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Abstract—Real-time control of urban drainage networks is a complex task
where transport flows are non-pressurized and therefore impose flow-dependent
time delays in the system. Unfortunately, the installation of flow sensors is eco-
nomically out of reach at most utilities, although knowing volumes and flows
are essential to optimize system operation. In this article, we formulate joint
parameter and state estimation based on level sensors deployed inside man-
holes and basins in the network. We describe the flow dynamics on the main
pipelines by the level variations inside manholes, characterized by a system of
coupled partial differential equations. These dynamics are approximated with
kinematic waves where the network model is established with the water levels be-
ing the system states. Mowving horizon estimation is developed where the states
and parameters are obtained via the levels and estimated flow data, utilizing
the topological layout of the network. The obtained model complexity is kept
within practically achievable limits, suitable for nonlinear predictive control.
The effectiveness of the control and estimation method is demonstrated on a
high-fidelity model of a drainage network, acting as virtual reality. We use real
rain and wastewater flow data and test the controller against the uncertainty
in the disturbance forecasts.

Keywords—Receding horizon control; Transport delay; Partial differential
equation; Urban drainage network

OIEEE. The layout has been revised.

Published in IEEE Transactions on Control Systems Technology.

DOI: https://doi.org/10.1109/TCST.2021.3137712



7
8

Contents

Introduction . . . . . . ... 1
1.1 Nomenclature . . ... .. .. ... .. ... ... ... ... . 3
Drainage System overview . . .. . ... ... ... . ... ... 5
System model . . . . ... )
3.1 Physical transport model . . . . . . ... ..o o0 5
3.2 Reduced, data-driven transport model . . . . .. ... ... .. 7
3.3 Disturbance model . . .. .. ... ... ... .. ... . ... 9
3.4 Storage model . . .. ... L L 10
3.5 Network description . . . . .. ... ... .o oL 11
3.6 Discrete network model . . . . .. ... ... ... ... . ... 12
Moving Horizon Estimation . . ... ... ... ... ... ....... 12
4.1 Parameter estimation . . . . . ... ... ... .. 13
4.2 State estimation . . . . . ... ... ... ... 15
Control design . . . . . ... .. L 16
5.1 NMPC problem . . . ... ... ... . . 16
5.2 Objectives . . . . . . . 18
Numerical results . . . . . . . . ... 20
6.1 Baseline controller . . . . . . . ... ... ... ... 20
6.2 Casestudy . ... ... . . . . 22
6.3 Simulation environment . . . ... .. ... .. .. ....... 23
6.4 Identification results . . . . ... ... ... L. 23
6.5 Control results . . . . ... ... ... ... 25
Discussion . . . . . . . . e 30
Conclusions and future work . . . . . ... ... ... ... ....... 30

References . . . . . . . e 32



1. Introduction

1 Introduction

Open - channel hydraulic systems are large-scale networks where water is trans-
ported with a free surface in pipes or conduits [Schiitze et al., 2002]. In this
work, we focus on Urban Drainage Networks (UDNs), more specifically, on sys-
tems where rain and wastewater are combined, and pumped in open channels.
Pumped UDNs are typical in areas where the gravitation of water is limited
due to the flatness of the landscape [Garcia et al., 2015]. Moreover, combined
sewers carry both domestic and stormwater towards treatment plants, where
the sewage is treated before being released to the environment [Butler and
Davies, 2006]. Combined sewers are present in many large cities and they
are often overloaded due to the under-dimensioned capacity of the infrastruc-
ture induced by fast urbanization and the growing number of end-users [Lund
et al., 2018]. Besides, UDNs are increasingly being pushed to their limits due
to changing weather conditions, resulting in more frequent Combined Sewer
Overflows (CSOs) [Lund et al., 2018]. The changing conditions challenge flow
prediction and raise the question of how to handle the increased load on these
systems.

In the last few decades, several Real-Time Control (RTC) techniques have
been developed for UDN applications. These techniques typically exploit the
available sensor measurements, rain forecasts, and the available physical de-
scription of the network. Many of the applied methods for evaluating the
network capacities and solving optimization problems are typically predictive
model-based control techniques [Mays, 2001; Ocampo-Martinez et al., 2013;
Ocampo-Martinez, 2010]. However, transport flows in open-channel hydraulics
are governed by a set of Partial Differential Equations (PDEs), too complex to
identify with data and often infeasible to adapt to RTC applications in large-
scale problems. Several methods in the literature typically propose the use of
reduced PDE-based models in Model Predictive Control (MPC). These meth-
ods rely on the physical properties available (e.g., pipe dimensions, friction,
and slope parameters) for model calibration with HiFi (High Fidelity) model
simulators [Xu et al., 2011], [Xu et al., 2012]. Simulating gravity-driven flow
with full PDE-based models in large-scale UDNs requires either a HiFi simu-
lation environment or the placement of several flow and level sensors along the
pipelines, meaning prohibitively expensive installation and maintenance costs.

PDEs linearized around an operating point have been used in UDN appli-
cations, where transfer functions [Dalmas et al., 2017], [Litrico and Fromion,
2006] and state-space models [Zou et al., 2015] have been developed. Due to
the complexity of PDE-based control, conceptual models are also used in the
state-of-art, for instance, [Balla et al., 2020b] used algebraic models with a sin-
gle delay parameter, while [Ocampo-Martinez, 2010], [Gelormino and Ricker,
1994], [Mollerup et al., 2016], [Ocampo-Martinez et al., 2013], [Joseph-Duran
et al., 2015] used a dynamic control model where the available capacity of
pipes and tanks have been collectively modelled as virtual buffers. However,
linearized and conceptual internal models do not allow flow-dependent time



delays, conceptualize the physically measurable levels and flows, furthermore
restrict the flow deviation from steady-state solutions. Data-driven modeling
has been reported in [Balla et al., 2020a] and in [Troutman et al., 2017], where
grey-box and black-box identification have been used, respectively.

In this article, we propose a PDE-based modeling framework, where the
system of PDEs is approximated to obtain a simple representation of the net-
work, preserving the main system dynamics for control. We report on the
modularity of the framework by arguing that using the network topology and
water level sensors, a model suitable for control is obtained. Opposed to the
current state-of-art, the proposed modeling framework captures the inflows to
the UDN through water level measurements. In this way, we disregard the use
of HiFi simulation models for model calibration.

Moreover, a new Nonlinear Model Predictive Control (NMPC) approach is
proposed, based on a data-driven model, reduced from PDEs. In our approach,
a Moving Horizon Estimation (MHE) method is used for constrained parame-
ter and state estimation governing the PDEs, which we spatially discretize to
Ordinary Differential Equations (ODEs). Time periodicity conditions are im-
posed on disturbance inflows, generated by household activity, to incorporate
additional structure in the model dynamics used for predictions in the NMPC.
The proposed control architecture is shown in Figure 1. The Moving Horizon
Parameter Estimation (MHPE) along with the Moving Horizon State Estima-
tion (MHSE) is carried out using easy-accessible level sensors distributed and
placed inside manholes along the main sewer lines. Besides, we utilize flow esti-
mation techniques which allow us to use pumped inlet and gravitated discharge
flows, further detailed in [Kallesge and Knudsen, 2016]. By using MHPE with
NMPC, the system can re-identify the slowly changing pipe dynamics due to
accumulated sludge in the bottom of sewer pipes. Besides, the NMPC can
adapt to varying flow conditions imposed by the changing rain infiltration due
to seasonality. The MHPE and MHSE problems, similarly to [Joseph-Duran
et al., 2015], [Joseph-Duran et al., 2014], are both formulated as nonlinear
least-squares problems, subject to state and parameter constraints, further de-
tailed in Section 4. As shown in Figure 1, the NMPC is utilized as a global
controller, solving a multi-criteria optimization problem and thereby providing
references to the pumps at the local pumping stations. The proposed control
and estimation methods are demonstrated on a HiFi network, simulated in the
Mike Urban (MU)! simulation software where we use the catchment dynamics
and the MU runoff engine for generating rain-runoff appearing as the load on
the network. Finding the rain-runoff based on rain intensity forecasts by radars
and numerical weather predictions is an active field of research, which has been
extensively studied in [Ma et al., 2018], [Chang et al., 2001] and its effect of un-
certainty on UDNs in [Léwe et al., 2016], [Lowe et al., 2014]. Moreover, several
works in the literature report on how to handle rain forecast uncertainty, e.g.,

IMIKE Urban is a standard hydraulic simulation and planning tool, used as a planning
tool by many operators at water utilities. The MU simulation environment solves the full
dynamic PDEs for open-channel flow [MIKE powered by DHI, 2017].



1. Introduction

in UDNs in [Balla et al., 2020b] and in river applications in [Tian et al., 2017].
In this work, historical events of rain and wastewater are utilized in terms of
real measurements, representing the imperfect weather forecasts.

The proposed data-driven method using the reduced network model and
MHE has two clear benefits:

o First, it is a data-driven method that does not require heavy computation
and difficult calibration procedures opposed to HiFi models, used at many
utilities.

e Second, it is only required to collect data from periods under normal op-
erational behavior, opposed to conventional data-driven methods where
historical data is required for all the abnormal system behaviors.

The rest of the article is organized as follows. In Section 2, a preliminary
overview of the operation of UDNs is presented. Section 3 first presents the
PDE-based model for open-channel flow, followed by the reduced, data-driven
system of the nonlinear ODE model obtained via spatial discretization. Then,
the model of storage elements and the time-periodicity assumption on the dis-
turbance signals are presented with the description of the system as a directed
tree graph. In Section 4, the MHPE and MHSE techniques are detailed, where-
upon Section 5 introduces the NMPC design and establishes the main control
objectives. In Section 6, the results using data from a real-world network are
presented. This is followed by Section 7 and Section 8, where a discussion,
conclusions and future research directions are provided.

1.1 Nomenclature

Let R,R™, R™*™ denote the field of real numbers, the set of real column vectors
of length n and the set of m by n real matrices, respectively. Throughout the
paper, all quantities mentioned are real. We use boldface letters for sets, such
as 8 = {51,..., 5}, as well as for vectors @ = [x1,...,7,,]7 € R". The superscript
T denotes transposition, and the operators <, <,=,>,> denote element-wise re-
lations of vectors. Moreover, for a vector € R”, ||z|| = V&Tx denotes the
Euclidean norm.
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Figure 1: The proposed closed-loop control architecture, where rain intensities are known by means of weather forecasts and the transformation
between the intensities and the runoff flow appearing in the sewers is characterized by the catchment dynamics.
d represent rain, household and groundwater inflow disturbances, h and V are the system states representing water level and water volume,
respectively. Moreover, u denotes the input of the aggregated flows which are delivered by locally-controlled pumps. The pipe network (plant) is

represented by the WW (Waste Water) network block.
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2. Drainage System overview

2 Drainage System overview

UDNs contain several elements, including gravitation pipes, manholes, pits, and
in some cases, retention tanks. The most widely used actuators in pressurized
sewer networks are pumps, typically installed inside wastewater pits where
the sewage and rain are collected [Schiitze et al., 2002]. These units often
consist of one or several pumps in parallel, controlling the transport of the
sewage from pit to pit. First, the water is pumped through a rising main,
whereupon it gravitates through sewer pipes towards a downstream station,
shown in Figure 2.

)
0o

WWTP

Station 4

Station 3

Station 2

Figure 2: Tree topology of a pumped sewer network, where (1) illustrates rising mains, (2)
gravity sewer pipes and (3) pumping stations [Butler and Davies, 2006].

UDNs typically have a tree structure, where the Waste Water Treatment Plant
(WWTP) represents the root of the network.

3 System model

The modelling based on physics is introduced to show how the reduced model
is obtained considering simple mass conservation rules and assumptions on the
geometry of hydraulic structures. We aim to obtain a model structure with
a low number of lumped parameters, where the system states are expressed
by water levels. Besides, we show that the proposed internal model structure
allows us to make assumptions on the initial parameters and their upper and
lower bounds.

3.1 Physical transport model

Flow propagation in UDNs can be accurately computed by the full Saint-Venant
(SV) equations, which are non-linear hyperbolic PDEs describing the mass and
momentum of fluid:

aAw t 8% t 7
) 9 - 1
ot oz At (1a)
Diffusion wave
84rr O [ Doy Oy
5 -~ > Ax > Ss—S - O, 1b
at + ax(Ax’t)-i-g ,t( ax + f b ) ( )

Kinematic wave



where ¢, ; is the flow in the pipe and LZ” = dy ¢/dz represents lateral inflows
per unit length, where d, ; is the lateral inflow hereinafter referred to as distur-
bance. A, . is the wetted pipe area, h, ; represents the water level, furthermore
Gty dgt, Az ¢ and hy ¢ are functions from (0, L) xR, — R,, where L is the total
length of the gravity pipe. The gravitational acceleration is denoted with g,
moreover the slope term S, € R, and friction term Sy € R, are assumed to
be independent of = and ¢, i.e. all pipe segments along the gravity pipe are
modelled with assuming identical physical attributes.

The dynamics of each transport pipe in (la) and (1b) are coupled through
boundary conditions, hence the problem can become computationally demand-
ing to solve in the case of complex networks [Xu et al., 2012]. Assumptions
on the flow characteristics can lead to loss of dynamics, however, can lead
to significant simplifications to the model structure. In this work, we utilize
the Kinematic Wave approximation of the SV equations, thereby removing the
left-hand-side terms of (1b). In this way, we omit the phenomena of wave at-
tenuation, flow acceleration, and the phenomena of backwater effect?. These
simplifications inherently mean that the considered flow characteristics are uni-
form and hence quasi-steady flow is assumed at all z € (0, L). The momentum
equation in (1b) only considers two terms, i.e.,

Sy = Sf(%c,tahx,t)a (2)

where the friction term Sy is obtained from the Manning equation, which is an
empirical formula for energy balance between gravity and friction, expressed
by the level h and flow ¢ variables [Schiitze et al., 2002] as

2.2
n qm t
Sh=—173 (3)
4/3”
AZ,tRz{t
where R = % is the hydraulic radius, P € R, is the wetted perimeter and n € R,
is the Manning coefficient. Note that by knowing a map f: Ay, ~ hy 4, an
expression between ¢, ; flow and h, ; level is constructed.

Assumption 2. We assume a linear map f between the wetted-area Ay and
water level hy . It is assumed that semi-filled circular sewers are reasonably
well-approrimated by rectangular pipe shapes, i.e.,

A wh,
Ryp=2rtm 2t (4)
Pz,t 2hz,t +w
where hy ¢, © € (0,L) is the water level and the cross section is parametrized by
the w channel width shown in Figure 3.

2Backwater occurs in sewers when the receiving water body becomes overloaded and
therefore water volumes are accumulating at downstream of the connected hydraulic structure
[Munier et al., 2008].
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Figure 3: Semi-filled circular pipe approximated with rectangular geometry.

The independent variables remaining in the simplified SV PDEs in (1a) and
(1b) are reduced to ¢, ¢ flow and h, ; level distributions on the domain (0, L) x

R,, given by:
7 8hm,t 4 3%,15 _ dac,t

= Bt 5
ot ox o (5a)
Sy (why)??
PR L2 g (5b)
n (2]7%7,5 + U)) /
which is an approximation of the full dynamic SV-PDEs. Note that Assumption
1 on the pipe geometry means a linear scaling from levels hy; to flows g, .,

which leads to inaccuracy for circular pipe profiles. However, the assumption
on the linear geometry profile keeps the model complexity low.

3.2 Reduced, data-driven transport model

In order to formulate the transport dynamics in a form more amenable to sys-
tem identification, the spatial discretization of the approximated SV-PDEs in
(5a) and (5b) is considered. The gravity pipes are partitioned into NV, non-
overlapping dx segments of length, while the signals h;+, ¢, + and dg . are
approximated as piece-wise constant functions of the spatial coordinate x, as
shown in Figure 4.

dz,t dz+51,t d:17+2(5:17,t dz—&-@'ém,t dz+Nz(Sz,t
* N Y Y
L /o I \ I /
qo,t ! \ ! \ ! \ |1 \ ! \ I qrL.t
I | I | I | ! | I [
| | | y | | \
TR g U v T g N \
[ — [ v ! N \
/ / / / /
| | | | e | | | >
T T T T T T T Ll
=0 z=L

Figure 4: Gravity pipe divided into Ng, equal-sized, non-overlapping segments.

In Figure 4, qo+ and qr,; denote the flows corresponding to the upstream and
downstream boundaries, respectively. Furthermore, d;s.,¢ represents the lat-
eral inflows (disturbances) entering the ' pipe section, where i € {1,2, ..., N, }.



Remark 3. It is not necessary to partition gravity pipes into equal-sized dx
sections. The length of the spatial step dx can be defined by the placement of
manholes along the sewer pipes, among which some may be equipped with level
SEnsors.

Remark 4. Close to the downstream end of gravity pipes (x = L), the discharge
conditions of qr+ are influenced by the receiving hydraulic structure and the
corresponding water levels [Roberson and Crowe, 1993], [Dey, 2002]. This
relation imposes dynamics governing the water level hy+ in the last section.
In this study, the effect of these types of dynamics are excluded, hence the
positioning of water level sensors close to x = L are chosen such that

L -2 2> Smn, (6)

where Smin € Ry denotes the minimal distance from the end of the channel where
level sensors at position x should be placed. The criteria of choosing Sy, for
the free fall condition of fluids, based on the diameter of open-channel pipes is
detailed in [Roberson and Crowe, 1993, pp.698-699)].

The spatial discretization of (5a) and (5b) is done by the backward Euler
method. The left boundary (upstream) is defined at = = 0 and the right bound-
ary (downstream) at @ = L. Then, the SV-PDEs are reduced to the following
system of finite dimensional ODEs:

dhgy ¢

dt = el(qx—&c,t —Qztt dz,t)v Ve (07 L)v (73“)
15/
x,t

ot =02——"—=, Vae(0,L), (7b)

(hm,t + 93)2/3 ’

where the physical constants and the spatial time step are lumped into the
parameters

1>

0, =

1 Syw? LW

92 2%’[1 ) 03 - 2 ) (8)
where 01, 05,03 € R,. Note that 03 is directly related to the width parameter w
and #; would change along the pipe in case of non-equal spatial steps dx. For
the sake of simplicity, the model is presented with fixed dx spatial steps.

wéz’

Remark 5. Due to the spatial discretization, numerical distortion is intro-
duced in the traveling wave [Xu et al., 2012], which compensates for the flow
attenuation phenomena in gravity pipes. This artificial attenuation vanishes as
ox - 0.

In order to obtain the state equation with water levels as states, the section
flow distribution ¢, in (7a) is substituted with water levels from (7b), which
yields

5/3 5/3
Yy s ~ h,'; od o
102 (ha—s2.t +03)2/3 (Mot +05)2/3 10g,t,

8



3. System model

where, opposed to previous work in [Balla et al., 2020a], the flow balance in
the SV equations is reformulated with physically measurable water levels. For
ease of notation, let us define a non-linear map g : R, — R, as

5/3

g: (hgt,03) ~ W, Vae(0,L). (10)

Then, the transport flow model is completed by introducing the boundary
conditions into the N, coupled ODEs, i.e.,

dh

d(;t =601(qo, + do,t) — 01029(hss.t,63),
dhey

e 0102(9(ho-s2,t,03) = g(hat,03)) + O1de s, (11)
dh :

dj’t =01029(hp-s0,:,03) +01(dr,e —qr.t),

where d ;+ is the unknown disturbances in form of lateral inflows. Besides, the
upstream boundary flow go; is subject to control and hereinafter denoted as
u. The downstream boundary flow g, ; is the discharged output, which we
consider as the controlled model output, hereinafter denoted as

yZHQQ(hL,t703)a (12)

where hp, ; represents the water level at the downstream boundary x = L. Note
that (12) is the parametric form of (3), relating the level to flow.

3.3 Disturbance model

The proposed model described in (11) aggregates the unknown, scaled distur-
bances in d;;. The disturbances are typically composed of several different
types of inflows:

doy = +dh,+d?,, Vaxe(0,L), (13)

x,t

where d;, ;, denotes rain runoff, dic”t is the household flow due to human activity
and df ; stands for groundwater.

Assumption 3. The disturbance flow generated by households has an inher-
ent periodicity, such that dﬁyt = dﬁ;HT, where T typically corresponds to one
day. Moreover, disturbances generated by groundwater infiltration fulfill the
constraint Zﬁﬁ dj, = N:vd?,w V joe{1,2,..., N}, i.e. uniformly distributed
along the whole length of gravity sewer pipes.

Remark 6. Seasonality with different time periodicity have been considered
(e.g. weeks, months) in [Livera et al., 2011], where methodologies such as
Fourier models have been used to decompose seasonal components in a broad
range of applications.



Besides, the rain runoff dj , is generated by the dynamics of catchments
where the intensity of rain precipitation is typically provided by weather fore-
casts. Several works have been done on relating rain radar forecasts to actual
runoff flow in UDNs, e.g., [Lowe et al., 2016], [Lowe et al., 2014], [Ma et al.,
2018], [Chang et al., 2001].

For modelling the periodic household flows d};,t and the constant ground-
water d , flows, Fourier series are utilized. For simplicity, let us assume that
dy; =0,V ze(0,L), ie., assuming a dry-weather period. Then, the scaled
disturbances in (11) are defined as:

foot @+, (1)
k
2 X+ . (Mrj cos(jwt) + Agj sin(jwt)),
j=1

where the set of disturbance parameters is A = {Ag, Ad11,A21, .oy A1k, Aog | €
R2*+1 The angular frequency w corresponds to a period of one day and k > 2 is
the number of frequency terms in the truncated Fourier series. The transport
model in (11) and (12), in combination with the disturbance model in (14) are
used to find parameters 8 and A.

3.4 Storage model

Stored volume within the network is represented through wastewater pits,
among which some are specifically constructed to retent extreme peak flows
caused by sudden rainfall runoffs. An example for such storage structure is
shown in Figure 5. These pits are distinguished from single wastewater pits
due to their large capacity and therefore referred to as retention pits in the rest
of this paper. For each storage element at pumping station i € {1,..., N}, the
infinitesimal level change is computed as the sum of all in- and outflows as

dfv (hs,:)

Ny
i :ds,i-‘r Zy] - Uq, (15)

j=1

where dg denotes disturbance inflows to storage tanks, h, is the water level
in storage units and wu is the sum of controlled pump flows moving the water
towards the next pumping station in line. Note that w is equivalent to the
inlet flow go,+ of a gravity pipe located between interconnected storage units,
described in (11). Besides, N, is the number of gravity-driven transport links
discharging to the i*" storage unit and y; is the arriving discharge from the gth
upstream pumping station, defined in (12). N, denotes the overall number of
pumping stations in the UDN. Moreover, let us consider a map fy : R, - R,
from water level h to water volume V', where fy is strictly monotonic increasing.

Assumption 4. For storage elements, fy(h) in (15) is approzimated with a
piece-wise linear, strictly monotonic increasing function, parameterized by the
level-flow constant of storage tanks.

10



3. System model

Retention pits classify for the assumption on piece-wise linear behavior, while
the relation between level and volume simplifies to linear in case of single pits.
The piece-wise linear relation along with the hydraulic structure is shown in
Figure 5.

Retention tank
WW pit

Figure 5: Level-Volume conversion for waste water pit with retention tank.

Tank constants K7 and K5 correspond to the slope of the A—V conversion curve,
where K5 is only relevant if pits are equipped with retention tanks. Note that
in dry weather the storage capacity of pits is sufficient, hence wastewater flow
is typically bypassing the retention tank, acting as a single pit.

3.5 Network description

The links between system components define the topology of the network. The
topology considered is a directed tree-graph with nodes representing storage
(except the root) and edges transporting flow in between the nodes towards
the root. The root of the graph is an outlet point, where the flow is discharged
to the receiving environment, e.g., to the WWTP. The tree structure topology
is shown in Figure 6.

—u s {ur, . us} —>yE{y,...,ys} —>d={ds dg}

Figure 6: Graph representation where the filled nodes are pumping stations, empty nodes
are manholes, whereas edges represent transport pipe segments.

Let us denote the set of nodes corresponding to tanks and pits at the pumping

stations with S = {51 = (hsi dsi,ui) i € {1,...,NS}}, where h,; is the wa-
ter level, ds; is the unknown flow disturbance defined in (13) and w; is the

11



controlled flow of the i*" pumping station. The remaining nodes represent
manholes along the gravity sewer transport links. These set of nodes are de-
noted with g z {glj = (hg,ij,dg,ij) |Z € {1,...,NS},j € {1,...,Ng}}, where hg,ij
are the water levels in the j*"* segment of the gravity pipe rooting from the i‘"
upstream station. Furthermore, dg;; are lateral inflows along the ith gravity
pipe, entering through the j** manhole. These disturbance components are
given in (13). The numbering of manholes along the gravity pipes denotes the
upstream pumping station (first digit) from which they are numbered in an in-
creasing order towards the downstream station (second digit). The connections
between the storage and junction nodes are defined by the piping layout.

Note that the set of G junction points also represents storage by means of
the volume of pipe sections, as the spatially discretized and reduced SV-based
model is equivalent to volumes connected in series, where the set of water levels
{hg i1, hging},t € {1,..., N5} relate to water volumes stored in each segment.
However, we distinguish between S and G for the reason that nodes in S are
subject to control w.

3.6 Discrete network model

In this study, discrete-time network dynamics are utilized for solving the MHE
and NMPC problems. The transport and storage dynamics, described in Sec-
tion 3.2 and Section 3.4, are given for each individual network element, respec-
tively, as

i:"g(tk+1) :FG,)\(U(tk)7ﬁg(tk)vdg(tk))7 (16&)
Bs(tk+1) :H(u(tk)7 ﬁs(tk)v ds(tk)’ Q(tk))a (16b)
9(tr) =Go(hy(tr)), (16¢)

where the numerical integration from ¢, to tz1 is done by the fixed step, 4"
order Runge-Kutta method. Moreover, ﬁg (tr) € RM= is the vector of water lev-
els along a transport link between two pumping stations. The system dynamics
corresponding to transport flows in (11) are defined by Fg x : R, x RNz x RNz
RM=. The discrete storage dynamics are given by H : R, xR, xR, xR —» R,
where N, is the number of transport links discharging to the specific storage
node. The outputs are represented by Gg : RM» — R, corresponding to the
discharged gravity flow previously described in (12).

4 Moving Horizon Estimation

In order to incorporate system knowledge in the state and parameter estimation
in form of constraints, a MHE approach is utilized in this paper. Past data
samples of the inputs, i.e., pump flows {u(tx—p, ), u(k-p.+1), ..., u(tx)} and the
outputs, i.e., discharged gravity pipe flows {y(tx-rr. ), y(tk-r.+1), .-, y(tr)} are
used up to the current time sample t;, where H,. is the estimation horizon.
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4. Moving Horizon Estimation

Moreover, for each transport link ¢ € {1,..., Ns}, let us define hy ; € RN= as the
vector of water levels in all j € {1,..., Ny} pipe segments. The MHE problem
regarding states (MHSE) and parameters (MHPE) is solved for each transport
link ¢ individually. Therefore, we ease the notation and discard the i and j
indices and we present the parameter and state estimation for a single transport
link.

Additional outputs may be available by means of water level sensor mea-
surements, placed in manholes along the main transporting sewers. Hence, we
define C' € RNo*N= matrix, associated with a linear mapping which picks all the
measured states. Ny is the number of water level sensors along the transport
link. Then, the output vector is given by

zg=Chg +v, (17)

where ve NID(0,0?%) is white Gaussian noise accounting for measurement cor-
ruption, and z, € RV, Past data samples {z,(tx-m. ), 2g(tr-rr.+1), - 2 () }
of these outputs are utilized together with the input u and output y flow data.

The main purpose of the MHPE is to identify the unknown dynamics of
each transport link without using information about the physical properties
of sewer pipes, such as pipe diameters, length, slope or roughness. Due to
the linearized level-flow scaling introduced by Assumption 1 in Section 3.1,
fixed model parameters might result in inaccurate flow predictions, based on
whether the pipes are close to being filled or semi-filled. These characteristics
can change over time due to seasonality, hence we utilize the MHPE method,
attempting to adapt the model parameters to varying flow conditions. More-
over, the dynamics might change over time due to sludge accumulating within
certain sections of the pipes, for which the proposed MHPE method is also able
to account. As a natural extension, the states are also estimated in a moving
horizon fashion (MHSE).

In the following, we distinguish between the horizons of parameter and state
estimations. For parameter estimation, we denote the length of the horizon with
Hp. and for state estimation with Hs.. Due to the slowly changing dynamics
of sewer pipes, we argue that the MHPE is sufficient to carry out above the
frequency of the NMPC, having at least one day up to a week long H,. horizon.
However, the MHSE problem is executed with a minimum of one day long
horizon and with the same frequency as the NMPC. The one day long MHSE
horizon is due to the inherent periodicity of the waste water disturbance inflows
d". Moreover, by calling the MHPE less frequent than the NMPC, we lower
the typically high computation demand of MHE algorithms, where state and
parameter estimations are carried out simultaneously [Allgdwer et al., 1999].

4.1 Parameter estimation

The MHPE problem of transport flows is formulated as a constrained, least-
squares nonlinear minimization problem.
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Remark 7. The control inputs u, depicted in Fig. Figure 6, are estimated
considering the polynomial expression of fived-speed wastewater pumps in the
form

U= spo + Sp1Ap + spa Py, (18)

where s is the number of running pumps at the pumping station, Ap is the
differential pressure and P, is the power consumption of the pumps [Kallesoe
and Knudsen, 2016]. Besides, the outputs y corresponding to discharged flows
in Fig. Figure 6 are estimated using mass conservation, detailed in [Kallespe
and Knudsen, 2016]. In this work, we use the outcome of the referenced flow
estimation algorithm to provide outputs for the MHE problem.

Let 6 = {61,02,05} € R, denote the set of bounded system parameters and
A € R denote the parameters corresponding to the Fourier disturbance model.
Then, for each transport link, the initial states ﬂg (to), the parameters 6 and
A are found by solving the following finite-dimensional constrained Nonlinear
Programming (NLP) problem at time t:

o* .
* . A 2
. A = argmin 3 (Z/(tz) B y(ti)) 0w
hi(to)) OAha(to)i=h-—Hye

+ Willzg(t:) = 24 ()7,

subject to sewer dynamics:

ﬁg(tm) :FB,A(U(ti)vﬁg(ti)adg(ti))a (19b)
9(t;) =Go(hy(t:)), (19¢)
24(t:) =Chy (), (194)

and inequality constraints:

0< hy(t;) <hg, (19¢)
< 6 <86, (19f)
0<  g(ti) < 7, (19g)

where ﬁg (t;) € RM= is the vector of states corresponding to a transport link.
Note that y represents the discharged flow, while h, represents the vector of
water levels in the manholes. Therefore, we use W7 as a weighing constant
in (19a), scaling the water levels to the magnitudes of the discharged flows.
The constraints in (19e), (19f) and (19¢) impose bounds on state variables,
parameters and the output, respectively. Note that the states ilg and the
output variable y correspond to physically measurable water levels and the
discharged flow in sewer pipes, respectively. The water level measurements
addressed in (17) are denoted by z,. The state and output bounds are chosen
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4. Moving Horizon Estimation

consistent with physically meaningful values, such as water levels and flows are
never negative inside the pipes.

Moreover, the upper bound on the states Eg is the maximum allowed water
level in manholes defined by the physical height from the bottom to the surface.
From (8), we know that the pipe parameters 6 are positive. Besides, using (8),
we approximate a physically meaningful maximum value for the pipe diameters,
spatial step, time steps, and friction values. In (19g), the flow is assumed to
be non-negative inside the pipe and the maximum is defined as the physically
possible full-pipe flow. The bound constrained nonlinear minimization problem
in (19) is then solved via a gradient descent algorithm.

Note that the number of sections V., illustrated in Figure 4, is treated as
an auxiliary variable in the NLP, meaning that the MHPE problem can be
carried out multiple times with different grid sizes to find the optimal number
of sections regarding some performance index, e.g., Root Mean Squared Error
(RMSE). This procedure is not detailed here, as the reader may consult a
previous study focusing on how to choose grid size for a flow-based SV-PDE
model in [Balla et al., 2020a).

4.2 State estimation

Full state measurement in the proposed sewer system model requires sensor
installation inside all available manholes within the network. This is neither
economically feasible, nor required by the control point of view. However, it
is assumed that there is a subset of states z, which are measured. Similarly
to the MHPE problem in (19a), the full system states, i.c., h, water levels
are being reconstructed out of a few output measurements by means of the
MHSE. However opposed to the MHPE problem in (19a), the state estimation
is solved at each control time step tx, thus providing initial state estimates for
the NMPC. The MHSE reconstructs hg(tx-f,, ), ..., hg(tr) states, based on the
measured inputs w(tg_g.. ), ..., u(tx ), measured outputs y(tx-m.. ), ..., y(tx) and
2g(tp-m,.), .-, 2g(tx) over the horizon H., while the dynamics are provided as
constraints. The MHSE is defined by the following optimization problem:

fl;(tk—Hse) k )
i = argmin > () -a(t)
R () Frg(tnott.)rooorFogl(ti) =Kl
+Wallzg (1) = 24 (t)|1%, (20)

subject to the dynamics in (19b) to (19d), the state constraint in (19e) and
the output constraint in (19g). Ws is a weighing matrix for scaling levels to
flows, similarly as in (19a). Note that from the solution of the MHSE problem
in (20), the estimated state vector at the current time step ﬁ; (tr) is used. The

same gradient descent algorithm [Wills and Ninness, 2008] is used to solve the
problem in (20), as for the MHPE.
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5 Control design

The vector of control variables is defined by u € R™+, where all individual pump
flows are aggregated at the nodes s € S, representing the Ny, pumping stations
in the network. The states correspond to levels along transport links and levels
in storage units, e.g., pits. The state vector is defined by:

h=(h}, ;jl,h;g, ...,h;NS)T, (21)
where h, € RYs represents the vector of levels in storage elements and for each
ie{l,...,N,} transport link h,; € RN= consists of N, ; entries depending on
how many sections each transport link is discretized into. The outputs, i.e.,
discharged flows at the end of each transport link, are given by:

Y=y, y2, - Un,) s (22)

where the last element yy, is the discharged flow leading to the root of the
network, which we hereinafter denote as ¥,,. Introduced previously, the closed-
loop control scheme together with the MHE problem is depicted in Figure 1.
Note that the rain run-off dynamics along with the weather forecasts provide
flow inputs to the proposed closed-loop control scheme.

5.1 NMPC problem

To account for both the dry- and wet-weather loads in a computationally ef-
ficient way, the NMPC problem is formulated over two subsequent prediction
horizons. To this end, let H,, denote the predictions over the near future
(nowcasts) and H,, the predictions further in the future (forecasts), respec-
tively. This formulation of the NMPC problem is motivated by the inherent
periodicity of the household disturbances d”, which typically corresponds to
one day. However, the network is exposed to large disturbance loads in terms
of the d, rain run-off, where the so-called nowcasts are reliable only within
a short horizon. According to [Lowe et al., 2014], rainfall radars can provide
sufficient accuracy of spatial and temporal resolution for urban catchments
only up to a 2 (h) horizon. Therefore, computing the decision variables for
T =24 (h) is unnecessary, and results in high computational costs. Instead, let
H, = Hp, + Hy,, be the entire length of the horizon, T the time step and let us
define h = [h,h;]" as the entire state vector. Then, the NMPC problem for
the entire network is given as
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5. Control design

Hp,-1

i Au(ty), h(ts), yw(t 2
Ao, kZ:OE( w(tr), h(tr), yu (1)) (23a)

Au(Hp1+1),...,Au(Hp—1) +S(h(th))
subject to transport link dynamics
Ry (tr1) =Fo x(u(ti), hy(tr), dy(tr)), (23b)
w(tp1) =u(ty) + Au(ty), (23c¢)
Yu(tr) =Go(hy(tr)), (23d)

storage dynamics

hg(tre1) :H(u(tk), hy(tr), ds(tx), y(tk)), (23e)

state, input and output constraints

V4 Vor(tr) < fr(hs(tr)) < V+ Vor(t), (23f)
0 < hy(ty) < hy, (23g)
u < u(ty) <, (23h)
0< Yu(tr) < Gy (23i)
terminal constraint
V < fv(hs(tu,)) <V, (23j)
0 < hy(tn,) < hg, (23k)

where Au(ty) £ u(tg+1) — w(ty) is the input change. The integral action ac-
counts for smooth and slow system response, avoiding sudden jumps in the
control action. The proposed optimization problem in (23a) is solved for
[AuT(0),...,Au"(H,,)]" € R¥r1 whereas the problem of finding the decision
variables over Hp, is reduced to finding H,s/7 number of optimization vari-
ables, where 7 defines how many T control steps each decision variable is kept
constant. This is due to the fact that the control over H,, does not require
the same precision as for the nowcasts over H,,,. The stage and terminal costs
formulated in (23a) are sums of square-type functions, and the multiple oper-
ational objectives in the stage cost £ are detailed in Section 5.2.

The dynamics Fy x, H and Gg are defined in (16a), (16b), (16¢) for the
entire network and the output equation in (23d) is formulated on the discharged
flow y,, arriving to the root of the network. The nonlinear level to volume
conversion is kept outside of the optimization, where fy is a piece-wise linear
map from (15). Furthermore, the control is subject to state constraints on
pipe states in (23g) and storage states in (23f), where V,; € R"= is the vector
of slack variables, lifting the upper and lower state bounds. This variable is
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considered as a virtual volume triggered at times when the physical limits of
storage elements are extended. In case of an overflow, the slack variable lifts
both the lower V and upper V state bounds, thereby keeping track of the excess
storage [Gelormino and Ricker, 1994]. The upper bound of states corresponds
to the physically maximum volume capacity in the storage nodes. The lower
limit is defined by the user with the criteria that a minimum volume of water
needs to be kept in the storage tanks at all times to fully cover the wastewater
pumps, hence avoiding the dry-run of pumps.

Remark 8. In case of overflows, the excess water volume leaves the network
immediately. This is assured by constraining the slack variables

0 < Voz(tw), (24)
meaning that spilled sewage escapes all s € S storage nodes.

Furthermore, (23h) imposes physical bounds on the minimum and maximum
flow capacity of pumps. Equation (23i) formulates a constraint regarding the
inflow capacity of the WWTP, where 3, is the maximum allowed inflow de-
fined by the size of the WWTP. For closed-loop stability considerations of the
NMPC, the terminal constrains in (23j) and (23k) are introduced along with
the terminal cost S in (23a) to enforce stability [Allgower et al., 1999]. The
formulation in (23a) is solved via a gradient descent algorithm, where the dy-
namics are discretized according to Section 3.6.

5.2 Objectives

The control problem addressed in (23) has multiple objectives with different
priorities. For an extensive analysis on choosing objectives in UDN control,
consult [Ocampo-Martinez, 2010; Mollerup et al., 2016]. To prioritize objec-
tives, the stage cost is formulated as a linearly weighted sum and the terminal
cost is given as

L(Au(tr), h(tr), yw(tr)) 2 i Mg T (L), (25a)
S(h(ty,)) = k' (tu,)Ph(ty,), (25b)

where \; denotes the scaling weights among the different objectives and I' is
the total number of the control objectives. The scaling constants p; normalize
each objective term to dimensionless values, such that water levels and flows
become comparable. Furthermore, the terminal cost S is defined for all states,
where the symmetric positive definite matrix P is the solution to the associated
Ricatti equation. Note that P is designed based on the weights A; on the
state and input terms in the stage cost function £. Moreover, the Jacobian
linearization of the network model is considered at an operating point, where
state values are at their 25 % utilization of their upper limit. Furthermore,
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5. Control design

disturbance and input flows are considered at the daily mean of household
wastewater production without rain.

The most common control criteria in sewer network control is related to
overflow minimization

Fi(tr) 2 V) (t) 2 Vg (tr), (26)

where V,r € R¥# is the vector of slack variables, representing overflow volumes.
The overflows V,¢ between stations are prioritized according to the diagonal
Q4 matrix, where diag (€) € [0,1]. Note that the weight corresponding to the
overflow objective A\ is significantly higher than any other weights, in order to
make the use of the overflow slack variables undesirable if possible.

The penalty on water level in storage elements is given by

Fa(te) = hy(te)Qahs(te), (27)

where h, € RY* is the vector of water levels in storage nodes and s is the
diagonal weighting matrix, where diag (Q23) € [0,1]. The level in storage nodes
is minimized to avoid long retention times and thus odor problems occurring
in the waste water tanks. Moreover, the weight matrix s allows to adjust the
filling sensitivity of storage elements, meaning that sensitive tanks are filled
slower and emptied faster than less sensitive storage tanks.

The inputs are minimized such that

fg(tk) E AUT(tk)ﬂgAu(tk), (28)

where Au € RV is the vector of input change regarding the aggregated flows
delivered by sewer pumps placed at each network node s € S. Moreover, €23 is
the weighting matrix between the network nodes, where diag (Q3) € [0, 1].

The system states in any ¢ € G nodes, i.e., gravity pipe sections are water
levels, representing storage along the edges of the underlying network graph.
Hence, we penalize manholes prone to suffer overflows:

Fu(tr) 2 hy(tr)Qahgy(tr), (29)

where hg is the vector consisting of selected network nodes which can overflow
under high loads. Similarly to all objectives, diag (£24) € [0, 1] allows to adjust
priority of overflows and filling sensitivity of manholes.

In this work, we consider the objective of controlling the inflow to the
WWTP, which is formulated as follows

H,-1 9
.7:5(tlc) 2 (yw(tk) - HL kz_;) yw(tk)) ) (30)

where the inflow variation to the WWTP is minimized. This is achieved, by
calculating a reference flow as an average inflow over the same time period as the
time periodicity of the d" houshold disturbances, which typically corresponds
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to one day. This objective allows to correct the irregular inflow pattern to the
root of the network, which influences negatively the operation of the WW'TP.
An extensive study on the regulation of inlet flow to the WWTP is detailed in
[van Heeringen et al., 2016].

6 Numerical results

We now present the numerical results. The results are related to the closed-loop
control scheme performance when both the MHE and NMPC are considered.
As presented in Section 3.6, the network model uses the fixed step, 4" order
Runge-Kutta method for the finite-difference approximation of the derivative
terms. The optimization problem related to the MHSE and MHPE has been
solved via a Gauss-Newton gradient-based method. This solver is chosen due
to the reliable estimate of the Hessian for least-squares type problems, such as
the MHE formulation in this paper [Wills and Ninness, 2008]. Furthermore, the
optimization problem related to the NMPC has been solved via direct multiple
shooting in the symbolic framework CasADI [Andersson et al., 2019]. A primer-
dual interior point solver IPOPT [Wichter and Biegler, 2006] has been chosen to
solve the nonlinear optimization problem in (23), due to its ability to leverage
sparse linear algebra computations. Since the sampling interval is significantly
short compared to the dynamics and the sampling time of the NMPC, the
optimization problem has been solved by warm-starting at each control time
step. Error tolerance of 107 has been chosen in both the MHE and NMPC
problems. Moreover, all the numerical experiments have been carried out on a
2.6 (GHz), Intel Core i7 machine with 16-GB RAM.

Following the model methodology discussed in Section 3, the control-oriented
model is identified based on measurements extracted from a physically-based
HiFi network, shown in Figure 7 (left). The topological representation as a di-
rected graph along with the location of sensors are depicted in Figure 7 (right).
To test the NMPC with the MHE strategy, real rain intensity and wastewater
flow are utilized starting from 1 September 2019 to 30 September 2019%. These
data are used as the load to the HiFi case study network.

6.1 Baseline controller

In this work, we follow the guidelines proposed in [Lund et al., 2018] to bench-
mark the MPC performance, where the current state-of-art uses CSO and
flooded volume as an evaluation measure. The proposed NMPC/MHE strategy
is tested against an on/off rule-based controller, most commonly used as base-
line control in both practice and literature [Lund et al., 2018], [Garcia et al.,
2015].

3Rain intensity data have been extracted from the weather archive of the Danish Meteo-
rological Institute (DMI), while the domestic wastewater flow measurement data have been
obtained and scaled down from the municipality of Fredericia, Denmark.
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Figure 7: High-fidelity network model in the MIKE Urban simulation software (left), and the graph representation (right), where the number of
empty nodes represents the number of discretized sections. The filled, yellow nodes represent level sensors placed in manholes.
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The switching rule together with the aggregated flow provided by the pumps
at each pumping station under the rule-based control is given by

u, if hs(tk) > E57 Vi,
u(ty) = u, if he(ty) <h,, Vi, (31)
u(ti—1), otherwise, Vi,

where hg(t) is the measured water level in the storage element. Upper and
lower bounds of the inlet flow @, u are equivalent to the bounds in (23h), corre-
sponding to the maximum and minimum flow capacity of the pumps. Threshold
values hg, h, are equivalent to (23f).

6.2 Case study

The topological properties of the HiFi network shown in Figure 7 are summa-
rized in Table 1. We consider a combined sewer network, where both rain runoff

Table 1: MIKE Urban HiFi simulation properties.

Attribute Number Variable Unit
Single pits 3 hs (m)
Retention pits 1 hs (m)
Pumping stations 4 u (m?/h) or (m?/s)
Level sensors in manholes 7 hg (m)
Catchment runoff 45 d" (m?®/h) or (m?/s)
Waste water inflow 10 d" (m®/h) or (m?/s)
Treatment plants 1 Yuw (m®/h) or (m?/s)

and wastewater enters the sewer via the catchments (yellow areas) and the man-
holes (junction points), respectively. The network consists of 170 manholes, 170
gravity pipes, moreover three single pits (s1, s3 and s4) and a retention pit (s3).
Using the proposed modelling methodology, the tree graph representation of
the UDN and the control variables in the reduced graph representation are
given by:

w =(uy, uz, ug,uq) ',

)
h i(h517h527h537h34,h;17h;2,h;37hg4)-r7 32b)
Y 2(y1, Y2, Y3, Yuw) (32¢)
d é(dm ’ d82 ) d337 d84’ d_(hsv dg22 ’ dgas ’ dg43 )Tv (32d)

where the state vector h consists of the gravity pipe subvector states hgy, € RS,
hg, € R3 h, € R* h,, € R®>. Moreover, the number of pumping stations is
N, = 4 and the rain and domestic wastewater disturbances are concentrated
on certain network nodes. The control time step of the NMPC is Tnmpc =
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6. Numerical results

10 (min), while the rule-based controllers operate with a To,/0g = 1 (min)
sampling period. The prediction horizon for nowcasts is Hy, =2 (hours) and
for the forecasts H,,, = 22 (hours), summing up to a total of one-day horizon.
The MHPE is carried out with a horizon H,. = 2 (day) and utilized with
a Tpe = 6 (hours) period time. At every 6 (hours), the MHPE uses data from
the past two days and updates the @ system and A disturbance parameters
accordingly. A minimum of two days has been chosen to detect the one-day
periodicity of the household wastewater with the Fourier disturbance model.
The MHSE is carried out with the same horizon as the MHPE, i.e., Hs. = 2
(day) and utilized with the same frequency as the NMPC, i.e., Tg, = 10 (min).

6.3 Simulation environment

To test the NMPC/MHE controller, the MIKE Urban [MIKE powered by DHI,
2017] simulation software has been used to simulate the HiFi network model
depicted in Figure 7. MIKE Urban allows for the hydraulic and hydrodynamic
simulation of flows and water levels by numerically solving the full SV equations
in (1). The model of the network in MIKE Urban is defined by the true physical
parameters of the hydraulic components. In Figure 7, the catchments (yellow
areas) are connected to manholes, hence water volumes enter the pipe network
through the network nodes. The simulation is done in two steps: First, the
network loads are computed with the catchment dynamics. Then, the rain
runoff together with the household waste and groundwater appears as a load
(marked with red arrows in Figure 7).

In this work, the NMPC/MHE strategy is used as an upper level controller,
where the MIKE Urban model is simulated as a virtual reality. To this end, we
utilize the MIKE 1D Application Programming Interface (API) [MIKE pow-
ered by DHI, 2019], [MIKE powered by DHI| which allows us for setting flow
references to the pumps and reading flow and level values of hydraulic struc-
tures during simulation. These flow references are calculated at every Tnmpc
time and then used as set-points for local PID controllers based on (virtual)
flow sensor measurements placed right after the downstream end of the pumps.
The HiFi model runs with a sampling time of T, /0%, however the set-points
for the PIDs are kept constant during the time interval Txuvpc.-

6.4 Identification results

To estimate the parameters and the initial states in transport pipes, the mea-
surements z along with the historical data on the estimated inlet and discharged
flows u and y are utilized. To show the capabilities of the MHE approach, the
initial conditions estimated for the problem in (23) are compared to the mea-
surements in the HiFi simulation, shown in Fig Figure 8.
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6. Numerical results

The results show 15 days, where the estimated flow () is the result of the
MHPE and MHSE blocks depicted in Figure 1. Note that instead of showing
the estimated states ﬁg (to), we rather show the discharged flow (o), obtained
by (19c). From the application point of view, this is reasonable, since the water
level in the last section of a transport pipe does not indicate how the volume
is affected in the receiving hydraulic structure (storage tanks), opposed to the
volumetric flow rate. Besides, for each transport link g1, go and g3, we show the
average pipe fullness along x € L length of the pipes, indicating the capacity of
each pipeline.

In the HiFi simulation environment, all sewer pipes are circular, hence the
flow-level translation imposed by Assumption 1 (Section 3) is only accurate
for small variations of water level. In order to show the variations of water
levels inside gravity pipes, we illustrate two different operating regions (shaded
areas in Fig. 8.). The middle range of the pipe is defined between 25— 75
%, moreover the lower and upper regions between 0 - 25 % and 75 - 100 %,
respectively. Small level variations within these regions are expected to yield
accurate flow estimates based on Assumption 1.

As shown in Fig. Figure 8, the one-step predictions of the MHE strategy
produces accurate estimates of the discharged flows §(¢¢) in comparison with
the flow measurements (y(to)) from the HiFi model. This is achieved without
using any flow sensor in the network, however, assuming the linear flow-level
relation in the internal model. The prediction results in Figure 8 show in-
accurate flow estimates at certain time steps imposed by the simplified pipe
geometries. This is because the internal model with the simplified geometry
attempts to produce flows close to the ones obtained by the linear flow-level
mapping, rather than the actual flow. This is most visible on y3 at periods
encircled with dashed black lines. During both of these periods, the pipes are
filled up from 25 % to 50 %, where the previous level with the time window
of the MHPE only provides information of low-filled, slow-varying level condi-
tions. Hence, the internal model underestimates the actual flow by calculating
lower volume than there is inside the middle operating range of circular pipes.

6.5 Control results

The control results aim to show the benefits of distributing level sensors along
the network to obtain the data-driven network model from the full SV-PDEs.
The proposed methodology is compared with a traditional, two-point controller
detailed in Section 6.1, most commonly used by water utility operators. The
NMPC acts as a global controller and computes reference points to local con-
trollers (as depicted in Figure 1). To evaluate the closed-loop performance of
the NMPC/MHE strategy, we selected two days with heavy overflows due to
the insufficient capacity in the network. The numerical results are shown in
Figure 9-A and Figure 9-B for each i € {1,..., Ny} pumping station, showing
the time evaluation of the disturbances, overflows, tank levels and the pumped
inlet flows.
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In the case study, all 2 weight values are set equal, hence none of the stations
are prioritized over the other. This means that overflow and the filling sensi-
tivities are not prioritized. As the overflows are not avoidable over the selected
two days period, the overall goal is to reduce the amount of flooded volume.

The disturbance signals used in the HiFi simulator are historic rain and
wastewater flows. To evaluate the NMPC/MHE performance under uncer-
tainty, we generated imperfect forecasts for the internal model of the NMPC.
To this end, n = 10 different disturbance scenarios have been created by adding
normally distributed random data on top of the historic flow signals. As shown
in Figure 9-A/B(a), (b), (i), and (j), a set of ensemble of forecasts is pro-
duced, indicating a range of possible disturbances. The characterization of the
uncertainty for each disturbance is given in the Appendix.

To show the deviation between the prediction by the controller and the
state measurement retrieved from the HiFi simulator under uncertainty, we
indicated the one-step predictions in Figure 9-A/B(e), (f), (m), and (n) with
the dashed red line. Note that the upper constraint is violated under overflow
events, due to the slack approximating the volume of overflows. Furthermore,
the lower bounds are violated in case the forecasts indicate higher volumes
than expected, ending up in the dry-run of the pumps. The NMPC/MHE
strategy overflows the upstream tanks (s1, s3 and s4) at times where the rule-
based method avoids overflows. This is depicted in Figure 9-A/B(c), (k) and
(1), where all storage nodes are prepared by being emptied before the load
increases on the network and therefore the controllers distribute the flooded
volumes among the corresponding stations, as shown in Figure 9-A/B(e), (m)
and (n). Opposed to the rule-based strategy, the overflows are intentional and
coordinated, thereby avoiding the overload on the retention tank ss during
the heavy load period. As the system states (i.e., water levels) show, the
overflows are shifted in time as the storage nodes attempt to hold back water
until their capacity allows. Note that the precise flow-level translation and
the precise discharged flow predictions (y1, y3 and y4) guarantee the proper
management of the pits (s1, s3, s3) and the retention pit (s3), mitigating the
overflow volumes optimally. The comparison of overflow reduction between the
baseline and NMPC controllers is shown in Figure 10. Applying the proposed
NMPC/MHE strategy results in 28 % cumulative overflow volume decrease
over the considered period.

To comprehensively illustrate the practicability of implementing the NMPC/
MHE framework, we report on the computational complexity and the dimen-
sions of the optimization problem. To this end, we reduced the network graph
shown in Figure 7, by excluding one and two pumping stations, respectively.
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6. Numerical results
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Figure 10: Overflow comparison throughout the entire network.

The results, along with the size of the optimization problem, are shown in Table
Table 2.

Table 2: Computation complexity with different number of stations.

Num. of ~ Av8 CPU  Max CPU  pecision

stations time (s) time (s) var. Constr. Param.
4 (s1,2,3.4) 2.14 8.37 5361 8385 1216
3 (s1,2,3) 1.8 4.36 3912 6072 912
2 (s12) 1.15 1.86 2608 4192 610

The optimization problem is carried out on the case study network scaling
from two pumping stations to the full extent of the network. As shown, the
size of the optimization problem is increasing with including more pumping
stations and transport links, however, the computation remains low, as all
constraints can be cast as linear equalities and inequalities. Moreover, the
average and maximum CPU times for the full scale of the network are only
2.14s and 8.37s. This is acceptable in practice, considering that the worst-
case calculations (occurring under overflow events) utilize less than 2 % of the
sampling interval Tnype = 10 (min).

The numerical results carried out on the HiFi network show the feasibility of
the proposed data-driven design and provide a basis for onward development. A
key outcome of the system identification and control results is that the reduced
physically-based SV-PDE flow model can be obtained based on water level
measurements, moreover, the discharge predictions are accurately computed
via the moving horizon parameter and state estimation.
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7 Discussion

Our framework aims to allow operators at wastewater utilities to build inter-
nal models of the main transport lines and storage nodes in UDNs based on
easy-accessible level measurements. Identifying the internal model parameters
automatically from standard measurements is therefore one of our contribu-
tions. The proposed NMPC/MHE strategy has comparable performance as
standard predictive control strategies reported in the literature, benchmarked
with rule-based controllers. For instance, references [Joseph-Duran et al., 2014],
[Joseph-Duran et al., 2015] report on a hybrid strategy where the internal MPC
models exploit all available knowledge from the HiFi network of the UDN. As
opposed to [Joseph-Duran et al., 2014], we report on the modularity of our
approach, focusing on an internal model obtained by water level data.
Practical implementation of using the method includes the fact that wa-
ter level sensors need to be deployed in the network to identify the transport
dynamics between stations and the periodic household disturbances. Further-
more, our identification approach exploits knowledge about the high-level lay-
out of the network, which is typically available at water utilities. To carry out
the experimental implementation of the work, a reliable mapping between rain
intensity and the actual flow appearing in the system is needed. Besides, an
implementation of a communication strategy is required, where the calculated
flow references are translated to reference signals at the local pumping units.

8 Conclusions and future work

In this article, a new methodology for data-driven predictive control in urban
drainage networks has been presented and tested. The proposed data-driven
modeling approach is based on the physical characteristics of open-channel
unpressurized flow, governed by the reduced Saint-Venant partial differential
equations. A modified version of this model has been used for predicting
the internal water levels in the sewer network, moreover to predict the dis-
charged flows to the storage units. To update the model from data, level
sensors have been distributed in manholes to enhance the internal prediction
performance by taking into account periodic and non-periodic lateral inflows
along the pipelines. Moving horizon parameter estimation has been proposed
to overcome the inaccuracy issues, introduced by the linearization of the pipe
geometries and the approximation of the reduced Saint-Venant partial differ-
ential equations. To overcome the problem of limited sensor measurements in
the network, moving horizon state estimation has been proposed. The nominal
nonlinear multi-objective optimization problem has been solved in a reced-
ing horizon fashion, along with the proposed state and parameter estimations.
The performance of the proposed methodology has been successfully tested on
a high-fidelity sewer network simulator with real rain and domestic wastewater
inflow measurement data.
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8. Conclusions and future work

In future work, the methodology will be tested on urban drainage networks
with different sizes and topologies. Moreover, it will be interesting to investi-
gate the proposed method in different applications, e.g., stormwater collection
networks. Also, an investigation into how rain and domestic wastewater uncer-
tainties can be integrated with the current modeling and control methodology
is a matter of future work.

Appendix

Simulation parameters

In this appendix we provide the numerical values of the control parameters,
the constraint bounds and the main physical attributes of the HiFi simulation
network, given in Table 3, Table 4 and Table 5, respectively.

Attributes Pipe g1 Pipe go Pipe g3 Pipe g4 | Unit
Geometry circular circular circular circular | (-)
Diameter (d) 0.4 0.6 0.45 0.35 (m)
Slope (Sp) 0.03 0.05 0.02 0.02 (-)
Roughness (n) | 0.013 0.013 0.013 0.013 (-)
Length (L) 0.9 0.45 2 2.4 (km)

Table 3: Network attributes for pipes.

Note that the values for the upper height constraints h are equivalent to
the diameter of the pipes.

Attributes Pit s; Pit s Pit s3 Pit s4 Unit
Constant (K;) | 21.5 30 30 43 (m?)
Constant (K>3) - 130 - - (m?)
Volume (V) 43 95 60 86 (m?)
Pump flow (@) | 162 198 162 90 (m?/h)
Table 4: Network attributes for pits.
TNMPC Ton/off le Hp2 Hpe Hse Tse
10 (m) 1(m) 2(h) 22(h) 48 (h) 43 (h) 10 (m)

Table 5: Simulation parameters.

The disturbance model uses k = 2 frequency terms and w = 1 (day) frequency
for all pipes. Moreover, the disturbance signal scenarios are characterized by
normally distributed, zero mean random uncertainty, where o2 = 30.6, 02, =
5.4, 02, = 27 and o, = 10.8 (m®/h). The lateral inflows along the gravity
pipelines are all characterized by o7 = 15 (m?/h).
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