the corresponding DC-
link voltage from the average reference value. The three-phase voltage reference signals va,
vb and vc are divided by the modified DC-link voltages (V*

DCk) coming from the addition
of Gc1k(s) with VDCk; as a result, k groups of independent modulation indexes are generated
for each of the k DC-AC-AC converters. The changes to the respective modulation indices
affect the current that the converter draws from the corresponding DC-link capacitors and
thus alter the DC-link voltages. In this way, the k DC-link voltages are regulated to a given
reference value (1 kV in the simulations).

The unbalanced situation limits the harmonic components’ cancellation in the kth
carrier group produced by each cascaded converter; as a direct effect of this dilemma,
the VPWM voltage’s THD increase. Consequently, the free zone of switching harmonics is
reduced because the most significant harmonic appear at 2fc. Various THD minimization
methods have been proposed to extend the free zone of harmonics during unbalanced situ-
ations. By removing the low-order harmonic distortion found in the unipolar pulse-width
carrier frequency, these methods optimize the multilevel converters’ switching angles.

4. Simulations

This section is divided into two subsections: open-loop off-grid mode and closed-loop
on-grid mode. The first section is about the power electronics system’s performance and the
validation of the proposed converter considering ideal DC power supplies. The close-loop
section will explain how the converter is controlled while it is connected to the grid.

4.1. Open-Loop Off-Grid Mode Simulations

To verify the system’s proper operation, some off-grid simulations were
done (Figures 6 and 7). The line-to-line voltage is set to 13.20 kV, and the total power
output is 324.16 kW.
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Figure 6. Voltage waveform simulations of the proposed converter. (a) DC source; (b) step-up
voltage; (c) multilevel three-phase line-neutral output voltages; and (d) three-phase line-neutral
output voltages.

As was discussed in previous sections, three cascaded converters are considered. Due
to off-grid mode, a resistive load is connected through an inductance-capacitance (LC) filter.
Some simulation’s parameters are listed in Table 1 and others are obtained from equations
1 to 10. In this simulation, the PV arrays were substituted by ideal power supplies.

Figure 6 shows the most representative waveforms in this proposed converter. Figure
6a shows the voltage one of the three DC power supplies. Its value is 1 kV; therefore, the
push-pull converter’s power switches will block 2 kV; hence, it is recommendable to use
switches with a blocking voltage of 3.3 kV. Since the DC voltage should not be higher than
1 kV due to safety and insulation constraints, a transformer must be implemented to step
up the voltage. In this simulation, v1 is scaled up through the transformer’s turn ratio
from 1 kV to 4.5 kV; v2A, v2B, and v2C are identical; this is depicted in Figure 6b, where the
medium-frequency square waveforms are presented on the left side, and a zoomed view is
shown in the right side.

In Figure 6c, the cascaded three-phase converters generate the seven-level line to
neutral voltages in VPWM terminals; its peak voltage reaches 13.5 kV and the THD is
20.64%. The blocking voltage associated with the AC-AC converter’s switches is 4.5 kV;
therefore, 6.5 kV IGBT collector-emitter voltage is suitable for this stage [56]. If more
AC-DC-DC are cascaded, then the voltage rating of the semiconductors will decrease
linearly. For example, suppose 3.0 kV devices are used and considering a derating of 50%;
in that case, nine cascaded converters will be required to generate a stare output voltage of
13.5 kV peak. Finally, in Figure 6d, the three-phase sinusoidal line to neutral voltages are
present, clearly shifted 120◦ one after another; the fundamental component is 60 Hz, with
a peak value of 10.77 kV. The RMS phase-neutral and line-line voltages are 7.62 kV and
13.2 kV, respectively.
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Figure 7. Main current waveform for the open-loop simulation. (a) DC source; (b) current harmonic
spectrum; (c) current waveform through the secondary windings; and (d) line-output current waveforms.

Figure 7 shows the most relevant current waveforms of the converter. Figure 7a
illustrates the current waveforms in the first DC-link; its average and peak current values
are 110.11 A and 191.40 A, respectively. The first impression when the DC link current is
seen in detail is that there is a harmonic situated at six times the fundamental frequency, but
after verifying the harmonic spectrum in Figure 7b, it is evident that the DC components
are the only low-frequency harmonic. This is supported by the fact that the simulations
consider a three-phase system balanced; therefore, the second harmonic current component
is canceled via the magnetic link. Thus, the ripple current’s shape is only related to the
medium-frequency switching harmonics in the power switches. In Figure 7c, the secondary
windings current waveform are illustrated, one per secondary winding. Its peak current is
20.05 A in any of the medium-frequency transformers. Finally, Figure 7d shows the pure
sinusoidal current waveform throughout the resistive load; the RMS and peak currents on
each phase are 14.017 A, and 20.05 A, respectively.

4.2. Closed-Loop On-Grid Mode Simulations

The next simulations (Figures 8 and 9) use a SW250poly PV module (SolarWorld,
Bonn, Germany); the main parameters of the PV module are as follows: cells per module
are 60; the voltage at maximum power (Vmpp) is 30.8 V; current at maximum power (Impp) is
8.12 A; and the maximum power (Pmax) is 250 Wp. Therefore, 2000 cells are considered to
reach 1000 V, and thirteen PV modules parallel integrate the PV array. The DC-link voltage
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reference is 1000 V; the grid’s line-to-line RMS voltage is 13.20 kV. The grid’s interconnection
is through an LCL filter, which values are 60 mH, 100 nF, and 170 µH, respectively.

In Figure 8, the most representative waveforms of the simulation are drawn as follows:
(a) DC-link voltages; (b) power available versus power generated in the PV; and (c) PV
currents. This scenario is described as follows: the light intensity for the three PV arrays
is 1000 W/m2 for the time t interval given in seconds s, 0 ≤ t < 0.1 s; this means that the
voltages’ values, powers, and currents remain equal in any of the three sets. The magnitude
of three DC links voltages, the available and the harvesting powers, and the currents are 1
kV, 108.05 kW, and 108.05 A, respectively.

In the next interval, 0.1 s≤ t < 0.2 s, the light intensity changes accordingly: PV1 = 800 W/m2,
PV2 = 500 W/m2, and PV3 = 400 W/m2. This change of light intensity produces several
disturbances in the three sets of waveforms. First, the DC-link voltages got an overshoot;
the maximum overshoot belongs to VDC1 = 1009.51 V, with a settling time of 55.5 ms.
Second, each PV array’s available power decreased from 108.05 kW in every PV array to
74.16 kW, 51.57 kW, and 40.28 kW for PV1, PV2, and PV3, respectively. By the time t, reaches
155.5 ms, the harvested power equals the available power in the PV arrays. Third, the PV’s
current also is affected; they drop immediately following each irradiation. However, they
slowly climb up while the external loop regulates the DC-link voltage. As in the available
power’s waveform, at t = 155.5 ms, each PV current reaches the Impp with the given light
intensity (74.16 A, 51.57 A, 40.27 A).
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The last interval considers from t = 0.2 s until t < 0.3 s; the light conditions changes as
follows: PV1 = PV2 = PV3 = 850 W/m2. The waveform’s behavior in the steady state will be
similar to the case where the light intensity was 1000 W/m2; therefore, the explanation will
be brief. The DC links show a transitory; in this case, the overshoots are slightly superior
to the previous case, but after 25 ms, the DC links get controlled to 1 kV. In Figure 8b, the
extracted PV power in the three PV array increases to 79.81 kW. These waveforms present
a negative overshoot because the maximum power cannot be surpassed; in other words,
this is an effect of the PV currents, which have a spike. (c) the steady-state PV currents are
79.81 A.

The test continues in Figure 9. Here also there are three sets of waveforms: (a) The
average DC-link voltages, (b) the grid injected currents, and (c) LCL’s capacitor voltages.
At the beginning of the simulation, a transitory with a peak time equal to 31.25 ms. At
t = 0.1 s, the first S0 step is materialized; its effect is seen in (a), (b), and (c) as happened
in the previous figure. The set (a) shows the little perturbation that the averaged DC-link
suffers. The inductor’s current is well controlled, as can be seen in Figure 9b. There are not
considerable overshoots; on the contrary, its shape is purely sinusoidal. In the first interval
of time, the RMS value is 14.16 A; during the next period (t = 1 to t < 2) the RMS currents
drop to 7.29 A, and this magnitude is reached after 0.352 ms.

Finally, in Figure 9c are the capacitor’s voltage; at t = 0.1 s, there is no deformation
of the sinusoidal waveforms, perhaps the solar intensity change. Its RMS value remains
constant the entire test (13.20 kV line-to-line). From t = 0.2 s until t < 0.3 s, other transitory
shows up in the DC links. This voltage drift at t = 0.2 s can be practically neglected; at the
end of this interval, the voltage settles at 1.0 kV. Regarding the injected current to the grid,
its RMS value increases to 10.45 A. Lastly, the capacitor’s peak voltage continues stable
(18.67 kV) with no alteration all the way to the interval.
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5. Experimental Results

In order to verify the analysis and simulation results, two reduced versions of a
laboratory prototype were built: a five-level single-phase DC-AC-AC converter (Figure 10),
and a three-level three-phase DC-AC-AC converter (Figure 11). These reduced versions
are focused on validating the conceptual idea of the proposed topology. These scaled-
down converters are off-grid, and a resistive load is used in the converter outputs after an
LC filter.
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5.1. Single-Phase Multilevel DC-AC-AC Converter

The first reduced version consists of two cascaded DC-AC-AC converters; the diagram
is shown in Figure 12. A single-phase DC-AC-AC converter (Figure 10a) is built with six
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IXTT69N30P MOSFETs (Littelfuse, Chicago, IL, USA), two for the push-pull converter
and four for the AC-AC converter. Each switch in the AC-AC converter is integrated by
a MOSFET and a diode bridge which gives the feature of a bidirectional switch. Four
15ETH03 diodes (Vishay, Malvern, PA, USA) were selected for the diode bridge. Regarding
the medium-frequency transformer, an ETD-59 transformer core (TDK Corporation, Tokyo,
Japan) with N97 material was selected. Switching signals are generated in a TDSM28F379D
DSP (Texas Instruments Incorporated, Dallas, TX, USA) and postprocessed for the switching
strategy in a FPGA Nexys 4 (Digilent, Pullman, WA, USA).
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MF transformer’s central tap. The shape of the current waveform of iDC is similar to DC-
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resistor its RMS, and peak values are 6.26 A and 8.85 A, respectively. 

Figure 12. Diagram of the five-level singles phase DC-AC-AC converter.

The parameters of the single-phase DC-AC-AC converter are the following: output
RMS voltage Vo = 127 V; input voltage DC source VDC = 120 V; switching frequency
fsw = 9.960 kHz; line-frequency fo = 60 Hz; output inductance L = 1.8 mH; output capaci-
tance C = 3.5 µF; resistive load R = 20 Ω; transformer’s turn ratio n = 2; and modulation
index ma = 0.75.

Figure 13a exhibits the most representative voltage waveforms of a single cell. Channel
(Ch) 2 illustrates the square MF AC voltage v1 of the transformer’s primary winding; the
duty cycle of v2 is 50%. Ch3 shows the voltage v2 in the transformer’s secondary winding,
the voltage of v2 is n times v1. Finally, Ch4 depicts the three-level voltages in VPWM obtained
due to the unipolar SPWM modulation technique; its amplitude is directly related to the
voltage present on v2.
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secondary winding voltage, Ch4 VPWM voltage and (b) Ch2 current in the DC-link, Ch3 secondary winding current, Ch4
resistor’s current.

The main current waveforms are in the oscilloscope’s screenshot in Figure 13b. Ch2
shows the current iDC in the DC link; this current is the same that is flowing through
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the MF transformer’s central tap. The shape of the current waveform of iDC is similar
to DC-link current in a two-level inverter. The average and peak currents of iDC can be
calculated according to Equations (8) and (9). In contrast with the simulations where no
overshoots were presented, the MF transformer’s central tap current shows overshoots
of approximately 20% in the experimental results. Ch3 displays the current i2 in the MF
transformer’s secondary winding; its RMS value is 4.16 A. Ch4 reveals the current io that
flows in the resistor its RMS, and peak values are 6.26 A and 8.85 A, respectively.

Regarding the single-phase multilevel configuration, Figure 10b is the actual setup’s
photography. Figure 14a shows the main experimental results based on the multilevel
configuration; two cascaded 1PH DC-AC-AC converters are used to generate the five-
level output voltage. Ch3 shows the five-level output voltage VPWM with an approximate
amplitude of 480 V. Ch4 is the output voltage after the LC filter, with a RMS value of 207 V.
The voltages spikes in the total VPWM terminals are generated due to the delivery of the
energy of the MF transformer’s leakage inductance when the current path is broken due to
the hard-switching commutation in the matrix converters. Ch1 reveals the RMS current
on the resistive load; its RMS value is 7.49 A. Finally, the mathematical channel indicates
the output power measured in the resistive load, and its value is 1.54 kW, (770 W per
converter).
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Figure 14b presents more experimental results in the multilevel configuration. In this
scenario, one of the two cascaded DC-AC-AC converters is inactive, while the other is
active. Considering that each division represents 4 ms, the second DC-AC-AC converter
is turned on t = 18 ms. As seen in the waveforms, the introduced perturbation does not
generate any disturbing voltage or current overshoot. Ch1 presents the current in the
resistive load; its peak value changes from 9.40 A to 18.60 A. Ch3 illustrates the voltage
before the LC filter; its waveform changed from three levels (with a peak value of 239.80 V)
to five-levels (with a peak value of 479.10 V) after the second converter is turned on. Ch4
depicts output voltage after the LC filter; the peak voltage changed from 141.00 V to
294.00 V.

5.2. Three-Phase DC-AC-AC Converter

The second reduced version consists of one DC-AC-AC converter in a three-phase
configuration; the diagram is shown in Figure 15. The 3PH DC-AC-AC converter is
assembled with four IXTH36N50P MOSFETs (Littelfuse, Chicago, IL, USA) for the AC-AC
converter, and two IXFK100N65X2 (Littelfuse, Chicago, IL, USA) integrate the push-pull
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converter. The bidirectional switches are integrated in the same way that in the first
reduced version.
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The next figure represent the line-to-line voltages and currents in the converter. In 
this case the line to line voltages are measured after the LC filter, the results are shown in 
Figure 17a; the peak-to-peak and the RMS values are 165.0 V and 54.9 V, respectively. 
Finally, in Figure 17b are the three-phase output currents with an RMS value of 137.00 
mA. As was expected, the waveforms are completely sinusoidal; they show a peak value 
of 193.74 mA. 

Figure 15. Block diagram of a three-level three-phase DC-AC-AC converter.

Regarding the medium-frequency transformer, an EE 110/36 transformer core (TYDZ,
Guangzhou, China) with PC40 material was selected. The modulation strategy was gener-
ated in dSPACE environment through a DS1006 processor accompanied by a DS5203 board
(dSPACE GmbH, Paderborn, Germany). This last board was programmed with the RTI
FPGA Programming by Xilinx System Generator Simulink blockset.

This converter was designed to be one of the three cascaded 3PH DC-AC-AC converter.
The parameters of the converter are the following: output voltage VLL = 55.0 VRMS; input
voltage DC source VDC = 60 V; switching frequency fsw = 10 kHz; line-frequency fo = 50 Hz;
output inductance L = 1.8 mH; output capacitance C = 27 µF; transformer’s turn ratio
n = 1.34; and modulation index ma = 0.55.

Figure 16a presents the waveforms generated by phase A of the three-phase DC-AC-
AC converter. Ch1 illustrates the current through the resistive load of phase A; its RMS
value is 136.0 mA. Ch3 and Ch4 are the line to neutral output voltages of VPWMA and VA.
Its amplitudes are 45.0 V and 90.0 V, respectively. Both voltages are measured before and
after the LC filter. Figure 16b depicts the line-to-line VPWM output voltages before the LC
filter, its shape has five levels as expected, and the peak-to-peak voltage for each phase is
360.0 V.
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The next figure represent the line-to-line voltages and currents in the converter. In
this case the line to line voltages are measured after the LC filter, the results are shown
in Figure 17a; the peak-to-peak and the RMS values are 165.0 V and 54.9 V, respectively.
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Finally, in Figure 17b are the three-phase output currents with an RMS value of 137.00 mA.
As was expected, the waveforms are completely sinusoidal; they show a peak value of
193.74 mA.
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6. Discussion

The simulation results proved that the proposed converter is an alternative to the
existing MV grid-tied converters for PV plants. The off-grid simulations showed that the
steady-state current and voltage’s behavior worked as expected. Developing a proper com-
mutation strategy permits that the matrix converter works alongside the MF transformer
properly. As proof of this, the AC-AC converter effectively transforms the MF-AC voltage
from the MF transformer to a LF-AC voltage without any difficulties. The only issue here
is the leakage inductance in the MF transformer; this inductance causes the well-known
voltages spikes in the power switches.

Regarding the uneven light intensity through the multiples PV arrays, the literature
shows several solutions on how to handle the per-phase and per-cell imbalance, but the
proposed DC-AC-AC converter solves the per-phase imbalance naturally through the three-
phase MF-AC link. However, when a light intensity perturbation occurs unevenly through
the k PV arrays, different levels of energy are harvested from each PV array; as a result, the
per-cell imbalance arises. Various solutions have been proposed, but the implemented in
this work fixes the problem by modifying modulation indexes accordingly to the DC-link
voltage deviation. This solution is simple and was easy to implement. The results (Figure 8)
proved that this technique distributes the imbalance to the k cascaded converters.

From the power electronics perspective, the MF transformer was a crucial element in
the implementation. Its standalone performance was not presented, but its work alongside
the push-pull converter was successful; this allowed to continue with the converter’s
development. Another critical aspect is how the bidirectional switches are constructed.
The diode bridge with a MOSFET implementation was selected between the options, but
other options like common emitter or common collector arrangements of IGBTs might
perform better.

Because this is a large topology with many stages, the best way to test the entire
system was to build reduced versions. At this time, as was seen in section four, two reduced
versions were tested. The cascaded single-phase DC-AC-AC converter demonstrated that
the multilevel concept works in this topology. As proof, the two cascaded converters
operate, injecting over 1500 W to a resistive load. In the three-phase DC-AC-AC converter,
the preliminary tests demonstrated that the three-phase system model also worked. Here,
more work must be done to reduce the noise levels; in this way, the converter can handle
more power.

In conclusion, the two reduced versions proved that the converter’s core concept
works as it should and suggests that the complete topology will work.
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