

Authors

Speaker:

- Hicham Johra
- Aalborg University (AAU) Denmark

Co-authors:

- Rikke Gade (AAU)
- Mathias Østergaard Poulsen (AAU)
- Albert Daugbjerg Christensen (AAU)
- Mandana Sarey Khanie (DTU)
- Thomas Moeslund (AAU)
- Rasmus Lund Jensen (AAU)

Motivations

- Glare is a common local visual discomfort induced by exposure to blinding (sun) light
- Greatly impairs comfort, satisfaction and productivity of building occupants
- Glare discomfort often occurs in office workplaces
- It is one of the main drivers for occupants to activate solar shadings

Problematics

Indoor glare discomfort depends on:

- Location and orientation of occupants
- Location and orientation of windows
- Furniture layout
- Position of the sun in the sky
- Cloud cover
- Surfaces blocking or reflecting sunlight

Problematics

- Very complicated to assess local subjective visual comfort with fixed light sensors
- Visual comfort can drastically change within few seconds because of rapid cloud cover variations (like in Denmark)
- Thus difficult to provide valid feedback to automated shading devices to block glare

New opportunities with AI and computer vision

- Glare induces distinctive facial responses to humans
- Reshape orbital rims and eyes
- Very visible anatomic reflex on the face
- Beam of light striking the eyes leaves clear over-exposed light patches on the face

New opportunities with AI and computer vision

- These distinctive face features could be identified by AI-based image analysis
- Machine learning methods for AI and computer vision have made considerable progress
- This technology is mature enough to decipher human's facial expressions

Aims of this study

- The face of the building occupant is directly used as a visual comfort sensor
- A computer vision AI algorithm is used to detect the subjective local glare discomfort from the images of the occupant's face
- A prototype that can be used to provide control feedback to a smart shading device

Study case description

- Single-occupant office room
- Working at computer station
- Glare from sun through large window
- Glare source: spotlights emulating the sun when low on the horizon (sunrise or sunset)
- Face images acquired by webcam placed on top of computer screen

Generate a labelled set of training data:

- Face video footage of humans
- Indications about visual discomfort
- Various lighting conditions
- Various participants

Use of laboratory test room:

- Controlled light conditions
- Spotlights to generate glare from different angles
- 17 experimental tests
- Variety of facial features, age, gender, glasses, etc

- Each test comprises several phases:
 - Neutral phases: 500 lux and no glare
 - Glare phases: 1 of the 3 spotlights is switched on to induce glare
- 12 phases: 6 neutral, 6 with glare from different angles

- Participants are asked to read a text and answer questions about it
- At end of each phase, participant indicates if currently experiencing:
 - Thermal discomfort
 - Acoustic discomfort
 - Visual discomfort

Developing the AI algorithm

- Facial analysis algorithm is a binary classifier: visual discomfort / visual comfort
- 1st step: locate and crop down a face from the whole image
- Performed by pre-trained face classifier based on the Haar Feature-based Cascade Classifier

Developing the AI algorithm

- 2nd step: the facial analysis is performed by a Convolutional Neural Network (CNN)
- VGG-16 CNN network with TensorFlow Keras implementation
- 16 layers

Developing the AI algorithm

- Inputs: rescaled 224x224 pixels RGB images
- Pre-trained on the *ImageNet* dataset: 1.2 million images labelled with 1000 object classes
- The last layers for comfort/discomfort classification are trained with the labelled training data from the laboratory tests

Results

Out-of-sample validation tests: 90% accuracy (correct classification)

Conclusions

- Al algorithm for glare detection has been developed from off-the-shelf pre-trained neural networks
- Only train last layers for specific applications with small training dataset and minimum computation time

Conclusions

- Al algorithm detects local glare discomfort from the facial analysis of the building's occupants.
- 90% classification accuracy: similar to other face analysis AI applications
- Can be used as feedback to control smart shading devices in a single-office room and rapidly eliminate local glare discomfort

Future work

- Improve algorithm accuracy and response time
- Increase size and quality of the training dataset
- Gain a deeper understanding of the artificial neural network operation (explainable AI)
- Use output of glare detection algorithm to regulate simple shading devices (on-going)
- Expand applications to offices with multiple occupants and complex situations

Demonstration video

Prototype demonstration video:

https://youtu.be/ip9fuWbtEsc

Thank you for your attention! Any questions?

Contact:

Hicham Johra

Postdoctoral Researcher

Aalborg University

Department of the Built Environment
Division of Sustainability, Energy & Indoor Environment
Laboratory of Building Energy Efficiency & Indoor Environment
Laboratory of Building Material Characterization

hj@build.aau.dk

(+45) 53 82 88 35 🕿

linkedin.com/in/hichamjohra in

@HichamJohra

Thomas Manns Vej 23
9220 Aalborg Øst
Denmark