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Pose Estimation from RGB Images of Highly Symmetric Objects
using a Novel Multi-Pose Loss and Differential Rendering

Stefan Hein Bengtson∗1 and Hampus Åström∗2, Thomas B. Moeslund1, Elin A. Topp2, Volker Krueger2

Abstract— We propose a novel multi-pose loss function to
train a neural network for 6D pose estimation, using synthetic
data and evaluating it on real images. Our loss is inspired by
the VSD (Visible Surface Discrepancy) metric and relies on
a differentiable renderer and CAD models. This novel multi-
pose approach produces multiple weighted pose estimates to
avoid getting stuck in local minima. Our method resolves pose
ambiguities without using predefined symmetries. It is trained
only on synthetic data. We test on real-world RGB images
from the T-LESS dataset, containing highly symmetric objects
common in industrial settings. We show that our solution can
be used to replace the codebook in a state-of-the-art approach.
So far, the codebook approach has had the shortest inference
time in the field. Our approach reduces inference time further
while a) avoiding discretization, b) requiring a much smaller
memory footprint and c) improving pose recall.3

I. INTRODUCTION

As robotics moves towards flexible and autonomous so-
lutions, computer vision is gradually playing a bigger role
in robotic solutions, especially for 6D pose estimation. This
topic has actively been researched in the robotics community
[1] for many years, as the pose of an object is very useful
when figuring out how to interact with it. Pose estimation is
useful in other areas as well, e.g. in augmented reality.

However, it is still a challenging problem, and pose
estimation has hence been the focus of many public datasets
and challenges issued by the community. One challenging
aspect of pose estimation is the symmetry of objects, as
it complicates both the process of labeling the data and
constructing methods that can adequately deal with these
ambiguities in the object pose. The T-LESS dataset [2] is an
industry benchmark for this problem, featuring 30 industry-
like objects with multiple symmetries, examples shown in
Fig. 1. Estimating poses from the T-LESS dataset is also
more challenging due to the lack of distinguishable features
in the textures of the objects, which could otherwise help
solve pose ambiguities caused by symmetries.

In this paper we propose an adaptation of the 6D pose
estimation approach in [3], [4], that relies on an autoencoder
for feature extraction in a codebook-based approach. By
replacing their codebook with a neural network and utilizing
differential rendering [5], we provide a solution that has a
significantly smaller memory footprint, is faster at inference
and has improved pose recall when tested on the T-LESS
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Fig. 1: Examples from the T-LESS dataset [2]. From left to
right: object 2, 30, 5 and 10. The two left-most objects exhibit
continuous semi-symmetries where the two others include discrete
semi-symmetries.

dataset. The solution we propose does not require discretiz-
ing poses and it is therefore more easily extendable. Like [3],
[4] our method is trained on synthetic RGB images rendered
from CAD models or reconstructions and requires no labelled
data or predefined symmetries.

Our solution retains many of the properties making [4] in-
teresting for use in robotics. Low inference time allows real-
time execution. Only requiring RGB images imposes less
restrictions on the hardware. Training on synthetic images
makes the process of operating on new objects automatic,
with no need for manual labor.

The main contributions of this paper are:
• We propose a depth-based loss function which inher-

ently handles object symmetries without using prede-
fined global symmetries. Our loss does not require a
depth sensor as we leverage a differentiable renderer to
produce depth maps from CAD models.

• We demonstrate that a pose regression network can
be trained to do pose estimation of objects in RGB
images using this new loss. We show that this network
can replace the codebook used in [4], thereby avoiding
discretization.

• We introduce a scheme where the network outputs
multiple pose estimates and a weighting between them,
and we show that this increases pose recall.

• We show that our pose regression network consumes
orders of magnitude less memory, results in faster
inference and improves pose estimation recall.

II. RELATED WORK

Traditional methods for pose estimation have commonly
relied on matching features, edges and templates [6], [7].
Other approaches use iterative search to find the pose of an
object, such as the widely used ICP (Iterative Closest Point)
algorithm. Due to their iterative nature, ICP and similar
methods are slow, unless optimized for speed [8].

https://github.com/shbe-aau/multi-pose-estimation


Lately, many of these methods have started to be replaced
or complemented by machine learning methods [1], [9], [10],
[11], [12]. Supervised machine learning relies on ground
truth labels to estimate performance and generate the loss
that drives the learning. This makes the way in which that
loss is affected by visual traits, like symmetries, an important
part of any method for pose estimation.

An object that is symmetrical or semi-symmetrical has
many poses that are similar. Such poses should often be
treated equally. That means that each input image might
match many poses and should not be punished for predicting
one of the symmetries rather than the real ground truth pose.
For example, a cylinder rotated around its major axis should
be treated identically independent of angle, as shown in
Fig. 2a. This problem is especially important for learning
algorithms, as they need a consistent way to evaluate if a
proposed pose is good or bad.

There are however some types of apparent symmetry that
are more complex than others. When parts of an object
are occluded, either by external objects or by other parts
of the object itself, i.e. self-occlusion, an object can appear
identically for many different poses even if it is not actually
symmetrical, such as the example in Fig. 2. Any method that
wishes to use learning to estimate poses for these objects
need to address how to resolve these ambiguities as well.

Machine learning solutions for 6D pose estimation come in
many varieties. Some methods focus on comparing the pose
they produce directly with the target pose and predefined
global symmetries for each object [13], while other methods
utilize 2D or 3D comparisons as loss metrics to train neural
networks [14], [3], [4]. In the latter cases, objects with
symmetries and semi-symmetries automatically avoid being
penalized for miss-classifying along those symmetries. 2D
image comparison methods that only consider visible parts
of the object can handle apparent symmetries that arise from
self-occlusions [3], [4].

Machine learning needs a large amount of data on which
to train. For pose estimation, accurate labeling of that data is
difficult and costly. To alleviate this problem synthetic data
can be produced, for instance by rendering CAD models
of target objects together with real images and domain
randomization [3], [15].

The work in this paper is based on [3], [4] and relies on

(a) (b) (c) (d)

Fig. 2: (a) Rotationally symmetric objects should be treated equally
independent of angle around its major axis. Examples of how
symmetries can occur for a mug with a handle. (b) Handle visible,
no pose ambiguity. (c) Self-occluded due to a slight rotation and
(d) occluded by another object, both of these have ambiguities in
pose.

a similar synthetic data regime for training. Their work is
based on training one or several autoencoders for the objects
one wishes to estimate the pose of. The latent space vector
produced by the encoder is in their work compared to a code-
book of reference latent space vectors, the closest of which
becomes the initial pose estimate. When higher accuracy is
required, the estimate can be improved by producing extra
temporary codebook entries of poses similar to the initial
estimate.

While a codebook is in general a good solution, it has
a large memory footprint, and it requires a discretization of
the predictions. By replacing the codebook in [4] with a pose
regression neural network and utilizing differential rendering
[5] we show that these problems can be alleviated while
simultaneously improving performance.

III. METHOD

The novel method for 6D pose estimation proposed in this
paper is based on the approach initially proposed by [3], [4].
This method retains the central element of the autoencoder,
but a neural network replaces the example-based codebook
approach for pose regression, as shown in Fig. 3. The encoder
is a feature extractor, producing a 128-dimensional latent
vector from an input image of an object. The latent vector is
provided as input for the pose regression network. We use the
encoder provided by [4]. During training, synthetic images
are rendered based on CAD models or reconstructions, with
backgrounds and augmentation in accordance with domain
randomization [15]. This allows the system to be trained on
new objects without manual data collection.

The benefits of replacing the codebook with a neural
network are to provide a continuous pose space instead of
having to discretize it into a codebook while reducing the
memory consumption. Furthermore, it should be more easily
extendable than the codebook. The size of a codebook grows
exponentially with the number of degrees of freedom, while
a pose estimation network only needs to add three more
output parameters to expand a rotational representation to
include e.g. translations in 3D. Our approach of using a
neural network instead of a codebook can be considered a
more general and scalable solution as it does not suffer from
these limitations.

The pose regression network is structured loosely on the
network proposed by [16]. Their network is designed to
estimate the pose of an object from a feature vector produced
from a pre-trained CNN. Their setup is thus similar to how
our pose regression network estimates poses from the output
of a pre-trained encoder. Our network consists of seven fully
connected layers. To maintain training performance with a
deeper network, skip-connections between the first three fully
connected layers are added.

Note that our network, shown in Fig. 3, produces not only
one but multiple pose estimates along with a confidence
for each, which is described in more detail in Sec. III-B.
The network outputs the pose in terms of the representation
proposed by [17], as it performs better than regression
directly on e.g. rotation matrices or quaternions. This pose
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Fig. 3: Overview of the proposed pose estimation pipeline. During training, synthetic data are continuously generated by rendering RGB
images of the relevant object from a CAD model. These RGB images are augmented and fed into the encoder part [4], resulting in a
latent vector z. This latent vector z is fed into a pose regression network, consisting of five fully-connected layers, which outputs n poses
P̂1, P̂2, ..., P̂n and associated confidences w1, w2, ...wn. These confidences are normalized with the softmax function. Depth maps are
generated from the poses using a differentiable depth renderer in order to produce the final loss. During inference, both the RGB renderer
and the differentiable depth renderer are omitted. We use a pre-trained encoder provided by [4] as the first part of the pipeline.

representation consists of two vectors in R3, i.e. 6 parameters
in total, which are converted into an orthonormal basis. A
3 × 3 rotation matrix can then be formed using this basis
as column vectors. Using this method also ensures that the
resulting rotation matrix is orthogonal.

During training, each predicted pose is used to render
depth images using CAD models and a differentiable ren-
derer [5]. Those images are in turn used in the network’s loss
function. The motivation for this depth-based loss function
and how it works are described in the following section.

A. Single-Pose Depth Loss

The depth-based loss function used in our pose regression
network is heavily inspired by the VSD (Visible Surface
Discrepancy) error metric proposed by [18], [19]. The VSD
metric is defined as:

eVSD(Ŝ, S̄, V̂ , V̄ , τ) = avg
p∈V̂ ∪V̄

 0, if p ∈ V̂ ∩ V̄ and
|Ŝ(p)− S̄(p)| < τ

1, otherwise
(1)

where Ŝ and S̄ are depth maps (called distance maps in [18],
[19]) based on the estimated pose P̂ and the ground-truth
pose P̄ respectively. Both poses have an associated visibility
mask, V̂ and V̄ , that contains the set of pixels actually visible
in the given test image I . These visibility masks are found
using the real depth map SI for each test image I . It includes
all objects in the scene and can thus be used to determine
how those objects occlude each other. The union of these
two visibility masks makes up the set of pixels p that are
considered by the VSD metric and ensures that only visible
pixels are considered. Lastly, τ defines a threshold for the
tolerance when comparing the distance maps Ŝ and S̄.

One of the main benefits of the VSD metric, and why
it is often used in pose estimation benchmarks, is how it
inherently can cope with symmetric objects, as it is solely
based on the appearance of the object. I.e., the estimated
pose and the ground truth pose may be off by 180o but the

VSD metric would still report a low error for symmetric
objects where such an error will not be visible. The VSD
metric is able to deal with global symmetries, such as
discrete and continuous symmetries, but it is also able to
cope with symmetries caused by self-occlusion of the object.
Furthermore, the inclusion of the visibility masks, V̂ and
V̄ , makes it robust to symmetries caused by occlusion from
other objects in the scene.

The loss function proposed in this paper relies on com-
paring depth maps. In an effort to achieve the same benefits
as the VSD metric in Eq. 1 each pose is evaluated by the
loss function:

Lsingle(Ŝ, S̄) = avg
p∈V̂ ∪V̄

(
min(δ, |Ŝ(p)− S̄(p)|)

δ

)
(2)

The value δ serves as a threshold such that there is an upper
limit of how much each individual pixel in the distance
maps can contribute to the final loss. Without this threshold
the loss would be dominated by pixels where the object is
present in one of the distance maps but not in the other.
This is similar to comparing silhouettes and is hence not
ideal as any distance/depth discrepancies on the object itself
are dominated by the silhouette.

In order to train the pose regression network with back-
propagation, this equation needs to be differentiable with
respect to P̂ and thereby Ŝ. Regular renderers do not produce
differentiable output, but some differentiable renderers have
recently become available [5].

However, one major difference from the VSD metric is
how our loss is continuous instead of being limited to the
binary set {0, 1} as is the case of Eq. 1. This is necessary
as the binary set is essentially a step function and thus not
differentiable.

B. Multi-Pose Depth Loss

The loss function described in Eq. 2 introduces many local
minima, as can be seen in Fig. 4. These new minima are



(a)                       (b)                       (c)                        (d)

(e)

Fig. 4: Visualization of Lsingle for different pose estimates in
relation to specific ground truth pose for object 10. Rotations in
the image plane are omitted to get a 2D visualisation. The global
minimum (ground truth) pose is (a), and its 180 deg semi-symmetry
is (c). The two most isolated non-symmetry local minima are given
by (b) and (d). The loss landscape is visualized in (e), ignoring
in-plane rotations.

problematic, as the training of the network easily gets stuck
in them, owing to the output being constrained to the SO(3)
space. Common training methods only consider the local
environment and can therefore not easily overcome these
issues. By extending the network to output multiple pose
estimates, along with a confidence associated to each, this
limitation can be circumvented. The final prediction for a
given input is the pose with the highest confidence. As the
output confidence distribution changes, the estimated pose
can change drastically, if the set of predicted poses are spread
over the output space. The benefits of multiple pose estimates
are explored in the ablation study in Sec. IV-B.

To bring these concepts together we propose a new loss
function L, that we call ”multi-pose loss”. It expands on Eq.
2, and is defined as follows:

L(Ŝ, S̄, P̂ ) = Lpose(P̂ ) +

n∑
i=1

Lsingle(Ŝi, S̄) · (γ + wi) (3)

where wi is the confidence associated with the i’th estimated
pose P̂i for the set of poses P̂ , Ŝ the set of depth maps asso-
ciated with those poses and n is the number of poses output
by the network. The confidences, w1, w2, ...wn, predicted by
the network are normalized using the softmax function. The
γ parameter ensures that pose estimates with a near zero
confidence also contribute to the loss. This is necessary to
make sure that the network improves all pose estimates.

The Lpose term in Eq. 3 forces the network to spread its
pose estimates by penalizing poses that are too similar. This
loss is defined as follows:

Lpose(P̂ ) =

∑
RA∈P̂

(∑
RB∈P̂ ∆(RA, RB)

)
n2

(4)

where RA and RB are rotation matrices converted from
the 6D pose representation, and P̂ is the set of predicted

poses from the network. The function ∆(RA, RB) is a
measure of similarity between the two rotation matrices as
shown in Eq. 5.

∆(RA, RB) = 1− min (φ, θ)

φ
(5)

with

θ = arccos

(
Tr(RBR

T
A)− 1

2

)
(6)

where RBR
T
A is the rotation matrix needed to transform

RA to RB , and Tr(...) is the trace of this matrix. This
similarity measure is essentially a conversion of the rotation
matrix RBR

T
A into its corresponding axis-angle representa-

tion, while ignoring the axis of rotation. The threshold φ
serves as a boundary, with rotation matrix pairs that differ by
φ or more not contributing any loss, while loss is maximized
for rotation matrices that are identical. It ensures that the
pose regression network has some leeway when predicting
the multiple poses instead of just spreading them uniformly,
while punishing poses that are close to one another.

C. Training

Our method is trained solely on synthetic data. Objects
from the T-LESS dataset [2] are rendered in different poses,
randomly sampled in SO(3) based on a uniform sampling
of quaternions as done by [3]. CAD models of the objects
from the dataset are rendered using OpenGL and the resulting
images are augmented in a similar way to [3].

A shared encoder is used for all objects as proposed by [4]
and we use the publicly available pre-trained encoder they
supply1. It is trained on 3D reconstructions of object 1-18
from the T-LESS dataset.

A separate pose regression network is trained for each
individual object using a depth max of δ = 30mm and a
pose similarity threshold of φ = 0.7 radians (i.e. ≈ 40o).
We render n = 10 poses, per input image and the minimum
loss weight for each pose is γ = 0.01. Each pose regression
network is trained for 200 epochs of 10.000 samples each,
using a learning rate cycle [20] between 0.005 and 0.0005.
All these training parameters are selected through trial-and-
error.

It should be noted that all weights in the pre-trained en-
coder are frozen when training our pose regression networks.
This is done to ensure that any differences in performance are
directly linked to replacing the codebook-based approach by
[4] with our pose regression network, rather than additional
training of the encoder.

IV. EVALUATION

In the following we evaluate our approach against the one
proposed in [4]. We test against the publicly available code-
books and pre-trained encoder from [4], the same encoder
used in our solution. The methods are compared on their
ability to predict correct poses and performance in terms of
memory consumption and inference time.

1 github.com/DLR-RM/AugmentedAutoencoder/tree/
multipath

github.com/DLR-RM/AugmentedAutoencoder/tree/multipath
github.com/DLR-RM/AugmentedAutoencoder/tree/multipath


The pose prediction performance of our method is evalu-
ated on real-world images from the T-LESS dataset [2] using
the scripts provided as part of the BOP benchmark [21].
We report the recall of each object averaged across different
thresholds for the VSD metric eVSD (defined in Eq. 1) and
different tolerance thresholds τ .

In this paper we focus on the correctness of the estimated
rotation of the object pose. Errors related to the transla-
tion estimate are hence ignored by using the ground truth
translation at all times during evaluation for all approaches.
Furthermore, the ground truth bounding boxes are used to
make the results independent of any errors introduced by an
object detector.

A. Pose Estimation Performance

In terms of pose recall, the results in Table I show that
our method outperforms [4] on average. Our approach has
a higher performance when evaluating on object 1-18 in
comparison to object 19-30. This is expected as the pre-
trained encoder is only trained on object 1-18. The approach
by [4] suffers similarly and to a greater extent than our
method, as shown in Table I.

In Fig. 5a an example of our predictions are superimposed
on a test image. Here, objects 5 (yellow), 6 (magenta) and
7 (green) all match the target well, even though object 7
has a bad overall recall when compared to the two other
objects, as seen in Table I. This discrepancy could be
explained by instances as the one found in Fig. 5b where the
pose prediction for object 7 failed, likely due to the partial
occlusion by the two objects in front of it.

Occlusion is of course a challenging scenario in general
for pose estimation, but our approach appears to be able to
handle it well for some objects. An example of such is the

TABLE I: Average VSD recall for the T-LESS primesense test
dataset, for our solution and the codebook-based solution [4]. The
table is split in two parts; object 1-18 for which the encoder was
trained and object 19-30 not seen before by the encoder. Finally,
the average VSD recall across all objects is listed in the lower
right corner. Results from our method are shown by the mean and
standard deviation from three experiments.

Obj. Codebook Ours
01 37.82 51.84 ± 2.8
02 51.88 63.74 ± 1.8
03 62.87 71.53 ± 3.3
04 56.00 62.66 ± 3.5
05 77.18 80.82 ± 0.3
06 68.04 66.71 ± 4.6
07 65.18 65.68 ± 4.9
08 63.11 61.21 ± 0.8
09 68.96 55.66 ± 0.5
10 58.55 54.14 ± 2.0
11 52.15 51.48 ± 2.4
12 62.19 56.58 ± 1.6
13 63.56 64.21 ± 5.0
14 57.29 63.01 ± 1.2
15 64.91 66.37 ± 3.8
16 75.82 73.16 ± 2.7
17 76.62 77.72 ± 0.9
18 71.26 62.71 ± 2.0

mean 62.97 63.85 ± 1.2

Obj. Codebook Ours
19 51.19 54.15 ± 1.7
20 40.71 35.96 ± 1.6
21 43.25 43.31 ± 1.4
22 38.15 32.03 ± 0.5
23 39.18 56.68 ± 1.1
24 58.97 61.93 ± 3.3
25 69.86 63.08 ± 1.6
26 57.94 58.87 ± 2.3
27 68.09 77.62 ± 1.2
28 68.06 73.33 ± 1.3
29 76.43 80.67 ± 0.7
30 77.81 83.41 ± 2.1

mean 57.47 60.09 ± 0.4

All Codebook Ours
mean 60.77 62.34 ± 0.9

(a) Scene 2, image 170. (b) Scene 2, image 490.

Fig. 5: Colorized renditions of pose predictions superimposed onto
images from the T-LESS test dataset. In (a) the poses for objects 5
(yellow), 6 (magenta) and 7 (green) all fit well, but in (b) the pose
of object 7 is severely wrong. This is probably due to occlusion.

(a) Scene 1, image 190. (b) Scene 20, image 10.

Fig. 6: Colorized renditions of pose predictions superimposed onto
images from the T-LESS test dataset. The pose predictions for the
cylindrical objects in (a) are better than those for the rectangular
objects. In (b) cylinder-shaped objects are well predicted, even
though it is a complicated scene with a lot of occlusion.

cylinder-shaped objects in Fig. 6b, where the predicted poses
appear correct even for heavily occluded objects.

In general, our approach performs better on cylinder-
shaped objects with continuous symmetries. This is exempli-
fied in Fig. 6a where the pose predictions for the box-shaped
objects do not appear to fit as well with the test image as
the cylinder-shaped objects.

The observation that our approach does better on cylinder-
shaped objects is further supported by Table II, showing the
average recall when dividing the T-LESS test dataset into
objects with continuous symmetries and objects without. For
objects with continuous symmetries, i.e. cylinder-shaped ob-
jects, our method outperforms [4] by a clear margin. For non-
cylindrical objects there is little difference in performance
between the methods.

The performance discrepancy between objects with contin-

TABLE II: Average VSD recall for the T-LESS primesense
test dataset divided into objects with continuous symmetries and
objects with discrete symmetries. Both our and the codebook-based
approach performs better on objects with continuous symmetries.
However, the difference in performance between continuous and
discrete symmetries is more pronounced for our method. Our results
are shown with mean and standard deviation as in the previous table.

Codebook [4] Ours
Continuous
symmetries 62.14 67.23 ± 2.7

Discrete
symmetries 59.97 59.51 ± 0.3



uous symmetries and those with discrete symmetries could be
because cylinder-shaped objects are easier than other objects
to estimate the pose for. This is sensible, as objects with
a continuous symmetry around an axis essentially ignore
any rotation around that axis. The number of degrees of
freedom in the pose estimation problem are thus less for
objects with continuous symmetries. This pattern of higher
performance for cylindrical objects is also present in our
baseline experiments using the method in [4], but to a lesser
extent. However, for our proposed approach, the difference
in performance between objects with and without continuous
symmetries is much more pronounced than for [4]. A possi-
ble explanation could be that our depth-based loss landscape
exhibits less of the problematic local minima for objects with
continuous symmetries than for those without.

B. Multi-Pose Ablation Study

Through an ablation study we show that using the multi-
pose depth loss (in this case with 10 poses) increases
the performance of the pose prediction recall considerably
compared to the single-pose depth loss, as shown in Table
III. As we discussed earlier in Sec. III-B, the single-pose
depth loss may be more prone to get stuck in local minima
during training.

C. Memory Consumption

A comparison of the memory consumption between our
approach and the one by [4] is shown in Table IV. The
memory consumption of both the encoder and the codebook
are taken directly from [4] while the memory consumption
of our pose regression network is found by calculating the
theoretical size of the network and confirming it in a PyTorch
implementation. Our approach consumes significantly less
memory than [4]. The codebook is replaced entirely by the
pose regression network, where the latter consumes ≈ 70
times less memory.

Loading the necessary encoder, codebooks, and pose re-
gression network for all 30 T-LESS objects would hence
require ≈ 1365 MB for [4] and only ≈ 33 MB for our
method. The relative difference gets larger as the number
of objects increases. It should be noted that the reported
memory consumption does not include the overhead of
loading the different machine learning frameworks, such as
TensorFlow and PyTorch, into memory.

TABLE III: Average VSD recall for the T-LESS primesense test
dataset with the single-pose loss function and with the multi-pose
loss function (10 poses). Multiple poses increases performance con-
siderably, especially for objects with discrete symmetries. Results
are shown with mean and standard deviation as in previous tables.

1 pose 10 poses improvement
Continuous
symmetries 57.37 ± 1.6 67.23 ± 2.7 9.86

Discrete
symmetries 50.62 ± 0.9 59.51 ± 0.3 8.89

All objects 53.10 ± 0.6 62.34 ± 0.9 9.24

TABLE IV: Memory consumption during inference of 30 objects.
Our solution consumes ≈ 40 times less memory than the codebook-
based solution.

Encoder Codebook
Pose

Regression
Network

Total

Codebook [4] 15 MB 30×45 MB - 1365 MB
Ours - 30×0.6 MB 33 MB

D. Inference Time

The inference time of our approach, implemented in
PyTorch, is evaluated against the public codebase by [4],
implemented in TensorFlow. All timings were measured on a
laptop equipped with the following hardware: an i7-7700HQ
CPU (2.80GHz) and a NVIDIA GTX 1060 6GB GPU. Note
that any measurements related to the projective distance
calculation originally mentioned by [4] have been excluded
as it is only needed for translation estimation.

Our approach achieves real-time performance with an
inference time of ≈ 6.2 ms, to estimate the pose of an
object. This is an improvement over the current state-of-the-
art codebook-based approach by [4] which takes ≈ 7.0ms per
object. Replacing the codebook-based approach, and thereby
both the cosine similarity and nearest neighbor computations,
with our network, decreases inference time slightly. The
computation time for the encoder should be nearly identical
for both approaches as the exact same architecture is used
with the only exception being the deep learning framework.
Note that the slight increase in computation time when
comparing to the measurements reported in [4] is due to
the differences in hardware used in the two evaluations.

V. FUTURE WORK

The method in this paper predicts the rotation of each
object, given a bounding box placing the object in the image.
We base our output on a rotation matrix, but thanks to the
differential rendering scheme this can easily be extended to
output both a rotation and translation estimate instead. This
could then be used to do small translation corrections within
the bounding box or even determine the full translation in
the input image if larger images are provided to the encoder.
We expect this would improve the final 6D pose prediction
without costly fine-tuning procedures.

Another natural extension for our method is to replace the
individual pose regression networks for each object with a
single shared pose regression network. This would decrease
memory consumption further and it is possible that a pose re-
gression network trained on all objects simultaneously would
generalize better. Another benefit of using a shared pose
regression network is that it does not require classification
of the detected objects as our pose regression network could
be trained to also perform the classification.

Our current results are based on freezing the weights of the
encoder during training of our pose regression networks. It
may be possible to increase the performance of our approach



by fine-tuning the encoder or some part of it while training
the pose regression network. Another unexplored option is to
increase the size of the latent space produced by the encoder
as it could increase performance of our pose regression
network. Keeping the latent space small makes sense for the
codebook-based approach by [4] as the memory consumption
of the codebook scales linearly with it. Our approach is much
less affected by the size of the latent space.

In many applications where our method would be useful,
for instance real-time robotics, inference is done on video
rather than independent images. In that context the system
can be improved by integrating the temporal aspect, though
a particle filter or similar methods [22]. For such a solution,
multiple candidates from the multi-pose approach can be
utilized.

Finally, we would also like to explore how each pose in our
multi-pose solution behaves as a function of the pose in the
input image. One question is whether each pose estimate is
localized to a certain pose region, while the confidence jumps
between them, or if the pose estimates vary more as the
input changes. Analysis similar to the principal component
analysis done by [4] could reveal this, as well as strengths
and weaknesses of our approach.

VI. CONCLUSION

In this paper, we proposed a novel multi-pose loss function
to train a neural network to estimate the rotation of an object
from an RGB image. This loss is constructed such that it
accounts for any symmetries, an important issue in pose
estimation, without relying on predefined symmetries. Our
loss is inspired by the VSD (Visible Surface Discrepancy)
metric and relies on evaluating the estimated pose by depth
comparison. This solution only requires RGB images as
input, as the depth maps for the loss are produced by
differential renderings of CAD models.

Our network is trained purely on synthetic data. We ex-
pand upon an existing state-of-the-art method which utilizes
an encoder and codebook to estimate poses [4]. We show
that our pose regression network can replace the codebook
entirely by directly estimating poses from the output of
the encoder. By making our network output multiple poses
together with confidences that selects one of them, we show
that the recall, as measured by the VSD metric, can be
increased. When training our network on top of a pre-trained
encoder, shared for all objects, we get a solution that requires
a fraction of the memory and has higher pose recall than the
state-of-the-art codebook-based approach. It is slightly faster
and is not limited by a discretization. Our solution retains
or improves many of the interesting properties for robotic
applications such as real-time inference, low memory usage,
training on synthetic data and only requiring RGB images.

Relying on a neural network instead of a codebook should
also make our approach more easily extendable. For instance,
integrating a translation estimate into the pose regression
network, or training a single pose regression network for
multiple objects, instead of having separate networks for each
object. These extensions are left for future work.
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