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Stochastic energy optimization of residential heat pumps in uncertain 
electricity markets 

Hessam Golmohamadi 
Department of Computer Science, Aalborg University, 9220 Aalborg, Denmark   

H I G H L I G H T S  

• Flexibility of thermal inertia of buildings with multi-temperature zones. 
• Unlocking flexibility potentials of closed-cycle and open-cycle water tanks. 
• Characterizing uncertain energy price, ambient temperature, hot water consumption.  

A R T I C L E  I N F O   

Keywords: 
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Flexibility 
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Uncertainty 

A B S T R A C T   

The penetration of renewable energy sources is increasing in power systems all over the world. Due to the 
intermittency and volatility of renewable energies, demand-side management is a practical solution to overcome 
the problem. This paper proposes a stochastic model predictive control for heat pumps to supply space heating 
and domestic hot water consumption of residential buildings. Continuous-Time Stochastic Model is coded in R 
language to address the model identification approach. The approach uses the sensor data of households to 
extract the thermal dynamics of the building. The controller participates in three floors of power markets with 
high renewable power penetration. The three-stage stochastic programming is suggested to unlock power-to-heat 
flexibility in the day-ahead, intraday, and balancing markets on long, mid, and short advance notices, respec-
tively. Regarding the close correlation between renewable power availability and electricity price, the price data 
is modeled as probabilistic scenarios through Auto-Regressive Integrated Moving Average. The ambient tem-
perature, as well as the domestic hot water consumption, are addressed as envelope-bounds with upper and 
lower thresholds. Finally, the operational strategies of the controller are examined on a 150 m2 test house under 
uncertain electricity prices, weather variables, and occupancy patterns.   

In this section, the main nomenclatures are described. However, 
complementary explanations are described in the text close to the 
associated mathematical models. 

1. Introduction 

1.1. Motivation 

In the last years, the share of Renewable Energy Sources (RES) has 
increased from 125 GW in 2013 to approximately 200 GW in 2020 in 
power systems worldwide [1]. In this way, the intermittency and vola-
tility of the supply-side increase considerably. To overcome the inter-
mittent renewable energies, demand flexibility is a practical solution. 
The demand flexibility reflects the part of electricity consumption that 
can be adjusted (increased/decreased/curtailed/shifted) in response to 

an external request, e.g. Demand Response (DR). To redress the power 
system imbalances, all the demand sectors, including residential [2], 
agricultural [3], industrial [4], and electric vehicles [5], should take 
part in DR programs. In other words, the segregated demand flexibilities 
fail to meet the flexibility requirements of the supply side. To provide a 
general insight into the problem, Fig. 1 depicts a schematic diagram of 
demand-side flexibility in power systems. In the residential sector, the 
thermostatically-controlled appliances, e.g. water heaters and heat 
pumps, have great flexibility potentials [6]. In the agricultural sector, 
the water irrigation pumps with variable frequency drives offer power 
flexibility for the power grid [7]. In the industrial sector, the inter-
ruptible industrial processes can be turned on/off in response to power 
excess/shortage in the power market [8]. Regarding the Plug-In Electric 
Vehicles (PEV), the private and public parking lots are considered vir-
tual power plants to provide power flexibility in the opposite direction of 
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the power system imbalance [9]. 
In the residential sector, the penetration of heat pumps is increasing 

especially in countries with high RES penetration, e.g. Denmark [10], 
China [11], and Germany [12]. The heat pumps not only decrease the 
energy consumption cost but also facilitate the RES integration. Heat 
controllers play a crucial role in unlocking the flexibility potentials of 
heat pumps. From the energy viewpoint, the heat controllers have two 
distinct operation sides as follows:  

1. Heating energy on the demand-side: Includes the thermal dynamics 
of buildings and thermal storage as well as the residents’ comfort 
bounds.  

2. Electrical energy on the supply-side: Includes the price data of the 
electricity markets and/or flexibility requirements of power systems. 

Making a compromise between the two competing objectives, the 
controllers unlock the power-to-heat flexibilities. The operation of the 

controllers is strongly dependent on RES availability, energy price, oc-
cupancy pattern, and weather variables which are uncertain data. 
Therefore, the main motivation of the study is to design a heat controller 
closely aligned with uncertain electricity markets while addressing the 
uncertainties associated with weather variables and occupancy patterns. 

1.2. Related studies 

In the literature, the flexibility opportunities of heating systems stem 
from the following classifications:  

1. Thermal inertia of mass and buildings [13].  
2. Thermal storage devices [14].  
3. Heat carriers [15]. 

The flexibility of thermal inertia of buildings refers to the storage 
capability of thermal masses, e.g. indoor temperature and envelopes 

Nomenclature 

Acronyms 
ARIMA Auto-Regressive Integrated Moving Average 
CCWT Closed-Cycle Water Tank 
COP Coefficient of Performance 
CTSM Continuous-Time Stochastic Model 
DHW Domestic Hot Water 
DR Demand Response 
EMPC Economic Model Predictive Control 
MO Meteorological Office 
MPC Model Predictive Control 
OCWT Open-Cycle Water Tank 
PCM Phase Change Materials 
PSO Power System Operator 
PEV Plug-in Electric Vehicle 
RES Renewable Energy Source 
SEMPC Stochastic Economic Model Predictive Control 

Indices 
n Index for DHW consumers, n = 1,…,N 
r Index for building rooms, r = 1,…,R 
t Index for time slots, t = 1,…,Nτ 
ω Index for price scenarios, ω = 1,…,Nω 

Constants 
ṁn

DHW Mass flow of DHW for consumer n (kg/s) 
Πr

S Heating power captured by solar irradiation (kW) 
ΠRated

t Rated power demand of the compressor of the heat pump 
(kW) 

Cr
h Heat capacity of heating system for room r (kWh/◦C) 

Cr
e Heat capacity of an envelope for room r (kWh/ ◦C) 

Cr
i Heat capacity of indoor temperature for room r (kWh/◦C) 

CCC
w Heat capacity of CCWT (kWh/◦C) 

COC
w Heat capacity of OCWT (kWh/◦C) 

HOC Maximum height of OCWT (m) 
Rra

e Heat resistance factor between the common envelope of 
rooms r and ambient (oC /kW) 

Rrr’
e Heat resistance factor between the common envelope of 

rooms r and r’ (oC /kW) 
Rr

ih Heat resistance factor between indoor temperature and 
heating system for room r (oC /kW) 

Rr
ie Heat resistance factor between indoor temperature and 

wall for room r (◦C/kW) 
RCC

w Heat resistance between the CCWT and the closet (◦C/kW) 

γX The weighting factor of market floors 
θOC

In The temperature of inlet water charged to OCWT (◦C) 
θCC

W The closet temperature of the CCWT (◦C) 
θa Ambient temperature (◦C) 
θCC

cl The closet temperature of the CCWT (◦C) 
θOC

cl The closet temperature of the OCWT (◦C) 
θr,min/max

i Minimum/maximum indoor temperature for room r (◦C) 
θz,min/max

w Minimum/maximum water temperature for OCWT and 
CCWT (◦C) 

κr
w The factor of incident solar irradiation for room r 
λBM

t Balancing electricity price ($/kWh) 
λDA

t Day-ahead electricity price ($/kWh) 
λIM

t Intraday electricity price ($/kWh) 
πup/down

HP Ramp-up/-down rates of the compressor 
ρw Specific heat value of water (J/Kg ◦C) 
υCOP Coefficient performance of the heat pump 

Variables 
ṁr

CC Mass (water) flow of floor pipes for room r (kg/s) 
hOC

w Height of hot water in OCWT (m) 
Πn

DHW Heating power of DHW for consumer n (kW) 
ΠCC

HP Heating power extracted from heat pump to supply CCWT 
(kW) 

ΠOC
HP Heating power extracted from heat pump to supply OCWT 

(kW) 
ΠTotal

HP Total heating power consumption of the heat pump (kW) 
Πr

R Heating power extracted from heating system of room r 
(kW) 

ΠBM
t Power trading in the balancing market (kW) 

ΠDA
t Power purchase from the day-ahead market (kW) 

ΠE
t Total power demand of the heat pump compressor (kW) 

ΠIM
t Power trading in the intraday market (kW) 

θr
h The temperature of the heating system for room r (◦C) 
θCC

F The water temperature of forward pipes for CCWT (◦C) 
θOC

F The water temperature of forward pipes for OCWT (◦C) 
θCC

R The water temperature of return pipes for CCWT (◦C) 
θCC

W The water temperature of the CCWT (◦C) 
θOC

W The water temperature of the OCWT (◦C) 
θr

e The temperature of an envelope for room r (◦C) 
θr

i The indoor air temperature for room r (◦C)  
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[16]. This flexibility is shown by the thermal dynamics of the indoor 
temperature [17]. The indoor temperature satisfies the residents’ com-
fort bound, including minimum and maximum comfort temperature. 
Adjusting the indoor temperature within the comfort bound, the thermal 

inertia flexibility is unlocked. In this way, the temperature is regulated 
in response to the flexibility requirements of the supply side. Therefore, 
when a RES shortage/excess happens in the power system, the controller 
sets the indoor temperature near the lower/upper thresholds [18]. The 
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Fig. 1. Schematic diagram of demand-side flexibility in the power system topology.  
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Fig. 2. Contribution of different flexibility potentials of heating systems.  
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value of this flexibility potential has a direct relation with the difference 
between the upper and lower thresholds [19]. 

The flexibility of thermal storage emanates from the devices which 
are especially devoted to heat flexibility [20]. Water tanks [21], 
chemical storages [22], aquifers [23], and boreholes [24] are the most 
conventional heat storage. The value of this flexibility potential is 
strongly dependent on the storage capacity of the equipment. In recent 
years, Phase Change Materials (PCM) have attracted much attention. 
PCMs are substances that absorb sufficient energy at the phase transition 
during the heating state and release the energy during the cooling pro-
cess [25]. The PCMs are normally in two fundamental states of matter, 
including solid and liquid [26]. While the household water tanks pro-
vide power flexibility for short-term power markets, e.g. the day-ahead 
[27], adjustment [28], and real-time markets [29], the large-scale 
borehole storage provides long-term flexibility for seasonal markets 
[30]. 

The flexibility potential of the heat carrier is reflected in the storage 
capacity of the heat distribution network [31]. The thermal variables of 
the heating network, including carrier temperature, supply pressure, 
and mass flow are adjusted within a standard bound to provide heat 
flexibility. For example, the temperature of the heat carrier can be 
changed between 10 and 20 K to provide demand flexibility [32]. In this 
case, material fatigue [33] and pipe cracks [34] are possible failures, 
especially in join points. The flexibility of the heat carrier can be 
addressed in only the forward pipes and both forward and return pipes. 
In the former, the half content of the heat distribution network is 
addressed [35]. In the latter, the whole pipes are considered as the 
flexibility resource [32]. Fig. 2 describes how different flexibility po-
tentials contribute to the total flexibility of heating systems. 

To unlock the three types of flexibility potentials, heat controllers 
incorporate the flexibility requirements of the supply-side into the 

heating system. Generally, the heat controllers are stated in form of 
classic (conventional) and advanced (modern) controllers. The classic 
controllers refer to conventional controllers to provide a balance be-
tween supply and demand [36]. In these controllers, the technical re-
quirements of the supply-side are not taken into account; therefore, the 
classic controllers normally fail to address demand-side flexibility. On 
the contrary, the advanced controllers aim to supply the heat demands 
addressing the technical requirements of the supply-side [37]. The 
control variables are normally addressed as heat demand, supply tem-
perature, mass flow, and differential pressure [33]. Besides, the con-
trollers are classified into centralized [38] or distributed [39]. 
Regarding the centralized controllers, the control variable is adjusted on 
the supply-side including the heating network or substations. In this 
case, supply temperature [40] and differential pressure [41] are the 
controllable variables. For the distributed controllers, the control vari-
able is optimized on the demand side, e.g. buildings. In such controllers, 
heat demand [42] and mass flow [43] are the conventional control 
variables. 

To unlock power-to-heat flexibility in response to power system re-
quirements, the advanced controllers have communication with the 
supply side. From this viewpoint, the controllers are divided into offline 
and online controllers. The offline controllers incorporate the energy 
system requirements into the heating system in an offline mode [44]. 
The main drawback is that the controller operates the heating system 
based on predicted imperfect data, e.g. uncertain weather variables and 
electricity prices, which are subject to sensible variations. Approaching 
the energy delivery time, the operation of heating systems is mainly 
affected by uncertain climate variables, e.g. air temperature, wind 
speed, humidity, and solar irradiation [45]. To overcome this problem, 
the online controllers are suggested to adjust the operation of the 
heating system based on the updated data of uncertain variables. 
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Fig. 3. Different generations of heat controllers in the literature.  
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Recently, Model Predictive Control (MPC) [46], Economic MPC (EMPC) 
[47], and Multi-agent Systems (MAS) [48] are highly emphasized in this 
regard. To sum up, the different generations of heat controllers are 
depicted in Fig. 3. 

1.3. Paper contributions 

In this paper, a heat controller is designed with a three-stage sto-
chastic objective function. The stages of the stochastic function are 
associated with the trading floors of electricity markets with high RES 
penetration, e.g. Nordic Electricity Market. The controller addresses the 
EMPC approach to adjust the energy consumption in three market floors 
including the day-ahead, intraday, and balancing markets from 24 h 
before power delivery time until real-time. At the same time, the 
controller updates the weather data, e.g. ambient temperature. Having 
communication with Meteorological Office (MO) and Power System 
Operator (PSO), the controller optimizes the heat consumption to pro-
vide demand flexibility for the power system. The heat controller sup-
plies both space heating and Domestic Hot Water (DHW) consumption. 
Regarding space heating, the thermal dynamics of the buildings are 
developed to discuss different temperature zones based on occupancy 
patterns. The main contributions of the paper can be stated as follows:  

1. Suggesting stochastic EMPC to adjust heat consumption on long, 
mid, and short advance notices of RES availability. 

2. Unlocking flexibility potentials of space heating and DHW con-
sumption by closed-cycle and open-cycle water tanks. 

3. Studying the impacts of uncertain electricity price, ambient tem-
perature, and DHW consumption on the operation of the heating 
system. 

The rest of the paper is organized as follows. In Section 2, the 
problem methodology is described. Section 3 illustrates the 

mathematical formulations of the problem. In Section 4, the numerical 
studies, simulations, and discussions are presented. Section 5 concludes 
the suggested approach. 

2. Problem methodology 

This study designs a demand controller for heat consumption of 
residential buildings including space heating and DHW. The heating 
system is supplied by an electric heat pump. The controller accepts input 
data from the supply-side and demand-side. On the supply side, the 
controller has communication with PSO and MO to receive the flexibility 
requirements and climate data, respectively. On the demand side, the 
residents set their desired comfort bound into the controller. 

The controller is supplied by a power system with high RES pene-
tration. Therefore, it aims to provide power-to-heat flexibility for the 
upstream network based on RES availability. The controller integrates 
flexibility opportunities of the heating system into the three markets on 
24 h-ahead, 1 h-ahead, and a few seconds-ahead on long, mid, and short 
notices, respectively. 

On the supply side, RES availability has a close correlation with the 
electricity price. Therefore, the uncertain prices of the three market 
floors are reflective of the RES intermittency. To model the price un-
certainties, Auto-Regressive Integrated Moving Average (ARIMA) is 
addressed as the scenario generation approach. The uncertainty of 
climate data, i.e. the ambient temperature, as well as the DHW con-
sumption is modeled as envelope bounds with minimum and maximum 
deviations. 

To optimize the competing objectives under severe uncertainties, 
three-stage stochastic programming is embedded in the objective func-
tion of the controller. The suggested approach uses the MPC control 
technique in which enables the controller to optimize the current 
timeslots while anticipating future events and take control actions 
accordingly. To minimize the energy consumption cost, the objective 

Module-based Heat Controller Communication Module 

Network PLC Receive data of flexibility needs 
Receive the electricity prices data 
Send Power Consumption Data 

Processing Unit 

MATLAB 

Optimize operation of heat pump 
Provide flexibility for PSO 
Satisfy residents’ comfort bounds
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Set residents’ preferences 
Send comfort band 

Flexibility Data 
Data of Power Consumption 

Operation of Heat Pump 
Data of Residents’ Comfort 

Demand Contactor Relays 

OC Tank ≈ DHWCC Tank ≈ Space Heating

Reference indoor temperature 
Reference hot water temperature 
Min/Max indoor temperature 
Min/Max hot water temperature 
Occupancy presence-absence 
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Power System Operator 
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MO 
Meteorological Office 

Objects and Duties 
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Flow of Data 

Climate Data 

Fig. 4. Schematic structure of the heat controller.  
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function uses economic terms of the electricity market. As a result, the 
controller is called Stochastic Economic Model Predictive Control 
(SEMPC). 

The MPC relies on the thermal dynamics of the buildings which are 
obtained by model identification. To identify the thermal dynamics of 
the building, the measurement data, i.e. indoor air temperature, 
ambient temperature, solar irradiation, and heating consumption, are 
imported to the model identification. Continuous-Time Stochastic 
Model (CTSM) is used to estimate the thermal dynamics. The CTSM is 
run for 5 days’ worth of sensor data. The MPC is trained by the CTSM to 
embed the thermal dynamics of the buildings into the controller. Finally, 
the controller optimizes the heating demand of the building based on 
RES availability and climate variables while meeting the residents’ 
comfort bounds. 

To provide a general insight into the issue, Fig. 4 depicts the sche-
matic diagram of the controller. As the figure reveals, the controller is 
suggested in a module-based structure to show the communication, 
processing, user interface, and relay units clearly. The control algorithm 
is coded in the processing unit. In this unit, different software tools, e.g. 
UPPAAL [49], GAMS [50], and MATLAB [51], can be adopted. 

3. Problem formulations 

In this section, the main structures of the problem are formulated 
mathematically. To clarify the suggested approach, the problem is pre-
sented in different subsections. 

3.1. Model identification 

To unlock the flexibility opportunities of thermal inertia, the thermal 
dynamic behavior of the buildings should be investigated. The resi-
dential buildings are comprised of rooms, including kitchens, living 
rooms, bedrooms, and bathrooms, with different temperature needs. To 
provide power flexibility, the operation of the heating systems is opti-
mized based on the occupancy presence and absence in rooms. In this 
way, despite the reduction of energy consumption cost, the power sys-
tem takes the advantage of demand flexibility. To achieve the aim, 
different temperature zones are defined in rooms based on temperature 
needs and occupancy patterns. From the viewpoint of thermal dynamics, 
the heat flux between the adjacent rooms must be addressed in addition 
to the conventional heat exchange with external envelopes. Therefore, 
the thermal dynamics of the residential building with R rooms are 
formulated as follows [52]: 

dθri (t)
dt

=
1
Cri

×

((
θrh(t) − θ

r
i (t)
)

Rrih
+

(
θre(t) − θ

r
i (t)
)

Rrie
+
(
κrw × Πr

S(t)
)
+ σidωi

)

(1)  

dθre(t)
dt

=
1
Cre

×

⎛

⎜
⎜
⎜
⎜
⎝

(
θri (t) − θ

r
e(t)
)

Rrie
+
∑R

r′ =1

r′ ∕=r

(
θr

′

i (t) − θ
r
e(t)
)

Rrr′e
+
∑A

a=1

(
θa(t) − θre(t)

)

Rrae

+ σedωe

⎞

⎟
⎟
⎟
⎟
⎠

(2)  

dθrh(t)
dt

=
1
Crh

×

(
(θri (t) − θ

r
h(t))

Rrih
+ Πr

R(t) + σhdωh
)

(3) 

Let consider a building with R rooms. The set of differential equa-
tions explain the thermal dynamics for room r. Eq. (1) shows the thermal 
dynamics of the indoor temperature. The first and second terms indicate 
the heat transfer between the floor pipes and indoor temperature, and 
between indoor air and envelopes, respectively. The third term describes 
the heating power captured from solar radiation. Eq. (2) illustrates the 
thermal dynamics of the envelope temperature. In this model, the first 
term explains the heat exchange between the indoor air of room r and its 
envelopes. The second term states the heat flux between the envelopes of 
room r and the indoor air of rooms r’. This term describes the heat flux 
between the room r with the surrounded rooms r’. The third term ex-
presses the heat flux between the envelopes of room r and ambient 
temperature. This term is related to envelopes surrounded by ambient 
(unconditioned environment). Eq. (3) explains the thermal dynamics of 
the floor pipes. The first term discusses the heat transfer between the 
floor pipes and indoor air. The second term shows the heating power of 
the floor pipes. Note that the heating systems of rooms are in the form of 
floor pipes. Fig. 5 describes the thermal dynamics of the suggested 
approach with a schematic diagram. 

In this model, the last terms of the equations, i.e. the blue color 
terms, indicate the standard Wiener process ωx, x∈{i,e,h} with the in-
cremental variance σx

2 [53,54]. In the thermal dynamics, the constant 
coefficients Rx, Cx, κw depend on the physical characteristics of the 
building, e.g. envelope materials and quality of insulation. To estimate 
the coefficients, the CTSM links a data-driven approach with the thermal 
dynamics. The approach uses the measurement data to estimate the 
constant parameters of the thermal dynamics. The sensor data includes 
indoor temperature, ambient temperature, solar irradiation power, and 
heating consumption (θi,θa,ΠS,ΠR) which are extracted from measure-
ment sensors. Let formulate the sensor data such that: 

Yk = Tik + ek (4)  

where tk describes the time slot of a data measurement at point k; Yk 
states the sensor data, and ek denotes the measurement error as Gaussian 

Internal Heat Flux 
External Heat Flux 
Heat Transfer between Pipes and Indoor Air 

,
Room 1 

Room R 

Room r 

,

Heating System (Floor Pipes) 
Envelope 

Indoor Air 

Temperature Zones 

Fig. 5. Diagram of the thermal dynamics of buildings.  
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white noise. The sensor data are [θi,θa,ΠS,ΠR]. 
Given the measurement input data, the maximum likelihood esti-

mation of parameters, including 
[
Cr

i ,Cr
e,Cr

h,R
r
ih,R

r
ie,Rrr’

e ,Rra
e ,Rr

ih, κ
r
w
]
, are 

obtained. Training the model with the sensor data, the maximum like-
lihood is described mathematically as follows [53]: 

L(θ, YN) =

(
∏N

k=1
p(Yk|Yk - 1, θ)

)

p0(Y0|θ) (5)  

θs = argmax[L(θ;YN)] (6) 

The operator p(.) denotes a conditional density while observing the 
sensor data at point k, previous point k-1 and the target variable θ. Also, 
the initial conditions are shown with p0(.). Consequently, Eq. (6) 
matches the maximum likelihood for the target variable θs. The CTSM is 
developed by the Department of Computer Science, DTU, Denmark, 
using statistical language R. The software is publicly available at [55]. 
Besides, instructions and tutorial files are available at [53]. Fig. 6 depicts 
the schematic of the stochastic gray box in the CTSM approach. 

3.2. Thermal storage 

The heat pump supplies the heat energy of both the space heating 
and the DHW. In this way, two water tanks are addressed as Closed- 
Cycle Water Tank (CCWT) and Open-Cycle Water Tank (OCWT). The 
CCWT supplies the heat demand of the floor pipes. The volume of water 
remains unchanged in the forward and return pipes. The OCWT supplies 
the DHW consumption in the kitchen and bathroom. Therefore, there is 
no return pipe for the OCWT. Instead, the water tank is refilled with inlet 
water from the water distribution system. 

The thermal dynamics of the CCWT are stated as follows: 

dθCCw (t)
dt

=
1
CCCw

×

(

ΠCC
HP(t) −

∑R

r=1
Πr
R(t) +

(θCCCl (t) − θ
CC
w (t))

RCCw

)

(7)  

Πr
R(t) = ṁrCC(t) × ρw × (θCCF (t) − θCCR,r (t)) (8) 

Eq. (7) describes the variations of the water temperature for 
consecutive times. The first right term shows the power consumption; 
the second term states the summation of heat consumption for R rooms 
and the third term explains the thermal loss from the tank shell. Eq. (8) 
expresses the heat consumption of room r as a function of mass flow and 
water temperature of forward/return pipes. Despite the heat loss in 
water pipes, the forward water temperature is normally equal to the 
water temperature of the water tank θCC

F ≈ θCC
w . 

As mentioned above, the main difference between the CCWT and 
OCWT is that the volume of the water in the CCWT maintains the same 
level due to the return water from floor pipes. In contrast, there is no 
return pipe in the OCWT where the tank is refilled by the fresh inlet 
water. Therefore, the thermal dynamics of the OCWT are formulated as 
follows: 

dθOCw (t)
dt

=
1
COCw

×

(

ΠOC
HP(t) −

∑N

n=1
Πn
DHW(t) +

(θOCCl (t) − θ
OC
w (t))

ROCw

)

(9)  

Πn
DHW(t) = ṁnDHW(t) × ρw × (θOCF (t) − θOCIn (t)) (10) 

In the same way, Eq. (9) denotes the variation of water temperature 
for the OCWT. The second right term describes the heat consumption of 
DHW in room n. Generally, in a residential building, the DHW is 
consumed in the kitchen and bathroom n ∈ r,N≪R. Eq. (10) shows the 
heat consumption of DHW in room n. 

To evaluate the volume of water in the OCWT, a two-mass composite 
model is addressed. The approach considers two water segments 
including upper and lower segments. The upper segment has a uniform 
temperature close to the forward water to the DHW consumers. The 
lower segment is reflective of a uniform temperature of the inlet water 
from the water distribution system. The model is used to calculate the 
height of hot water in the OCWT during the operation. The following 
equations describe the height variation of hot water in the OCWT [56]: 

dhOCw
dt

= αOC −
(
βOC × hOCw

)
(11)  

αOC =

⎛

⎜
⎜
⎜
⎝

HOC ×
ΠOC
HP +

(θOCCl − θ
OC
Lo )

ROCw

COCw × (θOCUp − θ
OC
Lo )

⎞

⎟
⎟
⎟
⎠

−

⎛

⎝HOC × ṁnDHW × ρw
COCw

⎞

⎠ (12)  

βOC =
1

COCw × ROCw
(13) 

In the two-mass composite model, the water temperatures for the 
upper and lower segments are equal to hot water temperature and inlet 
water temperature, θOC

Up ≈ θOC
w and θOC

Lo ≈ θOC
In . 

Fig. 7 illustrates the structure of the OCWT with inlet and outlet 
water pipes. 

Stochastic Grey Box 
Eq. (1)-(6) 

White Noise

[θi,θa,Π S,Π R] , 

Sensor Data Thermal CoefficientsCTSM

Fig. 6. Stochastic grey box of CTSM.  

Inlet (Cold) Water

Outlet (Hot) Water

Fig. 7. The OCWT with inlet and outlet temperatures.  
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3.3. Stochastic economic model predictive control 

The heat controller aims to minimize the heat consumption cost of 
the household in terms of space heating and DHW consumption 
attaining the following key objectives:  

1. Providing demand flexibility for power systems.  
2. Minimizing power consumption cost of households.  
3. Satisfying the residents’ comfort bounds. 

To fulfill the first objective, the controller procures the required 
power from three trading floors of electricity markets. The controller 
optimizes the heat consumption in response to flexibility requirements 
of the supply-side from 24 h ahead in the day-ahead market until real- 
time in the balancing market. To attain the second objective, an eco-
nomic objective is embedded into the controller to minimize the energy 
consumption cost of the household. The objective function includes the 
electricity prices of the three market floors. Finally, to meet the third 
objective, the residents’ comfort bounds are set to the controller by 
occupants. The comfort bounds are set to the controller as the con-
straints of the optimization approach. 

The three market floors are modeled through three-stage stochastic 
programming as follows [52]: 

FFirstStage = Minimize
(ΠDAt (ω))

(
∑

ω∈Nω

∑Nτ

t=τ
Eω1

[
λDAt (ω1) × ΠDA

t (ω1) + FSecondStage
]
)

(14)  

FSecondStage = Minimize
(λIMt (ω2))

(
∑

ω∈Nω

∑Nτ

t=τ
Eω2 |ω1

[
λIMt (ω2) × ΠIM

t (ω2) + FThirdStage
]
)

(15)  

FThirdStage = Minimize
(ΠBM(+)

t (ω),ΠBM(− )
t (ω))

(
∑

ω∈Nω

∑Nτ

t=τ

[
Eω3 |ω1 ,ω2

[(
λBM(+)
t (ω3) × ΠBM(+)

t (ω3)
)

−
(
λBM(− )
t (ω3) × ΠBM(− )

t (ω3)
) ] ]

)

(16)  

where Index E denotes the expectation function. The objective function 
is stated in three stages. In the first stage, the controller can purchase γDA 

% of the required power from the day-ahead market. The day-ahead 
market is performed 24 h before power delivery time. The day-ahead 
electricity price includes informative data about power availability in 
the electricity market. Therefore, the controller optimizes the energy 
consumption for the next 24 h on long advance notice of power flexi-
bility. Eq. (14) states the objective function of the first stage in the day- 
ahead market. 

Afterward, the intraday market is cleared 60–10 min prior to power 
delivery time. In the second term, the controller is allowed to purchase/ 
sell power from/to the intraday market. In cases when the intraday 
market experiences a power deficit, the intraday price increases. In 
response, the controller may decide to sell a part of the day-ahead 
purchased power to the intraday market not only to provide flexibility 
for the electricity market but also to make a profit. Adversely, the 
controller can purchase power from the intraday market at low price 
hours when the market faces power excess. The controller can trade 
(buy/sell) γID % of the required power in the intraday market to provide 
power flexibility on mid advance notice. Eq. (15) describes the objective 
function of the second stage in the intraday market. 

Finally, the third term indicates the power trading in the balancing 
market which is performed a few seconds before power delivery time. 
The controller can trade (buy/sell) γBM % of the required energy in the 
balancing market to provide up-/down-regulation at the opposite side of 
the power system imbalance. The controller purchases power from the 
market at low price hours when the market faces power excess, i.e. 
positive system imbalance. In contrast, the controller sells a part of the 
day-ahead/intraday purchased power to the balancing market in high 
price hours when the power system experiences a severe power 
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Intraday 
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Day-ahead Procurement 
Strategies 

Intraday Procurement 
Strategies 

Balancing Procurement 
Strategies 

Day-ahead Intraday Balancing 

Update Price Scenarios 
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Strategies 

Balancing Procurement 
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Fig. 8. Market performance in the three-stage stochastic programming.  
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shortage, i.e. the negative power system imbalance. Therefore, the 
controller provides power flexibility for the supply-side on short 
advance notice. Note that superscripts +/- denote the positive and 
negative states of power system imbalances. Eq. (16) explains the 
objective function of the third stage in the balancing market. 

The power procurements from the three market floors are optimized 
in three stages of price forecasting. In the first stage, the day-ahead, 
intraday, and balancing market prices are forecasted 24 h before en-
ergy delivery time. Approaching power delivery time, the price un-
certainties decrease. Therefore, after performing the day-ahead market, 
the price scenarios of intraday and balancing markets are updated in the 
second stage. In the same way, the price scenarios of the balancing 
market are updated in the third stage before performing the balancing 
market. Fig. 8 explains how the three stages of stochastic programming 
and price forecasting work.  

• Supply-side Constraints 

The supply-side constraints ensure the participation of the controller 
in the market floors to provide structural flexibility for the power system 
as well as energy cost minimization for the households. The constraints 
can be stated as follows [52]: 

0⩽ΠDA
t (ω1)⩽γDA × ΠRated

t (17)  

⃒
⃒ΠIM

t (ω2)
⃒
⃒⩽γIM × ΠRated

t (18)  

⃒
⃒ΠBM

t (ω3)
⃒
⃒⩽γBM × ΠRated

t (19)  

∑

x∈X
γx = 1, X = {DA, IM,BM} (20)  

ΠE
t (ω) = ΠDA

t (ω1)+ΠIM
t (ω2)+ΠBM

t (ω3) (21)  

ΠDA
t (ω1)+ΠIM

t (ω2)⩾0 (22) 

Eq. (17) enforces that the controller can purchase γDA % of the 
required power from the day-ahead market. Besides, it cannot sell power 
to this market floor. In the same way, Eqs. (18) and (19) state that the 
controller trades (purchases/sells) γIM % and γBM % of the nominal 
power in the intraday and balancing markets, respectively. The market 
coefficients γx confines the power trading capacity of the controller to a 
fraction of the rated electricity consumption of the heat pump 
compressor. The reason is that the controller can buy a considerable 
value of power from the day-ahead market to sell in the balancing 
market with higher prices. These measures may exercise market power 
and cause market speculation. To overcome the problem, constraint (20) 
limits the total power trading of the controller to the nominal power 
consumption of the heating system. Eq. (21) shows the power balance 
equation. Finally, Eq. (22) ensures that the amount of sold energy to the 
intraday market is less than the purchased power from the day-ahead 
market. 

Worth mentioning that the single apartment blocks, as well as any 
small-scale electricity consumers, cannot take part in wholesale elec-
tricity markets directly. To make it possible, the demand response pro-
vider and/or district heating aggregators integrate the demand 
flexibility of a significant number of heat consumers into power systems. 
The district heating aggregators are intermediary agents to take part in 
the wholesale market on behalf of the end-users. 

The market coefficients should be organized in descending order 
from the day-ahead to the balancing market γDA > γIM > γBM. In daily 
electricity markets, the balancing market is much more volatile than the 
day-ahead market. Therefore, a demand spike in the balancing market 
may cause price instability. Besides, the real-time markets aim to pro-
vide power regulation instead of profit-making. For these reasons, the 
capacity of power trading in the balancing market should be confined to 
prevent speculating.  

• Demand-side Constraints 

The demand-side constraints guarantee the residents’ comfort 

Kitchen 

Living Room 

Bathroom 

Bedroom 

CC 
Water Tank 

Day-ahead Market 
24 Hours Ahead 

Intraday Market 
60-10 Minutes Ahead 

Balancing Market 
Real-time 

Power Flow 

Heat Flow 

Flexibility 

Forward Water Return Water 

OC 
Water Tank 

Cold Water Inlet 

Heat Pump 
Controller 

Meteorological Office 

Time Axis 
Hour 1 

Hour 24 

Electricity Market 

Heat Flexibility 

Heat Flow 

Heat Flexibility 

Residents’ Comfort

Cold Water Inlet

Mass Flow Control 

Mass Flow Control 

Fig. 9. Energy paradigm of the suggested heating system in terms of heat and power.  
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bounds as well as the optimum operation of the heating system. The 
constraints are described as follows: 

θr,mini ⩽θri (t)⩽θ
r,max
i (23)  

θZ,minw ⩽θZw(t)⩽θ
Z,max
w , Z = {CC,OC} (24)  

ΠE
t =

ΠTotal
HP

ϑCOP
=

(
ΠOC
HP + ΠCC

HP

)

ϑCOP
(25)  

ΠE
t − ΠE

t− 1⩽πupHP (26)  

ΠE
t− 1 − ΠE

t ⩽πdownHP (27) 

Eqs. (23) and (24) describe the residents’ comfort bounds for tem-
peratures of indoor air and water tanks. The flexibility potentials of the 
heat controller mainly depend on the maximum/minimum occupants’ 
comfort temperature. Eq. (25) states the electricity consumption of the 
heat pump compressor as a function of the heat consumption of CCWT 
and OCWT. The ramp-up/-down rates of the heat pump compressor are 
shown by (26) and (27). 

To sum up, Fig. 9 depicts the energy diagram of the suggested 
heating system in terms of power-heat flow. Note that the control var-
iables for the CCWT and OCWT are ṁr

CCand ṁDHW, respectively. In the 
space heating, the controller adjusts the water flow to the radiators 
through the mass flow valves. In the DHW, the water flow from the cold 
water inlet is controlled to fulfill the optimum temperatures. Therefore, 
the controller adjusts the mass flow of four valves in the four rooms and 
one valve of the inlet water. To clarify, the control valves are pointed out 
in this figure. 

3.4. Uncertainty characterization 

The controller optimizes the operation of the heating system for the 
next 24 h. The heat pump operation is mainly dependent on stochastic 
variables with imperfect data. On the supply side, the electricity price is 
the key uncertain variable that affects the operation of the heat pump. 
On the demand side, the uncertain behavior of the residents, e.g. DHW 
consumption, may change the heat pump operation. Besides, the ther-
mal dynamics of the buildings are affected by uncertain climate data, 
including ambient temperature and solar irradiation. Therefore, in 
practice, the controller is confronted with uncertain electricity prices, 

weather data, and residents’ behavior. 
First of all, to model the electricity price uncertainties, the ARIMA 

approach is used. The ARIMA is fitted to time series data to forecast 
future points. The controller uses historical market data to forecast the 
electricity price for the next 24 h. The ARIMA model can be stated as the 
following time series: 

λt = (α)+
(
β1λt− 1 + β2λt− 2 + ...+ βpλt− p

)
+
(
ϕ1εt− 1 + ϕ2εt− 2 + ...+ ϕqεt− q

)

(28) 

The time series (28) describes how the electricity price is predicted 
using historical data. In this model, the predicted price is comprised of 
three terms. The first term is a constant. The second term is the linear 
combination of p lags of predicted price. The third term shows the q 
lagged forecast errors. Therefore, the ARIMA is used to generate sce-
narios for the day-ahead, intraday, and balancing market prices. The 
scenarios are generated with associated probabilities in which the 
summation of the probabilities for each time slot is equal to one. 

In this study, 10 price scenarios are generated on each market floor 
for each time slot (hour). It means that the day-ahead market has 24 ×
10 scenarios during the daily operation. In the same way, 10 scenarios 
are generated for the intraday and balancing markets at each time slot. 
Therefore, the total number of price scenarios for the three market floors 
at each time slot is equal to 103. Fig. 10 illustrates the scenario graph of 
the three electricity markets. Let consider x = {DA,IM,BM} as the index 
of electricity markets. Then, the electricity market scenario is introduced 
by an electricity price value λx

t (ω) and the associated probability π(ω).
Note that the summation of scenario probabilities at each time slot is 
equal to 1 as 

∑10
i=1π(ωi) = 1. 

To model the imperfect data of the climate variables, i.e. ambient 
temperature, as well as the DHW consumption, an envelope bound is 
addressed. The envelope bound is comprised of a nominal value, i.e. the 
predicted data, and positive/negative deviations. The initial operation 
of the heating system is optimized based on the expected value of the 
uncertain electricity prices and nominal values of weather variables. The 
upper and lower thresholds of the envelope bound describe the possible 
deviations of the uncertain variables. To study the impacts of the un-
certain data on the heating system operation, the whole interval of the 
envelope bound is split into N subintervals. The electricity consumption 
of the heat pump is firstly scheduled, then is adjusted, and finally is 
regulated in the three market floors based on the deviation bounds of the 
uncertain variables. 

Day-ahead 
Market 

Intraday 
Market 

Balancing 
Market 

Fig. 10. Scenario graph for electricity prices, including 10 scenarios for each market floor.  
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The envelope bound is divided into subintervals using the following 
steps: 

Step 1: Construct the envelope bound of the uncertain data as 
follows: 

χ = [χmin, χmax] = [χ̃ − δ, χ̃ + δ] (29) 

Step 2: Split the envelope bound χ into K subintervals subject to: 

χ(κ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χ ∈ R+, ∀χ ∈
[

χ̃ + (κ − 1)δ
K

, χ̃ + κδ
K

]

∀κ = 1, ...,K : χκ = κ ×
|χmax − χmin|

K

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(30)  

where χ denotes the uncertain data; δ is the maximum deviation; κ 
shows the counter index of the subintervals. 

Finally, Fig. 11 depicts the structure of the envelope bound. 

4. Numerical studies 

In this section, the suggested approach is examined on a test house 
with sensor data. Besides, the price data from the Danish sector of the 
Nordic Electricity Market is used. The MPC and CTSM are coded in 
MATLAB and language R, respectively. First of all, the input data of the 
problem are stated. Afterward, the simulation results and discussions are 
presented. 

The proposed controller is examined on a Danish test house with 4 
rooms, including one kitchen, one bathroom, and two bedrooms with a 
height of 2.5 m. Fig. 12 sketches the schematic of the 150 m2 Danish test 
house. Rooms 1, 2, and 4 have wooden flooring and Room 3 has a light 
concrete floor. The windows are double-layered with 80% transparency 
of the provided dimension in the figure. The materials of the walls and 
ceiling are lightweight concrete and gypsum with insulation [57]. 

The original sensor data is collected from 50 days’ worth of data with 
60 s resolution in March and April 2020. The 5 days’ worth of data, 
equivalent to 7200 min, are used to train the CTSM. Fig. 13 presents the 
data for the 5 days including the heat consumption, solar power, waste 
heat from home appliances, and indoor air temperature. 

Fig. 14 illustrates the sensor data of the ambient temperature with 
the deviation bounds. In this figure, the ambient temperatures are 
described by an expected (nominal value) and a set of positive/negative 
deviations. The lower and upper thresholds of ambient temperature are 
− 4 ◦C and +4 ◦C, respectively. Fig. 15 presents the DHW consumption of 

Fig. 11. Envelope bound for variables with imperfect data.  

Room 1 
Kitchen, dining area and living room with 

wood flooring 

Room 2 
Bedroom and aisle with wood flooring 
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4.5x2 m2 
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1x
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m
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Fig. 12. The 150 m2 Danish test house with 4 rooms [51].  

Fig. 13. The sensor data of the test house for the 5 days’ training process (a) Heat consumption (b) Solar irradiation power (c) Waste heat of household appliances (d) 
Indoor temperature. 

H. Golmohamadi                                                                                                                                                                                                                                



Applied Energy 303 (2021) 117629

12

the household with deviation bounds. The nominal DHW consumption is 
considered 150 Liter a day. Regarding the positive and negative de-
viations as ±2 L/h, the lower and upper daily consumptions are assumed 
198 and 102 L/day. 

In order to investigate the role of the uncertain variables on the 
operation of the heating system, three case studies are addressed. 

In Case Study 1, the impacts of electricity price scenarios are eval-
uated. In this way, the expected values of weather data and DHW con-
sumption are used. The electricity price scenarios are imported to 

stochastic programming. 
In Case Study 2, the impacts of ambient temperature on the operation 

of the space heating system and CCWT are investigated. Different pos-
itive/negative deviations of the weather variables are imported to the 
problem to receive the response of the heating system. 

In Case Study 3, the impacts of DHW consumption on the operation 
of water heating and OCWT are evaluated. In this way, the deviation 
bounds of DHW consumption are imported to the problem. 

To present the simulation results, first of all, Fig. 16 describes the 
thermal dynamics of four rooms extracted by the CTSM. The CTSM is 
coded in language R. To identify the thermal model, 5 day’s worth of 
sensor data, i.e. 7200 min, is used. The results state the coefficients of 
the thermal dynamics, Eqs. (1)–(3). Moreover, a graphical comparison 
between the predicted and actual temperatures is made. As can be seen, 
the CTSM predicts the air temperature of rooms 2, 3, and 4 reasonably 
well. In these cases, the residual temperatures, i.e. the difference be-
tween the predicted and actual values, are minor. Adversely, room 1 
follows a different pattern. In this room, the residual temperatures are 
higher than the other rooms. The reason is that the household appli-
ances, e.g. oven and refrigerator, generate heating power which is not 
captured by the thermal dynamic model. The waste heat from the 
kitchen appliances increases the residual temperatures in room 1. 

Fig. 17 illustrates the power procurement strategies of the SEMPC in 
the three trading floors of the Danish Electricity Market. Besides, the 
generated scenarios and the expected electricity prices are depicted. 
Subfigure (a) shows the operation strategies in the day-ahead market. As 
can be seen, the day-ahead market faces two peak hours, including 9–11 
and 18–20. The controller minimizes energy consumption in peak hours. 
In contrast, during off-peak hours 1–7 and 14–17, the controller in-
creases the energy consumption. The controller schedules the main 
power consumption of the heating system based on energy price 24 h 
before energy delivery time. Subfigure (b) describes the energy trading 
in the intraday market. The intraday price is confronted with a sub-
stantial increase in hours 11 and 18–20. Therefore, the controller sells 
some parts of prepurchased energy to the intraday market. Adversely, 
the controller increases the power procurement from the intraday 
market when the electricity price is low, e.g. hours 1–4 and 21–22. 
Consequently, the controller adjusts the energy consumption based on 
the power availability 60–10 min before power delivery time. Subfigure 
(c) depicts the operation strategies in the balancing market. As the graph 
reveals, the balancing market faces a considerable increase in hours 

Fig. 14. Ambient temperature with positive (+4 ◦C) and negative 
(− 4 ◦C) deviations. 

Fig. 15. DHW consumption with positive (+2 L/h) and negative deviation (− 2 
L/h). 

Time (Minute) Time (Minute) 

Time (Minute) Time (Minute) 

Fig. 16. Thermal dynamics of four rooms with a comparison between the predicted and measured temperatures (a) Room 1 (b) Room 2 (c) Room 3 (d) Room 4 [52].  
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8–10. The huge jump in the real-time price indicates a severe power 
shortage on the supply side. In response, the controller sells a part of 
prepurchased energy to the balancing market to make up-regulation for 
the supply network. In contrast, the market experiences low price hours 
during hours 12–24. In this duration, the balancing prices are zero or 
negative in some hours. Therefore, a power excess occurs on the supply 
side. The zero/negative prices motivate the controller to consume 
electricity. As a result, the controller increases the energy consumption 
to provide down-regulation for the power grid. Finally, subfigure (d) 
shows the net energy consumption of the heating system. In this sub-
figure, the expected electricity prices of the three market floors are also 
depicted. Based on the graph, the SEMPC minimizes the energy con-
sumption during high price hours, i.e. power shortage, and maximizes 
the energy usage during high price hours, i.e. power shortage. The 
controller not only provides flexibility for the supply-side but also de-
creases the energy consumption cost of the household. 

Regarding Case Study 2, Fig. 18 describes the operation of heating 
systems in response to the positive/negative deviations of the outdoor 
temperature. In this way, the indoor temperature and heating demand of 
the four rooms are presented. These figures are plotted for 12 deviation 
bounds in comparison with the nominal (expected) value. As the profiles 
of indoor temperature reveal, the heat controller satisfies the residents’ 
comfort bounds for all rooms during ±4 ◦C deviations of ambient 

temperature. Making a comparison between the four rooms, the tem-
perature profile of room 1 is considerably affected by the deviations of 
outdoor temperature. In contrast, the temperature of room 3 is less 
affected by the deviations of ambient temperature. The reason is that 
room 1 has the most building envelopes in common with the uncondi-
tioned environment. Besides, it has the largest window dimensions 
among the rooms. Adversely, room 3 has the lowest enclosures with the 
outdoor environment as well as the smallest window dimension. As a 
result, increasing the temperature deviation from the expected value, 
the variation of indoor temperature increases as the common envelope 
between conditioned and unconditioned environments increases. 
Moreover, the variation of indoor temperature during occupied hours, e. 
g. 1–6 and 17–24, is less than the unoccupied hours, e.g. 9–16. It shows 
that the EMPC adopts more robust heating strategies against the tem-
perature deviations for occupied hours in comparison with the unoc-
cupied hours. 

Regarding the profiles of heating energy, the daily energy con-
sumptions of rooms are shown by energy tags. Based on the heat demand 
of room 1, the lower and upper deviations in the outdoor temperature 
change the daily heating consumption from 35.04 kWh to 43.51 kWh 
(+24.17) and 27.77 kWh (− 20.74%), respectively. For the upper and 
lower thresholds of temperature deviations, rooms 3 and 4 have expe-
rienced the highest reduction and increase in the heating consumption, 

Fig. 17. Power procurement from the market floors for Case Study 1 (a) The day-ahead (b) The Intraday (c) The balancing.  
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around − 33.04% and +30.14%, respectively. 
Fig. 19 presents the water temperature of CCWT in response to 

different deviation bounds of ambient temperature. Moreover, the 
average water temperature is stated by the solid text boxes. Based on the 
graph, as the ambient temperature decreases, the water temperature 
decreases, especially during unoccupied hours 8–13. Besides, the ±4 
deviations of ambient temperature change the average water tempera-
ture from 51.48 ◦C to 49.10 ◦C and 51.85 ◦C, for lower and upper 
thresholds, respectively. Most temperature changes occur in night hours 
1–5 and unoccupied hours 8–13. Barely considerable change is seen in 
the other occupied hours. For all the deviations, the controller maintains 
the water temperature within the upper/lower thresholds of water 
temperature. 

Fig. 20 describes the operational strategies of the OCWT, including 

the water temperature and heat consumption, in response to the devi-
ation bounds of the DHW consumption as Case Study 3. The daily 
nominal value of DHW consumption is considered 150 L for a family of 
four. In the lower and upper deviation bounds, the DHW consumption 
deviates ±2 L/h (±48 L/day). Therefore, the lower and upper thresholds 
of the daily DHW consumption are confined to 102 and 198 L. In this 
way, subfigure (a) illustrates the temperature of hot water. Based on the 
graph, the heat controller maintains the water temperature within the 
comfort bound 45 ≤ θCC

w ≤60 for all the deviation bounds. The solid 
boxes describe the average DHW temperature. The average tempera-
tures experience minor changes in comparison to the expected value of 
DHW consumption. Subfigure (b) presents the heating consumption of 
the OCWT. As can be seen, the lower deviation of the DHW consumption 

Room 1 

Room 2 

Room 3 

Room 4 

Fig. 18. Operation of heating systems of 4 rooms in response to deviation bounds of the outdoor temperature, Case Study 2.  
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decreases the energy consumption of the OCWT from 24.22 kWh to 
17.95 kWh. In contrast, the upper deviation increases the heating con-
sumption to 31.22 kWh. As a result, the controller changes the heating 
consumption by +28.90% and − 25.88% to maintain the same level for 
the DHW temperature against the deviations of DHW consumption. 

Fig. 21 shows the economic analysis of the heating system for three 
case studies. The bar graphs indicate the power consumption cost of the 
heating system in the three electricity markets. Moreover, the operations 
costs are presented for three states, including the base case, high/low 
thresholds of the associated uncertain variable. Regarding Case Study 1, 
considerable changes are seen from the based case to the upper/lower 
price thresholds. In this way, pernicious and propitious facets of elec-
tricity price uncertainty increase the total cost from 49.50 to 72.17 and 
24.76, respectively. In Case Study 2, the operation cost of the heating 
system is less affected in comparison to Case Study 1. The results show 
that the upper and lower thresholds of ambient temperature change the 
energy consumption cost from 49.50 to 27.13 and 76.98, respectively. 
The lowest change in the operation cost is seen in Case Study 3. The 
upper and lower thresholds of the DHW consumption change the oper-
ation cost from 49.50 to 52.74 and 46.52. The uncertainties of electricity 
price and DHW consumption have the highest and lowest impacts on the 
operation costs of the residential heating system, respectively. 

It is worthy to make a comparison between the proposed controller 
and some recent studies. The fundamentals of the thermal dynamic are 
extracted from [53]. This study proposed the CTSM and surveyed 
different RC networks for residential buildings. The test house of the 

Fig. 19. The water temperature of CCWT in response to ambient temperature, 
Case Study 2. 

Fig. 20. Operational strategies of OCWT in response to deviations of DHW consumption, Case Study 3 (a) Temperature of DHW (b) Heating consumption.  

Fig. 21. Economic analysis of three case studies in the electricity market floors.  
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current study is examined in [51] to provide day-ahead peak-shaving for 
the Danish electricity market. The suggested controller in the research 
study [52] addressed intraday and balancing markets to adjust power 
imbalances from 60 min ahead until near real-time. In current study, 
two main contributions are made as (1) optimizing the DHW of the 
households (2) examining the operation of the heating system for 
different deviations of the weather variables and DHW consumption. In 
[58], heat control is designed for space heating and DHW to flatten the 
peak profile of the residential sector. The controller provided up to 35% 
peak reduction when both the space heating and DHW contribute to the 
power flexibility. In contrast, the research study [59] unlocked the 
flexibility opportunities of residential heat pumps in the frequency 
restoration reserve market. 

To survey the main features of the suggested controller, the advan-
tages and challenges are stated. First of all, the key positive points can be 
stated as follows:  

1. The controller responds effectively to dynamic electricity prices in 
the three market floors. Assuming a correlation between electricity 
price and RES availability, the controller can unlock the power 
flexibility of the residential heating system when a renewable power 
shortage/excess occurs. 

2. Considering the water storage tanks, the predictive controller re-
duces the power consumption in high price hours while satisfying the 
residents’ comfort. The controller heats the water tanks in low price 
hours to supply the space heating and DHW in high price hours.  

3. The economic objective function of the controller reduces the energy 
bill of the households. The residential heating system is supplied 
with low energy prices during low electricity prices when the power 
system faces renewable energy excess. 

Although the controller takes the abovementioned advantages, the 
following challenges may be subject to the further investigation:  

1. The small-scale consumers, e.g. a single-family house, do not take 
part in the wholesale electricity markets. To overcome this barrier, 
the district heating aggregators should be addressed to integrate the 
heat-power flexibility of a significant number of households into the 
supply side.  

2. Despite the district heating system, the heat pumps may be shared 
with some buildings instead of a single house. The optimization of 
shared heat pumps for buildings with different thermal dynamics 
may be subject to new studies. Besides, the sewage water can be 
addressed as the thermal source instead of the air-source heat pump.  

3. In this approach, complete input data is used to train the controller. 
In district heating studies, barely such detailed data are available to 
optimize the operation of the district heating. Moreover, modeling 
the complex differential equations for a significant number of 
buildings, the complexity of the problem increases considerably and 
the problem may be intractable. Therefore, the mathematical model 
may be relaxed to simple linear equations not only to make the 
problem tractable but also to estimate the thermal dynamics with 
data scarcity. 

5. Conclusion 

This paper proposed a heat controller for residential heat pumps to 
supply the space heating and domestic hot water consumption in pres-
ence of uncertain variables, including electricity prices, ambient tem-
perature, and hot water consumption. To extract the thermal dynamics 
of the building, Continuous-Time Stochastic Model was addressed using 
5 days’ worth of sensor data. Stochastic economic model predictive 
control was suggested to incorporate the electricity price uncertainties 
into the three stages of daily electricity markets, i.e. the day-ahead, 
intraday, and balancing markets. The imperfect data of ambient tem-
perature and domestic hot water consumption were modeled by 

envelope bounds with positive and negative deviations. Consequently, 
the operational strategies of the heat controller were evaluated in 
response to the uncertain variables. To sum up, the following key points 
were pointed out:  

1. The developed thermal dynamics of the Continuous-Time Stochastic 
Model made it possible to address multiple temperature zones. The 
accuracy of the suggested approach was reasonably high for rooms 
without sensible waste heat. For the kitchen with waste heat from 
ovens and refrigerators, the accuracy is relatively lower than the 
other rooms. 

2. The heat controller unlocked flexibility opportunities of the resi-
dential heating system in response to market price scenarios hier-
archically. In this way, the controller (1) provided power flexibility 
for the day-ahead market on long notice, 24 h prior to energy de-
livery time (2) adjusted power flexibility in the intraday market on 
mid notice, one hour before energy delivery time, and (3) finally, 
provided up-/down-regulation for the balancing market on short 
notice, a few seconds before energy delivery time.  

3. The predictive controller heated up the water tanks, for both space 
heating and domestic hot water, in low price hours to regulate power 
consumption at the opposite side of the power system imbalance. The 
stored energy in the water tanks supplied the radiators and hot water 
consumptions during high price hours.  

4. The economic analysis showed that the uncertainties associated with 
electricity price and ambient temperature have more impacts on the 
household energy cost than the uncertainty of domestic hot water 
consumption.  

5. In practical electricity markets, the residential heating systems 
participate in the electricity market through intermediary agents, e. 
g. district heating aggregators. The aggregators integrate the flexi-
bility potentials of a significant number of households into the 
electricity market. 

6. To design heat controllers in district heating, mathematical relaxa-
tion may be required to (1) extract the thermal dynamics of the 
buildings with data scarcity (2) make the problem tractable when a 
significant number of residential buildings are aggregated. 
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