Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Coverter

Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter; Friis-Madsen, Erik

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter

Stefano Parmegiani1, Arthur Pecher2, Jens Peter Kofoed2, Erik Friis-Madsen3

1 Wave Dragon Ltd. 2 Aalborg University 3 Wave Dragon Aps

The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type. Ongoing waves are focused by two arm reflectors towards the ramp of the device, surge-up onto it and overtop into a reservoir placed at a higher level than the Mean Water Level (MWL). The energy production takes place as the water is led back down to the sea through a set of low-head hydro-turbines (Fig. 1).

After more than 10 years of development, Wave Dragon is now facing the last step before commercialisation: the deployment of a full scale demonstrator. In this phase it is very important to be able to extend the applicability of the available data to different scales and different locations, in order to have reliable estimates on the power production and performances of the device during the energy conversion process in conditions different from those ones directly tested. The first and most important step is represented by the modelling of the overtopping flow. The present study describes the State of the Art of the overtopping modelling of the Wave Dragon and indicates a methodology for its future development.

I – State of the Art of the Wave Dragon Overtopping model

Strategy – to adapt the coefficients of a known overtopping model to an existing setup in order to test breakwaters [3]. In order to fit experimental results, use of the wave steepness (η / H) to model the observed dependency of the overtopping flow on the wave period T.

Test set-up – 1:5.8 scale model of a North Sea Wave Dragon (Fig. 2).

Kofoed (2001) [5]

Strategy – to experimentally investigate the effect of some parameters influencing the overtopping flow, describing them separately through new coefficients. Test set-up – 20, general low crested, draft limited overtopping device (Fig. 3).

\[
Q_{D} = \frac{a}{\sqrt{1-\frac{1}{\pi T}}} \left(\frac{H}{\eta} \right)^{2} \left(\frac{\eta}{H} \right)^{2} \beta_{u}
\]

(1)

Where Q_{D} is the non-dimensional overtopping discharge per meter crest width and $\frac{\eta}{H}$ is the non-dimensional crest level, being R the height of the ramp crest above the MWL.

Phase 1 – establishment of a new reference

Only the fixed platform will be considered. The model's coefficient will be kept as in (2) and the newly formulated parameters will be maintained. The formulation will be fitted to the experimental results through the formulation of a new parameter, β_{u}, describing the effect of the real 3D geometry of the Wave Dragon. Such model will provide a new reference, specifically suited for the Wave Dragon, for the future investigation of other parameters.

Phase 2 – Express the dependency on T

Here the platform will be free floating. The differences observed respect to the results of phase 1 are due to the movements of the platform. As these are dependent on T, they will be described in terms of a parameter $\tilde{\lambda}_{u} (T)$.

Phase 3 – Effect of the reflectors' set-up

The reflectors will be added to the model, provided that any of their movements are avoided in a rigid connection. Their presence will affect both the overtopping flow and the stability of the device. Their effect will be described through a parameter $\tilde{\lambda}_{r}$ depending on characteristics of their set-up such as attachment position and opening angle.

Phase 4 – Effect of the rigidity of the reflectors' connection

Different rigidity levels in the reflectors' connection will be tested, reproducing the actual behaviour of the reflectors under different real conditions. The results will be described in terms of a parameter $\tilde{\lambda}_{r}$.

Finally, such an updated model will be validated using the NB prototype data. Differences that might still be observed will be probably due to the spill occurring at low R_{S} of the prototype. Such undesired occurrences are available in the future through a more accurate control strategy of the device.

II – Model verification

In the following Q_{D} was found not to be a good parameter to use in the model, as it does not scale accordingly with the wave climate from the North Sea to NB, where the waves are steeper, leading to underestimate the overtopping.

The overtopping model chosen for the Wave Dragon was therefore (2), also known as Reference Single Level (RSL) formulation. This has successively been validated using the data acquired at the 1:4.5 scale prototype deployed since 2003 in Nissum Bredning (NB), a benign site in northern Denmark (Fig. 4).

The overtopping flow measured at the prototype has been compared to the predictions made by the model, showing a fair agreement, still with some room for improvement.

The discrepancies observed (Fig. 5) can be explained in terms of differences between the two set-ups considered at the formulation of the model and its validation: geometrical features, local conditions and scale related parameters (Tab. 1).

IV – Future development

Experimental testing of the overtopping flow on the 1:5.1.8 scale model.

Phase 1 – establishment of a new reference

Only the fixed platform will be considered. The model's coefficient will be kept as in (2) and the newly formulated parameters will be maintained.

The formulation will be fitted to the experimental results through the formulation of a new parameter, β_{u}, describing the effect of the real 3D geometry of the Wave Dragon. Such model will provide a new reference, specifically suited for the Wave Dragon, for the future investigation of other parameters.

Phase 2 – Express the dependency on T

Here the platform will be free floating. The differences observed respect to the results of phase 1 are due to the movements of the platform. As these are dependent on T, they will be described in terms of a parameter $\tilde{\lambda}_{u} (T)$.

Phase 3 – Effect of the reflectors' set-up

The reflectors will be added to the model, provided that any of their movements are avoided in a rigid connection. Their presence will affect both the overtopping flow and the stability of the device. Their effect will be described through a parameter $\tilde{\lambda}_{r}$ depending on characteristics of their set-up such as attachment position and opening angle.

Phase 4 – Effect of the rigidity of the reflectors' connection

Different rigidity levels in the reflectors' connection will be tested, reproducing the actual behaviour of the reflectors under different real conditions. The results will be described in terms of a parameter $\tilde{\lambda}_{r}$.

Finally, such an updated model will be validated using the NB prototype data. Differences that might still be observed will be probably due to the spill occurring at low R_{S} of the prototype. Such undesired occurrences are available in the future through a more accurate control strategy of the device.

REFERENCES

ACKNOWLEDGMENT

The first two authors are research fellows funded by the Marie Curie Wavetrend training program. The research study has been partly funded by the INORE ICOS scholarship.