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Chapter 1

Bi¶esel Transfer Functions

"Les Appareils Generateurs de Houle en Laboratorie" presented by Bi¶esel
and Suquet in 1951 discussed and solved the analytical problems concerning
a number of difierent wave generator types. For each wave maker type the
paper presented the transfer function between wave maker displacement and
wave amplitude in those cases where the analytical problem could be solved.
The article therefore represented a giant step in wave generation techniques
and found the basis for today’s wave generation in hydraulics laboratories.

In this chapter the main results from Bi¶esel and Suquet will be discussed,
and the transfer function between wave amplitude and paddle displacement,
The Bi¶esel Transfer Function, for a piston-type and a °ap-type wave maker
will be presented.

In Figure 1.1 the deflnitions used in the following calculations are presented
for a piston-type wave maker.

In Figure 1.2 the fundamental hydrodynamic problem is shown in mathemat-
ical terms. The °ow is assumed irrotational. Therefore a velocity potential,
’, exists and the velocity fleld can be found from

~v = grad’

If the °uid is assumed incompressible, the continuity equation yields that the
potential must satisfy the Laplace equation.
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Figure 1.1: Deflnition sketch of °ume with piston-type wave maker. e =
e(z,t) = displacement of wave paddle. S = S(z) = stroke of wave paddle.
· = ·(x,t) = surface elevation. H = wave heigth far away from the wave
maker. h = water depth, (assumed to be constant).

In Figure 1.2 the equations express:

0. Laplace equation. Basic equation for potential °ow.

1. All water particles at the free surface remain at the free surface (kine-
matic B.C.). Free surface is at constant pressure (dynamic B.C.).

2. The water accompanies the wave paddle, which is displaced as a sine:
e(z; t) = S(z)

2
sin(!t), where ! = 2 …=T .

3. The bottom is impermeable.

4. The propagating wave is of constant form.
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Figure 1.2: Partial difierential equation (PDE), and boundary conditions
(BC).

Solution, with respect to ’, of the boundary value problem presented in
Figure 1.2 can be divided into 3 steps:

A. Solving the homogeneous problem. That is PDE with BC 1,2 and 3.
BC 2 with right side equal to zero.

B. Finding a particular solution satisfying PDE and BC 1, 2 and 3.

C. Determining the flnal solution as a linear combination of the homoge-
neous solution and the particular solution that satisfles BC 4.

The main results from each step (linearised BC) are listed below:

A. The homogeneous solution is any linear combination of functions of the
form:

’H(x; z; t) = AH ¢ cos (kix) ¢ cosh (ki (z + h)) ¢ cos (!it ¡ ˆ0)

where AH and ˆ0 are arbitrary constants and k is the solution to the
dispersion relation:

!2
i = ki ¢ g ¢ tanh (kih)
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B. Particular solution.

’P (x; z; t) =

ˆ 1X

n=0

cn’n

!
cos(! t)

where

’0 =
!

k0

cosh (k0(z + h)) ¢ sin (k0x)

c0 = 2 ¢ k0

R 0
¡h e(z) ¢ cosh (k0 (z + h)) ¢ dz

sinh (k0h) ¢ cosh (k0h) + k0h

’n = ¡ !

kn

cos (kn (z + h)) ¢ e¡knx ; n > 0

cn = 2 ¢ kn

R 0
¡h e(z) ¢ cos (kn (z + h)) ¢ dz

sin (knh) ¢ cos (knh) + knh
; n > 0

where k0 is the solution to the dispersion relation:

!2 = k0 ¢ g ¢ tanh (k0h)

and k1 is the flrst positive solution (n=1) to

!2 = ¡kn g tan (knh)

k2 the second and so forth.

C. Determining the flnal solution.
Now, requiring BC 4 to be satisfled far away from the wavemaker the
only velocity potential ’ = ’H + ’P that satisfy the PDE and BC 1 to
4 is found to be, omitting index 0 :

’(x; z; t) = ¡!

k
¢ c0 ¢ cosh (k (z + h)) ¢ sin(!t ¡ kx) ¡

1X

n=1

cn ¢ !

kn

¢ cos (kn (z + h)) ¢ e¡knx ¢ cos(!t)

The surface elevation ·(x; t) in the generated wave fleld is calculated by:

·(x; t) = ¡1

g

@’(x; 0; t)

@t

that yields

·(x; t) =

c0 ¢ sinh(kh) cos(!t ¡ kx) +
1X

n=1

cn sin (knh) e¡kn¢x sin(!t)
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Figure 1.3: Wave amplitude and phase of the generated wave fleld relative
to the far-fleld solution, h = 0.7 m, T = 0.7 sec ) L=0.77 m

The flrst term in the function expresses the velocity potential at inflnity, by
Bi¶esel called the far-fleld solution, while the second term is the near-fleld
solution. The flrst term describes the generated progressive wave, while the
second describes the standing waves which decreases with the distance from
the wavemaker.

In general only the far-fleld solution is considered. As the displacement, e,
of the wave generator is deflned by

e(z; t) =
S(z)

2
sin(!t)

The far-fleld surface elevation is seen to be phase shifted …
2

relative to the
displacement of the wave generator. The \disturbance" from the near-fleld
solution will at a distance of 1-2 wave lengths from the wavemaker be less
than 1% of the far-fleld solution. See Figure 1.3

It is now straight forward to calculate the Bi¶esel Transfer Function for any
wave maker as long as the stroke, S(z), of the paddle can be described. As
stated by Bi¶esel, it is necessary to require that S(z) and its flrst two(three)
derivatives are limited for ¡h < z < 0.

9



S(z) = S0:

H

S0

=
2 sinh2(kh)

sinh(kh) cosh(kh) + kh

Figure 1.4: Far fleld Bi¶esel Transfer Function for piston-type wave maker.

In Figures 1.4 to 1.7 are listed some solutions for the piston-type and the
hinged-type wave maker. The reader can with little efiort add any wave
maker to this list. The Bi¶esel Transfer Function is in these flgures deflned as
the ratio between the far-fleld wave height, H and the stroke of the paddle
for z = 0, denoted S0.
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S(z) = S0 ; (z + h) > h0

S(z) = 0 ; (z + h) < h0

H

S0

=
2 sinh2(kh) ¡ 2 sinh(kh0) sinh(kh)

sinh(kh) cosh(kh) + kh

Figure 1.5: Far fleld Bi¶esel Transfer Function for elevated piston-type wave
maker.
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S(z) =
S0

h
¢ (h + z)

H

S0

=
2 sinh(kh) (1 ¡ cosh(kh) + kh sinh(kh))

kh (sinh(kh) cosh(kh) + kh)

Figure 1.6: Far fleld Bi¶esel Transfer Function for hinged-type wave maker.
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S(z) = S0 ¢ h + z ¡ h0

h ¡ h0

; (z + h) > h0

S(z) = 0 ; (z + h) < h0

H

S0

=
2

k (h ¡ h0)

"
sinh(kh) ((h ¡ h0) k sinh(kh) ¡ cosh(kh) + cosh(kh0))

sinh(kh) cosh(kh) + kh

#

Figure 1.7: Far fleld Bi¶esel Transfer Function for elevated hinged-type wave
maker.
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Chapter 2

Generation of Long crested
Waves

This chapter introduces three mathematical techniques for generating 2 di-
mensional waves in a laboratory environment. The techniques are: the Ran-
dom Phase Method, the Random Complex Spectrum Method and the White
Noise Filtering Method. The pros and cons of the outlined techniques are
discussed in detail in each section.
First a mathematical description of ocean waves and the general hydrody-
namic considerations are listed.

2.1 Charachteristics of waves

Wind generated ocean waves are random in nature. Normally they are de-
scribed mathematically as the summation of a large number of sinusoids.
The amplitudes and phases of these sinusoids are determined by means of
Fourier transformation of the surface elevation time series. The Fourier trans-
form yields the frequency charachteristics of a given sea state. It is common
practice to describe a wave train by means of its energy (variance) spectrum.

A mathematical formula is often used to describe the spectrum of a wave
train. These mathematical formulas have been derived by fltting actual
recorded wave data under various conditions. Spectral densities are given
as a function of conditions (wind speed and fetch length) or statistics de-
scribing the sea state (signiflcant wave height Hs and peak frequency fp ).
Difierent forms of the spectrum at its various generation stages have been ob-
tained. Two such empirical spectra, the Pierson-Moskowitz and JONSWAP
spectra, are given below. The former represents fully-developed sea states
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whereas the latter represents conditions at which the fetch length of the wind
is a limiting factor.

Pierson-Moskowitz type:

S·(f) =
fig2

(2…)4
f¡5 exp

0
@¡0:74

ˆ
f0

f

!4
1
A

where

fi = 0:0081

f0 = g (2…U19:5)¡1

and U19:5 denotes the wind speed 19.5 m above mean water level.

Pierson-Moskowitz type, parametrized:

S·(f) =
5

16
H2

m0 f 4
p f¡5 exp

0
@¡5

4

ˆ
fp

f

!4
1
A

Jonswap type:

S·(f) =
fig2

(2…)4
f¡5 exp

0
@¡5

4

ˆ
f

fm

!¡4
1
A °

exp

‡
¡ 1

2¾2 ( f
fm

¡1)
2
·

where

fi = 0:076 x¡0:22

x = g F U¡2
10

fm =
3:5 g x¡0:33

U10
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¾f = 0:07 f • fp

¾f = 0:09 f > fp

° = 3:3 in average in the North Sea

and U10 denotes the wind speed 10 m above mean water level.

Jonswap type, parametrized:

S·(f) = fi H2
m0 f 4

p f¡5 °fl exp

0
@¡5

4

ˆ
fp

f

!4
1
A

fi =
0:0624

0:230 + 0:0336 ° ¡ 0:185
1:9+°

fl = exp

ˆ
¡(f ¡ fp)2

2¾2
ff 2

p

!

where

¾f = 0:07 f • fp

¾f = 0:09 f > fp

° = 3:3 in average in the North Sea

Generation of irregular waves in laboratory environments combines the math-
ematical description of irregular waves presented above with the transfer
function describing the relation between wave generator displacements and
surface elevations for sinusoidal motions of the generator.

2.2 Wave Generation Techniques

A number of techniques for reproducing irregular sea states with specifled
characteristics have been developed. In general, these wave generation tech-
niques fall into two categories: deterministic and non-deterministic tech-
niques.

Deterministic wave generation techniques produce wave trains of flnite dura-
tion which match the specifled charachteristics (the target wave spectrum)

17



exactly { at least that is the goal.

Non-deterministic (probabilistic) techniques produce wave trains which only
match the specifled charachteristics within the bounds of probability. Thus,
a single generated wave train will not match the target wave energy spec-
trum. However, the average energy spectrum will approach the target energy
spectrum as the number of generated wave trains increases.

In the following, three wave generation techniques will be presented.

The Random Phase Method and the Random Complex Spectrum Method
simulate random waves in the frequency domain with subsequent use of the
FFT-algorithm in order to obtain the time domain representation of the wave
train. The Random Phase Method is a deterministic wave generation tech-
nique whereas the Random Complex Spectrum Method is non-deterministic.
Both techniques were developed by Rice (1944) and their application to ran-
dom wave generation (linear and non-linear) was described by Tuah and
Hudspeth (1982).

The White Noise Filtering Method simulates random waves in the time do-
main by means of digital flltering. This method is non-deterministic. It was
described by Nunes (1981).

In nature, non-linear interaction between individual wave components in ir-
regular wave trains give rise to so-called group bounded long waves (Ottesen-
Hansen, 1978). In physical model tests, correct reproduction of these waves
is often essential. Nevertheless, this chapter will focus on linear waves. Meth-
ods for correct reproduction of group bounded long waves will be given in
chapters 6 and 7.
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2.3 Random Phase Method

In the Random Phase Method, wave trains are generated by combining the
discrete amplitude wave spectrum corresponding to the target wave energy
spectrum with a random phase spectrum synthesized from a random num-
ber generator. This yields the Fourier Transform of a time series with the
desired discrete power spectrum. The corresponding time series is obtained
by Inverse Fourier Transformation.

The steps of calculating a time series using the Random Phase Method are:

1. Deflne a target wave energy density spectrum. This might be from mea-
surements in nature or from calculations using deterministic expressions
like the Pierson-Moskowitz formulation of the spectral density S·:

S·(f) =
5

16
H2

s f 4
p f¡5 exp

0
@¡5

4

ˆ
fp

f

!4
1
A

where

Hs = signiflcant wave height
fp = peak frequency
f = frequency

2. Choose the sample frequency, fs and the resolution of the spectrum
(half the number of Fourier components) N . This yields a frequency
domain resolution of ¢f = fs

N
. Calculate the discrete wave energy

spectrum ¾2
·(fi) :

¾2
·(fi) = S·(i ¢ ¢f) ¢ ¢f

3. Determine the discrete paddle-displacement energy spectrum.
The far fleld transfer function for small amplitude regular waves was
given by Bi¶esel (1951) in the following form for piston wave paddles:

H

S0

=
2 sinh2(kh)

sinh(kh) cosh(kh) + kh

where

H = wave height

k = wave number
‡

2…
L

·

h = water depth
S0 = stroke of the piston

19



When the water depth is known it is possible to calculate the Bi¶esel
transfer function.

It is now possible to determine the discrete paddle-displacement energy
spectrum, ¾2

x(fi) :

¾2
x(fi) =

¾2
·(f)

‡
2 sinh2(kh)

sinh(kh) cosh(kh)+kh

·2

note that k is a function of frequency.

4. Calculate the N complex Fourier coe–cients C = A+ i ¢B by picking a
random phase, ’(f), between 0 and 2… for all frequencies smaller than
the Nyquist frequency, fn = fs=2 :

Ai = cos (’(fi)) ¢
q

¾2
x(fi)=

p
2

Bi = sin (’(fi)) ¢
q

¾2
x(fi)=

p
2

Mirror the N Fourier components into the Nyquist frequency fn in
order to obtain a hermitian Fourier Transform, i.e.:

CN+i = C⁄
N¡i+1 ; i = 1::N

where * denotes complex conjugate.

5. Apply the inverse Fourier Transform (InvFFT) and calculate the time
series of the control signal for the wave paddle (the real parts of the
inverse Fourier Transform is the time series, the imaginary parts are
zero due to the fact that the Fourier Transform is hermitian).

6. Use oversampling in order to get a better discretization of the control
signal.

Figures 2.1-2.5 illustrate the procedure described above applied to a speciflc
example.

The Random Phase Method is a deterministic wave generation method, i.e.
the power spectrum of the generated wave train is identical to that of the tar-
get wave power spectrum over the length of the time series. This means that
two difierent realizations with difierent spectral properties can be directly
compared.

The length of the time series is only limited by the capacity of the computer
performing the Fourier transform. Often a number of relatively short time
series, say 5-10 minutes in length, calculated by means of the Random Phase

20
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Figure 2.1: Example of calculated model wave energy density spectra Sf (f)
using the PM-spectra with Hs = 0:16 m; fp = 0:5 Hz.

Method are connected substituting a long realization in order to save com-
puting time. This method is very e–cient for pilot testings, calibration of
wave generators, measurements of re°ections etc.

However, for long simulations, where the right variations in the spectral dis-
tribution are required, one long time series must be used in order to get the
right variability of the spectra for short samples. Alternatively another wave
generation technique i.e. the Filtered White Noise technique should be used.

2.4 Random Complex Spectrum Method

The Random Complex Spectrum Method is a non-deterministic wave gener-
ation technique which produces time series with Gaussian distributed ampli-
tude spectra.

The technique is rather similar to the Random Phase Method. However,
When the Random Complex Spectrum Method is applied, the real and imag-
inary components of the complex Fourier coe–cients (compare with page 6,
item 4) are determined as:

Ai = Gj ¢
q

¾2
x(fi)=

p
2
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Bi = Gj+1 ¢
q

¾2
x(fi)=

p
2

where G is a normally distributed random variable with zero mean and a
standard deviation of ¾ = 1.

This method has the same limitations as the Random Phase Method: the
length of the time series is limited by the capacity of the computer performing
the Fourier transformation. An equivalent method which is not subject to
this limitation will be described in the following section.

2.5 White Noise Filtering Method

The technique is based on the use of digital fllters. Socalled FIR-fllters (Finite
Impulse Response fllters) are applied (Karl, p. 165).
In essence, a digital fllter is designed by computing the time domain terms
hi called fllter coe–cients (or the fllter operator), for use in convolving with
the input data in order to achieve a speciflc frequency response.

The surface elevation time series ·(t) is obtained by generating a white noise
signal W (t) (samples from a unit normal random variable) which is convolved
with a fllter operator determined by Inverse Fourier Transformation of a dis-
crete frequency response function corresponding to the discrete target wave
energy spectrum (the surface elevation fllter). The input/output relation of
this fllter is given by the discrete convolution integral:

·j =
2¢N¡1X

i=0

hi ¢ Wj¡i

where 2 ¢ N denotes the number of fllter coe–cients.

To determine the corresponding wave paddle displacement time series, the
surface elevation time series is convolved with another fllter operator ob-
tained by Inverse Fourier Transformation of a frequency response function
corresponding to the inverse of the far fleld Biesel transfer function (the Biesel
fllter).

Designing the surface elevation fllter can be divided into 6 steps:

1. The desired wave power spectrum is deflned.

2. The wave power spectrum is discretized in N components.
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3. For each component, a phase 'i is chosen as

'i =

(
0 if i is even
… if i is odd

This phase removes the phase shift introduced by the fllter delay. For
wave generation removing the phase shift is unnessecary. However, it
is of importance in other applications.

4. Determine the value of the frequency response function H correspond-
ing to each component i (frequency sampling)

H(fi):re = cos('i)
q

¾2
·(fi)=

p
2

H(fi):im = sin('i)
q

¾2
·(fi)=

p
2

H specifles the desired frequency response of the surface elevation fllter.

5. Mirror the discrete frequency responce function into the nyquist fre-
quency to obtain a Hermitian discrete frequency response function ,
i.e.

H(fn + fi) = H⁄(fn ¡ fi)

6. Compute the Inverse Fourier Transform of the frequency response func-
tion to produce the fllter operator (the real parts of the InvFFT are
the fllter coe–cients, the imaginary parts are zero due to the fact that
H is hermitian).

The Biesel fllter is designed by proceeding from step 3 and determining the
discrete values of the frequency response function as

H(fi):re = cos('i)
1

Kf (fi)

H(fi):im = sin('i)
1

Kf (fi)

where Kf denotes the far fleld Biesel transfer function.
The phase 'i is chosen as ¡…=2 in order to eliminate the phase shift between
°ap displacements and surface elevations.

Figures 2.6-2.10 illustrate the White Noise Filtering Method applied to a
speciflc example.
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Discrete wave energy (cm x cm)

Figure 2.2: Example of discrete wave energy spectrum ¾2
·. PM-spectrum.

Hs = 0:16 m; fp = 0:5 Hz; fs = 5 Hz, N = 64. For practical use N must be
much larger.

0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.0
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3.0

4.0

5.0

Frequency (Hz)

Discrete paddle-displ. energy spectrum (cm x cm)

Figure 2.3: Discrete paddle displacement energy spectrum ¾2
x. Example using

PM-spectrum with Hs = 0:16 m , fp = 0:5 Hz, fs = 5 Hz, N = 64,
h = 0:70 m and piston wave generator.
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Figure 2.4: Real and imaginary parts of hermitian Fourier Transform. Ex-
ample using PM-spectrum with Hs = 0:16 m , fp = 0:5 Hz, fs = 5 Hz,
N = 64, h = 0:70 m and piston wave generator.
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Figure 2.5: Paddle displacement time series. Example using PM-spectrum
with Hs = 0:16 m , fp = 0:5 Hz, fs = 5 Hz, N = 64, h = 0:70 m and piston
wave generator.
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Figure 2.6: Discretization of wave energy spectrum (left) and Biesel far
fleld transfer function (right). Example using the PM-spectra with Hs =
0:16 m; fp = 0:5 Hz, fs = 5Hz, N = 64 h = 0:70 m and piston wave
generator.
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Figure 2.7: Discrete complex frequency response functions corresponding
to surface elevation fllter operator (left) and Biesel fllter operator (right).
Example using the PM-spectra with Hs = 0:16 m; fp = 0:5 Hz, fs = 5Hz,
N = 64 h = 0:70 m and piston wave generator.
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Figure 2.8: Surface elevation fllter operator (upper) and Biesel fllter oper-
ator (lower) obtained by means of InvFFT of complex frequency response
functions. Example using the PM-spectra with Hs = 0:16 m; fp = 0:5 Hz,
fs = 5Hz, N = 64 h = 0:70 m and piston wave generator.
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Figure 2.9: Surface elevation time series obtained by convolving the surface
elevation fllter operator with white noise time series. Convolution denoted by
*. Example using the PM-spectra with Hs = 0:16 m; fp = 0:5 Hz, fs = 5Hz,
N = 64 h = 0:70 m and piston wave generator.

29



0.0 3.0 6.0 9.0 12.0 15.0
-0.5

-0.3

-0.1

0.1

0.3

0.5 Biesel Filter Coeff.
(cm)

0.0 3.0 6.0 9.0 12.0 15.0
-15.0

-9.0

-3.0

3.0

9.0

15.0
*

Surface Elevations

0.0 3.0 6.0 9.0 12.0 15.0
-15.0

-9.0

-3.0

3.0

9.0

15.0
||

Wave Paddle Displacements

time (sec.)

Figure 2.10: Wave paddle displacement time series obtained by convolving
the Biesel fllter operator with the surface elevation time series. Convolution
denoted by *. Example using the PM-spectra with Hs = 0:16 m; fp = 0:5 Hz,
fs = 5Hz, N = 64, h = 0:70 m and piston wave generator.
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Chapter 3

Seperation of Incident and
Re°ected Long-Crested Waves
Using Digital Filters

In the hydraulic laboratory environment a separation of an irregular wave
fleld into incident waves propagating towards a structure, and re°ected waves
propagating away from the structure is often wanted. This is due to the fact
that the response of the structure to the incident waves is the target of the
model test.

Goda and Suzuki (1976) presented a frequency domain method for estimation
of irregular incident and re°ected waves in random waves. Mansard and
Funke (1980) improved this method using a least squares technique.

In the following a time-domain method for Separating the Incident waves
and the Re°ected Waves (SIRW-method) is presented. The method is based
on the use of digital fllters and can separate the wave flelds in real time.

3.1 Principle

To illustrate the principle of the SIRW-method the set-up shown in Fig. 3.1
will be considered. The surface elevation ·(x; t) at a distance x from the wave
generator may be written as the sum of the incident and re°ected waves: the
incident wave propagating away from the wave generator, and the re°ected
wave propagating towards the wave generator. Even though the method
works for irregular waves it will be demonstrated in the following pages for
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Figure 3.1: Wave channel with piston-type wave generator.

the case of monochromatic waves.

·(x; t) = ·I(x; t) + ·R(x; t)

= aIcos(2…ft ¡ kx + `I) + aRcos(2…ft + kx + `R) (3.1)

where
f : frequency
a = a(f) : wave amplitude
k = k(f) : wave number
` = `(f) : phase

and indices I and R denote incident and re°ected, respectively.

At the two wave gauges we have:

·(x1; t) = aIcos(2…ft ¡ kx1 + `I) + aRcos(2…ft + kx1 + `R) (3.2)

·(x2; t) = aIcos(2…ft ¡ kx2 + `I) + aRcos(2…ft + kx2 + `R)

= aIcos(2…ft ¡ kx1 ¡ k¢x + `I) +

aRcos(2…ft + kx1 + k¢x + `R) (3.3)

where x2 = x1 + ¢x has been substituted into eq. (3.3).
It is seen that the incident wave is phaseshifted ¢` = k¢x from signal
·(x1; t) to signal ·(x2; t), and the re°ected wave is phaseshifted ¢` = ¡k¢x
due to opposite travel directions. These phaseshifts are called the physical
phaseshifts and are denoted `phys

I and `phys
R , respectively.
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The idea in the following manipulations of the elevation signals is to phase-
shift the signals from the two wave gauges in such ways that the incident
parts of the wave signals are in phase while the re°ected parts of the signals
are in mutual opposite phase. In this case the sum of the two manipulated
signals is proportional to and in phase with the incident wave signal.

An ampliflcation C and a theoretical phase shift `theo are introduced into
the expressions for ·(x; t). The modifled signal is denoted ·⁄. For the i’th
wave gauge signal the modifled signal is deflned as:

·⁄(xi; t) = CaIcos(2…ft ¡ kxi + `I + `theo
i ) +

CaRcos(2…ft + kxi + `R + `theo
i ) (3.4)

This gives at wave gauges 1 and 2:

·⁄(x1; t) = CaIcos(2…ft ¡ kx1 + `I + `theo
1 ) +

CaRcos(2…ft + kx1 + `R + `theo
1 ) (3.5)

·⁄(x2; t) = CaIcos(2…ft ¡ kx2 + `I + `theo
2 ) +

CaRcos(2…ft + kx2 + `R + `theo
2 )

= CaIcos(2…ft ¡ kx1 ¡ k¢x + `I + `theo
2 ) +

CaRcos(2…ft + kx1 + k¢x + `R + `theo
2 ) (3.6)

The sum of ·⁄(x1; t) and ·⁄(x2; t), which is denoted ·calc(t), gives:

·calc(t) = ·⁄(x1; t) + ·⁄(x2; t)

= CaIcos(2…ft ¡ kx1 + `I + `theo
1 ) +

CaRcos(2…ft + kx1 + `R + `theo
1 ) +

CaIcos(2…ft ¡ kx1 ¡ k¢x + `I + `theo
2 ) +

CaRcos(2…ft + kx1 + k¢x + `R + `theo
2 )

33



= 2CaIcos(0:5(¡k¢x ¡ `theo
1 + `theo

2 ))

cos(2…ft ¡ kx1 + `I + 0:5(¡k¢x + `theo
1 + `theo

2 )) +

2CaRcos(0:5(¡k¢x + `theo
1 ¡ `theo

2 ))

cos(2…ft + kx1 + `R + 0:5(k¢x + `theo
1 + `theo

2 )) (3.7)

It is seen that ·calc(t) and ·I(x1; t) = aIcos(2…ft ¡ kx1 + `I) are identical
signals when the following three conditions are met:

2Ccos(0:5(¡k¢x ¡ `theo
1 + `theo

2 )) = 1 (3.8)

0:5(¡k¢x + `theo
1 + `theo

2 ) = n ¢ 2… n 2 (0; §1; §2; ::) (3.9)

0:5(¡k¢x + `theo
1 ¡ `theo

2 ) =
…

2
+ m ¢ … m 2 (0; §1; §2; ::) (3.10)

Solving eqs. (3.8) - (3.10) with respect to `theo
1 ; `theo

2 and C gives eqs (11) -
(13). n and m can still be chosen abitrarily.

`theo
1 = k¢x + …=2 + m… + n2… (3.11)

`theo
2 = ¡…=2 ¡ m… + n2… (3.12)

C =
1

2cos(¡k¢x ¡ …=2 ¡ m…)
(3.13)

All the previous considerations and calculations were done in order to flnd

an ampliflcation and a phaseshift for each of the two elevation signals ·1 and

·2.

Eqs. (3.11) - (3.13) give the result of our efiorts, i.e. ·I(x1; t) = ·calc(t).

Remembering that `theo
1 = `theo

1 (f); `theo
2 = `theo

2 (f) and C = C(f), it is

seen that the goal is already reached in the frequency domain. However, the

implementation of the principle will be done in the time domain using digital

fllters.
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It is seen that singularities may occur. The consequences and the handling

of the singularities will be treated later on in the paper. Here it should just

be mentioned that one way to bypass the singularities is to use a velocity

meter instead of one of the two wave gauges. Nevertheless, this paper will

concentrate on using elevation signals from two wave gauges.

·(x1; t) ¡! FILTER 1 &

·(x2; t) ¡! FILTER 2 %
+° ¡! ·I(x1; t)

Figure 3.2: Flow diagram for signals in the SIRW-method.

The purposes of the fllters shown in Fig. 3.2 are exactly a frequency depen-
dent ampliflcation and a frequency dependent phaseshift on each of the two
elevation signals.

Taking n = 0 and m = 0 the frequency response functions H1(f) for fllter 1
and H2(f) for fllter 2 calculated due to eqs. (3.11) - (3.13) are given below
in complex notation:

RefH1(f)g =
1

2cos(¡k¢x ¡ …=2)
¢ cos(k¢x + …=2)

ImfH1(f)g =
1

2cos(¡k¢x ¡ …=2)
¢ sin(k¢x + …=2) (3.14)

RefH2(f)g =
1

2cos(¡k¢x ¡ …=2)
¢ cos(¡…=2)

ImfH2(f)g =
1

2cos(¡k¢x ¡ …=2)
¢ sin(¡…=2) (3.15)

Based on eqs. (3.14) and (3.15) it is straightforward to design the time
domain fllters. The design of the fllters will be given on the next pages.
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3.2 Design of Filters

The impulse response of the fllters is found by an inverse discrete Fourier
transformation, which means that N discrete values of the complex frequency
response are used in the transformation, see Fig. 3.3.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0.0

2.0

4.0

6.0

8.0

10.0

|H(f)|

frequency (Hz)

Figure 3.3: Magnitude (gain) of the frequency responses of a discrete fllter.
N = 64 , d = 0.5 m, ¢f=0.10 Hz, ¢tfilter = 0.16 sec.,¢x =
0:2m.

This gives an impulse response of flnite duration, i.e. the impulse response
hj or the fllter coe–cients are found by:

hj = h(j ¢ ¢tfilter) =
N¡1X

r=0

Hr ¢ ei 2…r j
N (3.16)

where
r = 0,: : : ; N -1
j = 0,: : : ; N -1

and Hr is the complex frequency response given by eqs. (3.14) and (3.15) at
the frequency f = r ¢ ¢f .
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The frequency increment, ¢f , in the frequency response is found by

¢f =
1

N ¢ ¢tfilter

(3.17)

where ¢tfilter is the time increment of the fllter.
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-1.0
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2.0

h(t), Filter 2

time (sec.)

Figure 3.4: Filter coe–cients corresponding to Filter 1 and Filter 2. N = 64,
waterdepth = 0.5 m, ¢f=0.10 Hz, ¢tfilter = 0.16 sec.,¢x =
0:2m.

Fig. 3.4 gives an example on the fllters. The price paid for handling only N
frequencies in this transformation, is a minor inaccuracy in the performance
of the fllter at input frequencies, which do not coincide with one of the cal-
culated frequencies in the discrete fllter.

If the length of the fllter (N) is increased, more frequencies are included,

37



and in principle the overall accuracy of the fllter is improved. In practice,
however, there is a limit beyond which the accuracy of the fllter starts to
decrease due to other efiects in the model.

The convolution integral (summation), eq. (3.18), describes the input-output
relationship for the fllters. Notice that the output ·⁄(x; t) is delayed (N/2)-1
time steps relative to the input ·(x; t).

·⁄p =
N¡1X

j=0

hj ¢ ·p¡j (3.18)

where
j,p = 0,: : : ; N -1
·p¡j : elevation at time t = (p ¡ j) ¢ ¢tfilter

·⁄p : output from fllter at time t = p ¢ ¢tfilter

hj : the fllter coe–cient corresponding to time t = j ¢ ¢tfilter

Fig. 3.3 indicates that in the present example, singularities are present at
frequencies of about 2.0 Hz and 2.8 Hz. The flgure also shows that due to
the fact that the frequency response is calculated only at discrete frequencies
in the fllters, the singularities will not destroy the calculations. However,
it is recommended to cut ofi the frequency responses whenever the value is
larger than around 5. For practical use this means that, if jH(f)j ‚ 5 when
calculated, then jH(f)j should be valued 5. Furthermore, it is recommended
to place the singularities in a frequency range where the wave spectrum is
without signiflcant energy, for example 3 times the peak frequency of the
spectrum. This can always be done by choosing appropriate values of ¢x
and ¢tfilter, i.e. ¢x smaller than a quarter of the shortest wave lengths.
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3.3 Results

NUMERICAL EXAMPLES

In order to evaluate the SIRW-method we will look at two numerical examples
with known incident and re°ected waves. The error is described by the
difierence between the calculated incident wave signal ·calc and the actual
incident wave signal ·I .
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Figure 3.5: A comparison between ·I ; ·calc and ·x1. f1 = 4¢f , f2 = 7¢f .
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Figure 3.6: A comparison between ·I ; ·calc and ·x1. f1 = 4:2¢f , f2 =
7:5¢f .

In the examples the total elevation due to two superimposed sine waves is
described by eq. (3.19), corresponding to 50 % re°ection of the incident
waves.

·(x; t) = 0:01 ¢ cos(2…f1t ¡ k1x) + 0:01 ¢ cos(2…f2t ¡ k2x) +

0:01 ¢ 0:5 ¢ cos(2…f1t + k1x) +

0:01 ¢ 0:5 ¢ cos(2…f2t + k2x) (3.19)

The signals are sampled with a frequency of 6.4 Hz. Fig. 3.5 illustrates the
functionality of the method, when f1 and f2 are both coinciding with some

frequencies of the discrete fllter, i.e. n ¢¢f . As expected the method is exact
for signals consisting only of energy placed at the discrete frequencies (Fig.
3.5), though it is seen that errors are present during warm up of the fllters.
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Figure 3.7: A comparison between ·I ; ·calc and ·x1. The fllters have been
cosine tapered. f1 = 4:2¢f , f2 = 7:5¢f .

The second example (Fig. 3.6) is identical to the flrst example except that f1

and f2 are not coinciding with frequencies in the digital fllter i.e. f1 = 4:2¢f ,
f2 = 7:5¢f .

It must be stressed that the output signal shown in Fig. 3.6 corresponds
to the worst case situation, where the wave frequencies are placed midway
between fllter frequencies. One way to improve the results is to apply a ta-
pering of the fllter coe–cients, because the output from a digital fllter is more
stable in case the absolute values of the fllter coe–cients are almost zero in
both ends of the fllter, Karl (1989). Cosine tapering of the fllter coe–cients
improves the accuracy of the SIRW method as demonstrated in Fig. 3.7.
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PHYSICAL MODEL TESTS

The SIRW-method previously described was also tested in a laboratory °ume
at the Hydraulics and Coastal Engineering Laboratory, Aalborg University,
cf Fig 3.8.

First, the waves (incident part of the timeseries) were generated and sent to-
wards a spending permeable beach (slope 1:8) with low re°ection (app. 5 %)
in order to obtain a good estimate of the incident waves. Next, a re°ecting
wall was mounted in the °ume giving a fairly high re°ection (app. 50 %) and
the same incident waves were reproduced by play back of the same digital
steering signal to the wave maker. Notice, that the incident wave flelds are
identical only until re-re°ection occurs.

Figure 3.8: Set-up for physical model tests.
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Figure 3.9: A comparison between ·measured
I ; ·calc and ·measured

x1
. f1 = 4:2¢f ,

f2 = 7:5¢f .

In Fig. 3.9 the output from the SIRW-fllters is compared with the incident
waves measured in the case of very low re°ection. The speciflc part of the
signals, where re°ection is present but re-re°ection from the wave paddle is
still not present, is shown. Two difierent estimates of the incident waves
are used, namely the measured elevation at gauge no 1 (·measured

x1
) and the

calculated elevation at gauge no 1 (·calc). In the the speciflc example the
SIRW-method reduces the error (variance of the difierence ·calc ¡ ·x1) from
30 % of the incident energy to 3 % of the incident energy.
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3.4 Conclusions

A time-domain method for Separating Incident and Re°ected Irregular Waves
(The SIRW-method) has been presented.

By numerical and physical model tests it is demonstrated that the method
is quite e–cient in separating the total wave fleld into incident and re°ected
waves. Please note, that all the tests shown were done with fairly small fllters
(few fllter components), and that longer fllters will improve the e–ciency of
the method. Taking the example shown in Fig. 3.6 and doubling the number
of fllter coe–cients the error (variance) will decrease to 2/3 of the shown
example.

The accuracy of the SIRW-method is comparable with the accuracy of the
method proposed by Goda and Suzuki (1976), but the SIRW-method has the
advantage that where the incident wave signal is wanted in time domain (i.e.
for zero-crossing analysis) the singularity points are treated more properly
than in the Goda-method. The SIRW-method can easily be extended to give
the same accuracy as the method proposed by Mansard and Funke (1980).

The greatest advantage of the SIRW-method is that it works in real time.
Brorsen and Frigaard (1992) previously used digital fllters to make an open
boundary condition in a Boundary Element Model, based on a flltering of
the surface elevation. That boundary condition accumulated errors, because
separation of the surface elevation into incident and re°ected waves was not
possible in real time at that moment and, consequently, the Boundary El-
ement Model became unstable and could only run for a limited time. The
SIRW-method will make it possible to use digital fllters as boundary condi-
tion in these models.

At the moment the SIRW-method is implemented at Aalborg Hydraulics
Laboratory, Aalborg University and the method is used in active absorption,
cf. chapter 4
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Chapter 4

Active Absorption of
Long-Crested Waves

A comparison of wave gauge based and velocity meter based active absorption
systems is presented discussing advantages and disadvantages of the systems.
In detail one system based on two surface elevations, one system based on
a surface elevation and a horizontal velocity and one system based on a
horizontal and a vertical velocity are treated. All three systems are based
on digital FIR-fllters. For numerical comparison a performance function
combining the frequency response of the set of fllters for each system is
derived enabling discussion on optimal fllter design and system setup.

Irregular wave tests with a highly re°ective structure with the purely wave
gauge based system and the wave gauge velocity meter based system are
performed. The wave tests depict the difierences between the systems.

4.1 Introduction

Coastal engineering problems are often solved by means of physical and nu-
merical models. Physical and numerical modelling of coastal engineering
phenomena require the capability of reproducing natural conditions. One
of the problems associated with the modelling of waves in both numerical
and laboratory wave °umes is the presence of rere°ected waves altering the
characteristics of the wave train incident to the model structure repeatedly.

Consequently, an efiective absorption of the waves propagating towards the
wave generator is necessary. By making the wave generator simultaneously
generating the incident wave fleld and absorbing the re°ected wave fleld the
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Figure 4.1: Principle of active absorption system.

problems caused by rere°ection can be reduced signiflcantly.

The principle in constructing a combined wave generator and active wave
absorber requires, Gilbert (1978):

1. A means of detecting re°ected waves approaching the wave paddle.

2. A means of making the paddle generate waves that are, in efiect, equal
and opposite to the re°ected waves so that the re°ected waves are
cancelled out reaching the paddle.

Milgram (1970) presented a system in which waves in a channel were absorbed
by means of a moving termination at the end of the channel. The motion
of the termination needed for absorption was determined by analog flltering
of a surface elevation signal measured in front of the termination. This
active wave absorption system was not used in a combined generation and
absorption mode.

The common approach to detect the re°ected wave when performing simul-
taneous wave generation and active wave absorption is by measuring the
surface elevation with a wave gauge positioned on the face of the paddle.
The re°ected wave signal is then determined as the difierence between the
measured surface elevation signal and the generated surface elevation signal
estimated from the wave generator control signal. In consequence, the actual
re°ected wave is not being estimated with the possibility of accumulating
errors. Several systems based on this approach have been presented in the
litterature, e.g. Bullock and Murton (1989), Hirakuchi et al. (1990) and
Schãfier et al. (1994).
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An active wave absorption system based on real time separation of the wave
fleld in front of the paddle in incident and re°ected waves has been installed
in a wave °ume at Hydraulics & Coastal Engineering Laboratory, Aalborg
University (Frigaard (1993)). This open loop system is entirely difierent
from the above described and does not accumulate errors because the ac-
tual re°ected wave is determined continously. The system shows excellent
absorption characteristics, Frigaard and Christensen (1994).

In the following three absorption systems based on the theoretical considera-
tions by Frigaard and Brorsen (1995) are described: one based on two surface
elevation signals, one based on a surface elevation and a horizontal velocity
signal and one based on a horizontal and a vertical velocity signal. The
systems are termed (·; ·), (·; u) and (u; w). Based on both numerical and
physical tests the systems are compared discussing the difierences between
the three systems as well as optimal fllter design.

4.2 Principle of Active Absorption System

The active absorption system is operated by means of on-line signals from
digital FIR-fllters. In essence, a digital fllter relates N input ·k¡i with an
output xk by convolving the input data with N precalculated time domain
terms hi called fllter coe–cients. The input/output relation of the FIR-fllter
is given by the discrete convolution integral

xk =
i=MX

i=¡M

hi·k¡i ; M =
N ¡ 1

2
(4.1)

with the fllter coe–cients determining the impulse response of the fllter.
Given a desired frequency response the corresponding fllter impulse response
is designed by computing the inverse Fourier transform of the complex fre-
quency response function. Notice that the fllter output is delayed N¡1

2
time

steps relative to the input. For systems operating in real time this time delay
must be removed.

Calculation of the paddle displacement correction signal needed for absorp-
tion of the re°ected waves is done by digital flltering and subsequent super-
position of two surface elevation or velocity signals measured in front of the
wave generator, see principle in Fig. 4.1.

When active absorption is applied the paddle displacement correction sig-
nal is added to the input paddle displacement signal read from the sig-
nal generator causing the wave generator to operate in a combined gener-
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ation/absorption mode.

Having outlined the principle of the system the only remaining problem is to
specify the frequency response of the applied fllters.

4.3 Frequency Response of Digital Filters

Ofispring is taken in the system illustrated in Fig. 4.1 where the wave °ume
is equipped with two wave gauges.

The surface elevation signal at a position x may be regarded as a sum of
harmonic components since the efiect of the near fleld local disturbances
disapear when x > 3d, with d being the water depth (Biesel (1951)). Con-
sidering an isolated component of frequency f the surface elevation arising
from this component may be written as the sum of the corresponding incident
and re°ected wave components

·(x; t) = ·I(x; t) + ·R(x; t)

= aI cos(!t ¡ kx + `I) +

aR cos(!t + kx + `R) (4.2)

where
f : frequency
a = a(f) : wave amlitude
k = k(f) : wave number
` = `(f) : phase

and indices I and R denote incident and re°ected, respectively.

Provided a linear relation exists between a given paddle displacement sig-
nal and its corresponding surface elevation signal the paddle displacement
correction signal X⁄(t) which cancels out the re°ected component without
disturbing the incident component is given by

X⁄(t) = BaR cos(!t + `R + `B + …) (4.3)

where
B : piston stroke/wave height relation
`B : phase shift between paddle displacement and

surface elevation on the face of the paddle

In the following it is shown that it is possible to amplify and phase shift the
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surface elevation signals from the two wave gauges in such a way that their
sum is identical to the paddle correction signal corresponding to absorption
of the re°ected component as given by eq. (4.3).

At the two wave gauges (Fig. 4.1) we have:

·(x1; t) = aI cos(!t ¡ kx1 + `I) +

aR cos(!t + kx1 + `R) (4.4)

·(x2; t) = aI cos(!t ¡ kx2 + `I) +

aR cos(!t + kx2 + `R)

= aI cos(!t ¡ kx1 ¡ k¢x + `I) +

aR cos(!t + kx1 + k¢x + `R) (4.5)

where x2 = x1 + ¢x has been substituted into eq. (4.5).

An ampliflcation of G· and a theoretical phase shift `· are introduced into
the expressions for ·(x; t). The modifled signal is denoted ·⁄. For the i’th
wave gauge signal the modifled signal is deflned as

·⁄(xi; t) = G·aI cos(!t ¡ kxi + `I + `·i) +

G·aR cos(!t + kxi + `R + `·i) (4.6)

This gives at wave gauges 1 and 2

·⁄(x1; t) = G·aI cos(!t ¡ kx1 + `I + `·1) +

G·aR cos(!t + kx1 + `R + `·1) (4.7)

·⁄(x2; t) = G·aI cos(!t ¡ kx1 ¡ k¢x + `I + `·2) +

G·aR cos(!t + kx1 + k¢x + `R + `·2) (4.8)

The sum of ·⁄(x1; t) and ·⁄(x2; t) which is termed ·calc(t) is

·calc(t) = ·⁄(x1; t) + ·⁄(x2; t)

= 2G·aI cos(
k¢x + `·1 ¡ `·2

2
)

cos(!t ¡ kx1 + `I +
¡k¢x + `·1 + `·2

2
) +
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2G·aR cos(
¡k¢x + `·1 ¡ `·2

2
)

cos(!t + kx1 + `R +
k¢x + `·1 + `·2

2
) (4.9)

It is seen that ·calc(t) and X⁄(t) = BaR cos(!t + `R + `B + …) are identical
signals in case

2G· cos(
k¢x ¡ `·1 + `·2

2
) = B (4.10)

kx1 +
k¢x + `·1 + `·2

2
= `B + … + n2… (4.11)

k¢x + `·1 ¡ `·2

2
=

…

2
+ m… (4.12)

where n; m 2 (0; §1; §2; ::).

Solving eqs. (4.10)-(4.12) with respect to `·1 , `·2 and G· with n = m = 0
gives

`·1 = `B ¡ k¢x ¡ kx1 + 3…=2 (4.13)

`·2 = `B ¡ kx1 + …=2 (4.14)

G· =
B

2 cos(¡k¢x + …=2)
(4.15)

Eqs. (4.13)-(4.15) specify the frequency responses, i.e. the ampliflcation
factors and phase shifts of fllters 1 and 2 in Fig. 4.1.

Considering a situation with a spatially co-located wave gauge and velocity
meter measuring the horizontal velocity this gives for the two input signals

·(x1; t) = aI cos(!t ¡ kx1 + `I) +

aR cos(!t + kx1 + `R) (4.16)

u(x1; z; t) = aI!
cosh(k(z + d))

sinh(kd)
cos(!t ¡ kx1 + `I) ¡

aR!
cosh(k(z + d))

sinh(kd)
cos(!t + kx1 + `R) (4.17)

By similar calculations as for the (·,·)-system the ampliflcation G· of the
surface elevation signal, the ampliflcation Gu of the velocity signal and the
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theoretical phase shift `· = `u of both the surface elevation and the velocity
signal are found for the (·,u)-system

G· =
B

2
(4.18)

Gu = ¡ B

2!

sinh(kd)

cosh(k(z + d))
(4.19)

`· = `B + … ¡ kx1 (4.20)

`u = `B + … ¡ kx1 (4.21)

Finally, for spatially co-located horizontal and vertical velocity signals the
two input signals are

w(x1; z; t) = ¡aI!
sinh(k(z + d))

sinh(kd)
sin(!t ¡ kx1 + `I) ¡

aR!
sinh(k(z + d))

sinh(kd)
sin(!t + kx1 + `R) (4.22)

u(x1; z; t) = aI!
cosh(k(z + d))

sinh(kd)
cos(!t ¡ kx1 + `I) ¡

aR!
cosh(k(z + d))

sinh(kd)
cos(!t + kx1 + `R) (4.23)

The (u,w)-system is very similar to the (·,u)-system since an ampliflcation of

the vertical velocity signal by ¡ sinh(kd)
! sinh(k(z+d))

and a phase shift of …
2

simply give

the surface elevation (cf. eq. (4.22)). Considering the frequency responses of
the two fllters this gives

Gu = ¡ B

2!

sinh(kd)

cosh(k(z + d))
(4.24)

Gw = ¡ B

2!

sinh(kd)

sinh(k(z + d))
(4.25)

`u = `B + … ¡ kx1 (4.26)

`w = `B + … ¡ kx1 ¡ …

2
(4.27)

Even though the theoretical frequency response of the difierent fllters easily
can be calculated from the eqs. (4.13)-(4.15), eqs. (4.18)-(4.21) and eqs. (4.24)-
(4.27) actual realization or fltting of the theoretical frequency responses in
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Figure 4.2: Performance of absorption systems.

FIR-fllters is rather di–cult. Any fltting of the fllter coe–cients to the above
derived theoretical frequency responses obviously involves some error to be
minimized in order to obtain the best possible performance. The fltting er-
ror is strongly dependent on: Water depth d, location of wave gauges x1, x2

and/or velocity meters x1, z, number of fllter coe–cients N and the sample
frequency of the fllter fs. This means that the actual performance of the
systems is very depending on the setup of the fllters.

4.4 Optimal Filter Design

To evaluate the e–ciency and to enable optimization of an active absorption
system the efiect of the fltting error over some frequency area has to be
quantifled for the fllter sets. The combined frequency response of the two
fllters can be determined by considering a simple cosine input

·(t) = cos(!t) (4.28)

and the frequency response functions of the two fllters

H1(!) = G1(cos(`1) + i sin(`1)) (4.29)

H2(!) = G2(cos(`2) + i sin(`2)) (4.30)

By convolution of the input cosine with the two frequency response functions
and subsequent addition of the outputs the following output is obtained

X(t) = G1 cos(!t + `1) + G2 cos(!t + `2)
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= fG1 cos(`1) + G2 cos(`2)g cos(!t) ¡
fG1 sin(`1) + G2 sin(`2)g sin(!t) (4.31)

The gain corresponding to this combined input/output relation is

GX = f(G1 cos(`1) + G2 cos(`2))2 +

(G1 sin(`1) + G2 sin(`2))2g 1
2 (4.32)

Calculating GX for both the theoretical frequency response functions cor-
responding to eqs. (4.13)-(4.15), eqs. (4.18)-(4.21) or eqs. (4.24)-(4.27) as
well as for the realized impulse response functions corresponding to the fllter
coe–cients, the ratio P (f) signifles the performance of the actual system

P (f) =
GX;real

GX;theo

(4.33)

This ratio is termed the performance function and gives the actual degree of
absorption on every frequency desired. In case of 100% absorption P (f) = 1.

By calculating the error † deflned as

† =
Z fhigh

flow

(1 ¡ P (f))2df (4.34)

setup parameters for each of the systems can be evaluated. flow and fhigh

are two prespecifled low and high cutofi frequencies between which the fllters
are fltted.

In Fig. 4.2 the performance function is plotted for the setup parameters given
in Table 4.1. All systems show excellent absorption characteristics within the
frequency area [0.3;1.5] and are basically very similar in performance.

Generally, to obtain the best possible flt ¢f must be small. On the other
hand a small ¢f results in a large fllter delay that must be compensated
for in the fllters. In order to compensate for this delay the wave gauges or
velocity meters have to be positioned far away from the paddle with the risk
that accumulated phase errors due to the dispersion relation (correct to 2nd
order) efiect the system more. Both limitations must be considered when
selecting ¢f .

The main difierence between the systems is not seen in Fig. 4.2, but is found
in the sensitivity to the internal gauge spacing x2 ¡ x1 for the (·; ·)-system.
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system (·; ·) (·; u) (u; w)
¢f [Hz] 0.143 0.143 0.143
x1 [m] 3.1 3.1 3.1
x2 [m] 3.3 - -
z [m] - -0.15 -0.15
d [m] 0.55 0.55 0.55

Table 4.1: Setup parameters.

Figure 4.3: Wave °ume and model test setup.

The frequency response of the (·; ·)-system is very sensitive to changes in
the internal gauge spacing since a singularity occurs because of the phase
difierence between the two input signals. Opposite, the (·; u)-system and
the (u; w)-system are based on colocated input signals with no singularities
occuring making the fllters easier to realize.

A disadvantage of the two velocity meter based systems compared to the
(·; ·)-system is the higher sensitivity to non-linear waves.

For the tested setup the absorption frequency range covers the frequency
range in which the main part of the energy is concentrated in the wave
spectrum - only low frequency or long periodic waves are not covered.

In case another sea state with another peak wave length (or peak frequency)
than those covered by the system described in Table 4.1 is desired. The
system setup parameters in Table 4.1 are simply Froude scaled with a length
scale determined by the ratio between the new and the old peak wave length
(or peak frequency). The more elaborate procedure calculating † and P (f)
for the difierent parameters is of course still applicable.

It should be noted that the gauge spacing from the wave paddle must be
large than three water depth for the gauges to be placed in the Biesel far
fleld, since the elevation model in eq. (4.2) neglects the near fleld local dis-
turbances.
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4.5 Physical Model Test Comparisons

In order to determine the performances of the difierent active absorption
methods described above, the (·,·)-system and the (·,u)-system were imple-
mented in the control system of a piston-type wave generator in Hydraulics
& Coastal Engineering Laboratory, Aalborg University.

The geometry and test setup of the wave °ume are given in Fig. 4.3 and the
setup parameters for the two systems are those listed in Table 4.1.

The Biesel phase `B and gain B (see eq. (4.3)) are determined using the
linear transfer functions derived by Biesel (1951).

When active absorption was applied, the surface elevation time series were
recorded and digitized by means of a PC equipped with an A/D-D/A-card,
digital flltering and superposition were performed, and the resulting paddle
displacement correction signal was added to the input signal read from the
signal generator.

At the far end of the °ume a vertical fully re°ecting wall was mounted. The
°ume is equipped with three pairs of wave gauges mounted on a beam at
distances of 3.0 m, 3.1 m and 3.3 m from the wave paddle. These gauges are
used for re°ection measurements as well as absorption. A water depth of d
= 0.55 m was maintained throughout the test series.

All tests were performed with exactly the same input from the signal gen-
erator: a wave paddle displacement signal corresponding to a JONSWAP-
spectrum with signiflcant wave height Hs = 0.08 m, peak period Tp = 1.2 sec
and peak enhancement factor ° = 3:3, sampled at a frequency of fs = 40 Hz,
and generated by means of digital flltering of Gaussian white noise in the
time domain. All tests were run for 10 min.

The 0.08 m signiflcant wave height is fairly high resulting in non-linear waves
with some breaking in form of white capping. Furthermore, severe cross mode
wave action was observed. These severe wave conditions should accentuate
eventual difierences between the systems.

In each test the incident and re°ected spectra were resolved as described by
Mansard and Funke (1980) and for the systems (·; ·) and (·; u) the incident
wave spectra are given in Figs. 4.4 - 4.6.

Comparing the signiflcant wave height for the two systems these are in the
same order of magnitude though slightly higher than the target wave height.
The difierences between the two systems must be derived from the energy
spectra showing more long periodic energy for the (·; ·)-system than the
(·; u)-system signifying that the purely wave gauge based system tends to
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generate long periodic waves. Also when comparing with the case of no ab-
sorption more long periodic energy is observed. Regarding the (·; u)-system
the wave energy spectrum is far more peaked.

The tendency to generate long periodic energy can be explained by the high
sensitivity of the (·; ·)-system to uncorrelated pink noise on the two input
signals, see Figs. 4.7 and 4.8. Uncorrelated pink noise could be electrical
noise or surface °uctuations due to breaking.

Since severe cross mode action occured during testing, the sensitivity to cross
mode action is simulated for both systems by adding correlated pink noise to
the two input signals. Because of the surface elevation model in eq. (4.2) the
two sensors (surface elevation or velocity) will recognice cross mode action as
correlated noise. The amplitude ampliflcation for the two systems are shown
in Figs. 4.9 and 4.10.

Surprisingly, the sensitivity of the two systems is in the same order of mag-
nitude. For the wave °ume used, the cross mode of 1st order corresponds
to a frequency of 1 Hz and as noted from Figs. 4.4 and 4.5 this corresponds
very well with the frequency at the energy peak.

A matter that is not depicted in Fig. 4.10 is that the actual separation of
incident and re°ected waves for this system is erroneous because the cross
mode action only in°uences the wave gauge. This is not the case for the
(·; ·)-system and might explain the peaked incident wave spectrum for the
(·; u)-system.

system Hs;target Hs;inci

[cm] [cm]
(·; ·) 8.4 8.5
(·; u) 8.4 8.6
no abs. 8.4 11.4

Table 4.2: Spectral wave characteristics.
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Figure 4.4: Incident spectra for (·; ·)-system.
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Figure 4.5: Incident spectra for (·; u)-system.
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Figure 4.6: Incident spectra with no absorption.
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Figure 4.7: Amplitude ampliflcation for uncorrelated pink noise for (·; ·)-
system.
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Figure 4.8: Amplitude ampliflcation for uncorrelated pink noise for (·; u)-
system.
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Figure 4.9: Amplitude ampliflcation for simulated cross mode action for
(·; ·)-system.
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Figure 4.10: Amplitude ampliflcation for simulated cross mode action for
(·; u)-system.
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4.6 Conclusion

Three types of active absorption systems are described. A purely wave gauge
based system termed (·; ·), a combined wave gauge, velocity meter based
system termed (·; u) and a purely velocity meter based system termed (u; w).
For each system the theoretical frequency response of the fllter systems is
presented.

To optimize the frequency response of the fllters a performance function has
been derived. Numerical tests with the (·; ·)-system, the (·; u)-system and
the (u; w)-system demonstrate that all three fllter systems easily are realized
with excellent frequency response in the relevant frequency area. All systems
show similar absorption characteristics

Tests performed with both the (·; ·)-system and the (·; u)-system imply good
absorption characteristics even at very high levels of re°ection. Furthermore,
both systems appear to be very stable.

Regarding the (·; u)-system the incident wave spectrum is more peaked than
that of the (·; ·)-system. Regarding the (·; ·)-system some long periodic
waves tend to be generated. A possible solution to these problems might be
by demanding zero gain at f= 0.0 and averaging measured surface elevations
over the width of the °ume.

Converting a conventional wave generator to an absorbing wave generator
based on the principle presented above is relatively inexpensive considering
the improvements achieved: the only requirement in its most simple form is
two conventional wave gauges and a PC equipped with an A/D-D/A-card.
These facilities will normally be available in most laboratory environments.
If a PC equipped with an A/D-D/A-card is used as signal generator for the
wave generator, the wave gauges can simply be connected to this computer,
allowing to perform signal generation and correction signal calculation simul-
taneously.
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Chapter 5

Wave Groups

A wave group is generally deflned as a sequence of consecutive high waves in
a random wave train.

In sea wave recordings, group formations of high waves occur from time to
time. This phenomenon corresponds to a non-zero correlation between suc-
cesive waves. Information concerning this correlation is of importance when
reproducing waves in the laboratory in order to determine the response of
the modelled structure. Normally, irregular waves are reproduced in accor-
dance with a speciflc energy spectrum solely deflning the distribution of the
variances. The grouping of waves is determined by the distribution of the
phases. Hitherto, independence between succesive waves have been applied
and the phases are treated as independent random variables, each with a
uniform probability density on the interval [0;2…] leading to a sea surface
that is Gaussian distributed. However, if the waves during wave propagation
become more non-linear there will be some coupling and thus dependence of
the phases of the component waves at difierent frequencies, which eventually
will modify the wave grouping.

To illustrate the efiect of randomly assigned phases two wave trains are gener-
ated from the same energy spectrum. These two wave conditions are depicted
in flgure 5.1.

Figure 5.1 shows difierent groupiness characteristics, and clearly it is im-
portant to have informations on the wave grouping when coastal structures
respond difierently when exposed to the distinctive wave patterns. Espe-
cially, the stability of rubble mound structures appears to be signiflcantly
afiected by the wave grouping, but also the slow drift oscillations of moored
vessels is highly dependent on the wave grouping.

Burcharth (1979) and Johnson et al. (1978) found that the wave grouping
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Figure 5.1: Wave energy spectrum and generated grouped and non-grouped
wave trains.

signiflcantly afiects the stability of rubble mound breakwaters as well as the
run-up. Johnson et al., (1978) compared the efiects of a grouped and a non-
grouped time series generated from the same energy spectrum, thus having
the same statistical properties. Conclusively, the model tests showed that
the breakwater response to the two difierent wave trains was quite difierent,
with the grouped wave train causing severe damage and the non-grouped
only causing minor rocking of the armour units. Similar signiflcant in°uence
on the wave grouping was found in the tests performed by Burcharth (1979).

In irregular seas, model tests by Spangenberg (1980) showed that the wave
grouping has a signiflcant in°uence on the slow drift motion of moored plat-
forms and vessels. This in°uence might be explained by the fact that the
period of the slow drift oscillations practically corresponds to the wave group
period where the wave grouping is pronounced.

Both examples illustrate the importance of a correct modelling of natural sea
waves in the laboratory if the structural responses are sensitive to the wave
grouping. A characterization of the wave grouping seems therefore evident.

5.1 Description of Wave Groups

A measure of the wave grouping is obtained by deflning the wave envelope
to the time signal. Due to the presence of small waves in the signal the wave
envelope is di–cult to determine. However, if the time signal is squared,
the squaring procedure will supress the relative in°uence of the small waves
present, and furthermore, a slowly varying part appears which may be inter-
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preted as the square envelope.

Assuming that the sea surface elevation at a given point is a realization of a
linear stationary Gaussian process deflned by its one-sided spectrum S·(f),
it can be represented by an ordinary sum of a flnite number of waves

·(t) =
NX

n=1

cn cos(!nt + "n) (5.1)

where cn = amplitude, !n = cyclic frequency, and "n = phase angle. By
squaring the time signal following equation is obtained

·2(t) =
NX

n=1

NX

m=1

cncm cos(!nt + "n) cos(!mt + "m) (5.2)

=
NX

n=1

NX

m=1

fcncm(
1

2
cos((!n + !m)t + ("n + "m)) +

1

2
cos((!n ¡ !m)t + ("n ¡ "m)))g (5.3)

Equation (5.3) represents a splitting of ·2(t) into a slowly varying part (rep-
resented by the difierence-frequencies) and a more rapid oscillating part (rep-
resented by the summation-frequencies).

By use of symmetry of the double summation, equation (5.3) can be expressed
in terms of four separate contributions

·2(t) =
1

2

NX

n=1

c2
n +

1

2

NX

n=1

c2
n cos(2!nt + 2"n)

+
NX

n=1

NX

m=n+1

cncm cos((!n + !m)t + ("n + "m))

+
NX

n=1

NX

m=n+1

cncm cos((!n ¡ !m)t + ("n ¡ "m))) (5.4)

The four terms on the right-hand side of equation (5.4) are identifled as fol-
lows: The flrst term consists of a constant ofi-set component. The second and
third term constitutes the superharmonic components, i.e. the summation-
frequency terms, and the fourth term constitutes the subharmonic compo-
nents, i.e. the difierence-frequency terms. It is the latter that describes the
slowly varying part of the squared time signal and the term which may be
interpreted as the square envelope. By means of Bartlett flltering the su-
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perharmonic components on the right-hand side of equation (5.4) may be
flltered out after subtraction of the constant ofi-set as done by Funke and
Mansard (1979).

Funke and Mansard denoted the flltered square of the time signal the SIWEH
(Smoothed Instantaneous Wave Energy History) function as the function
provides a measure of the instantaneous wave energy in the time signal.

The efiect of the Bartlett flltering corresponds to a digital low pass flltering
and the e–ciency of the SIWEH analysis can best be interpreted by examina-
tion of the energy spectrum of the stochastic process in (5.1) and the energy
spectrum of the squared process.
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Figure 5.2: a) JONSWAP energy spectrum for a linear stochastic process and
b) energy spectrum for the squared process.

From flgure 5.2 it is understood that the SIWEH analysis does not exactly
isolate the slowly varying part; also contributions from the superharmonic
components occur and not the complete amount of energy from the subhar-
monic components is included. Only when the process is narrow-banded does
the SIWEH analysis perform well but as the process becomes more and more
broad-banded the SIWEH function is a poor estimator of the wave envelope,
see Hupspeth and Medina (1988).

Instead of using a Bartlett window to isolate the subharmonic components,
a wave envelope function deflned on basis of the time series and its Hilbert
transform isolates exactly the subharmonic components.

5.2 Hilbert Transform Technique

From the sea surface elevation ·(t) a conjugate signal ·̂(t) is uniquely ob-
tained by shifting the phase of each elementary harmonic component of ·(t)
by §…

2
. When the phase angles of all components of a given signal are shifted
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§…
2
, the resulting function ·̂(t) is known as the Hilbert transform of the orig-

inal signal ·(t). The Hilbert transform is deflned by

·̂(t) =
1

…

Z 1

¡1
·(t)

t ¡ ¿
d¿ (5.5)

From the deflnition of the Hilbert transform it is noted that ·̂(t) is sim-
ply the convolution of ·(t) with a linear fllter with the impulse response
function h(t) = 1

…t
1. Since a convolution of two functions in the time do-

main are transformed into a multiplication of their Fourier transforms in
the frequency domain 2 a frequency response function H(f) is related to
the impulse response function. The frequency response function provides an
equally characterization of the linear time-invariant input and output system
in (5.5) and does furthermore visualize the efiect of the Hilbert transform op-
eration. Through the Fourier transform the frequency response of the Hilbert
transformer becomes

H(f) = F [
1

…t
] = ¡i sgn(f) =

8
><
>:

¡i f > 0
0 f = 0
i f < 0

(5.6)

The gain of this frequency response function is
q

re2(H(f)) + im2(H(f)) re-
sulting in unity in magnitude, and thus, the amplitudes of the signal does

not change. The phase angle is arctan(im(H(f))
re(Hf))

) resulting in a phase angle of
¡…

2
for f > 0 and +…

2
for f < 0. Such a system is denoted an ideal 90-degree

phase shifter.

Consequently, applying the Hilbert transform operation to the sea surface
elevation in (5.1) the cosine function simply shifts to the sine function

·̂(t) =
NX

n=1

cn sin(!nt + "n) (5.7)

1The convolution of two functions, denoted g(t) ⁄ h(t), is deflned

g(t) ⁄ h(t) ·
Z 1

¡1
g(¿)h(t ¡ ¿)d¿

2The convolution theorem

g(t) ⁄ h(t) , G(f)H(f)
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Associated with the Hilbert transform is the complex analytical signal deflned
from the original signal ·(t) and the Hilbert transform ·̂(t)

~·(t) = j ~·(t) j exp(iˆ(t)) = j ~·(t) j cos(ˆ(t)) + i j ~·(t) j sin(ˆ(t))

= ·(t) + i·̂(t) (5.8)

where the envelope or the modulation j ~·(t) j =
q

·2(t) + ·̂2(t) and the as-

sociated phase ˆ(t) = arctan( ·̂(t)
·(t)

). The properties of the Hilbert transform
operation entail that the slowly varying difierence-frequency terms in the sec-
ond order expression ·2(t) are separated mathematically by the expression

E(t) · re(~·⁄(t)~·(t)) =j ~·(t) j2 (5.9)

where ~·⁄(t) = the complex conjugate and E(t) = the square wave envelope
function.

In order to visualize the efiect of the deflned envelope function the Hilbert
transform of the sea surface elevation is squared and rewritten by use of
trigonometry and symmetry of the double summation similar to ·2(t)

·̂2(t) =
NX

n=1

NX

m=1

cncm sin(!nt + "n) sin(!mt + "m) (5.10)

=
NX

n=1

NX

m=1

fcncm(
1

2
cos((!n ¡ !m)t + ("n ¡ "m)) ¡

1

2
cos((!n + !m)t + ("n + "m)))g (5.11)

=
1

2

NX

n=1

c2
n ¡ 1

2

NX

n=1

c2
n cos(2!nt + 2"n)

¡
NX

n=1

NX

m=n+1

cncm cos((!n + !m)t + ("n + "m))

+
NX

n=1

NX

m=n+1

cncm cos((!n ¡ !m)t + ("n ¡ "m))) (5.12)

Remembering that the squared time signal is given by (5.4), the square wave
envelope function, according to (5.9), then becomes

E(t) =
NX

n=1

c2
n + 2

NX

n=1

NX

m=n+1

cncm cos((!n ¡ !m)t + ("n ¡ "m)) (5.13)
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Introducing 1p
2

in the complex analytical signal ~·(t) = 1p
2
(·(t) + i·̂(t)) leads

to the deflnition of an envelope function which may be interpreted as half
the square envelope.

E(t) =j ~·(t) j2=
1

2
(·2(t) + ·̂2(t)) (5.14)

This envelope function isolates exactly the slowly varying part of the squared
time signal plus the constant ofi-set similar to what approximately is achieved
by the SIWEH analysis.

The present method seems to be more convenient than the SIWEH analysis
and it does not require the narrow-band spectrum assumption. The disad-
vantage of this method is however that the sea surface must be described by
a linear model.

Computation of half the square envelope

To compute the Hilbert transform numerically the continuous-time convolu-
tion integral in (5.5) is approximated by a discrete-time Hilbert transforma-
tion. Furthermore, as the Hilbert transformation is non-banded, approxima-
tions limiting the impulse response function are made. A tool to handle the
ideal Hilbert transformation of the sea surface elevation is by using FIR ap-
proximations. In such approximations the 90-degree phase shift is conserved
exactly.

The principle in the FIR approximation is that the convolution integral
in (5.5) is represented by a summation over a flnite number of coe–cients
where the coe–cients are fltted to represent the impulse response function.
Taking an even number of coe–cients, easily extended to an odd number,
the non-causal FIR approximation can be written

·̂j =
Nc=2¡1X

k=¡Nc=2

ck·j¡k =
Nc¡1X

k=0

ck·j+k¡Nc=2 (5.15)

where ck = the k’th coe–cient, Nc = number of coe–cients or fllter length,
·̂j is the Hilbert transform corresponding to the time step j, and ·j+k¡Nc=2

are the input elevations to the fllter system. The reason why the index on the
fllter coe–cients remain unchanged is that the coe–cients are mirrored in the
Nyquist frequency, i.e. the frequency corresponding to half the fllter length.
The coe–cients are derived from the frequency response function by FFT
to obtain a least-square flt of the coe–cients. Opposite the centered format
deflnition of the Fourier transformation, the FFT is based on a one-sided
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format

ck =
1

Nc

Nc¡1X

j=0

Xj exp(i!jk¢t) =
1

Nc

Nc¡1X

j=0

Xj exp(i
2…jk

Nc

) (5.16)

where !j is the cyclic frequency corresponding to the j’th coe–cient and Xj

is the desired sampled frequency response of the system. By using the one-
sided format a time delay corresponding to half the fllter length is introduced

¿ =
Nc

2
¢t (5.17)

The corresponding phase delay may then be found as

ˆ¿ = ¿!j = ¿
2…j

Nc¢t
= …j (5.18)

To compensate for the phase delay the original frequency response function
given by (5.6) only needs to be multiplied by a linear phase shift operator
exp(¡i…k) and Xj might be interpreted as

Xj = H(fj) exp(¡i…j) = G(fj) cos(ˆj ¡ …j) + iG(fj) sin(ˆj ¡ …j)(5.19)

where G(fj) is the gain of the input amplitude to equal the output amplitude
and ˆj ¡ …j is the phase difierence between the input and the output signal.

To sample the frequency response function the frequency band is subdivided
into Nc discrete frequencies where fj = j fs

Nc
and fs is the sample frequency.

Since the phase ˆj = ¡…
2

for 0 < fj < fNq and ˆj = …
2

for fNq < fj < 2fNq

the sampled discrete frequency response function becomes

H(fj) =

8
><
>:

G(fj) cos(¡…
2

¡ …j) + iG(fj) sin(¡…
2

¡ …j) 0 < fj < fNq

0 fj = 0; fNq

G(fj) cos(¡…
2

¡ …j) ¡ iG(fj) sin(¡…
2

¡ …j) fNq < fj < 2fNq

(5.20)

Due to the truncation of the Fourier transformation, the fllter frequency
response will difier from the desired frequency response. To illustrate the
efiect of the least-square flt, both the gain and phase characteristic of a
linear FIR Hilbert fllter are plotted in flgure 5.3.
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Figure 5.3: Gain and phase characteristic of linear FIR Hilbert fllter with a
fllter length Nc = 64 and fs = 1.0 Hz.

To compare the FIR approximated Hilbert transform with the theoretical
Hilbert transform an irregular time signal is generated from the JONSWAP
spectrum and the two transforms are depicted in flgure 5.4. Generally very
good accordance is observed also at the edges where a zone of half the fllter
length normally is disturbed.
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Figure 5.4: Comparison of theoretical and FIR approximated, Nc = 64,
Hilbert transform. The signal is generated from the JONSWAP spectrum,
fp = 0.1 Hz and ° = 3.3.

To illustrate the envelope function, E(t) is plotted together with half the
squared elevation in flgure 5.5 for a time signal generated from the JONSWAP
spectrum.

5.3 Groupiness Factor

To characterize the actual groupiness of a wave train the energy spectrum
S·̂(f) of half the square envelope function can be evaluated. However, a sim-
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Figure 5.5: Comparison of half the square envelope E(t) and 1
2
·2(t) for signal

generated from a JONSWAP spectrum, fp = 0.1 Hz, ° = 3.3, and Nc = 64.

pler measure is the groupiness factor that is deflned as the standard deviation
of half the square envelope relative to the variance of the original time signal

GF =
¾[E(t)]

¾2[·(t)]
(5.21)

For a monochromatic (sinusoidal) signal the envelope function E(t) is con-
stant leading to a groupiness factor GF = 0. Taking a completely Gaussian
signal the expected value of the groupiness factor can be shown to be equal
to 1.0 independent of the spectrum shape. The actual values for time signals
generated from a JONSWAP spectrum including approximately 500 periods
are approximately 1.0 in mean with a standard deviation of approximately
¾ = 0.13.

Instead of computing one value of the groupiness factor over the complete
length of the time signal, the groupiness factor can be evaluated as instanta-
neous values by computing an average groupiness factor over a time moving
window. The length of the window in time is dependent on the desired degree
of smoothing of the computed groupiness factor function.

In flgure 5.6 to flgure 5.9 the groupiness factor function is plotted for both
a narrow-banded and a broad-banded JONSWAP spectrum for two difierent
window sizes.
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Figure 5.6: Groupiness factor function GF(t) for signal generated from JON-
SWAP spectrum, fp = 0.1 Hz, fs = 1.0 Hz, ° = 10.0, Nc = 64, and window
size = Tm.
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Figure 5.7: Groupiness factor function GF(t) for signal generated from JON-
SWAP spectrum, fp = 0.1 Hz, fs = 1.0 Hz, ° = 10.0, Nc = 64, and window
size = 3 Tm.

Generally, a more smooth groupiness factor function is obtained for a window
size of 3 mean periods and only the largest wave groups are separated as high
and smooth peaks. It should though be noted that the sample frequency is
1.0 Hz and that a higher sample frequency eventually will lead to smoother
groupiness factor function for smaller window sizes.
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Figure 5.8: Groupiness factor function GF(t) for signal generated from JON-
SWAP spectrum, fp = 0.1 Hz, fs = 1.0 Hz, ° = 1.0, Nc = 64, and window
size = Tm.
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Figure 5.9: Groupiness factor function GF(t) for signal generated from JON-
SWAP spectrum, fp = 0.1 Hz, fs = 1.0 Hz, ° = 1.0, Nc = 64, and window
size = 3 Tm.

5.4 Conclusions and Further Use

Based on a linear assumption a method for calculating the instantaneous
wave energy history and the groupiness factor function has been presented.
The method is based on a temporal Hilbert fllter and this approach enables
an exact isolation of the 2nd order subharmonics which describe the slowly
varying part of the time signal. This Hilbert fllter approach is thus more
e–cient than the SIWEH analysis. The groupiness factor has proven to be
inefiective in describing Gaussian distributed sea surfaces and the groupiness
factor function is deflned. Also discussions regarding the implementation of
the Hilbert fllter using FIR approximations and choice of window sizes for
computing the groupiness factor functions are made.
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The method can easily be extended to a three-dimensional motion but a
physical interpretation of the more slowly varying part must then be revised.

The groupiness factor function enables computations of instantaneous groupi-
ness factors in time and hence, the function is suitable for comparing the
correlation between the damage development of e.g. a breakwater and the
wave grouping in the wave train causing the damage.

A further application is the possibility to evaluate the change in wave group-
ing due to shoaling and thus also the change in phase distribution from deep
to shallow water.
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Chapter 6

Bounded Long Waves

Non-linear interaction between individual wave components in irregular wave
trains give rise to so-called group bounded long waves. These waves are of
second order and therefore they cannot be reproduced by means of the lin-
ear (flrst order) wave generation theory presented by Bi¶esel. Consequently,
socalled spurious long wave components will occur when a flrst order pad-
dle displacement signal is applied to the wave generator. The presence of
spurious long waves (free long waves) in physical model tests often leads to
unrealistic responses of the test structures because of the dominant in°uence
of the long waves on e.g. mooring forces and slow-drift oscillations.

The physical reason for the presence of bounded long waves in natural wave
trains is the "wave pressure force" or with another name the "wave reaction
force" described by Freds¿ (1990).

The problem of correctly reproducing the bounded long waves in physical
model tests was solved by Sand (1982). By means of a perturbation analysis
of the Laplace equation correct to second order, he derived the second order
piston positions for correct reproduction of the bounded long waves.

In the following, the results derived by Sand are outlined.

Both the calculations of second order long waves and second order piston
positions are based on a Fourier decomposition of the flrst order wave train.
The long wave elevations ‡(t) are determined as the sum of the terms arising
from interaction between individual components in the flrst order wave train

‡(t) =
1X

n¡m=1

1X

m=m⁄
‡nm(t); m⁄ =

!⁄

!0
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where !0 is the frequency interval in the Fourier decomposition and !⁄ is the
lowest frequency in the flrst order spectrum.

Consider a pair of regular wavelets with frequencies !n and !m. Such a pair
of wavelets constitutes a regular wave group, i.e.

·nm = ·n + ·m

= an cos(!nt ¡ knx) + bn sin(!nt ¡ knx)

+am cos(!mt ¡ kmx) + bm sin(!mt ¡ kmx)

The second order long wave generated by this wave group becomes

‡nm

h
= Gnmh

"ˆ
anam + bnbm

h2

!
cos(¢!nmt ¡ ¢knmx)

+

ˆ
ambn ¡ anbm

h2

!
sin(¢!nmt ¡ ¢knmx)

#

where

¢!nm = !n ¡ !m

¢knm = kn ¡ km

and the transfer function Gnm is given by

Gnmh =

"
4…2DnDm¢knmh cosh(¢knmh)

cosh(knh + kmh) ¡ cosh(¢knmh)
¡ 2…2(Dn ¡ Dm)2¢knmh

+
¢knmh(Dn ¡ Dm)(knhDm + kmhDn) coth(¢knmh)

2nDm

#

=
h
4…2(Dn ¡ Dm)2 coth(¢knmh) ¡ ¢knmh

i

where

Dn =
q

h=g ¢ !n=2…

Dm =
q

h=g ¢ !m=2…

The second order piston positions for correct reproduction of the group
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bounded long waves given above are

X(2)(t) =
1X

n¡m=1

1X

m=m⁄
X(2)

nm(t); m⁄ =
!⁄

!0

where

X(2)
nm

h
=

"ˆ
anbm ¡ ambn

h2

!
F1h +

ˆ
anam + bnbm

h2

!
F23h

#
cos(¢!nmt)

+

"ˆ
anam + bnbm

h2

!
F1h +

ˆ
ambn ¡ anbm

h2

!
F23h

#
sin(¢!nmt)

where the transfer function F1 is given by

F1h = F11h + F12h

in which

F11h =
Gnmh¢kf h(¢knmh ¡ ¢kf h) sinh(¢knmh + ¢kf h) + (¢knmh + ¢kf h) sinh(¢knmh ¡ ¢kf h)

2((¢k2
nmh2 ¡ ¢k2

f h2) sinh(¢knmh) sinh(¢kf h)

and

F12h =
fm¢kf hkmh(1 + Gn)

£
–k¡

mh sinh(–k+
mh) + –k+

mh sinh(–k¡
mh)

⁄
¢f8(k2

mh2 ¡ ¢k2
f h2) sinh(¢kf h) sinh(kmh) tanh(knh)

+
fm¢kf hknh(1 + Gm)

£
–k¡

mh sinh(–k+
mh) + –k+

mh sinh(–k¡
mh)

⁄
¢f8(k2

nh2 ¡ ¢k2
f h2) sinh(¢kf h) sinh(knh) tanh(kmh)

where the free long wave number , ¢kf is derived from the dispersion relation

(¢!nm)2 = g¢kf tanh(¢kfh)

and

–k+
m = km + ¢kf

–k¡
m = km ¡ ¢kf

The transfer function F23h is negligible relative to F1h.
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Frequency domain solution:

When waves are simulated in the frequency domain (i.e. when the Random
Phase Method or Random Complex Spectrum Method is applied), the cor-
rect reproduction of group bounded long waves is obtained by superposition
of the complex Fourier coe–cients corresponding to the 1. and 2. order
wave paddle displacement signals before performing InvFFT. The resulting
wave paddle displacement signal will be correct to second order, and free
long waves will therefore not exist.
Calculation of the second order correction corresponding to a certain fre-
quency ¢fnm is illustrated in the flgure abowe.

Figure 6.1: Calculation of second order correction term.

Time domain solution:

Consider a non-linear process Y (t):

Y = Y (t) = X(t) + fiX2(t)

Remembering that fi normally is frequency dependent fi = fi(!n; !m), we
can insert X(t) = ancos(!nt) + amcos(!mt) and write the equation again:

Y = ancos(!nt) + amcos(!mt) +

fi
h
a2

ncos2(!nt) + a2
mcos2(!mt) + 2anamcos(!nt)cos(!mt)

i

Reformulating the equation given above using the cosine relations we obtain:
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Y = ancos(!nt) + amcos(!mt)+ (linear terms)

1
2
fia2

n + 1
2
fia2

m+ (ofiset)

1
2
fia2

ncos(2!nt) + 1
2
fia2

mcos(2!mt)+

1
2
fianamcos((!n + !m)t)+ (2.order super harmonics)

1
2
fianamcos((!n ¡ !m)t) (2.order sub harmonics)

In the terminology of water waves the non-linear terms are named Bounded
Long Waves (2.order sub harmonics), Stokes 2.order Waves (2.order super
harmonics) and 2.order super harmonic waves (2.order super harmonics).

An ordinary 2.order FIR fllter will reproduce all the terms: Ofiset, 2.order
super harmonics and 2.order sub harmonics given above.

The discrete frequency domain equation for a non-linear fllter is:

G⁄(!n; !m; ¢!nm) = H(!n) ¢ F (¢!nm) ¢ H(!m)

where
G⁄: Transfer function for fllter in frequency domain
H; F : Two arbitrary functions (frequency domain)

This equation simply expresses that if G⁄ can be separated into the two
functions H and F then the non-linear process is identically described by the
process Y given above.

The problem with the FIR-fllter is that it will generate all 2.order terms. In
order to generate specifled waves, i.e. bounded long waves, Stokes 2.order
waves and 2.order super harmonic waves fi(!n; !m) or in other words H(!)
and F (¢!) must be found according to the requirements from the transfer-
function.

In the case where only the bounded long waves is required the transfer func-
tion G⁄ must be fltted to the long wave transfer function. The frequency range
and the ¢frequency range (for the fltting must be controlled through the flt-
ting algorithm in order to only have long waves. Small values (frequencies)
of the ¢frequency vector are sub{harmonics, and large values (frequencies)
are super{harmonics.

The frequency range for H is the part of the wave spectrum with signiflcant
energy. The ¢frequency range for F is from zero to the frequency where
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Figure 6.2: Frequency range for calculating long wave fllters.

energy starts to exist in the spectrum. For all other frequencies the values of
H and F are zero.

When the fllter coe–cients are found the bounded long waves are added
to the linear wave signal simply by flltering the linear wave signal through
the fllters (Take linear wave signal and convolve with H-fllter, take result of
convolution and convolve with F -fllter).
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Chapter 7

White Noise Wave Generation
with Long Wave Compensation

In the last two decades 2nd order wave generation theory has been treated
extensively by several authors, cf. Schaefier (1993) for a comprehensive his-
torical summary. For irregular waves methods for calculating the correct
2nd order bounded sub and superharmonic terms in the surface elevation or
paddle displacement signal given the 1st order surface elevation, ·(1), have
been presented:

Ottesen{Hansen (1978) derived a transfer function which in the frequency
domain enables a direct calculation of the 2nd order bounded subharmonic
terms in the surface elevation. The transfer function was derived for the 2nd
order bounded superharmonic terms by Sand and Mansard (1986). A general
and compact form of the 1st order elevation to 2nd order elevation transfer
function was rederived by Schaefier (1993).

Transfer functions enabling the 2nd order bounded subharmonic terms in
the paddle displacement to be calculated were presented by Sand (1982) for
a piston type wave maker. Sand and Mansard (1986) presented the corre-
sponding transfer functions for the 2nd order bounded superharmonic terms.
A general and compact form of the 1st order elevation to 2nd order paddle
displacement transfer function was rederived by Schaefier (1993).

The present chapter concentrates on the bounded subharmonic terms as
they generally are considered to be the most important in practical appli-
cations. Because the formulations presented by Ottesen{Hansen (1978) and
Sand (1982), the latter especially after correcting the formula as described
in Sand and Mansard (1986), generally are rather complex the formulations
suggested by Schaefier (1993) are adopted herein.
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7.1 Application of Existing Theory

The goal is to calculate the correct bounded 2nd order subharmonic terms
in the surface elevation, ·(2)¡, and the corresponding paddle displacement,
x(2)¡. The calculations are performed using the 1st order surface elevation
signal, ·(1).

Discrete Fourier transform of ·(1) decomposes the irregular surface elevation
into, say N regular wavelets. Let y be the general 2nd order subharmonic
signal, that is y = ·(2)¡ when considering the surface elevation and y =
x(2)¡ when considering the paddle displacement. The contribution to y by
each pair of regular wavelets with complex amplitudes An and Am and wave
frequencies fn and fm, where fn > fm, can then be calculated. In the
frequency domain:

Y (f) =

(
1
2
K(fn; fm)AnA⁄

m ; f = fn ¡ fm
1
2
K⁄(fn; fm)A⁄

nAm ; f = fm ¡ fn
(7.1)

where Y is the discrete Fourier transform of y, ⁄ denotes complex conjugation
and K for y = ·(2)¡ equals the ·(1) to ·(2)¡ transfer function G¡ derived by
Ottesen{Hansen (1978) and for y = x(2)¡ equals iF ¡ in which i is the imag-
inary unit and F ¡ is the ·(1) to x(2)¡ transfer function derived by Schaefier
(1993).

By adding the calculated y to the appropriate 1st order signal, ·(1) or x(1),
the surface elevation or paddle displacement correct to 2nd order, for linear
and subharmonic components only, is obtained.

7.2 Transfer Functions

Introducing the formulations by Schaefier (1993) the progressive part of the
the ·(1) to ·(2)¡ transfer function G¡ may be rewritten

G¡(fn; fm) =
1

g

‰
(!n ¡ !m)

C1

C2

¡ C3

¾
(7.2)

where

C1 = (!n ¡ !m)

ˆ
(¡!n!m) ¡ g2knkm

!n!m

!
+

!3
n ¡ !3

m

2
¡ g2

2

ˆ
k2

n

!n

¡ k2
m

!m

!
(7.3)
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C2 = g(kn ¡ km) tanh(kn ¡ km)h ¡ (!n ¡ !m)2 (7.4)

C3 =
1

2

(
g2knkm

!n!m

+ !n!m ¡ (!2
n + !2

m)

)
(7.5)

in which k is the wave number, ! is the cyclic wave frequency, g is the
gravitational acceleration and h is the water depth.

Compared to G¡ the complex ·(1) to x(2)¡ transfer function, F ¡, is more
complicated, in general

F ¡ = (F11 + F12 + F13) + i(F22 + F23 + F24) (7.6)

Each of the 6 functions eliminates free waves which otherwise would be emit-
ted from the wave paddle due to interaction between two 1st order terms:

F11 progressive wavelet and progressive wavelet,
F12 component of paddle position and progressive wavelet,
F23 component of paddle position and local disturbance wavelet,
F13 and F24 progressive wavelet and local disturbance wavelet and
F22 local disturbance wavelet and local disturbance wavelet

Cf. Schaefier (1993) for details. Sand (1982) showed that it is reasonable for
laboratory applications, where only subharmonic components are considered,
to omit 2nd order efiects originating from any 1st order interaction with the
local disturbance wavelets. Hence F ¡ reduces to

F ¡
1 = F11 + F12 (7.7)

where

F11 = C4
kn ¡ km

(kn ¡ km)2 ¡ k2
nm

C1 (7.8)

F12 = C4g

(
!2

n ¡ (!n ¡ !m)2

cm2!n

k2
n

k2
n ¡ k2

nm

+
!2

m ¡ (!n ¡ !m)2

cn2!m

k2
m

k2
n ¡ k2

nm

)
(7.9)

C4 =
k2

nm

(!n ¡ !m)3
(7.10)

in which knm is the solution to (!n¡!m)2 = gknm tanh knmh and c is the linear
Biesel transfer function for the actual type of wave paddle. This simplifled
formulation is adopted herein.
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7.3 Approximation

The exact method outlined in the previous section is e–cient and straight
forward to use and have been successfully implemented in several hydraulic
laboratories. The method is, however, limited to applications where the
1st order elevation can be frequency analysed, or already is available in the
frequency domain. This makes it inadequate for real-time applications, for
example where the 1st order elevation is generated on-line by means of digital
flltering of white noise, to produce a wave spectrum of a given shape but with
built-in stochastic variability (non-deterministic spectral amplitude model).

The scope of the present paper is to present an approximative method for
including the 2nd order subharmonic components in the surface elevation or
paddle displacement in such applications. Two in principle difierent schemes
can be considered: internal correction, where the approximative method
is build into a real-time wave generation software, and external correction,
where the analog 1st order paddle control signal is sampled from an existing
wave generation system, manipulated to include the correct subharmonics
and send to the wave paddle. In the following only the internal correction
will be thoroughly described, but how to change it into an external correction
will be brie°y outlined.

The study took its ofispring in an internal correction method build into the
wave generating software in the Hydraulics & Coastal Engineering Labora-
tory at Aalborg University.

7.4 2nd Order Process

Consider a function z which is the sum of two regular wavelets with complex
amplitudes An and Am and wave frequencies fn and fm, respectively. Let
Z(2) denote the discrete Fourier transform of z2. According to the convolution
theorem for Fourier transforms multiplication in the time domain corresponds
to convolution in the frequency domain, and vice versa, hence Z(2) can be
written

Z(2)(f) =

8
>>>>>><
>>>>>>:

1
2
(AnA⁄

n + AmA⁄
m) ; f = 0

1
2
AnA⁄

m ; f = fn ¡ fm
1
4
AmAm ; f = 2fm

1
2
AnAm ; f = fn + fm

1
4
AnAn ; f = 2fn

(7.11)
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Keeping in mind that Z(2)(¡f) = Z(2)⁄(f) it is seen that all phases and
frequencies in Equation 7.11 correspond, except for the ofi-set (f = 0), to
the subharmonics in Equation 7.1 ( f = fn ¡ fm and f = fm ¡ fn ), the
superharmonic components from Stokes 2nd order regular wave theory ( f =
2fm and f = 2fn ) and the superharmonic 2nd order components from wave-
wave interaction as described by Sand and Mansard (1986) ( f = fm + fn

and f = ¡fm ¡ fn ).

7.5 Hilbert Transform

The Hilbert transform relates the real and imaginary part of an analytic
function. That is, the imaginary part is the Hilbert transform of the real
part, and vice versa. Hence, in the frequency domain the Hilbert transform,
H, is deflned by

H(f) =

8
><
>:

¡i ; f > 0
0 ; f = 0
i ; f < 0

(7.12)

Now consider the function z(2)¡

z(2)¡(t) =
1

2

‡
z2(t) + H2[z(t)]

·
(7.13)

in which z is given in the previous section. The discrete Fourier transform
of z(2)¡, Z(2)¡, is then

Z(2)¡(f) =

8
><
>:

1
2
A⁄

nAm ; f = fm ¡ fn
1
2
(AnA⁄

n + AmA⁄
m) ; f = 0

1
2
AnA⁄

m ; f = fn ¡ fm

(7.14)

By comparing Equation 7.14 to Equation 7.1 it is evident that z(2)¡, except
for a linear transfer function and an ofi-set equals the 2nd order subharmonic
function y when considering interaction between two regular wavelets.
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7.6 Filter Approach

Assume that the transfer functions G¡ and F ¡
1 can be approximated by G¡

and F¡
1 , respectively, which both can be separated into two real functions,

H1 and H2, in the following manner (in the following only the approximation
of F ¡

1 by F¡
1 is discussed, but the method equally applies to G¡):

F¡(fn; fm) = H1(fn)H2(fn ¡ fm)H1(fm) (7.15)

where H2(0) = 0. The Fourier transform of y, Y may then be approximated
by Y 0

Y 0(f) =

(
1
2
H1(fn)H2(f)H1(fm)–AnA⁄

m ; f = fn ¡ fm
1
2
H1(fn)H2(f)H1(fm)–⁄A⁄

nAm ; f = fm ¡ fn
(7.16)

where – = 1 for y = ·(2)¡ and – = i for y = x(2)¡. Hence the inverse Fourier
transform of Y 0, y0, will approximate y. Using the convolution theorem for
Fourier transforms and Equations 7.13 and 7.14, y0 may be written:

y0(t) =
1

2
h2 ⁄

n
(h1 ⁄ ·(1))2 + (h ⁄ h1 ⁄ ·(1))2

o
(7.17)

where h, h1 and h2 are fllters deflned by their Fourier transforms: H(f),
H1(f) and –H2(f), respectively.

Hence, ·(1) may be flltered digitally to give ·(2)¡ or x(2)¡. Using discrete FIR
fllters of equal odd flnite length, say M, the delay between the last calculated
or sampled 1st order surface elevation and the calculated 2nd order elevation
or paddle displacement will be 3(M ¡1)=(2fs) in which fs is the frequency by
which the surface elevation is calculated or sampled. The scope of the present
paper is not to discuss the choice of fllter length, tapering etc., reference is
made to existing literature on the subject.

If calculation time is a problem it may be decided only to generate 2nd order
bound subharmonic waves below a certain frequency, say the lowest 1st order
wave frequency. In this case there is no need to include the Hilbert fllter h
in Equation 7.17, because h2 will act as a low-pass fllter, removing any super
harmonic components. Hence the calculation time will be reduced by 33 %,
if the fllter lengths are unchanged.

From Equations 7.2 to 7.10 it is obvious that the variables in the theoretical
transfer functions generally cannot be separated as suggested in Equation
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7.15 which means that in general F¡
1 6= F ¡

1 . Only when considering a sur-
face elevation consisting of wavelets with frequencies that ensure that the
corresponding subharmonic components have difierent frequencies will the
approximation be exact. However, it is possible, using a steepest descent
fltting method as outlined below, to calculate a F¡

1 that makes the fllter
approach generally applicable as will be shown.

The fllters are fltted by minimizing the merit function, ´2

´2 =
n¡1X

m=1

NX

n=2

n
F ¡

1 (fn; fm) ¡ H1(fn)H2(fn ¡ fm)H1(fm)
o2

(7.18)

in which N is the number of frequency components, N = (M + 1)=2, by
successive calculations of the gradient to ´2, r´2, in each point on the n¡m
plane and subsequent adjustment of H1(fn), H2(fn ¡ fm) and H1(fm) by a
small amount down this gradient, until ´2 converges. The converge of the
iteration is quite sensitive to choosing proper starting values of H1 and H2

To take into account the actual distribution of wave energy in the 1st order
surface elevation and the actual shape of the transfer function a weighting
function, W , is introduced. W is chosen as the relative long wave energy
induced by each pair of wavelets in the irregular 1st order wave spectrum S·,
that is:

W (fn; fm) =
S·(fn)S·(fm)(G¡(fn; fm))2

jS·(fn)S·(fm)(G¡(fn; fm))2jmax

(7.19)

in which max denotes the maximum value. Hence the small step down the
gradient is chosen as ¢W (fn; fm)(F ¡

1 (fn; fm) ¡ H1(fn)H2(fn ¡ fm)H1(fm)),
in which ¢ is su–ciently small to avoid instability.

To evaluate the quality of fltting, the relative long wave error induced by each
pair of wavelets, "(fn; fm) = (1 ¡ F¡

1 (fn; fm)=F ¡
1 (fn; fm))W (fn; fm) and the

sum of " relative to the total long wave energy, "tot, are calculated. In Figure
7.3 " is shown for a JONSWAP type wave spectrum. As observed the overall
error is quite small, "tot = 2.3 %, and F¡

1 only difiers slightly from F ¡
1 in

this case. Fitting the corresponding G¡ to G¡ leads to "tot = 3.0 %. It is in
fact the general observation that F¡

1 flts better to F ¡
1 than G¡ does to G¡.
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7.7 Example

Two examples of applying the presented approach to a JONSWAP type wave
spectrum and piston type wave maker are described in this section.
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Figure 7.1: Calculated 1st and 2nd order piston displacement, x(1) and x(2)¡.
JONSWAP spectrum, peak frequency, fp = 1.0 Hz, ° = 10 and h = 0.5 m.
2nd order subharmonic components calculated using fllter approach (fllter)
and existing theory (theory).

Figure 7.1 shows the 1st order paddle displacement signal x(1) and the cor-
responding 2nd order subharmonic signal, x(2)¡, calculated using the fllter
approach and the existing theory. From the flgure it is seen that the overall
agreement between the fllter approach and the existing theory is very good.
But because multiple frequency combinations induce bounded long waves
on equal frequencies there will be some difierences. From the flgure it ap-
pears that these difierences mainly are on the subharmonic components with
relative high frequencies.

In Figure 7.2 the measured 1st and subharmonic 2nd order surface elevation,
·(1) and ·(2)¡, are shown for the paddle displacement calculated using the
fllter approach, the existing theory and without including the 2nd order
terms. As for the paddle displacements in Figure 7.1 difierences between
the fllter approach and the existing theory mainly are on the subharmonic
components with relative high frequencies. But still the overall agreement is
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very good. Furthermore the flgure clearly indicates the problems when not
including the bound long wave correction: The bounded long waves will be
formed, but freely propagating long waves will be generated and the phase
and amplitude of the observed long wave bounded to the wave group will
vary along the °ume.
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Figure 7.2: Measured 1st and 2nd order surface elevation, ·(1) and ·(2)¡.
JONSWAP spectrum, peak frequency, fp = 1.0 Hz, ° = 10 and h = 0.5 m.
Wave generation not including (no correction) and including 2nd order sub-
harmonic components, calculated using fllter approach (fllter) and existing
theory (theory).

To change the internal correction method, described above, into an external
correction method, x(1) is calculated from the sampled linear paddle control
signal and flltered through an inverse Biesel fllter, b¡1, deflned by its Fourier
transform B¡1(f), to obtain ·(1). For a piston type wave maker:

B¡1(f) =
sinh kh cosh kh + kh

2 sinh2 kh
(7.20)

Equation 7.17 may then be rewritten

y0(t) =
1

2
h2 ⁄

n
(h1 ⁄ b¡1 ⁄ x(1))2 + (h ⁄ h1 ⁄ b¡1 ⁄ x(1))2

o
(7.21)
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The fllters b¡1, h1 and h2 of course need to be calculated according to the
actual wave parameters.

Contours:
    0.01
       0

   -0.01

0.5
1

1.5
2

2.5

0.5

1

1.5

2

2.5

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

Frequency (Hz)

Frequency (Hz)

Local error

Figure 7.3: Induced relative long wave error " when fltting F¡
1 to F ¡

1 , "tot =
2.3 %. JONSWAP spectrum, peak frequency, fp = 1.0 Hz, ° = 10 and h =
0.5 m.

7.8 Closure

A method has been presented for flltering a 1st order surface elevation to
obtain the 2nd order bound subharmonic surface elevation or corresponding
paddle displacement. The method has been compared in simulations and
physical experiments to the existing theory. The fllter approach gives exact
2nd order subharmonic components when only considering the interaction
between two regular wavelets. For irregular wave spectra the fllter approach
gives estimates which difiers slightly from the existing theory especially for
relative high subharmonic frequencies. For the low subharmonic frequencies,
which generally are the most important as far as long wave phenomena are
concerned, only insigniflcant difierences are observed. Hence, the method
is suitable for applications were bounded subharmonics otherwise cannot be
included using existing theory.

In addition a real-time scheme for manipulating the 1st order paddle control
signal to include the 2nd order subharmonic components has been outlined.
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Chapter 8

Generation of Oblique Waves

8.1 3-D Bi¶esel Transfer Function

In chapter 1 the Bi¶esel transfer function for uni-directional linear waves, F2,
was calculated for various types of generator systems. To generate oblique
linear waves travelling in a direction difierent from the x-axis direction per-
pendicular to the front of the generator, a difierent transfer function, F3,
must be applied.

Consider a wave generating system where the generator front consists of a
number of very small paddles. A oblique regular wave can then be generated
using Huygens’ principle, by introducing a suitable delay between the wave
paddles as illustrated in Figure 8.1. Each wave paddle moves harmonically
in the x-axis direction with the amplitude xa. It is evident that the required
delay of the individual wave paddles will lead to a sinusoidal shape of the
front of the wave generator. If the front of the actual wave generating system
fails to reproduce this shape correctly, as always will be the case due to the
flnite width of the wave paddles, undesired waves will be generated. In

Figure 8.1: Huygens’ principle in generating oblique waves. Regular wave
travelling in the µ-direction.
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Figure 8.2: Small part of wave generator, generating a oblique regular wave.

chapter 9 these so-called spurious waves are discussed. If the wave length of
the generated wave is L the wave length from maximum to maximum of the
sinusoidal front of the wave generator, l = L= sin µ. The delay, ’p, between
neighbouring wave paddles of width lp is lp ¢ 2…=l, or more convenient

’p = lp ¢ 2… sin µ

L
(8.1)

Consider a small part of the wave generator, say of the length ¢l, and let
the generated regular wave travel in the µ direction with the group celerity,
cg, see Figure 8.2.

The energy °ux, Ef , in the generated oblique wave over the length ¢l ¢ cos µ
in Figure 8.2 is

Ef » a2 ¢ cg ¢ ¢l cos µ (8.2)

where a is the wave amplitude and µ the direction of travel. Assuming that
no energy is transported along the crest of the generated wave, this energy
°ux must be balanced by the energy °ux over the length ¢l just in front of
the wave paddle. As the wave amplitude in front of the paddle is xa ¢ F2, and
the corresponding group velocity is cg= cos µ, this energy °ux can be written

Ef » (xa ¢ F2)2 cg

cos µ
¢l (8.3)

Combining Equation 8.2 and 8.3 the amplitude in the generated oblique wave,
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a, equals xa ¢ F2= cos µ and consequently the 3-D Bi¶esel transfer function

F3 = F2= cos µ (8.4)

Hence, by decomposing a specifled directional wave spectrum into a number
of wavelets of the form given in Equation 9.4, the wave paddle displacement
necessary for generating the individual wavelets can be calculated using the
transfer function given in Equation 8.4 and the delay between the wave pad-
dles can be calculated using Equation 8.1. By superposition the total paddle
displacement can then be obtained.

8.2 Phase Correction for Oblique Waves

The methods for generating 2-D waves perpendicular to the wave generators
that have already been described in chapter 2, namely the

† Random Phase Method

† Random Complex Spectrum Method

† White Noise Filtering Method

are applicable when generating oblique 2-D waves as well. Basically the
paddle displacement for one paddle, say the 0th, is calculated using one of the
methods from Chapter 2 and the displacement for the ith paddle is calculated
by introducing an appropriate delay, ’pi, relative to the displacement of the
0th paddle.

Consider a wave generator system consisting of n segmented wave paddles
with the width lp. A coordinate system is introduced as illustrated in Figure
8.3.

If the wave paddle displacement is calculated for a regular wave with the
wave length L travelling in the x-axis direction, the delay between the ith
and the 0th wave paddle when generating the same regular wave travelling
in the µ-direction, see Equation 8.1, is

’pi(f) = i ¢ lp
2… sin µ

L(h; f)
(8.5)
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Figure 8.3: Wave generating system with segmented wave paddles. Deflnition
sketch

As the paddle displacement must be calculated using the 3-D Bi¶esel transfer
function from Equation 8.4 the calculated 2-D displacement must be multi-
plied by cos µ.

8.3 Generation of Long Crested Irregular Oblique

Waves

Random Phase and Random Complex Spectrum Methods

Both methods involve an inverse Fourier transform of calculated Fourier co-
e–cients for the discrete paddle-displacement energy spectrum, ¾2

x(fj):

Aj = aj ¢ cos ’(fj)

Bj = aj ¢ sin ’(fj) (8.6)

where aj =
q

¾2
x(fj)=2 to produce the displacement of the wave paddle.

In the Random Complex Spectrum Method cos ’(fj) and sin ’(fj) are re-
placed by two random Gaussian variables with zero mean and ¾ = 1. This,
however, does not afiect the general principle in the following.

For each pair of frequency components the delay is introduced by substituting
’(fj) in 8.6 by ’(fj) ¡ ’pi(fj). Using the trigonometric addition formulas,
and assuming that aj is calculated using the 2-D Bi¶esel transfer function
derived in chapter 1, the modifled Fourier coe–cients for the discrete paddle-
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displacement energy spectrum are:

Aij = aj ¢ cos µ(cos ’(fj) cos ’pi(fj) + sin ’(fj) sin ’pi(fj))

Bij = aj ¢ cos µ(sin ’(fj) cos ’pi(fj) ¡ cos ’(fj) sin ’pi(fj)) (8.7)

Performing inverse Fourier transform on the n sets of Fourier coe–cients in
Equation 8.7 leads to the appropriate displacement time series for each of
the n wave paddles.

White Noise Filtering Method

The White Noise Filtering Method involves the use of two fllter operators:

The flrst fllter operator, the Surface Elevation fllter, is calculated by per-
forming inverse Fourier transform on a discrete frequency response function
corresponding to the target wave energy spectrum. Convolved with a white
noise signal the Surface Elevation fllter produces the appropriate surface el-
evation time series.

The second fllter operator, the Bi¶esel fllter, is calculated by performing in-
verse Fourier transform on a discrete frequency response function correspond-
ing to the inverse of the far fleld Bi¶esel transfer function from chapter 1. Con-
volved with the surface elevation the Bi¶esel fllter produces the corresponding
wave paddle displacement time series.

To generate oblique 2-D waves using the White Noise Filtering Method the
approach described in the previous section can be used to calculate appro-
priate Bi¶esel fllter coe–cients for each of the n wave paddles. Consequently,
to generate oblique 2-D waves the 2-D discrete frequency response function
for the Bi¶esel fllter:

H(fj):re = cos(')
1

Kf (fj)

H(fj):im = sin(')
1

Kf (fj)
(8.8)

where Kf is the far fleld Bi¶esel transfer function, must be modifled to apply
to the ith wave paddle:

H(fj):re =
cos µ

Kf (fj)
(cos ' cos ’pi(fj) + sin ' sin ’pi(fj))

H(fj):im =
cos µ

Kf (fj)
(sin ' cos ’pi(fj) ¡ cos ' sin ’pi(fj)) (8.9)
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Performing inverse Fourier transform on the n frequency response functions
in Equation 8.9, the Bi¶esel fllters for each of the n wave paddles are obtained.
Convolved with the surface elevation time series, calculated by convolving the
Surface Elevation fllter with a white noise signal, these fllter operators pro-
duce the appropriate displacement time series for each of the wave paddles.
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Chapter 9

Short Crested Waves

In this chapter an introduction to short crested waves is given and the meth-
ods for generation of short-crested waves are presented.

From an engineering point of view the knowledge of the three-dimensional
structure of ocean waves is essential for: design of ofi-shore structures, es-
timating transport of marine sediment, ship motion and so forth. Hence,
the generation of 3-D waves in laboratory facilities will be of interest when
conducting scaled experiments concerning such topics.

9.1 Description of Short Crested Waves

Measurements in the ocean environment have founded the basis for several
theoretical descriptions of the 3-D wave fleld. The directional wave spectrum,
S·(f; µ), is often considered a product of the uni-directional wave spectrum,
S·(f), and a spreading function, D(f; µ). That is

S·(f; µ) = D(f; µ) ¢ S·(f) (9.1)

where f is the wave frequency, µ the wave propagation angle and D(f; µ)
must satisfy

Z …

¡…
D(f; µ)dµ = 1 (9.2)

to assure identical wave energy in S·(f; µ) and S·(f).

Several semi-empirical proposals to the formulation of D(f; µ) have been
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Figure 9.1: The spreading function, D(f; µ), for various constant values of
the spreading parameter, s.

reported and most suggestions consider D to be independent of the frequency.
The Cosine-power or cos2s spreading function, see Mitsuyasu (1975):

D(f; µ) =
s2s¡1

…

¡2 (s + 1)

¡ (2s + 1)
cos2s

ˆ
µ ¡ µ0

2

!
(9.3)

where s is a spreading parameter and ¡ the Gamma function, was found to
provide a reasonable flt to measured ocean wave spectra by Longuet-Higgins,
Cartwright and Smith (1961) who used a frequency independent value of s.

In Figure 9.1 D is plotted as function of µ for various values of s.

Mitsuyasu et al. (1975) have reported on extensive measurements of di-
rectional spectra and proposed the Cosine power spreading function to be
applied with a frequency dependent s parameter. In their suggestion the
variation of D exhibits the smallest degree of directional spreading, maxi-
mum s value, at frequencies near the peak frequency.

If the directional wave fleld is considered the sum of a number of wavelets
with the elevation ·(x; y; t):

·(x; y; t) = a ¢ cos(2…ft ¡ kx cos µ ¡ ky sin µ + ’) (9.4)

where

98



Figure 9.2: Energy ’packet’ selection from a directional energy wave spec-
trum.

a : the wave amplitude,
t : the time,
k : the wave number, 2…=L,

(x; y) : the spatial coordinates and
’ : an arbitrary phase, uniformly distributed in [¡…; …[.

Introducing the total wave energy of the wavelet, Et, the amplitude can be
rewritten:

a =

s
2

‰g
Et (9.5)

where ‰ and g is the water density and gravitational acceleration ,respectively.

If the surface elevation is considered a Gaussian stochastic process charac-
terized by a specifled energy wave spectrum, S·, su–ciently small ¢µ and
¢’ can be chosen and the wave spectrum can be decomposed into a number
of energy ’packets’ each containing the approximate energy:

Et … ‰gS·(f; µ)¢µ¢f (9.6)

Figure 9.2 illustrates the choice of such an energy ’packet’.

Combining the Equations 9.4 - 9.6 and letting ¢µ and ¢f decrease towards
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dµ and df , respectively, the total surface elevation can be written as

·(x; y; t) =
Z 1

0

Z …

¡…

q
2S·(f; µ)dµ df cos(2…ft ¡ kx cos µ ¡ ky sin µ + ’)(9.7)

The integral in Equation 9.7 is often referred to as a pseudo-integral, referring
to its lack of mathematical stringency. In any way it is a descriptive way to
symbolize the limiting processes, ¢µ ! dµ and ¢f ! df .

9.2 Generating Irregular Short Crested Waves

Directional irregular waves can be expressed as a linear superposition of a
large number of wavelets of the type shown in Equation 5, with frequency f ,
propagation direction µ, wave length L, and phase ’. Thus, a simultaneous
generation of a number of oblique linear waves enables a reproduction of a
directional wave fleld in a laboratory wave basin.

Two in principle difierent models are available when generating input signals
for 3-D wave systems:

† Single summation model:
In this model a single direction is assigned to each frequency compo-
nent. Consequently the double pseudo-integral, Equation 9.7, is repre-
sented by a single summation leading to a paddle displacement for the
ith wave paddle, xi:

xi(t) =
N ¢MX

j=1

bj

F3(fj; µj)
cos(2…fjt ¡ ’pi(fj; µj) + ’(fj)) (9.8)

where

bj =
q

2Seta(fj)¢f ;

F3(fj; µj) =
F2(fj)

cos µj

and

’pi(fj; µj) = ilp
2… sin µj

L(h; fj)

in which F2(fj) is the 2-D Bi¶esel transfer function given in chapter 1.
For the method to be successful the choise of µj must represent the
adopted directional spreading function, D(f; µ). This is often achieved
by picking µj as a random number with a propability density function
equal to D(f; µ).
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† Double summation model:
In this model multiple directions are assigned to each frequency compo-
nent. The paddle displacement of the ith paddle can then be written:

xi(t) =
NX

j=1

MX

k=1

bjk

F3(fj; µk)
cos(2…fjt ¡ ’pi(fj; µk) + ’(fj; µk))(9.9)

where

bj =
q

2Seta(fj; µk)¢f¢µ ;

F3(fj; µk) =
F2(fj)

cos µk

and

’pi(fj; µk) = ilp
2… sin µk

L(h; fj)

in which µk often simply is chosen equally distributed from ¡…
2

to …
2
.

A speciflc problem relates to the double summation model. The phase difier-
ence between two wavelets with equal frequencies but difierent propagation
directions does not vanish in the cross spectra. The phenomenon, known
as phase locking, results in difierent spectral properties of the generated ir-
regular wave fleld dependent on the spatial coordinates. Consequently, the
irregular surface is non-ergodic. To reduce this efiect the number of wave
components in the double summation model, N ¢ M , must be increased sig-
niflcantly relative to the number of components in the single summation
model, N ¢ M . Takayama et al. (1989) conclude that the required number of
wave components in the double summation model must be 20 times larger
than in the single summation model to obtain the same quality of the gen-
erated wave fleld. Therefore several authors generally advocate the single
summation model for laboratory use, simply to reduce computation time.
In some generation methods, however, the double summation model can be
attractive in order to avoid, for example, inverse Fourier transform of very
long arrays.

In the following generation methods only the single summation model will
be discussed, but the applicability to a double summation model is straight
forward and will brie°y be described.

Consider a wave generation system with n segmented wave paddles and co-
ordinate system as outlined in chapter 8.

Inverse Fourier Transform methods

The two Inverse Fourier Transform methods for generating irregular 2-D
waves described in chapter 2:
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† Random Phase Method

† Random Complex Spectrum Method

The single summation model is applied using a technique very similar to the
method for generating oblique 2-D waves, as described previously.

Calculating the discrete wave energy spectrum, ¾2
·(fj) = S·(j ¢ ¢f)¢f , the

N ¢ M frequency components for the ith wave paddle can be calculated by
picking appropriate propagation directions, µj, using the techniques described
in the previous section, and random phases, ’(fj) equally distributed from
0 to 2…:

Aij =
bj

F3(fj; µj)
(cos ’(fj) cos ’pi(fj; µj) + sin ’(fj) sin ’pi(fj; µj))

Bij =
bj

F3(fj; µj)
(sin ’(fj) cos ’pi(fj; µj) ¡ cos ’(fj) sin ’pi(fj; µj))(9.10)

where bj =
q

¾2
·(fj)=2.

Using the Random Complex method cos ’(fj) and sin ’(fj) are replaced by
two random Gaussian variables as described in chapter 2.

Performing inverse Fourier Transform on the n set of N ¢M Fourier coe–cients
in Equation 9.10 will lead to the appropriate displacement time series for each
of the n wave paddles.

A double summation model could be applied by calculating M discrete wave
energy spectra, ¾2

eta(fj; µk) = S·(j ¢ ¢f; k ¢ ¢µ ¡ …
2
)¢f¢µ, and creating M

set of N frequency components for each of the n wave paddles, performing
inverse Fourier Transform and superpositioning the M displacement time
series for each of the wave paddles.

White Noise Filtering methods

The method described below is strictly following the equivalent method de-
scribed in chapter 2:

† White Noise Filtering Method

Consequently, the Bi¶esel fllter and the Surface Elevation fllter could be com-
bined when generating 3-D irregular waves, in case the surface elevation time
series are required. The surface elevation time series could for example be
used for calculating bounded sub or super harmonic waves, as discussed in
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chapters 6 and 7. If the two fllters not are combined only the Bi¶esel fllter
needs to be modifled for generating irregular 3-D waves.

In a single summation model a Bi¶esel fllter for each of the n wave paddles
must be designed. In alignment with chapters 1, 2 and 8 it is easily recognized
that the frequency response function for the 3-D Bi¶esel fllter assigned to the
ith wave paddle can be calculated as:

H(fj):re =
1

F3(fj; µj)
(cos ' cos ’pi(fj; µj) + sin ' sin ’pi(fj; µj))

H(fj):im =
1

F3(fj; µj)
(sin ' cos ’pi(fj; µj) ¡ cos ' sin ’pi(fj; µj))(9.11)

where ’pi(fj; µj) and F3(fj; µj) are deflned in the previous section and ' =
¡…

2
.

Performing inverse Fourier Transform on the n frequency response functions
in Equation 9.11 the Bi¶esel fllters for each of the wave paddles are obtained.
Convolved with the surface elevation time series these fllter operators produce
the appropriate displacement time series for each of the wave paddles.

If the two fllters, the Surface Elevation fllter and the Bi¶esel fllter, are to be
combined, this is achieved by creating a frequency response function consist-
ing of the components from the Bi¶esel frequency responce function multiplied
by the complex conjugate of the corresponding components in the Surface El-
evation frequency response function, that is H(fj; µj) = HB(fj; µj)¢H⁄

S(fj; µj),
and performing inverse Fourier Transform to obtain the fllter operators. A
double summation model can be applied by creating M fllters for M difier-
ent directions for each of the n wave paddles. By convolving M white noise
arrays with each of the directional fllters and sum up for all directions the n
paddle displacements are calculated.

9.3 Spurious Waves and Other Laboratory Dif-

flculties

Generating laboratory waves using a truncated segmented paddle system
will generally afiect the quality of the generated wave fleld. Due to the in-
capability of the segmented front of the wave maker to form a perfect sinusoid
the principles outlined in the previous pages are not completely valid.

The error in the wave generation is dependent on the wave length L, the
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propagation direction µ and the paddle width lp, for example expressed as
the ratio l=lp = L=(lp sin µ), and two fold:
Incorrect energy is feed into the generated waves because the integrated vari-
ance of the actual displacement of the wave paddle front is difierent from that
of an ideal sinusoidal displacement.
Incorrect directed energy is feed into the generated waves causing spurious
waves, travelling in directions difierent from the main waves, to be generated.
Both efiects cause the actual transfer function between the stroke of the wave
paddle and the wave height to be difierent from the theoretical 3-D Bi¶esel
transfer function F3. Reference can be made to Sand (1979) for a detailed
description of the phenomena and useful implementations into a specifled
wave generating system.

Other efiects are

† The truncation of the wave maker causes difiraction, that is wave energy
travelling along the wave crest and, consequently, reducing the height
of the generated wave.

† The truncation of the wave basin causes re°ection from the side walls
which, consequently, afiects the directional spreading of the wave fleld.

These efiects signiflcantly reduce the horizontal area inside which the spec-
ifled wave fleld is generated. It will not be discussed here but it is possible
to take into account these efiects. References are made to Funke and Miles
1987, who developed The Corner Re°ection Method taking into account re-
°ections from side walls. Futhermore several difierent methods for taking
into account difiraction of the individual wavelets exists.
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