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A B S T R A C T

We give a simple operational cost semantics for evaluation of spreadsheet formulas and for full and minimal
recalculation. We also present a semantics which caters for computing with unknown data values. This may
be used to give an approximation of the cost when input data is not yet provided. This semantics is a
rudimentary big-step trace-based abstract interpretation based upon the cost semantics. Together, the semantic
presentations form the formal foundations for various cost calculations implemented in the Funcalc spreadsheet
platform. This can be used in cost estimation tools, e.g. to estimate which formulas in a spreadsheet are the
most expensive, or to schedule parallel recalculation of a spreadsheet. In future work, further analyzes and
verification tools can be built upon the formal semantics to reduce the large number of errors that commonly
occur in spreadsheets.

1. Introduction

Spreadsheets are used by millions of people, ranging from pupils
doing their school hand-ins to complex financial, medical or scientific
computations. In 2017 it was estimated that there were 13–25 million
spreadsheet developers worldwide [1], i.e. people developing complex
computations using spreadsheets. Yet despite their widespread use it
is almost impossible to predict or analyze the computational cost of
spreadsheet computations.

Some complex spreadsheets may take a long time to recalculate.
For instance, the building-design and ground-water bench-
marks developed in connection with a study of parallelization of the
LibreOffice spreadsheet program on AMD GPUs [2], have about one
million data cells and 108,332 and 126,404 formula cells respec-
tively and updates may take a long time. Other spreadsheets, such as
energy-market with 534,507 formula cells, may take even longer.

As noted already by Mani Chandy in his 1985 keynote Concurrent
programming for the masses, spreadsheets have a programming model
that should be much easier to parallelize than traditional programming
languages [3]. However, only sporadic efforts have been made in this
area in the last 30 years [2,4–6].
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The Popular Parallel Programming (P3) project4 set out to inves-
tigate various approaches to parallelizing the execution of spreadsheet
programs based on the open source spreadsheets Corecalc and Funcalc5

implemented in C# and thoroughly described in [7]. The core idea is to
view a spreadsheet as a program in a dataflow language, and then lever-
age and extend techniques for compilation of dataflow languages to
shared-memory multicore machines, especially those techniques found
in [8].

To realize the idea of parallel programming via spreadsheets, one
approach is to adapt and further develop program analysis techniques
to identify the parts of a spreadsheet that can be recalculated in parallel
and subsequently find schedules for their execution, for example using
model checking [9]. To find such schedules, it is necessary to estimate
or calculate the computational cost of expressions in a spreadsheet,
and in this paper we present an extension of the evaluation semantics
presented in [7,10] to account for cost.

Sestoft’s Funcalc spreadsheet platform [7] implements the notion of
sheet-defined functions, inspired by Peyton-Jones et al. [11]. An exam-
ple is given in Fig. 9 . A sheet-defined function is a user-defined function
that can be defined directly in the spreadsheet cells of special function
sheets using the same familiar formula syntax already known by end-
users, without the need for external languages. Thus sheet-defined
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functions bring a natural abstraction mechanism to the world of spread-
sheets. Funcalc also supports the notion of array formulas, as found
in popular spreadsheet implementations such as Excel and OpenOffice
Calc. Sheet-defined functions can be higher-order functions. Together
with first class array formulas and a few simple built-in functions, such
as map, reduce and fold, the expression language of Funcalc is an
expressive, yet pure, higher-order functional programming language.

Inspired by Gomez et al. [12] and Rosendahl [13] we give a simple
cost semantics for evaluation of a spreadsheet formula and for full and
minimal recalculation of a spreadsheet. The cost semantics is a straight-
forward extension of our big-step semantics for spreadsheets [10].
However, the cost semantics differ in subtle ways from the original big-
step semantics. We discuss the subtleties, especially their implications
for implementations.

Analyzing or calculating cost or complexity of (higher-order) func-
tional programming languages goes back to [14–17]. More recent
work based on language semantics extended with some notion of cost
have been presented in [18–23]. Both [24,25] introduce big-step cost
semantics for functional programming languages and relate the lazy,
respectively, the eager, evaluation strategies to implementations. A big-
step cost semantics for a subset of the ML programming language is
presented in [26], very closely akin to the cost semantics presented in
this paper. The main difference between [24–26] and the work pre-
sented in this paper, apart from the application domain of spreadsheets,
is the introduction of non-determinism in our cost semantics to allow
for different implementations, e.g. allowing for evaluating arguments
to functions in a left to right order or in parallel.

Both Gomez et al. and Rosendahl worked on cost translations for
higher-order functional languages [12,13] which cater for computing
with unknown data values. Adding such unknown values allows for a
rudimentary abstract interpretation of programs which in many cases
can provide a rather precise approximation of the actual cost of the
computation. To provide a semantic foundation for calculation with
unknown data values, we follow the ideas presented by Schmidt [27]
and provide a big-step trace-based abstract interpretation for the cost
semantics.

The cost semantics form the formal foundations for various cost
calculations implemented in the Funcalc spreadsheet platform.

The rest of this paper is organized as follows: Section 2 presents the
cost semantics, with 2.1 giving a cost semantics for simple spreadsheet
formulas extending the semantics described in [7]. In Section 3 we
give a cost semantics for Funcalc extended spreadsheet expressions
and in Section 4 we give cost semantics for intrinsic functions. The
extended evaluation semantics for Funcalc is further augmented to
compute with unknown values in Section 5; this is a first step towards
an approximate cost analysis based on abstract interpretation. Imple-
mentations for the concrete and abstract cost semantics are presented
in Section 6. In Section 7, we present results for an initial implemen-
tation of a cost evaluator built upon the rules of our cost semantics.
Conclusions and future work are presented in Section 8.

2. Cost semantics

In this section, we present a cost semantics for spreadsheet expres-
sions which in addition to a computed value of the expression describes
the possible cost of computing it. More precisely, the semantics de-
scribes the work, i.e. uni-processor cost [8], of the computation. In
a parallel implementation, some of that work may be performed in
parallel.

First, we give an operational cost semantics for simple spreadsheet
expressions based on the evaluation semantics presented in [7] and
extended in [10]. Then Section 3 extends the cost semantics to cover
array formulas and sheet-defined functions.

In all cases the amount of work is described by a non-negative
integer in 𝑁𝑎𝑡0 representing some notion of computation step, for
instance the number of rule applications, plus some measure of the

Fig. 1. Syntax of the simplified formula language.

Fig. 2. Sets and maps used in the spreadsheet semantics: 𝑁𝑢𝑚𝑏𝑒𝑟 is the set of IEEE 854
binary floating-point numbers (excluding NaNs and infinities); 𝐸𝑟𝑟𝑜𝑟 is the set of error
values; 𝐴𝑑𝑑𝑟 the set of cell addresses, each a pair (𝑐, 𝑟) of column and row number;
𝑉 𝑎𝑙𝑢𝑒 the set of values (either number or error); and 𝐸𝑥𝑝𝑟 the set of formulas.

cost of calling a built-in function (such as SUM over a range of cells).
This notion of work can reasonably be assumed to be within a constant
factor of the actual number of nanoseconds required to evaluate an
expression.

2.1. Cost semantics for simple formulas

For clarity of presentation, we start by giving a cost semantics for
simple spreadsheet formulas as described in [7]. The simplified formu-
las used in this section are described in Fig. 1. One simplification is to
represent a constant cell n by a constant formula =n, although most
spreadsheet programs would distinguish them. Another simplification
is to leave out cell area expressions 𝑐𝑎1 ∶ 𝑐𝑎2; these will be introduced
in Section 3.1.

Volatile functions, such as RAND in Fig. 1, are special functions
that are unconditionally evaluated when recalculating. For instance,
the function RAND produces random numbers and must be volatile to
ensure that every recalculation produces a new random number even
if the cell containing the volatile function is otherwise unchanged.

To describe the evaluation of formulas, we use the semantic sets
and functions defined in Fig. 2. These are sometimes called semantic
domains, but here they are ordinary sets and partial functions. For
instance, 𝑉 𝑎𝑙𝑢𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 + 𝐸𝑟𝑟𝑜𝑟 is the set of values, where a value
𝑣 is either a (finite, non-NaN) IEEE 854 binary floating-point number
such as 0.42 in set 𝑁𝑢𝑚𝑏𝑒𝑟 or an error such as #DIV/0! in set 𝐸𝑟𝑟𝑜𝑟.
The set 𝐴𝑑𝑑𝑟 contains cell addresses 𝑐𝑎 such as B2. For presentational
simplicity, some additional error values (such as #NAME!) and addi-
tional kinds of values (such as strings), found in realistic spreadsheet
programs, have been left out. They are easily added to the semantics
studied here but otherwise provide no additional semantic insight.

We use a map 𝜙 ∶ 𝐴𝑑𝑑𝑟 → 𝐸𝑥𝑝𝑟 so that when 𝑐𝑎 ∈ 𝐴𝑑𝑑𝑟 is a cell
address, 𝜙(𝑐𝑎) is the formula in cell 𝑐𝑎. If cell 𝑐𝑎 is blank, then 𝜙(𝑐𝑎)
is undefined. The domain of 𝜙 is the set of cell addresses that have a
formula i.e. the set of non-blank cells 𝑑𝑜𝑚(𝜙) = { 𝑐𝑎 | 𝜙(𝑐𝑎) is def ined }.
The 𝜙 function is not affected by recalculation, only by editing the
sheet.

The result of a recalculation is modeled by function 𝜎 ∶ 𝐴𝑑𝑑𝑟 →

𝑉 𝑎𝑙𝑢𝑒, where 𝜎(𝑐𝑎) is the computed value in cell 𝑐𝑎. The 𝜎 function
gets updated by each recalculation (see Section 2.3).

It is quite straightforward to extend the evaluation semantics rules
in [7,10] to the new cost semantics rules given in Fig. 3.

The evaluation judgment 𝜎 ⊢ 𝑒 ⇓ 𝑣 gets extended to 𝜎 ⊢ 𝑒 ⇓ 𝑣, 𝑐
where 𝑣 is a computed value of the expression 𝑒 and 𝑐 is the cost of
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Fig. 3. Cost (or work) semantics rules for simplified spreadsheet formulas.

computing that value. This judgment states that when 𝜎 describes the
calculated values of all cells, then formula 𝑒 may evaluate to value 𝑣
at computational cost 𝑐. As in [10], the semantics is nondeterministic
(‘‘may’’) in the sense that the evaluation of an expression 𝑒 could
produce many different values 𝑣 at many different costs 𝑐. The cost
of evaluating 𝑒 is given under the assumption that all referred-to cells
are already computed.

The formula evaluation rules in Fig. 3 are explained as follows:
Rule (c1) says that evaluating a number constant n requires 1

computation step, and similarly for cell references by rules (c2b) and
(c2v).

Rule (c3e) says that if 𝑒1 may evaluate to error 𝑣1 in 𝑐1 computation
steps, then 𝙸𝙵(𝑒1,𝑒2,𝑒3) may evaluate to error 𝑣1 in 1 + 𝑐1 computation
steps.

Rule (c3f) says that if 𝑒1 may evaluate to the non-error number 0.0
in 𝑐1 computation steps and the ‘‘false branch’’ 𝑒3 may evaluate to 𝑣
in 𝑐3 computation steps, then 𝙸𝙵(𝑒1,𝑒2,𝑒3) may evaluate to value 𝑣 in
1 + 𝑐1 + 𝑐3 computation steps.

Rule (c3t) is similar to rule (c3f) for when 𝑒1 may evaluate to
some non-error non-zero number 𝑣1 in 𝑐1 computation steps. Note that
although in numeric software it is bad practice to compare floating-
point numbers for equality, an IEEE floating-point number either is
or is not equal to zero, so semantically the comparison 𝑣1 ≠ 0.0 is
unproblematic; and also this rule reflects spreadsheet reality.

Rule (c4) says that function call 𝚁𝙰𝙽𝙳() may evaluate to any (non-
error) number 𝑣 greater than or equal to zero and less than one, in one
computation step.

Rule (c5e) says that an implementation may choose to evaluate just
a subset {𝑒𝑗 ∣ 𝑗 ∈ 𝐽} of the arguments when some 𝑒𝑖 with 𝑖 ∈ 𝐽 evaluates
to an error 𝑣𝑖, and then let 𝑣𝑖 be the result of the function call. Also, it
says that the total cost of this is the cost ∑

𝑗∈𝐽 𝑐𝑗 of evaluating that
subset of arguments, plus one. The rationale for this is discussed in
Section 2.2.

Rule (c5v) says that if each argument 𝑒𝑖 may evaluate to a non-
error value 𝑣𝑖 in 𝑐𝑖 computation steps and applying the actual func-
tion 𝑓 to argument values (𝑣1,… , 𝑣𝑛) produces value 𝑣 at a cost of
𝑤𝑜𝑟𝑘(𝑓, 𝑣1,… , 𝑣𝑛) computation steps, then the call 𝙵(𝑒1,… ,𝑒𝑛) may
evaluate to value 𝑣 using a total of 1 +

∑

𝑗=1,𝑛 𝑐𝑗 + 𝑤𝑜𝑟𝑘(𝑓, 𝑣1,… , 𝑣𝑛)
computation steps. Here 𝑤𝑜𝑟𝑘(𝑓, 𝑣1,… , 𝑣𝑛) describes the cost of apply-
ing function 𝑓 to argument values (𝑣1,… , 𝑣𝑛). For instance, one would
expect 𝑤𝑜𝑟𝑘(+, 𝑣1, 𝑣2) = 1 since the cost of addition is independent of
the actual numbers added. By contrast, for functions on array values
one would expect the cost to depend on the argument array size; for
instance, 𝑤𝑜𝑟𝑘(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝑣1) = 𝑤 ⋅ ℎ + 1 when array value 𝑣1 has 𝑤
columns and ℎ rows. This will be defined in Section 4 when we discuss
Funcalc’s intrinsic functions.

Making each cost rule add 1 to the cost incurred by subexpression
evaluations may appear very simplistic. It means that the cost semantics
essentially counts the number of rule applications and ensures that costs
increase monotonically. A more realistic cost semantics might replace
each occurrence of ‘‘1’’ with a suitable constant indicating a number
of nanoseconds for the operation, such as 1 for evaluating a constant,
8 for evaluating a cell reference, 40 for a call to RAND, and similar.
However, if we are interested in cost up to a constant factor, counting
the number of rule applications works just as well, and avoids some
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notational clutter. Also, the real time cost of something as simple as a
cell reference may vary from 1 ns to 80 ns depending on whether the
relevant data is already in the CPU hardware cache or not.

2.2. Rationale for cost of an error argument

While most of the cost semantics rules in Fig. 3 are obvious exten-
sions of the evaluation rules presented in [10], this is not the case for
rule (c5e) for unsuccessful function call evaluation. Here we explain
why.

It is possible to imagine a cost rule (c5bad) like this:

𝜎 ⊢ 𝑒𝑖 ⇓ 𝑣𝑖, 𝑐𝑖 𝑣𝑖 ∈ 𝐸𝑟𝑟𝑜𝑟
---------------------------------------------------------------------------------------------------------------------------------- (𝑐5𝑏𝑎𝑑)
𝜎 ⊢ 𝙵(𝑒1,… ,𝑒𝑛) ⇓ 𝑣𝑖, 1 + 𝑐𝑖

This rule says that if some argument 𝑒𝑖 may evaluate to an error
𝑣𝑖 using 𝑐𝑖 computation steps, then the call 𝙵(𝑒1,… ,𝑒𝑛) to a function
F may evaluate to error 𝑣𝑖 in 1 + 𝑐𝑖 computation steps. However, this
cost is unrealistically low: a conforming implementation would have to
correctly guess which (if any) argument expression 𝑒𝑖 can evaluate to an
error, and then evaluate only that expression. Such an implementation
would seem implausibly clever.

A more realistic rule might stipulate instead that the cost is (at least)
the sum of the costs of evaluating all argument expressions. This corre-
sponds to implementations that would evaluate all arguments before
checking whether any of them evaluates to an error. However, this
is needlessly pessimistic since an implementation may stop evaluating
arguments once one of them evaluates to an error.

Another realistic cost rule might correspond to implementations that
evaluate argument expressions 𝑒1, 𝑒2,… from left to right until one of
them (if any) evaluates to an error. However, this restricts the possible
implementations and would preclude or complicate parallel evaluation
of arguments.

Instead we propose rule (c5e) in Fig. 3 which corresponds to imple-
mentations that may evaluate the argument expressions in any order (or
in parallel) but may avoid evaluating all of them in case one evaluates
to an error. As shown in the rule this corresponds to choosing a subset
𝐽 ⊆ {1,… , 𝑛} of the argument indices and evaluating only the 𝑒𝑗 for
which 𝑗 ∈ 𝐽 , to values 𝑣𝑗 at costs 𝑐𝑗 , where one of the 𝑣𝑗 is an error,
and then stating that the total cost of the call is the sum ∑

𝑗∈𝐽 𝑐𝑗 of the
costs of the arguments actually evaluated, plus one.

Since the set 𝐽 may be chosen in many ways, this rule introduces
nondeterminism in the evaluation cost, in addition to nondeterminism
in the computed value. Note also that rule (c5e) encompasses all three
alternative rules discussed above, by choosing 𝐽 = {𝑖} as the singleton
set for which 𝑣𝑖 is an error (using unrealistically perfect foresight), or
𝐽 = {1,… , 𝑛} to evaluate all arguments, or 𝐽 = {1,… , 𝑖} as the least
prefix of argument indexes for which 𝑣𝑖 is an error.

2.3. Cost of simple recalculation and consistency

Sections 2.1 and 2.2 above gave evaluation-and-cost rules for evalu-
ation of individual spreadsheet formulas. How do we describe the cost
of a full recalculation or minimal recalculation in terms of these? First,
we introduce a cost environment 𝛾 ∶ 𝐴𝑑𝑑𝑟 → 𝑁𝑎𝑡0 such that 𝛾(𝑐𝑎) is
the cost of evaluating the formula at cell address 𝑐𝑎. Using this cost
environment, we can now express the cost of a full recalculation of a
spreadsheet described by 𝜙 and 𝜎 as the cost of evaluating the formula
of every non-blank cell once:

𝑓𝑢𝑙𝑙𝑐𝑜𝑠𝑡 =
∑

𝑐𝑎∈𝑑𝑜𝑚(𝜙)
𝛾(𝑐𝑎)

The purpose of a full recalculation is to compute a consistent
spreadsheet: one in which the computed value of each non-blank cell
agrees with its formula. This is formalized in Fig. 4.

Requirement (1) says that a recalculation must find a value 𝜎(𝑐𝑎),
possibly an error, as well as a cost 𝛾(𝑐𝑎), for every non-blank cell 𝑐𝑎.

Fig. 4. Recalculation consistency requirements for simple formulas with cost.

Fig. 5. Minimal recalculation consistency requirements for simple formulas with cost.

Requirement (2) says that the computed value 𝜎(𝑐𝑎) and cost 𝛾(𝑐𝑎)
must agree with the cell’s formula 𝜙(𝑐𝑎) for every non-blank cell 𝑐𝑎,
thus asserting that the spreadsheet’s cell values as described by 𝜎 are
consistent with each other.

To express the cost of a minimal recalculation initiated by editing
a single cell 𝑐𝑎0 in a consistent spreadsheet represented by 𝜙 and 𝜎,
we need the set 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0) of cells that must be recalculated after cell
𝑐𝑎0 has been edited. This set is defined in terms of the ‘‘supports’’ or
‘‘precedent’’ relation, where cell 𝑐𝑎𝑎 is said to support (or be a precedent
of) cell 𝑐𝑎𝑏 if 𝑐𝑎𝑏 directly depends on 𝑐𝑎𝑎, by 𝑐𝑎𝑏’s formula containing
a reference to 𝑐𝑎𝑎.

Now 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0) is simply the transitive closure, under the ‘‘supports’’
relation, of the set containing cell 𝑐𝑎0 and every cell whose formula is
volatile. Since 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0) is defined via the ‘‘supports’’ relation it may be
an overapproximation of the set of cells that really need to be evaluated
in a minimal recalculation. Namely, if cell 𝑐𝑎𝑎 supports cell 𝑐𝑎𝑏 but a
recalculation of 𝑐𝑎𝑎 happens not to change its value, cell 𝑐𝑎𝑏 might not
really need to be recalculated, but 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎𝑎) would nevertheless contain
𝑐𝑎𝑏.

The consistency requirements following a minimal recalculation,
shown in Fig. 5, refine those for full recalculation. There must be
consistent spreadsheet values 𝜎 before the minimal recalculation; we
again impose requirements (1) and (2) on the spreadsheet values 𝜎′

and costs 𝛾 ′ after the minimal recalculation. In addition, we require
(3) that all cells not recalculated retain their values.

With these definitions, the total cost of a minimal recalculation after
a change to cell 𝑐𝑎0 is the sum of the costs of evaluating the cells in
𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0):

𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑐𝑜𝑠𝑡 =
∑

𝑐𝑎∈𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0)
𝛾 ′(𝑐𝑎)

Note also that the consistency requirements and cost for full and
minimal recalculation intentionally do not specify how recalculation
actually proceeds, but specify only the requirements that must hold for
each cell after recalculation.

3. Cost semantics for extended formulas

In this section we extend the cost semantics to cover array formulas
and sheet-defined functions.

3.1. Extended expressions and semantic sets

The simple spreadsheet cost semantics from Section 2.1 must be
expanded in two orthogonal directions: to account for array formulas
and to account for sheet-defined functions. This requires extension to
the formula expression language, shown in Fig. 6, and to the set of
values and semantic maps, shown in Fig. 7.

A cell area reference 𝑐𝑎1 ∶ 𝑐𝑎2 refers to a block of cells spanned
by the two opposing ‘‘corner’’ cells 𝑐𝑎1 and 𝑐𝑎2. In Funcalc, a cell area
reference can refer to an ordinary sheet only, not to a function sheet.

An array formula is here modeled as an underlying formula 𝑎𝑒
which is itself just an expression, expected to evaluate to an array

4
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Fig. 6. Syntax of the Funcalc extended formula language, with six additional syntactic constructs: a cell area reference, an access to component (𝑖, 𝑗) of an array formula 𝑎𝑒, a
call of a sheet-defined function, creation of a closure from a sheet-defined function 𝑠𝑑𝑓 , further application of a closure 𝑒0, and full application of a closure 𝑒0.

Fig. 7. Sets and maps used in the Funcalc extended spreadsheet semantics. There are the following differences relative to Fig. 2: 𝑎𝑣 ∈ 𝐴𝑟𝑟𝑉 𝑎𝑙 is an array value with 𝑤 ⋅ℎ component
values 𝑣𝑖𝑗 , where indices 𝑖, 𝑗 are one-based column indices and row indices respectively in keeping with ‘‘A1-style’’ cell references, where the column A is given first, the row
second. Indices must be positive; 𝑓𝑣 ∈ 𝐹𝑢𝑛𝑉 𝑎𝑙 is a function value (closure) consisting of a function name 𝑠𝑑𝑓 and 0 ≤ 𝑘 ≤ 𝑎𝑟𝑖𝑡𝑦(𝑠𝑑𝑓 ) given argument values 𝑢𝑖. Now, 𝑣 ∈ 𝑉 𝑎𝑙𝑢𝑒
is either a number, an error, an array value or a function value. Array values are needed because of cell area expressions 𝑐𝑎1 ∶ 𝑐𝑎2, and function values because of CLOSURE
expressions. There are new semantic maps: 𝛼 maps an array expression 𝑎𝑒 to its value, and 𝜌 maps a function sheet cell address to its value.

of values, called an array value in Funcalc terminology. That array
value’s components are distributed over a target cell area, with one
such component in each cell.

We model a closure as a partial application, that is, a named sheet-
defined function 𝑠𝑑𝑓 with a prefix [𝑢1,… , 𝑢𝑘] of its argument values
given, where 0 ≤ 𝑘 ≤ 𝑎𝑟𝑖𝑡𝑦(𝑠𝑑𝑓 ); see Fig. 7. Funcalc supports early-
bound arguments in any argument position, using the NA function,
which returns the #NA ‘‘not available’’ error, as a placeholder for
late-bound arguments, as in =LOG(NA(), 2). One could model this
behavior by also recording the argument position along with the value,
but for simplicity we use a prefix here, as modeling the full behavior
leads to a more complicated semantics without significant additional
insight.

A closure is created by calling the CLOSURE built-in with a sheet-
defined function 𝑠𝑑𝑓 and giving it values for some or all of its argu-
ments. A partially applied closure 𝑒0 may be given further arguments,
as in currying, also using CLOSURE. An APPLY call of a closure 𝑒0 must
provide all the remaining 𝑛 arguments, where 𝑘 + 𝑛 = 𝑎𝑟𝑖𝑡𝑦(𝑠𝑑𝑓 ), and
will execute the underlying sheet-defined function.

The cost semantics for Funcalc extended spreadsheet formulas is
given by judgments of the form 𝜎, 𝛼 ⊢ 𝑒 ⇓ 𝑣, 𝑐 which say that when 𝜎
describes cell values and 𝛼 describes array expression values, expression
𝑒 may evaluate to value 𝑣 at a cost of 𝑐 computation steps. The rules
defining these judgments are given in Fig. 8.

The extended cost semantics rules in Fig. 8 draw on the simple cost
semantics rules in Fig. 3.

Rules (g1) through (g5v) are very similar to the simple cost seman-
tics rules (c1) through (c5v). This includes the somewhat complicated
case (g5e) of a function argument evaluating to an error, explained in
Section 2.2.

Rule (g6) states that the cost of evaluating a sheet cell area expres-
sion that produces an array value of 𝑤 columns and ℎ rows is 𝑤 ⋅ ℎ,
the number of components in the resulting array value, plus one. The
notation 𝜎[𝑐𝑙 + 𝑖, 𝑟𝑡 + 𝑗] denotes indexing into the sheet 𝜎 using 𝑖 and 𝑗
as offsets from the top left cell (𝑐𝑙 , 𝑟𝑡) of the cell area.

Rule (g7) states that the cost of evaluating a cell that is part of
an array formula is 1. This is because we require the array formula’s
shared underlying array expression to be evaluated at most once in a
recalculation, so that evaluating the cell is just a matter of indexing
into the resulting array.

Rule (g8) states that the cost of calling a sheet-defined function
is the cost of evaluating all arguments, plus the cost of evaluating
the function body, plus one. We use a helper function def that re-
turns the addresses of the output cell out, input cells [𝑖𝑛1,… , 𝑖𝑛𝑛],
and intermediate cells cells that compute intermediate values in the
function. Each call, also each recursive call, has its own fresh 𝜌′ and
𝛾 ′ environments that are both ephemeral: there is no way to refer to a
function sheet cell value after the function has returned. Hence these
environments are similar to a stack frame in ordinary programming
language implementation. The cost of evaluating the function body is
the sum of the costs of evaluating the cells used to define the function,
as described by the cost environment 𝛾 ′. Here, 𝑑𝑜𝑚(𝛾 ′) must equal
𝑑𝑜𝑚(𝜌′)⧵ {𝑖𝑛1,… , 𝑖𝑛𝑛} which includes the output cell, but there is some
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Fig. 8. Cost (or work) semantics rules for Funcalc extended spreadsheet formulas. The corresponding consistency requirements on recalculation are given in Fig. 12.

flexibility in exactly which set of cells 𝑑𝑜𝑚(𝜌′) should be evaluated. See
the discussion in Section 3.2.

Rule (g9) states that the cost of creating a closure is the cost of
evaluating the 𝑘 given arguments, plus one.

Rule (g10) states that the cost of partially applying a closure is the
cost of evaluating the first argument 𝑒0 to a function value with 𝑘 early-
bound arguments, plus the cost of evaluating the 𝑛 given arguments to
the call to CLOSURE, plus one. This may evaluate to a new function
value with 𝑘 + 𝑛 arguments.

Rule (g11) states that the cost to call a closure is the cost of evalu-
ating the closure expression, plus the cost of evaluating the remaining
arguments, plus the cost of evaluating the called function’s body, plus
one. Similar to rule (g8), 𝑑𝑜𝑚(𝛾 ′) must equal 𝑑𝑜𝑚(𝜌′) ⧵ {𝑖𝑛1,… , 𝑖𝑛𝑘+𝑛},
and Section 3.2 discusses how to choose 𝑑𝑜𝑚(𝜌′) and hence 𝑑𝑜𝑚(𝛾 ′).

3.2. The cost of calling a sheet-defined function

The rules (g8) and (g11) for calling a sheet-defined function leave
unspecified the set 𝑑𝑜𝑚(𝜌′) of the function’s cells that should be eval-
uated, and hence the set 𝑑𝑜𝑚(𝛾 ′) = 𝑑𝑜𝑚(𝜌′) ⧵ {𝑖𝑛1,… , 𝑖𝑛𝑛} whose
evaluation costs should be included in the call cost.

The set 𝑑𝑜𝑚(𝜌′) may contain all the function’s cells, but it suffices
to include only those cells actually needed to compute the value of
the output cell 𝑜𝑢𝑡. For an ordinary semantics this distinction is less
important, since it does not affect the result 𝜌′(𝑜𝑢𝑡) of the function
call, assuming that evaluation terminates. However, for the cost seman-
tics the distinction is crucial. Obviously, evaluating cells that are not
needed, and hence including them in 𝑑𝑜𝑚(𝜌′) and in 𝑑𝑜𝑚(𝛾 ′), affects
the cost ∑𝑐𝑎∈𝑑𝑜𝑚(𝛾′) 𝛾

′(𝑐𝑎) of the computation.
If the value of a cell 𝑐𝑎 is needed, directly or indirectly, to compute

the value of the output cell 𝑜𝑢𝑡, then 𝑐𝑎 must be in 𝑑𝑜𝑚(𝜌′). Conversely,
a cell whose value is not needed by the output cell should not be
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Fig. 8. (continued).

Fig. 9. A sheet-defined function. The DEFINE call in cell A1 says that the sheet-defined
function’s name is FCT, its output cell is B5 (colored dark blue) and its input cells are
B2 and B3 (colored green). When the function is called elsewhere, as in FCT(0.5,
7), the argument values 0.5 and 7 are copied to the input cells B2 and B3, and the
output cell B5 is evaluated to obtain the function’s result, which here is either 7 or
0.5⋅0.5⋅7⋅7 = 11.75, depending on the result of RAND() in B5. Note that the intermediate
cell B4 (colored light blue) needs to be evaluated only if the condition in B5 is false.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

in 𝑑𝑜𝑚(𝜌′). However, whether a cell 𝑐𝑎 is needed or not cannot be
determined prior to evaluation. It depends both on the input cell values
(the function’s argument values) and on the evaluation of volatile
functions such as RAND. Consider the example sheet-defined function
FCT in Fig. 9.

If input B2 ≥ 1, the condition in output cell B5 is always true and
the function evaluates to B3 without having to evaluate B4; and if B2
≤ 0, the condition in B5 is always false, and cell B4 must be evaluated
to produce the result of the function.

When 0 < B2 < 1, the value of RAND() determines whether cell
B4 really needs to be evaluated. A reasonable cost semantics should

allow for leaving out the cost of evaluating cell B4 when its value is
not needed. On the other hand, it should also allow for adding in that
cost, so as to correctly describe an implementation that speculatively
evaluates B4 although its value may not be needed. For instance, an
implementation may evaluate B4 to exploit available parallel computa-
tion resources, or simply because the cost of unconditionally evaluating
B4 is smaller than the cost of determining whether its value is needed
(and then performing the relevant conditional jumps, synchronization,
or the like).

Thus in the semantics there should be some freedom in choosing
𝑑𝑜𝑚(𝜌′) and hence 𝑑𝑜𝑚(𝛾 ′) and hence the total cost of the function
call. The choice should be subject to a consistency requirement: if cell
𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜌′) and the value of 𝑐𝑎 depends on cell 𝑐𝑎𝑟, then 𝑐𝑎𝑟 ∈ 𝑑𝑜𝑚(𝜌′)
too.

How can we describe more formally that the value of a cell 𝑐𝑎𝑟
is needed to compute the output cell and hence the function’s return
value? In the Funcalc implementation, so-called evaluation conditions
[7, Chapter 9] are used to control which cells must be evaluated.
However, that is a particular implementation mechanism and should not
be part of the cost semantics specification.

Hence we propose to specify the consistency requirement as follows.
Consider an application of rule (g8) and all the inference trees that
prove the judgments in the last row of premises. The domains 𝑑𝑜𝑚(𝜌′)
and hence 𝑑𝑜𝑚(𝛾 ′) = 𝑑𝑜𝑚(𝜌′) ⧵ {𝑖𝑛1,… , 𝑖𝑛𝑛} must satisfy the following.
For each 𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜌′) ⧵ {𝑖𝑛1,… , 𝑖𝑛𝑛} there is an inference tree that
proves

𝜌′, 𝜎 ⊢ 𝜙(𝑐𝑎) ⇓ 𝜌′(𝑐𝑎), 𝛾 ′(𝑐𝑎)

Now the consistency requirement says that for each function-sheet
cell reference 𝑐𝑎𝑟 ∈ 𝑐𝑒𝑙𝑙𝑠 encountered while building that inference
tree, it is the case that 𝑐𝑎𝑟 ∈ 𝑑𝑜𝑚(𝜌′). In other words, any (non-input)
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Fig. 10. A sheet-defined function EX such that EX(𝑝,1) returns a random sample (1,
2, . . . ) from the geometric distribution with parameter 𝑝. The function definition is
similar to FCT in Fig. 9, but cell B4 contains a recursive call to EX itself, so now it is
essential that cell B4 does not get evaluated unconditionally. By eventually evaluating
B4 only when it is needed, we can achieve that a call EX(𝑝, 𝑛) terminates if and only
if 𝑝 > 0.

Fig. 11. Example cost semantics rule for Funcalc sheet-defined functions.

Fig. 12. The consistency requirements on recalculation and cost with array formulas
and sheet-defined functions. The judgment 𝜎, 𝛼 ⊢ 𝑒 ⇓ 𝑣, 𝑐 is defined in Fig. 8. An array
expression 𝑎𝑒 is just an (array-valued) expression 𝑒, evaluated the same way.

cell 𝑐𝑎𝑟 referred to during the evaluation of the sheet-defined function
must have a value, meaning 𝑐𝑎𝑟 ∈ 𝑑𝑜𝑚(𝜌′), so that cell lookup succeeds
for a cell reference 𝑐𝑎𝑟 inside a sheet-defined function. Also, the cost of
that computation must be accounted for, meaning 𝑐𝑎𝑟 ∈ 𝑑𝑜𝑚(𝛾 ′).

Note that this consistency requirement is general enough to allow
for speculative computation of unneeded cells, so long as this does
not lead to an attempt to build an infinite inference tree, representing
nonterminating recursion.

To illustrate the subtlety of the choice of whether to evaluate an
unneeded cell, consider function EX in Fig. 10. This is a slight variant
of FCT, where the decisive difference is that the trivial formula in B4
has been replaced with a recursive call =EX(B2, B3+1), so that now
it is essential both for termination and correct cost accounting that B4
is evaluated only when needed.

3.3. Cost semantics for function sheets

A cost semantics for sheet-defined functions on function sheets can
be given by rules defining judgments of the form 𝜌, 𝜎 ⊢ 𝑒 ⇓ 𝑣, 𝑐. Such
judgments are referred to in rules (g8) and (g11). Because the rules are
simple extensions of the cost semantics in Fig. 8, we give only one of
these rules here, in Fig. 11.

3.4. Cost of extended recalculation

The cost of recalculation for Funcalc extended formulas must ac-
count for array formulas and for sheet-defined functions.

The cost of evaluating the array expression 𝑎𝑒 underlying an ar-
ray formula is defined as for any other expression. We use the 𝛾
environment also to record this cost as 𝛾(𝑎𝑒), so its type is now 𝛾 ∶
𝐴𝑑𝑑𝑟+𝐸𝑥𝑝𝑟 → 𝑁𝑎𝑡0. The consistency requirements for a cost semantics
accounting also for array formulas are shown in Fig. 12.

The total cost of a full recalculation therefore is the sum of com-
puting the formula in every cell, plus the cost of computing the array
expression underlying every array formula:

𝑓𝑢𝑙𝑙𝑐𝑜𝑠𝑡 =
∑

𝑐𝑎∈𝑑𝑜𝑚(𝜙)
𝛾(𝑐𝑎) +

∑

𝑎𝑒∈𝑑𝑜𝑚(𝛼)
𝛾(𝑎𝑒)

We extend the 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0) set to also include array expressions that
need to be recalculated (in addition to non-array expression cells that
also need to be recalculated), so now 𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0) ⊆ 𝐴𝑑𝑑𝑟 + 𝐸𝑥𝑝𝑟. Hence
the cost of a minimal recalculation can be expressed as before:

𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑐𝑜𝑠𝑡 =
∑

𝑐𝑎∈𝑑𝑖𝑟𝑡𝑦(𝑐𝑎0)
𝛾 ′(𝑐𝑎)

where 𝛾 ′ is a cost environment determined in a similar manner as in
Section 2.3.

4. Rules for intrinsic functions

In this section, we extend the operational cost semantics from Sec-
tion 3 by expanding the function application rule (g5v) for a meaningful
subset of intrinsic functions in Funcalc. Recall rule (g5v), repeated
below for convenience.

𝜎, 𝛼 ⊢ 𝑒1 ⇓ 𝑣1, 𝑐1 … 𝜎, 𝛼 ⊢ 𝑒𝑛 ⇓ 𝑣𝑛, 𝑐𝑛
∀𝑖.𝑣𝑖 ∉ 𝐸𝑟𝑟𝑜𝑟

(g5v)
𝜎, 𝛼 ⊢ F(𝑒1,… , 𝑒𝑛) ⇓ 𝑓 (𝑣1,… , 𝑣𝑛), 1 +

∑

𝑗=1,𝑛 𝑐𝑗 +𝑤𝑜𝑟𝑘(𝑓, 𝑣1,… , 𝑣𝑛)

By ‘‘meaningful subset’’ we mean that it is not sensible or interesting
to give rules for some of the intrinsic functions. For example, EXTERN
returns the result of a call to an external library. While the returned
value can be (and is) given by a plain C# object type, its cost
is undefined. The call may perform any operation from querying a
database to initiating some long-running, unknown computation that
we have insufficient knowledge to approximate. Alternatively, we could
give meaningful rules for some common uses for EXTERN such as
the methods in the .NET libraries, but we forgo this here. In our
presentation, we focus only on ordinary, interpreted sheets, as the rules
for function sheets are mostly analogous. As a starting point, consider
the rule for the SIN function that computes the sine of its input value.

𝜎, 𝛼 ⊢ 𝑒 ⇓ 𝑣, 𝑐 𝑣 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 (sin)
𝜎, 𝛼 ⊢ SIN(𝑒) ⇓ 𝑠𝑖𝑛(𝑣), 1 + 𝑐

The rule states that if the expression 𝑒 may evaluate to a number 𝑣
at cost 𝑐 then the function application expression SIN(e) may evaluate
to the actual function application 𝑠𝑖𝑛(𝑣) at total cost 1+ 𝑐. Similar rules
can be given for COS and TAN.

We introduce a few conventions for array values that must be borne
in mind when reading the semantic rules in the following sections. First,
we use a more compact notation for array values:

𝐴𝑣(𝑤, ℎ,
[[

𝑣𝑖𝑗
]]

) ≜ 𝐴𝑟𝑟𝑉 𝑎𝑙(𝑤, ℎ,
[[

𝑣𝑖𝑗 ∣ 𝑖 ≤ 𝑤, 𝑗 ≤ ℎ
]]

)

To refer to an entire column or row of an array value, we use
notation such as

[[

𝑎𝑣𝑖∗
]]

to refer to column 𝑖. Thus,
[[

𝑎𝑣1∗
]]

refers to
the first column of an array value whereas

[[

𝑎𝑣∗3
]]

refers to the third
row.

We define concatenation operators for array values 𝑎𝑢 and 𝑎𝑣. The
horizontal concatenation 𝑎𝑢 ∶ 𝑎𝑣 is the array consisting of 𝑎𝑢’s columns
on the left followed by 𝑎𝑣’s columns on the right; here 𝑎𝑢 and 𝑎𝑣 must
have the same number of rows. The vertical concatenation 𝑎𝑢; 𝑎𝑣 is the
array consisting of 𝑎𝑢’s rows on the top followed by 𝑎𝑣’s rows below;
here 𝑎𝑢 and 𝑎𝑣 must have the same number of columns. These operators
are associative and have suitable zero-column or zero-row arrays as
units. The concatenation operators do not produce nested array values:
concatenating two array values creates a single array value with the
elements from both.

Additionally, we can construct an array value from a set of values
that may produce nested array values:

[[

𝑣1, 𝑣2, 𝑣3
]]

. Each value of the
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Fig. 13. Operational cost semantics for a subset of Funcalc’s built-in first-order functions. Error cases are omitted, as are trivially similar cases e.g. we show only ASIN and not
also COS, ACOS and so on.

new array value is exactly as given so if 𝑣2 is an array value itself, it
will be nested inside of the constructed array value instead of its values
being concatenated.

In general, we mostly omit the ‘‘error rules’’ dealing with cases
where a function argument evaluates to an error value, and ask the
reader to imagine analogs of rule (g5e) in Section 3. For most functions,
we assume all arguments are non-error values and that we evaluate
them in some order according to a desired implementation. For full
details of all functions available in Funcalc, we refer the reader to [7].
First-order intrinsic functions are given in Section 4.1, higher-order
functions are given in Section 4.2.

4.1. Rules for first-order intrinsic functions

The rules for Funcalc’s first-order intrinsic functions are given in
Fig. 13 in the context of ordinary sheets.

Rule (now) has one premise stating that if the result may evaluate
to a number, the call may evaluate to value 𝑣 at cost 1 where 𝑣 is the
number of fractional days since 30 December 1899.

Rule (pi) states that PI() may evaluate to the mathematical con-
stant 𝜋 at cost 1.

Rule (na) states that the function application NA() may evaluate to
the error value #NA at cost 1. This is used to indicate that a value is not
available or to indicate a late-bound parameter in a partially applied
closure.

Rule (abs) states that if 𝑒 may evaluate to the number 𝑣 at cost 𝑐
then the call may evaluate to the absolute value of 𝑣.

Rule (asin) is similar to rule (abs) but may instead evaluate to the
result of a call to the actual inverse trigonometric function 𝑎𝑠𝑖𝑛.

Rules (not-1) and (not-2) handle the two different outcomes of the
NOT function. Rule (not-1) states that if 𝑒 may evaluate to zero (false) at
some cost then the call may evaluate to one (true); rule (not-2) handles
the opposite case.

Rule (ceiling) states that if the two argument expressions may
evaluate to numbers then the expression may evaluate to 𝑣1 rounded to
𝑣2 decimal digits, as more precisely specified by the underlying 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
function.

Rule (equal) is akin to rule (ceiling) except that it may evaluate to
the equality comparison between the two numbers. We leave out the
rules for other comparisons.

Rules (and-false) and (and-true) are inspired by rule (c5e) in Fig. 3,
using reasoning analogous to that in Section 2.2. The point is that AND
may use short-cut, speculative or parallel evaluation: once it finds that
some argument 𝑒𝑗 evaluates to 0 (false), it may skip evaluating all the
other arguments and immediately return 0. However, an implementa-
tion cannot reasonably be expected to guess beforehand which 𝑒𝑗 may
evaluate to zero and evaluate only that, so the total cost should allow
for the evaluation of some subset 𝐽 of arguments. Rule (and-false) says
that if one can pick a subset 𝐽 of indices and there exists a 𝑗 ∈ 𝐽 such
that 𝑒𝑗 evaluates to the number zero, then the result of AND may be
zero (false). Rule (and-true) says that if all 𝑒𝑗 for 𝑗 ∈ 𝐽 may evaluate
to a non-zero number value, then the result of AND may be one (true).
In either case, the total cost is the sum of the costs of the subset 𝐽 of
expressions evaluated, plus one. The rules for OR are omitted as they
are analogous, although dual, to those of AND.

Rule (sum) says that if all its argument expressions evaluate to
number values then the function call may evaluate to the sum of those
values. In Funcalc, functions such as SUM and AVERAGE are actually
more general, and accept a combination of numbers and array values.

9
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Fig. 13. (continued).

We do not account for this generality here to avoid overcomplicating
the rules.

Rule (const-array) says that if expression 𝑒1 may evaluate to a value
at some cost 𝑐1 and expressions 𝑒2 and 𝑒3 may evaluate to non-negative
numbers, then the call may evaluate to an array value of size 𝑣3 ⋅ 𝑣2
with 𝑣1 as the value of each element. The cost reflects that it is only
necessary to evaluate 𝑒1 once.

Rule (choose) states that if 𝑒0 may evaluate to a number 𝑠 ∈
[1, 𝑛 + 1[, and 𝑖 = ⌊𝑠⌋, and 𝑒𝑖 may evaluate to value 𝑣𝑖 at cost 𝑐𝑖, then
the call may evaluate to 𝑣𝑖 at cost 1 + 𝑐0 + 𝑐𝑖. Since CHOOSE is non-
strict, we require only that 𝑒0 and 𝑒𝑖 are evaluated. A more general rule,

permitting also speculative evaluation of some 𝑒𝑗 , could adopt the same
approach as for AND and have 𝐽 = {0, 𝑖} as a special case.

Rule (columns) states that if 𝑒 may evaluate to an array value then
a call to COLUMNS may evaluate to the width of that array value.
Notice that the cost is pessimistic; an implementation might be able
to compute the width of an array value without first fully evaluating
it, e.g. if the array value stems from a cell area.

Rule (index) states that if 𝑒1 may evaluate to an array value and 𝑒2
and 𝑒3 may evaluate to numbers within the bounds of the array value,
then INDEX may evaluate to the value at index (⌊𝑣3⌋, ⌊𝑣2⌋). Like rule
(columns), the cost is pessimistic.

10
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Fig. 13. (continued).

In rule (slice), the premises state that 𝑒1 may evaluate to an array
value, expressions 𝑒2 and 𝑒4 may evaluate to a start- and end-column
indices, and expressions 𝑒3 and 𝑒5 may evaluate to a start- and end-
row indices, where the indices delimit a sub-array within the input
array. Then SLICE may evaluate to an array value that is a slice of
the original array. The sub-array’s size is computed from the row and
column indices and its elements are the values of the original array
value. The work is one plus evaluating the four indices plus the work
of evaluating the input array value plus the size of the new array. The
cost is pessimistic; an implementation may return a view of the given
(immutable) array value, in which case subcost 𝑐6 would be one or even
zero.

Rule (iserror-true) states that if 𝑒 may evaluate to a value 𝑣 ∈ 𝐸𝑟𝑟𝑜𝑟
then the call may evaluate to 1. Rule (iserror-false) is complementary
and handles the case where 𝑣 ∉ 𝐸𝑟𝑟𝑜𝑟.

Rule (max) states that if all the argument expressions may evaluate
to numbers at some corresponding costs, then the call may evaluate to
the maximum of those values. The rule for MIN is analogous.

Rule (transpose) states that if the argument expression may evaluate
to an array value of size 𝑤 ⋅ ℎ with cost 𝑐, then the call may evaluate
to a transposed array value of size ℎ ⋅ 𝑤. Notice that element access
has been swapped to 𝑣𝑗𝑖 in the resulting array. The cost is one plus
the cost 𝑐 and the size of the resultant array. This cost is pessimistic;
an implementation may represent array values in such a way that
TRANSPOSE just flips an index-order bit.

Rule (average) is similar to rule (sum) but instead evaluates to the
average of the input values. It produces an error if there are no input
values (rule not shown).

Rule (harray) states that if the arguments may evaluate to array
values 𝑣𝑖 with associated costs 𝑐𝑖, then the call may evaluate to a single-
row array of those values. For example, the expression =HARRAY(1,
HARRAY(2, 3)) will produce an array value of width 2 and height 1
where the first element is the value 1 and the second element is an
array with values 2 and 3. The rule for VARRAY is similar and has
been omitted. The 𝑛 in the cost of the conclusion denotes the cost of
allocating the new array.

Rule (hcat) is closely related to the rule for HARRAY but concate-
nates its arguments, which is why there are additional premises to
ensure compatible dimensions (equal heights) of the argument values.
The other premises state that the expressions may evaluate to values
at some associated costs as in rule (harray). The width of the new
array value is the sum of the widths of all its arguments. The function
𝑤𝑖𝑑𝑡ℎ is defined as follows; function ℎ𝑒𝑖𝑔ℎ𝑡 is analogous: 𝑤𝑖𝑑𝑡ℎ(𝑣) =
{

𝑤 if 𝑣 = 𝐴𝑣(𝑤, ℎ,
[[

𝑣𝑖𝑗
]]

)
1 otherwise
The 𝑛 cost in the conclusion denotes the cost of concatenation and

assumes an efficient implementation of array concatenation. The rule
for VCAT is similar and has been omitted.

4.2. Rules for higher-order intrinsic functions

Since most higher-order functions call some supplied function mul-
tiple times, we introduce quantification over the environment 𝜌′ used
to evaluate a sheet-defined function. For example, TABULATE calls the
supplied function 𝑓 (𝑖, 𝑗) with the row and column indices (𝑖, 𝑗) for each
position of an array passed to TABULATE. E.g. TABULATE(𝑓, 3, 4) with
𝑓 (𝑖, 𝑗) = 𝑖 ∗ 10 + 𝑗, would produce the table

11
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11 21 31 41
12 22 32 42
13 23 33 43

We quantify over 𝜌′ with the current position (𝑖, 𝑗) as 𝜌′𝑖𝑗 to have a
separate fresh environment, akin to a separate stack frame, for each
call 𝑓 (𝑖, 𝑗). Similarly, we also quantify over the function call cost
environment 𝛾 ′ as 𝛾 ′𝑖𝑗 . We start by introducing the rule for TABULATE
in full detail, then define auxiliary notation so that we do not need to
repeat ourselves in the remaining rules.

𝜎, 𝛼 ⊢ 𝑒1 ⇓ 𝐹𝑢𝑛𝑉 𝑎𝑙(𝑠𝑑𝑓 ,
[

𝑢1 ,… , 𝑢𝑘
]

), 𝑐1
𝑑𝑒𝑓 (𝑠𝑑𝑓 )=(𝑜𝑢𝑡,

[

𝑖𝑛1 ,… , 𝑖𝑛𝑘+2
]

, 𝑐𝑒𝑙𝑙𝑠)

𝜎, 𝛼 ⊢ 𝑒2 ⇓ 𝑣2 , 𝑐2 𝑣2 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 ∧ ℎ=⌊𝑣2⌋ ≥ 0
𝜎, 𝛼 ⊢ 𝑒3 ⇓ 𝑣3 , 𝑐3 𝑣3 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 ∧𝑤=⌊𝑣3⌋ ≥ 0

∀𝑖, 𝑗. 𝜌′𝑖𝑗 , 𝛾
′
𝑖𝑗 𝑓𝑟𝑒𝑠ℎ ∀𝑖, 𝑗. 𝜌′𝑖𝑗 (𝑖𝑛1)=𝑢1 … 𝜌′𝑖𝑗 (𝑖𝑛𝑘)=𝑢𝑘

∀𝑖, 𝑗. 𝜌′𝑖𝑗 (𝑖𝑛𝑘+1)=𝑖 ∧ 𝜌′𝑖𝑗 (𝑖𝑛𝑘+2)=𝑗

∀𝑖, 𝑗.∀𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜌′𝑖𝑗 ) ⧵ {𝑖𝑛1 ,… , 𝑖𝑛𝑘+2}. 𝜎, 𝛼 ⊢ 𝜙(𝑐𝑎) ⇓ 𝜌′𝑖𝑗 (𝑐𝑎), 𝛾
′
𝑖𝑗 (𝑐𝑎)

∀𝑖, 𝑗. 𝑣𝑖𝑗=𝜌′𝑖𝑗 (𝑜𝑢𝑡) 𝑐4=∑

𝑖,𝑗
∑

𝑐𝑎∈𝑑𝑜𝑚(𝛾′𝑖𝑗 )
𝛾′𝑖𝑗 (𝑐𝑎)

(tabulate-full)
𝜎, 𝛼 ⊢ TABULATE(𝑒1 , 𝑒2 , 𝑒3) ⇓ 𝐴𝑣(𝑤, ℎ,

[[

𝑣𝑖𝑗
]]

), 1 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 +𝑤 ⋅ ℎ

Taking the premises in order from top to bottom, they state that
𝑒1 may evaluate to a function value, at cost 𝑐1, that expects two more
arguments, and that 𝑒2 and 𝑒3 may evaluate to non-negative numbers of
ℎ rows and 𝑤 columns respectively, after truncation towards zero. We
then postulate 𝑤 ⋅ ℎ fresh environments 𝜌′𝑖𝑗 where 𝑖 ≤ 𝑤 and 𝑗 ≤ ℎ,
one for each application of the function value. The next quantified
premises state that the input cells should contain the early-bound val-
ues

[

𝑢1,… , 𝑢𝑘
]

except the last two arguments which must be the indices
𝑖 and 𝑗 of the function application. The following quantified premise
states that for all cell addresses 𝑐𝑎 in the domain of 𝜌′𝑖𝑗 , excluding the
set of input cells, the expression of each cell address may evaluate to the
value given by environment 𝜌′𝑖𝑗 at some cost. The final premise states
that each function application evaluates to the value 𝑣𝑖𝑗 of the function
call’s output cell. The call to TABULATE then evaluates to an array
value of size 𝑤 ⋅ ℎ whose elements are the 𝑣𝑖𝑗 . The work is 1 plus the
costs for evaluating the function value, the two arguments denoting the
desired size of the array, the sum of the costs of applying the function
for every position (𝑖, 𝑗), and allocating a new array.

The premises that pass values to the function arguments, evaluate
the cells of the function’s body, get the result from the function’s output
cell and compute the total cost of evaluating the function are of a
more general nature: this is how all higher-order functions call function
values. So to reduce repetition, we define a predicate 𝑎𝑝𝑝𝑙𝑦 as follows:

𝑎𝑝𝑝𝑙𝑦𝜎,𝛼(𝑠𝑑𝑓 ,
[

𝑢1,… , 𝑢𝑘
]

, 𝑎1,… , 𝑎𝑛, 𝑟, 𝑐)

≜

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑒𝑓 (𝑠𝑑𝑓 ) = (𝑜𝑢𝑡,
[

𝑖𝑛1,… , 𝑖𝑛𝑘+𝑛
]

, 𝑐𝑒𝑙𝑙𝑠)
𝜌′(𝑖𝑛1) = 𝑢1 … 𝜌′(𝑖𝑛𝑘) = 𝑢𝑘 𝜌′(𝑖𝑛𝑘+1) = 𝑎1 … 𝜌′(𝑖𝑛𝑘+𝑛) = 𝑎𝑛
∀𝑐𝑎 ∈ 𝑑𝑜𝑚(𝜌′) ⧵ {𝑖𝑛1,… , 𝑖𝑛𝑘+𝑛}. 𝜌′, 𝜎 ⊢ 𝜙(𝑐𝑎) ⇓ 𝜌′(𝑐𝑎), 𝛾 ′(𝑐𝑎)
𝑟 = 𝜌′(𝑜𝑢𝑡)
𝑐 =

∑

𝑐𝑎∈𝑑𝑜𝑚(𝛾′𝑖𝑗 )
𝛾 ′(𝑐𝑎)

Note that the ‘‘arguments’’ 𝑟 and 𝑐 are the function call’s result
and its cost; these are ‘‘output parameters’’ of 𝑎𝑝𝑝𝑙𝑦 in much the same
style as when a Prolog predicate is used to represent a function. The
definition of 𝑎𝑝𝑝𝑙𝑦 can be used to rewrite the rule for TABULATE for a
clearer and more compact rule:

𝜎, 𝛼 ⊢ 𝑒1 ⇓ 𝐹𝑢𝑛𝑉 𝑎𝑙(𝑠𝑑𝑓 ,
[

𝑢1 ,… , 𝑢𝑘
]

), 𝑐1
𝜎, 𝛼 ⊢ 𝑒2 ⇓ 𝑣2 , 𝑐2 𝑣2 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 ∧ ℎ=⌊𝑣2⌋ ≥ 0
𝜎, 𝛼 ⊢ 𝑒3 ⇓ 𝑣3 , 𝑐3 𝑣3 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 ∧𝑤=⌊𝑣3⌋ ≥ 0

∀𝑖, 𝑗. 𝑎𝑝𝑝𝑙𝑦𝜎,𝛼 (𝑠𝑑𝑓 ,
[

𝑢1 ,… , 𝑢𝑘
]

, 𝑖, 𝑗, 𝑣𝑖𝑗 , 𝑐𝑖𝑗 ) 𝑐4=∑

𝑖,𝑗 𝑐𝑖𝑗
(tabulate)

𝜎, 𝛼 ⊢ TABULATE(𝑒1 , 𝑒2 , 𝑒3) ⇓ 𝐴𝑣(𝑤, ℎ,
[[

𝑣𝑖𝑗
]]

), 1 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 +𝑤 ⋅ ℎ

Before moving on to the remaining higher-order functions, we need
to address recursion. For some functions, such as REDUCE, we need to

handle intermediate computation steps that operate on values that we
do not want to compute repeatedly. For this purpose we introduce a
new judgment form 𝜎, 𝛼 ⊢𝑣 𝑠 ⇓ 𝑣, 𝑐 that operates on values instead of
expressions. The judgment states that given the usual environments 𝜎
and 𝛼, some intermediate value-based computation state 𝑠 may evaluate
to a value 𝑣 at cost 𝑐. This allows us to evaluate the top-level argument
expressions once in the initial call to REDUCE, and then use their
values in subsequent recursive calls without having to recompute these
expressions.

The REDUCE function takes three arguments: a two-argument func-
tion value 𝑓 ; an initial value 𝑥0; and an array value 𝑎𝑣, and performs a
reduction over the elements of 𝑎𝑣 using 𝑓 and the initial value 𝑥0. The
call REDUCE(CLOSURE("-"), 0, HCAT(1, 2, 3)) would compute
((0 − 1) − 2) − 3 = −6.

𝜎, 𝛼 ⊢ 𝑒1 ⇓ 𝑣1, 𝑐1
𝑘=𝑎𝑟𝑖𝑡𝑦(𝑠𝑑𝑓 ) − 2
𝜎, 𝛼 ⊢ 𝑒2 ⇓ 𝑣2, 𝑐2

𝑣1=𝐹𝑢𝑛𝑉 𝑎𝑙(𝑠𝑑𝑓 ,
[

𝑢1,… , 𝑢𝑘
]

)
𝜎, 𝛼 ⊢ 𝑒3 ⇓ 𝑣3, 𝑐3
𝑣3 ∈ 𝐴𝑟𝑟𝑉 𝑎𝑙

𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑣2, 𝑣3) ⇓ 𝑟, 𝑐𝑟
(reduce)

𝜎, 𝛼 ⊢ REDUCE(𝑒1, 𝑒2, 𝑒3) ⇓ 𝑟, 1 + 𝑐1 + 𝑐2 + 𝑐3 + 𝑐𝑟

We start with the top-level, expression-based rule (reduce) for the
REDUCE function which passes the results of the evaluated expressions
to a value-based rule. This rule in turn arbitrarily decomposes the
array value until a single value is left which is then combined with
the intermediate result using the function value. Expression 𝑒1 may
evaluate to a function value, 𝑒2 to an initial value for the reduction,
and 𝑒3 to an array 𝑣3. Each value is passed as an argument to the
value-based reduction rule defined next.

𝑣3=𝑣𝑙 ∶ 𝑣𝑟
𝑣1 ∈ 𝐹𝑢𝑛𝑉 𝑎𝑙
𝑣2 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟

𝑣𝑙 ∈ 𝐴𝑟𝑟𝑉 𝑎𝑙 ∧ 𝑣𝑟 ∈ 𝐴𝑟𝑟𝑉 𝑎𝑙
𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑣2, 𝑣𝑙) ⇓ 𝑟𝑙 , 𝑐𝑙
𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑟𝑙 , 𝑣𝑟) ⇓ 𝑟, 𝑐𝑟

(reduce-inductive)
𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑣2, 𝑣3) ⇓ 𝑟, 1 + 𝑐3 + 𝑐𝑙 + 𝑐𝑟

The inductive value-based reduction rule (reduce-inductive) first
decomposes 𝑣3 into two arrays 𝑣𝑙 and 𝑣𝑟. This can be an arbitrary
decomposition as chosen by an implementation since, given an identity
element and an associative binary function, a reduction may e.g. pro-
ceed from left to right using a decomposition similar to functional lists;
or decompose the operations as a tree by recursively splitting the input
array in halves to perform the reduction in parallel. Notice that we pass
the result of the reduction of the left part 𝑣𝑙 of the decomposed array as
the initial value of the reduction of the right part 𝑣𝑟 of the decomposed
array. The reason is purely semantic and will become apparent shortly.

We need two additional base case rules to account for a reduction
of a single value and for an empty array value. These are given as rules
(reduce-base-singular) and (reduce-base-empty).

𝑣1=𝐹𝑢𝑛𝑉 𝑎𝑙(𝑠𝑑𝑓 ,
[

𝑢1,… , 𝑢𝑘
]

)

𝑣3=𝐴𝑣(1, 1,
[[

𝑣11
]]

)

𝑎𝑝𝑝𝑙𝑦𝜎,𝛼(𝑠𝑑𝑓 ,
[

𝑢1,… , 𝑢𝑘
]

, 𝑣2, 𝑣11, 𝑟, 𝑐)
(reduce-base-singular)

𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑣2, 𝑣3) ⇓ 𝑟, 1 + 𝑐

𝑣1 ∈ 𝐹𝑢𝑛𝑉 𝑎𝑙 𝑣2 ∈ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑣3=𝐴𝑣(0, 0, [[]])
(reduce-base-empty)

𝜎, 𝛼 ⊢𝑣 REDUCE(𝑣1, 𝑣2, 𝑣3) ⇓ 𝑣2, 1

Rule (reduce-base-singular) handles the case where 𝑣3 is a single-
element array and we pass the single element 𝑣11 and starting value
𝑣2 to the sheet-defined function 𝑠𝑑𝑓 from the function value 𝑣1. In rule
(reduce-inductive), the accumulated intermediate results 𝑣2 and 𝑟𝑙 must
be threaded through the subcomputations. Rule (reduce-base-empty)
returns the starting value 𝑣2 of the reduction if passed the empty array.
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Fig. 14. The full derivation tree of the expression =REDUCE(CLOSURE("+"), 8, HCAT(1, 2, 3, 4)) using a combination of the expression- and value-based rules for reduction.

Fig. 15. The tree for the reduction in the REDUCE example.

To illustrate these rules, we expand the derivation tree for the
following expression in Fig. 14 and show the corresponding tree
decomposition in Fig. 15.

= 𝚁𝙴𝙳𝚄𝙲𝙴(𝙲𝙻𝙾𝚂𝚄𝚁𝙴("+"), 𝟾, 𝙷𝙲𝙰𝚃(𝟷, 𝟸, 𝟹, 𝟺))

In the example, 𝑐𝑎 is the cost of applying the addition operator, and
𝑐ℎ is the cost of concatenating elements with HCAT. Additionally, we
have omitted some of the set membership tests for values to keep the
derivation tree succinct. For brevity, we denote lists in square braces
[1, 2, 3, 4]. The result of the expression is 8 + 1 + 2 + 3 + 4 = 18.

We are now ready to list the rules for the remaining higher-order
functions in Funcalc which are shown in Fig. 16.

Rule (map) shows the rule for the MAP function which is in fact
an 𝑛-ary zip-by function, with the ordinary MAP function as the special
case 𝑛 = 1. In general, if 𝑒0 evaluates to a function value, and the other
arguments 𝑒1,… , 𝑒𝑛 evaluate to array values of equal size, then for each
array position (𝑖, 𝑗) the function is applied to the 𝑛 arguments 𝑣1𝑖𝑗 ,… , 𝑣𝑛𝑖𝑗
giving 𝑟𝑖𝑗 and the final result is the array of these 𝑟𝑖𝑗 . The total cost is
one plus the cost of evaluating the function value, the cost of evaluating
all the array value arguments, and the cost of all function applications.

Rule (colmap) states that if the first argument may evaluate to a
function 𝑓 and the second argument may evaluate to an array value
whose height equals 𝑓 ’s arity, then the call may evaluate to a new
single-row array value whose elements are the results of applying 𝑓
to each column in the input array. A similar function ROWMAP exists
for row-wise mapping to a single-column array value.

Rule (countif) states that if the first argument 𝑒0 evaluates to a unary
predicate function 𝑓 and the remaining expressions to some values,
then a call to COUNTIF may evaluate to the number of those values
for which 𝑓 returned a non-zero number (true). The total cost is one
plus evaluating the function expression, all argument expressions and
the cost of each function application.

Finally, we have the rule for HSCAN. The function performs a
column-wise inclusive scan operation as opposed to an element-wise
scan as per Blelloch [8]. For example, given function 𝑓 (𝑥) = 𝑥 + 1 we
might call HSCAN as an array formula in the cell range A4:C5 on the
cell range A1:A2 as shown in Fig. 17.

𝙷𝚂𝙲𝙰𝙽(𝙲𝙻𝙾𝚂𝚄𝚁𝙴("𝚏"), 𝙰𝟷 ∶ 𝙰𝟸, 𝟸)

Except the starting column, the values in each column of the result
are one greater than the corresponding values in the preceding column.

Rule (hscan) says that if 𝑒1 evaluates to a function value accepting
one argument, and 𝑒2 evaluates to a column array value 𝑟0, and 𝑒3
evaluates to a number 𝑛, the result will be an array 𝑎𝑟𝑟 with 𝑛 + 1

columns, column number 𝑖 being the result of 𝑓 𝑖(𝑟0). The total cost is
one plus the costs of evaluating the arguments plus the cost 𝑛 of the
column concatenations plus the cost of the function applications.

5. Abstract cost semantics

Gomez et al. and Rosendahl worked on cost translations for higher-
order functional languages [12,13] which cater for computing with
unknown data values. Adding such unknown values allows for a rudi-
mentary abstract interpretation of programs which in many cases can
provide a rather precise approximation of the actual cost of the com-
putation.

However, there is no standard way to insert an unknown value in a
sheet. If a cell is empty and a lookup is performed on the cell, the value
0.0 is returned as is consistent with the standard semantics. However, it
may be interesting to abstractly evaluate sheets where some cells have
unknown values. This can be handled by a built-in function UNKNOWN
taking no arguments and always returning the unknown value, denoted
⊤, which is the top-most abstract value in an abstract lattice. Calling
UNKNOWN takes one computational step.

To allow computations with unknown values, we need an abstract
representation of values that models the concrete values used in con-
crete interpretation or more generally we need a domain, which is a
set equipped with a partial order, denoted ⊑. The domain has a least
element, denoted ⊥ and if the domain is a lattice, it also has a top
element, denoted ⊤. A domain is also equipped with a join operation,
denoted ⊔ [27]. Fig. 18 gives a suggested lattice of abstract values
𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 for Funcalc which can be used in the definition of abstract
values computed by an abstract semantics for Funcalc. The sets and
maps used for abstract interpretation are shown in Fig. 19 and the
abstract cost semantics rules are depicted in Fig. 20.

The ordering on 𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 is such that ∀𝑎𝑏𝑠𝑣 ∈ 𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 . 𝑎𝑏𝑠𝑣 ⊑
⊤. Furthermore, ∀𝑎𝑏𝑠𝑎𝑣 ∈ 𝐴𝑏𝑠𝐴𝑟𝑟𝑉 𝑎𝑙 . 𝑎𝑏𝑠𝑎𝑣 ⊑ 𝐴𝑟𝑟𝑎𝑦(⊤,⊤) where
𝐴𝑏𝑠𝐴𝑟𝑟𝑉 𝑎𝑙 denotes the set of all possible abstract array values. We can
now follow the ideas presented by Schmidt [27] and provide a trace-
based abstract interpretation for Funcalc, based on the ideas for big step
semantics presented in section 5 of [27].

The cost semantics for Funcalc presented in Section 3 is extended
with the following rules:

Rule (u1a) states that calling the built-in function UNKNOWN, tak-
ing no arguments, returns the unknown value ⊤ with a cost of one
computational step.

Rule (g3a) states that if the predicate, i.e. the first argument to IF,
evaluates to the unknown value ⊤ at some cost 𝑐1, then the resulting
value is the join of the values, denoted by ⊔, of the evaluation of the
two branches, and the total cost of evaluating IF is the cost 𝑐1 plus the
maximum of the cost of evaluating either of the two branches.

Rule (g5a) states that if any argument to a built-in function evalu-
ates to the unknown value ⊤, then the resulting value is the unknown
value ⊤, i.e. all built-in functions are strict wrt. the unknown value
⊤. However, the cost of calling a built-in function with the unknown
value ⊤ is still the cost of evaluating the arguments, plus the cost of the
function call and the cost of the work of the built-in function. This is
a bit conservative, but allows the implementation of built-in functions
to do some work before returning the unknown value ⊤.

Rule (g10a) states that if the function in an APPLY, i.e. the first
argument, evaluates to the unknown value ⊤ then the resulting value
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Fig. 16. Operational and cost semantics for a subset of Funcalc’s higher-order built-in functions. For very similar rules such as for HCAT and VCAT, we omit repetitions and give
just one of them.

Fig. 17. Example column-wise scan using HSCAN with input range A1:A2 and results
in cells A4:C5, where each column’s values are the preceding column’s values, plus
one.

is the unknown value ⊤, and the cost is the top element in the cost
domain, i.e. ∞. The standard semantics for APPLY does not state an
evaluation order, but APPLY is strict in all its arguments. An alternative
rule for APPLY could be stated as follows:

𝜎, 𝛼 ⊢ 𝑒0 ⇓ ⊤, 𝑐0
𝜎, 𝛼 ⊢ 𝑒1 ⇓ 𝑣1, 𝑐1 … 𝜎, 𝛼 ⊢ 𝑒𝑛 ⇓ 𝑣𝑛, 𝑐𝑛-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- (𝑔10𝑎𝑙𝑡)

𝜎, 𝛼 ⊢ 𝙰𝙿𝙿𝙻𝚈(𝑒0,𝑒1,… ,𝑒𝑛) ⇓ ⊤,∞

Rule (g10alt) would enforce strict evaluation of all arguments to
APPLY, thereby excluding an implementation using short-cut semantics
for the first argument. Since a short-cut semantics is a quite natural
implementation strategy, we have chosen to use the rule (g10a) instead
of rule (g10alt) as the resulting cost is the same, namely ∞.

With these rules, it is possible to establish a safety property for finite
derivations [27]. First we define a safety property for values and costs:

𝑣, 𝑐 safe𝑣𝑎𝑙 𝑎𝑣, 𝑎𝑐 𝚒𝚏𝚏 𝑣 ⊑ 𝑎𝑣 𝚊𝚗𝚍 𝑐 ⊑ 𝑎𝑐

Here we use the ordering on values defined above and the usual
order on integer costs augmented with ∀𝑐 . 𝑐 ≤ ∞. The property states

that value 𝑣 and cost 𝑐 are safely approximated by abstract value 𝑎𝑣 and
abstract cost 𝑎𝑐 if and only if 𝑎𝑣 is ordered above 𝑣 in the abstract value
lattice and 𝑎𝑐 is ordered above 𝑐, respectively. As mentioned in [28] this
relation is a Galois connection between the concrete and the abstract
domains.

The safety property on values is then extended to environments:

𝜎, 𝛼 safe𝑒𝑛𝑣 𝜎𝑎, 𝛼𝑎 𝚒𝚏𝚏 𝚍𝚘𝚖(𝜎) = 𝚍𝚘𝚖(𝜎𝑎)

∧ 𝚍𝚘𝚖(𝛼) = 𝚍𝚘𝚖(𝛼𝑎)

∧ ∀𝑐𝑎 . 𝜎(𝑐𝑎) safe𝑣𝑎𝑙 𝜎𝑎(𝑐𝑎)
∧ ∀𝑎𝑒 . 𝛼(𝑎𝑒) safe𝑣𝑎𝑙 𝛼𝑎(𝑎𝑒)

Finally the safety property can be extended to judgments.

𝜎, 𝛼 ⊢ 𝑒 ⇓𝑡 𝑣, 𝑐 safe𝑠𝑒𝑞 𝜎𝑎, 𝛼𝑎 ⊢ 𝑒 ⇓𝑎𝑡 𝑎𝑣, 𝑎𝑐

𝚒𝚏𝚏𝜎, 𝛼 safe𝑒𝑛𝑣 𝜎𝑎, 𝛼𝑎 𝚊𝚗𝚍 𝑣, 𝑐 safe𝑣𝑎𝑙 𝑎𝑣, 𝑎𝑐

where ⇓𝑡 indicates that the transition ⇓ is established using the rules
from Section 3 and ⇓𝑎𝑡 indicate that transition ⇓ is established also
using the additional abstract rules presented above.

With the safety property on judgments we can extend the definition
to trees safe𝑡𝑟𝑒𝑒. For trees 𝑇𝐶 resp. 𝑇𝐴 the proposition 𝑇𝐶 safe𝑡𝑟𝑒𝑒 𝑇𝐴
holds if 𝑟𝑜𝑜𝑡(𝑇𝐶 ) safe𝑠𝑒𝑞 𝑟𝑜𝑜𝑡(𝑇𝐴) and for every child subtree 𝑡𝑖 of 𝑇𝐶
there exists a subtree 𝑡𝑗 of 𝑇𝐴 such that 𝑡𝑖 safe𝑡𝑟𝑒𝑒 𝑡𝑗 holds.

Let wftree𝐶 and wftree𝐴 be the set of well formed proof trees in the
concrete semantics, respectively the set of well formed proof trees in the
abstract semantics. For every expression 𝑒 and concrete environments
𝜎, 𝛼 and abstract environments 𝜎𝑎, 𝛼𝑎, where 𝜎, 𝛼 safe𝑒𝑛𝑣 𝜎𝑎, 𝛼𝑎 holds,
we can establish the desired property that for every proof tree 𝑡𝐶 ∈
wftree𝐶 , where root(𝑡𝐶 ) = 𝜎, 𝛼 ⊢ 𝑒 ⇓𝑡 𝑣, 𝑐, and for every proof tree
𝑡𝐴 ∈ wftree𝐴, where root(𝑡𝐴) = 𝜎𝑎, 𝛼𝑎 ⊢ 𝑒 ⇓𝑎𝑡 𝑎𝑣, 𝑎𝑐, it is the case that
𝑡𝐶 safe𝑡𝑟𝑒𝑒𝑡𝐴. The proof of this follows by induction on the height of the
derivation tree.
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Fig. 18. A lattice of abstract values that can be used in abstract interpretation of Funcalc. The symbol ⊤ denotes that a value can be represented by multiple values in the lattice,
e.g. something is both an atomic value and an array of known size. In type systems, this constitutes a type unification error. The symbol ⊥ denotes that we know nothing about
a value. The Values are either the semantic map of numbers and errors, abstract closures, or array values. For arrays, we need both an abstraction for an array of unknown size
Array(⊤, ⊤) and arrays of known sizes.

Fig. 19. Sets and maps used in the abstract Funcalc semantics. The tuple {(⊤,⊤)} component of 𝐴𝑏𝑠𝐴𝑟𝑟𝑉 𝑎𝑙 represents an array of unknown width and height.

Fig. 20. Abstract cost (or work) semantics rules.

The only non-trivial base case is when rule (u1a) has been applied.
Cells filled with a call to the built-in function UNKNOWN are filled
with a constant value ‘‘in a production sheet’’. Any constant value is
also an element of 𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 and since the ordering on 𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 is
such that ∀𝑎𝑏𝑠𝑣 ∈ 𝐴𝑏𝑠𝑉 𝑎𝑙𝑢𝑒 . 𝑎𝑏𝑠𝑣 ⊑ ⊤ this base case holds. Of the
three inductive cases (g3a), (g5a) and (g10a), rule (g3a), the rule for

𝐼𝐹 (𝑒1, 𝑒2, 𝑒3), is the most interesting. This rule is only applicable if the
condition 𝑒1 cannot be evaluated to a concrete value in the abstract cost
semantics, i.e. 𝑒1 evaluates to ⊤. If the concrete value evaluates to 0.0
in the concrete semantics, the rule (g3f) will be applied in the concrete
semantics yielding a value 𝑣3 and a cost 𝑐 = 1+𝑐1+𝑐3 where 𝑐1 is the cost
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of evaluating the condition 𝑒1, and 𝑐3 is the cost of evaluating the false-
branch 𝑒3. Clearly 𝑣3 ⊑ 𝑣2⊔𝑣3 and 1+𝑐1+𝑐3 ⊑ 1+𝑐1+𝑚𝑎𝑥(𝑐2, 𝑐3), where 𝑣2
is the value of evaluating the true-branch and 𝑐2 is the associated cost.
The case when 𝑒1 evaluates to a value different from 0.0 is similar.

The above only establishes a safety property for finite derivations,
i.e. for terminating programs. Not all programs terminate and future
work needs to look into handling infinite derivations as well, possibly
following ideas presented in [27].

6. Implementation of cost semantics

Before we discuss the full implementation details of the various
sections presented thus far, we give a brief introduction to some of the
inner workings of the research spreadsheet application Funcalc deemed
necessary for understanding the implementation. Readers interested in
learning more are encouraged to read [7].

6.1. Funcalc

While sheet-defined functions are compiled to Common Interme-
diate Language (CIL) bytecode, the expressions of ordinary cells are
evaluated to values by an interpreter. To express different types of cells
and expressions, Funcalc uses class hierarchies with base class Cell for
cells and base class Expr for expressions. For example, in the case of
cells, NumberCell and TextCell contain number and text constants
respectively while Formula holds a formula expression such as =1+2.
Expressions may e.g. be a constant Const, cell reference CellRef, or
a function call FunCall. Similarly, there is a class hierarchy for values
with base class Value. For example, the ArrayValue class represents
a first-class array value.

Funcalc’s interpreter implements two interfaces for evaluating cells
(ICellEvaluator) and expressions (IExpressionEvaluator),
the former interface is given in Listing 1 with some details omitted.
Evaluation of a cell happens in the context of some column and row
in some sheet. These interfaces can be implemented by any class
that needs to operate on cells, expressions or both, and are used to
implement the rules of our cost semantics.

1 public interface ICe l lEva lua tor <T>
2 {
3 T Eval ( ArrayFormula ce l l , Sheet sheet , int col ,

int row) ;
4 T Eval ( BlankCel l c e l l , Sheet sheet , int col ,

int row) ;
5 T Eval ( Formula ce l l , Sheet sheet , int col ,

int row) ;
6 T Eval ( NumberCell c e l l , Sheet sheet , int col ,

int row) ;
7 T Eval ( Tex tCe l l c e l l , Sheet sheet , int col ,

int row) ;
8 }

Listing 1: The interface for evaluating cells in Funcalc.

Instead of returning a value like the standard interpreter, the cost
interpreter returns a CostResult consisting of both the Value and
its cost. We define some auxiliary functions like MakeCostResult
which constructs a CostResult tuple from a pre-existing CostRe-
sult or from a value and a cost. These auxiliary functions ensure that
cost results are monotonically increasing by adding a unit cost of 1.

We have implemented two variants of the cost semantics in Funcalc:
a concrete cost evaluator (Section 6.2) and an abstract cost interpreter
(Section 6.4). The former uses unit costs and is not guaranteed to
terminate e.g. in the presence of infinite recursion, the latter is inspired
by [27,29,30]. We also discuss a few important details regarding cost
evaluation of sheet-defined functions.

6.2. Cost evaluator implementation

The implementation of the cost evaluator follows the semantic cost
rules closely as shown in Listing 2 for the simplified implementation of
the cost evaluation of IF (see rules (𝑐3𝑒), (𝑐3𝑓 ) and (𝑐3𝑡) in Section 2.1).
The evaluation function EvalIf takes the function call expression
FunCall representing the IF expression and the column, row and
sheet of the cell. First, we check if the function call consists of three sub-
expressions (a condition and two branches). If not, we return an error
indicating an incorrect number of arguments. Otherwise, we evaluate
the conditional expression. If the result is an error value, we short-
circuit as per rule (𝑐3𝑒) and return the result of the condition (the
error) and the cost obtained so far. Otherwise, we cast the result of the
condition to a number. If the cast fails, we return an error indicating
an argument type error and the cost obtained thus far. If the condition
is indeed a number, we pick the appropriate branch and evaluate the
expression as per rules (𝑐3𝑓 ) or (𝑐3𝑡), then return its value along with
the cost of evaluating the condition and the given branch expression.
As an example, EvalIf would return a cost result consisting of the
value SIN(1+2)≊ 0.14112 at cost 6 for the following expression:

=IF(1, SIN(1+2), COS(3))
Evaluation of the IF function call and its condition costs 2 units.

The inner function call to SIN costs four units: one for the SIN function
application, one for the + operator application and one for each of the
arguments of the addition.

1 private CostResu l t E va l I f ( FunCall expr , Sheet sheet ,
int col , int row)

2 {
3 i f ( expr . expres s ions . Length != 3) {
4 return MakeUnitCost ( ErrorValue . argCountError )

;
5 }
6
7 CostResu l t condi t ion = expr . es [0 ] . Eval ( this ,

sheet , col , row) ;
8
9 i f ( condi t ion . Value i s ErrorValue ev ) {

10 return MakeCostResult ( condi t ion ) ;
11 } else {
12 NumberValue n0 = condi t ion . Value as

NumberValue ;
13
14 i f (n0 != null ) {
15 int index = n0 . value != 0.0 ? 1 : 2 ;
16 CostResu l t r e s u l t = expr . expres s ions [

index ] . Eval ( this , sheet , col , row) ;
17
18 return MakeCostResult ( r e s u l t . Value ,

condi t ion . Cost + r e s u l t . Cost ) ;
19 } else {
20 return MakeCostResult ( ErrorValue .

argTypeError , condi t ion . Cost ) ;
21 }
22 }
23 }

Listing 2: Simplified C# code for the cost evaluation of IF

6.3. Evaluation of sheet-defined functions

In Funcalc, sheet-defined functions are not interpreted but automat-
ically compiled to CIL bytecode [7]. Without extending the semantics
to incorporate CIL bytecode, we cannot use the existing interpreter
framework to find the cost of evaluating sheet-defined functions. We
could generate additional code to compute costs but this seems like an
excessive and complicated approach. Instead, we directly interpret the
cells of a sheet-defined function using the cost evaluator by evaluating
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Sheet 1. A recursive factorial sheet-defined function.

the output cell of a sheet-defined function and following dependencies
back to its input cells. This requires proper abstraction of 𝜌 ∶ 𝐴𝑑𝑑𝑟 →
𝑉 𝑎𝑙𝑢𝑒, that is, the local cell environment or stack frame of a sheet-
defined function, to handle both recursive sheet-defined functions and
normal function calls. Consider the definition of the factorial function
in Sheet 1.

To implement 𝜌, we could directly modify the input cells of the
sheet-defined function on each call but this would temporarily modify
cells in the spreadsheet which could easily lead to inconsistencies
if we are not careful. Instead, we keep track of an internal, local
environment 𝑙𝑒𝑛𝑣 ∶ 𝐴𝑑𝑑𝑟 → 𝑉 𝑎𝑙𝑢𝑒 that mimics 𝜌. When a sheet-defined
function is called, we create and push a new local environment onto an
internal stack and store the sheet-defined function’s parameters in it by
mapping the addresses of the input cells to their respective parameter
values. This mimics the semantic rule (g8) for application, where the
input parameters for the current function call are stored in a fresh
environment 𝜌′ i.e. 𝜌′(𝑖𝑛1) = 𝑣1 … 𝜌′(𝑖𝑛𝑛) = 𝑣𝑛. When calling a function
recursively, we create and push a new local environment with the new
parameters. When the recursive call returns, we pop the top-most local
environment from the stack. Therefore, 𝑙𝑒𝑛𝑣 behaves exactly like a stack
frame. Lastly, cost evaluation of a cell reference is modified to first
perform a lookup of the address in the top-most local environment,
if any, before examining the cells of the actual sheets. Thus when we
do computation in some recursive sheet-defined function and need to
evaluate an input parameter, we first look in the local environment and
not the actual spreadsheet.

The above local environment scheme combined with evaluating
the output cell first, ensures that we only evaluate the cells that are
necessary for computing the output cell as discussed in Section 3.2.
Argument evaluation for intrinsic functions is implemented in a left
to right order in the interpreter. This removes the nondeterminism
afforded by the error rule (c5e), as evaluation of arguments will be
terminated when an argument evaluates to an error, thus fixing 𝐽 =
{1,… , 𝑖} as the least prefix of argument indexes for which 𝑣𝑖 is an error.

Interestingly, if we were to strip away any notion of cost from the
evaluation of sheet-defined functions, we have in fact implemented a
full-fledged sheet-defined function interpreter which is likely what Fun-
calc would have used if there was no sheet-defined function compiler.
One issue with the above approach is that the cost of interpreta-
tion and the cost of bytecode execution may not correlate, since the
point of compiling sheet-defined functions is that bytecode execution
should be much faster than interpretation of expressions. This is not
a problem as long as cost is only used as a measure of computa-
tional steps. However, if we were interested in worst case execution
times, tighter correspondence with the execution time of CIL bytecode
becomes paramount.

6.4. Abstract cost evaluator implementation

This section presents examples from the abstract cost semantics
implementation. The abstract cost implementation introduces a new
type of value, Top to represent ⊤ values as discussed in Section 5;
recall that ⊤ represents unknown values, such as input values for
the spreadsheet, and values that through computation depend on ⊤.
Essentially, this is just a subclass Top of Value; a function UNKNOWN is
introduced to produce a ⊤ value.

The abstract cost implementation is an implementation of the eval-
uator interfaces, and is a modified version of the CostEvaluator.
Specifically, the difference is special handling of some expressions.

Such expressions are:

• branching expressions, such as IF, explained in Listing 3. The
implementation of other branching expressions, such as And, Or,
CountIf etc. are modified as expected.

• Closure and Apply, where the result is ⊤ if the first argument
is ⊤, and evaluated as the CostEvaluator otherwise.

• The Map family of functions, HScan and VScan, and Tabulate,
all result in the value ⊤ with cost ∞, in case any argument is ⊤.

• Function calls, where the result is ⊤ with the cost of evaluating
the arguments plus the cost of evaluating the function, in case any
of the argument is ⊤. The result is always ⊤, as a ⊤ argument may
be error.

1 public Value Ev a l I f ( FunCall expr , Sheet sheet , int
col , int row)

2 {
3 CostResu l t condi t ion = expr . es [0 ] . Eval ( this ,

sheet , col , row) ;
4
5 // . . .
6
7 i f ( condi t ion . Value i s NumberValue n0) {
8 int index = n0 . value != 0.0 ? 1 : 2 ;
9 Cos tResu l t r e s u l t = expr . expres s ions [ index ] .

Eval ( this , sheet , col , row) ;
10 return MakeCostResult ( r e s u l t . Value , condi t ion

. Cost + r e s u l t . Cost ) ;
11 } else i f ( condi t ion . Value i s Top) {
12 CostResu l t t t = expr . es [1 ] . Eval ( this , sheet ,

col , row) ;
13 CostResu l t f f = expr . es [2 ] . Eval ( this , sheet ,

col , row) ;
14 var cos t = ( t t . Cost > f f . Cost ? t t . Cost : f f .

Cost ) + condi t ion . Cost ;
15 return MakeCostResult ( Join ( t t . Value , f f . Value )

, cos t ) ;
16 } else {
17 return MakeCostResult ( ErrorValue . argTypeError

, condi t ion . Cost ) ;
18 }
19 }

Listing 3: Simplified C# code for abstract cost-evaluation of IF

To handle ⊤, the else-branch in line 11 of Listing 2 is modified as
shown in Listing 3.

In this modification, if the condition is ⊤, the resulting value is a
join of the values of both branches, with cost of the expensive branch
with an added cost of the condition-evaluation cost plus the unit cost
of the if-expression. Otherwise, the result is the result of evaluation by
the CostEvaluator implementation.
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Table 1
The total concrete cost, total abstract cost, overapproximation in the abstract cost evaluation, number of formula cells and the time taken to evaluate the cost of all cells in the
LibreOffice Calc and EUSES spreadsheets. The cost evaluation was run twenty times and the average of those runs are shown in the Runtime column.

Spreadsheet Concrete cost Abstract cost Overapprox. Formulas Runtime

LibreOffice Calc (runtime in seconds)

building-design 978 520 000 978 520 000 100% 108 332 33.64
energy-markets 2 175 001 469 2 175 001 469 100% 534 507 3011.96
grossprofit 4 423 203 701 4 423 203 701 100% 135 073 2324.62
ground-water 1 099 998 389 1 099 998 389 100% 126 404 79.39
stock-history 1 230 276 358 1 230 276 358 100% 226 503 85.30
stocks-price 1 165 235 199 1 165 235 199 100% 812 693 1344.60

EUSES (runtime in milliseconds)

2004_PUBLIC_BUGS_INVENTORY 140 925 140 925 100% 4 495 28.83
Aggregate20Governanc#A8A51 723 436 ∞ NA 3 546 154.93
high_2003_belg 11 616 516 ∞ NA 12 861 58.56
DNA 127 029 127 029 100% 4 715 15.76
EUSE 3463 3463 100% 413 1.27
PLANCK 25 200 25 200 100% 806 13.33
02rise 91 581 91 581 100% 10 316 26.64
financial-model-spreadsheet 20 128 ∞ NA 3 115 10.99
Financial-Projections 31 400 31 994 101.9% 3 649 11.04
2000_places_School 9286 9286 100% 1 375 2.39
2002Qvols 10 222 10 222 100% 2 184 2.35
EducAge25 34 058 34 058 100% 1 470 6.19
notes5CMISB200SP04H2KEY 156 093 ∞ NA 1 557 103.60
Test20Station20Powe#A90F3 15 720 15 720 100% 2 164 5.59
v1tmp 6157 6257 101.62% 1 129 2.06
MRP_Excel 415 529 ∞ NA 4 809 92.16
ny_emit99 76 010 76 010 100% 4 352 24.28
Time 33 832 33 832 100% 4 198 6.65
WasteCalendarCalculat#A843B 10 309 11 901 115.44% 843 1.81
funding 280 702 ∞ NA 1 636 215.05
iste-cs-2003-modeling-sim 14 919 14 919 100% 1 991 6.71
modeling-3 1292 1292 100% 213 0.54

Taking the previous example from Section 6.2 with ⊤ instead of a
numeric value as condition:

=IF(UNKNOWN(), SIN(1+2), COS(3))
=IF(UNKNOWN(), SIN(3), COS(1+2))
the result of both the above expressions is ⊤ with the cost of 6.

7. Results

In this section, we present our results for the concrete and abstract
cost evaluators.

7.1. Concrete cost evaluator results

Since the concrete cost evaluator costs are proportional to the
number of operations of an expression or alternatively the number of
rule applications, we are not particularly interested in the precision of
the costs since they are not an estimation of the actual running time
of the spreadsheet. As we mentioned in Section 2.1, costs based on
measurements of real machine execution could lead to more realistic
costs. Instead, we are interested in how long it takes to compute the
cost of each cell in a spreadsheet.

Table 1 contains the costs, number of formula cells and time taken
to compute the cost of all cells in six spreadsheets from LibreOffice
Calc [31] and a subset of the EUSES corpus [32]. The costs correspond
to applying the 𝛾 function to each cell address 𝑐𝑎 in the spreadsheet as
presented in Section 3.4.

7.2. Abstract cost evaluator results

In ordinary spreadsheets, there are no unknown values resulting
in an abstract calculation, i.e. ⊤ values produced by the UNKNOWN
function, so in this case the abstract cost evaluator would compute the
same values and costs as the concrete cost evaluator. Therefore, in our
evaluation of the abstract cost evaluator, we replace all constants in
the spreadsheet with ⊤, before the abstract cost evaluator is run. The

results are found in Table 1. Because some conditional values related
to recursive calls are ⊤, some cost-results are ∞, because of infinite
recursion. The largest overapproximation is found in WasteCalen-
darCalculat#A843B. This is caused by a large number of IFs, of
the form: IF(T11>-1, 0, IF(T11<1, (S11-F11)/F11, 0)) where
T11 is ⊤ in the abstract version. Other spreadsheets have either cost-
balanced branchings or the most expensive branch is also taken in
concrete evaluation.

7.3. Discussion

At a glance, we notice that there seems to be no correlation between
the number of formula cells and the time taken to evaluate the cost
of each cell in the spreadsheet. This is to be expected as the formula
count does not tell us anything about the complexity of each one.
For example, the ny_emit99 and Time spreadsheets have almost the
same number of formula cells but vastly different concrete costs and
runtime.

8. Conclusion and future work

A precise cost semantics was presented in Section 3 and in Sec-
tion 4. The cost evaluation semantics for Funcalc was extended to
compute with unknown values in Section 5, which serves as a first step
towards an approximate cost analysis, based on abstract interpretation.
Finally, implementations for the concrete and abstract cost semantics
were presented in Section 6.

The purpose of the cost semantics and calculations is to serve as
a guide for load-balancing parallel computations in spreadsheets, e.g.
via task partitioning for execution on multi-core CPUs [9] or off-loading
work to GPGPUs [2]. Moreover, the evaluation and cost semantics may
serve to improve the understanding of spreadsheet computations in
general and the safety of and reliance on a given implementation. Also,
they may be used to prove that optimizations preserve the meaning
of spreadsheet computation and that these optimizations reduce the
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amount of work needed to perform a computation. The cost calculations
are based on counting computational steps. It would be possible to
extend the cost calculations to approximate runtime execution time by
measuring the execution time of each basic computational step on a
given computer and use this information as a factor in the equations.
Clearly such calculations are platform dependent.

The approximate abstract cost analysis is a first step towards a
more general framework of abstract interpretation of spreadsheet ex-
pressions. The safety property, presented in Section 5, was established
directly between the concrete cost semantics and the approximate
abstract cost semantics following ideas from [27], albeit only for termi-
nating derivations. Although the approximate abstract cost analysis can
be seen as a rudimentary abstract interpretation, we did not apply the
‘‘standard’’ approach to establishing correctness for abstract interpreta-
tions. Usually a collecting semantics is the starting point for a sequence
of more and more abstract semantics in abstract interpretation which
eventually leads to an implementable analysis, i.e. a semantics-based
description that can be turned into an algorithm implementing the
desired analysis. In the standard setting, safety and correctness of
the analysis is established via Galois connections and widening op-
erators [33]. We expect to follow this approach when generalizing
our work to a more generic framework for abstract interpretation of
spreadsheets.

Due to the higher-order nature of Funcalc, another future develop-
ment would be a closure analysis to improve cost estimates of function
application.

Another future development may be to give a precise semantics
for depth (also called span or critical path length) i.e. the length of the
longest sequential dependence, for parallel evaluation in the sense of
Blelloch [8]. This could be used as basis for an abstract interpretation
to estimate depth in addition to the work defined in this paper.

Finally, one could also imagine tools, based in the formal semantics,
for analyzing or verifying various aspects of spreadsheets. One such tool
could be a tool to formally verify the correctness of the spreadsheet pro-
gram. Another tool could guide users through performance bottlenecks
in a spreadsheet and even suggest possible improvements.
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