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A Technical Framework for Musical Biofeedback
in Stroke Rehabilitation

Prithvi Kantan , Erika G. Spaich , and Sofia Dahl

Abstract—In this article, we present a technical framework
aimed at facilitating musical biofeedback research in poststroke
movement rehabilitation. The framework comprises wireless wear-
able inertial sensors and software built with inexpensive and open-
source tools. The software enables layered and adjustable music
synthesis and has a generic movement–music mapping module.
Using this, we designed digital musical interactions for balance,
sit-to-stand, and gait training. Preliminary trials with subacute
stroke patients indicated that the interactions were clinically fea-
sible. Expert interviews with a focus group of clinicians were also
conducted, where these interactions were deemed as meaningful
and relevant to clinical protocols, with comprehensible feedback
(albeit sometimes unpleasant or disturbing) for several patient
types. We carried out system benchmarking, finding that the system
has sufficiently short loop delays (∼90 ms) and a healthy sensing
range (>9 m) and is computationally efficient (11.1% peak CPU
usage on a quad-core processor). Future studies will focus on
using this framework with patients to both develop the interactions
further and measure their effects on motor learning, performance
retention, and psychological factors to help gauge their true clinical
potential.

Index Terms—Balance, biofeedback, gait, interactive
sonification, music intervention, neurorehabilitation, stroke.

I. INTRODUCTION

S TROKE survivors commonly suffer physical deficits that
manifest as disturbances to balance and gait [1]. Advances

in affordable computer power and portable motion-sensing tech-
nology [2] have led to an increasing role of technology in
rehabilitation [3], for instance with biofeedback, where phys-
iological or biomechanical information is made available to
conscious experience to allow for greater self-awareness of bod-
ily states, and modification where necessary [4]. Biomechanical
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biofeedback [5] based on bodily kinematics or kinetics is the type
of biofeedback most directly applicable to neurorehabilitation,
specifically balance/mobility as well as lower limb activities
and gait [6], [7]. Results based on studies with both healthy and
impaired populations indicate the advantages of biofeedback
in training compared to regular therapy protocols in improving
postural sway [8], [9], weight shifting and reaction time [6], and
sit-to-stand transfers [10] and gait kinematics [9], [11].

Auditory biofeedback (ABF) involves the real-time conver-
sion of measured bodily information into a sonic representation.
By definition, it can, thus, be seen as a specific case of interactive
sonification [12], where data relations are rapidly converted
into auditory relations [8], [13], [14]. The supplied auditory
information on movement execution serves as continuous or
discrete feedback, which can assist in movement error correc-
tion and/or accelerate motor learning [15]–[17] depending on
the precise nature of the movement–sound mapping. Recent
reviews highlight the potential of ABF in rehabilitation as well
as the need for more and rigorous dysfunction- and task-specific
studies, while also pointing out the present general lack of a
framework for sonification in physiotherapy [18]. Although rele-
vant technical frameworks have been developed (see, e.g., [19]),
most prototypes are aesthetically limited to the most basic of
feedback stimuli and fail to leverage the potential benefits of
more complex sonic feedback media such as music. Our present
study aims to address this by providing a technical framework for
musical biofeedback (MBF) tailored for stroke patients, thereby
facilitating the creation and evaluation of musical interaction
paradigms that augment the rehabilitation process.

A. ABF in Movement Training

ABF has been applied to train postural control, with positive
results [8], [13], [20], [21]. In a series of studies, Dozza and
colleagues explored the use of multidimensional ABF using a
system that sonified trunk accelerations/sway velocities con-
tinuously through frequency, level, and spatial balance of a
stereo sound using nonlinear mappings. The feedback provided
information similar to that given by the vestibular system [22],
and the biofeedback improved balance overall, more so when
other key sensory cues were unreliable or absent [13]. Direction
specificity of audio biofeedback was found to reduce postural
sway and increase the frequency of postural corrections in the
direction of the biofeedback [20], [22]. Furthermore, the optimal
mapping function for trunk sway to ABF was found to be
sigmoid-shaped [21].
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Unlike the above continuous mapping paradigm, Costantini
et al. [8] successfully tested a biofeedback system that projected
trunk inclination onto discrete 2-D zones in the horizontal plane.
Postural deviations triggered auditory warnings of proportional
intensity using simple filtered and modulated noise. Though the
authors only performed short-term evaluations with unimpaired
subjects, they found significant reductions in postural sway in
several conditions [8].

Engardt et al. [23] assessed the effects of ABF during training
of sit-to-stand transfers in hemiparetic stroke patients, finding
short-term improvements in body weight distribution between
the paretic and nonparetic limb. Nicolai et al. [10] found sig-
nificant and sustained improvements in posture and balance
postintervention in patients with progressive supranuclear palsy.
Patients received an auditory cue to stand up when the trunk
flexion angle exceeded a threshold [10].

ABF has also shown positive effects in gait training [2], [7],
[11]. For instance, sonifying ankle rollover patterns as a series
of data-driven synthesizers was found to bring about significant
differences in cadence and walking velocity among partici-
pants [14]. Torres et al. [24] introduced an inertial measure-
ment unit (IMU)-based prototype and prescribed a number of
movement–sound couplings, such as fixed movement thresholds
to trigger discrete auditory feedback or modulate continuous
auditory feedback [24].

B. Dynamic Trajectory Tracking

The above systems essentially provide error-based feed-
back [15], where the difference between a quantity and a constant
“target” value is sonified over time. However, in the dynamic
context of movement training, error feedback relative to a vari-
able target may not be most ideal in terms of performance
outcomes [16], [17], though extant research is inconclusive.

Rosati et al. [25] showed that error feedback did not improve
performance over visual feedback alone, while a prescriptive
auditory representation of the visualized target motion (task-
related feedback) was more valuable. However, Boyer et al. [26]
found that both these feedback types could reduce tracking
error and increase movement energy in visuo-manual tracking.
Parseihian et al. [16] conducted an audio-guided 2-D dynamic
trajectory-tracking experiment based on the above research and
found that prescriptive feedback resulted in superior tracking
performance to error feedback. Due to the dynamic nature of
the task, they found that pitch and other auditory dimensions
that allow rapid comprehension and adjustments on the part of
the user were most suitable [16].

The timing of task information may also be critical, specifi-
cally whether task information is provided simultaneously with
user feedback or slightly in advance (allowing for user an-
ticipation). An example of the former concurrently presented
two sonifications corresponding to the task (reference) and
user’s own performance, respectively, panned to opposite stereo
locations, with the user’s goal being to make them sound iden-
tical [17]. Although the interaction was feasible and compre-
hensible, position- and timing-based user performance errors

(relative to target) were found to be significantly worse than with
visual feedback. This is possibly due to auditory streaming [27],
where the ongoing fusion and separation of the two signals
may have made it difficult for the users to separate them for
proper interpretation. On the other hand, Parseihian et al. [16]
found that feedback based on anticipated distance error afforded
far superior performance to merely instantaneous distance
error.

Despite promise, ABF has failed to attain widespread practical
adoption [28], [29], partly due to a lack of focus on aesthetics and
naturalness in sonic interaction design [28] leading to poor user
experience [30]. Most ABF systems reviewed here provide feed-
back through simple audio manipulations (e.g., pitch, loudness,
brightness, and spatialization), which generate relatively simple
feedback signals. These are known to cause auditory fatigue,
annoyance, and dissatisfaction, making them less likely to be
accepted by users [28]–[32]. Naturalness and clear causality
in the iconic gesture–sound mapping of auditory displays have
been found to contribute to their perceived usability [33]. For
auditory displays, research has prescribed that auditory displays
conform to some commonly shared aesthetic, e.g., based on
internal schemata for embodied cognition [34].

C. Musical Biofeedback

The recent exploration of MBF [35]–[37] has attempted to
address the aesthetics issues of ABF and leverage the univer-
sal emotional and sociocultural appeal of music. Music is a
relatively complex signal due to its organization in time and
frequency, possibly containing several instrumental and vocal
elements to provide depth and variety to the feedback signal [36].
A general criticism leveled against such “aesthetic approaches”
to sonification is that the interpretation of the underlying data
is more difficult [29], [30] and in the case of music entails
the learning of a new “sonic grammar” [38]. It has, however,
been argued that there is a cultural or aesthetic baseline in
popular music systems, which is accessible to untrained listeners
and allows them to appreciate music with minimal cognitive
overhead in the absence of formal training [38]. For instance,
listeners are able to recognize music genres within a fraction
of a second [39]. The psychological and therapeutic benefits
of music are well known [40], and decades of research in the
discipline of neurologic music therapy have established the
direct therapeutic benefits of music across multiple dimensions
in rehabilitation [41]. Several potential benefits of interactive
music technology in healthcare have been named [35], [42],
[43], related to motivation, engagement, and motor learning.

A typical MBF approach is to sonify desired movement
behaviors as pleasant auditory states and undesired behaviors
as unpleasant states, often simultaneously using musical rhythm
to temporally organize motor timing [35]. The design space for
possible digital musical interactions (DMIs) [44] is conceivably
vast, and as such, MBF systems to date have ranged widely in
scope and complexity, manipulating either prerecorded musical
stimuli or real-time synthesized ones.
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1) Prerecorded Music: Some MBF systems have utilized
existing music waveforms, creating DMIs based on adding
noise [45], filtering [32], [46], or adjusting audio quality [32],
[47] to sonify physiological and biomechanical quantities. These
interactions were found to be comprehensible by healthy and
impaired populations and capable of positively altering motor
behavior while reducing perceived exertion [46]. Others have
sonified motor timing through music timing, such as the D-
Jogger [48], which synchronizes pre-existing music to detected
gait patterns using time stretching algorithms, thus providing a
sense of rhythmic agency to the user [43].

2) Synthesized Music: Real-time synthesis approaches make
it easy to exert control over a larger set of musical parameters
and more easily craft more complex DMIs [49]. Sonification pa-
rameters used in these designs include musical pitch [50]–[52],
tempo [36], brightness [51], mix balance [51], chord arpeggio
characteristics [53], musical layer richness [54], synthetic tone
additions [54], and percussive sample triggering [55]. In most
cases, the systems only underwent preliminary evaluation such
as brief usability tests with convenience-sampled healthy partic-
ipants. However, at the very least, the results indicate that these
MBF interactions are feasible, perceptible, and comprehensible,
as well as potentially pleasurable experiences.

D. Appraisal of Earlier Work and Aim of the Present Work

In theory, combining music with the portability, versatility,
and movement modification potential of ABF can enable power-
ful mediation of human behavior [43], since music can motivate,
monitor, and modify human movement [35], and is as effective
as simple sine sonification while reducing auditory fatigue [36].
However, many of the previously cited studies show that the
feedback has modest clinical value. This could partly be due to
the manner in which it is designed—the musical stimuli gener-
ated are usually static and simplistic, either monophonic instru-
ments [50] or very basic ensembles [54], [56]. The synthesis of
stimuli resembling professionally produced music is undoubt-
edly challenging. User experience can be hampered by bare-
bones aesthetic designs [31], [53] that lack the consideration of
user preferences [28], [57]. Biofeedback system customization
for individual patients is an important feature [4], [18], and the
extent to which extant systems allow it is unclear. Though some
works mention the possibility of tailoring feedback to patients
on the fly [24], [32], [58], MBF literature typically does not
provide detailed system design specifications, and data mapping
configurations appear arbitrary and rigid [59], difficult to alter
in real time or retroactively tune [60] as part of user-centered
approaches [43]. A platform that allows the generation of more
complex music and user-configurable feedback could facilitate
future investigation of MBF efficacy, providing a more accurate
picture of its true clinical potential.

System design practices also present obstacles to the research
community. The use of expensive proprietary/bespoke hardware
and software [8], [10], [20], [21], [32], [61] makes these works
difficult for other researchers to replicate, assess, and upgrade.
Moreover, the use of visual programming environments in many

Fig. 1. High-level system schematic showing the organization of the hardware
and software components of the framework, as well as the user wearing the
wireless sensors.

studies [45], [48], [55], [56], [62], while excellent for prelimi-
nary testing, is computationally less efficient [37] and arguably
harder to scale in complexity than low-level programming lan-
guages, although technical performance details are seldom re-
ported in research. For example, most gait ABF systems claim to
be “real-time,” but few report feedback loop delay values [58].
A notable exception is [19], but their low-latency embedded
system had a simple synthesis engine that only generated two
sine waves.

The aim of the present work was to address several of the
stated shortcomings in current MBF systems and provide a more
versatile framework to facilitate MBF research in balance and
gait training. Through collaborations with patients and clinical
stakeholders, we built a prototype aimed at contributing the fol-
lowing: 1) an inexpensive and replicable inertial motion capture
system; 2) an architecture for synthesizing customizable and
layered musical stimuli in real time; 3) a generic feedback map-
ping module to link computed movement parameters to MBF
strategies; and 4) a set of DMIs for balance, sit-to-stand, and gait
with clinical potential, realized through the mapping module.
Our goal was to obtain a working system using exclusively low-
cost and open-source development tools to ease replication. An
important success criterion was that its technical performance
needed to be practically viable in terms of wireless sensor range,
biofeedback loop delay, and computational efficiency.

II. DESIGN AND IMPLEMENTATION

A. System Architecture

We opted for a distributed biofeedback structure [4] with
wearable wireless inertial sensors and remote processing on a
laptop. Sensor interfacing, music generation, and biofeedback
configuration are controlled by a Windows application that
produces a stereo audio signal, which is fed to the patient via
headphones or loudspeakers, as shown in Fig. 1. The source code
of the system is available online and licensed under GNU GPL
3.0.1

The hardware sensing component consists of M5Stack Grey
microcontrollers (€51 each) programmed in the Arduino IDE

1[Online]. Available: https://github.com/prithviKantanAAU/mbfFramework
V4

https://github.com/prithviKantanAAU/mbfFrameworkpenalty -@M V4
https://github.com/prithviKantanAAU/mbfFrameworkpenalty -@M V4
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(free and open source). IMU data are transmitted to the soft-
ware application as Open Sound Control (OSC) messages over
WiFi-UDP. We wrote the software in C++ using the JUCE
environment,2 which is free of cost and has an efficient set of
libraries for timer callbacks, OSC, MIDI, graphical elements,
and file operations. For music synthesis and biofeedback, we
implemented a FAUST3 script to generate a JUCE-compatible
DSP object in C++ encapsulating the efficient audio DSP func-
tionality of the FAUST language (also free and open source).
The interface layout is organized into three tabs: sensor interfac-
ing, music control, and biofeedback control. The software also
enables real-time movement data visualization and time-series
logging.

1) Inertial Motion Capture and Communication: Depending
on the use case, there is either a single IMU sensor strapped to the
patient’s lower back or a pair of sensors strapped to the patient’s
ankles. Secure mounting is achieved using a silicone housing
and velcro straps. The sensors connect to a secure WiFi network,
which the laptop running the software is also connected to. After
initializing the UDP ports through manual IP verification, the
sensors transmit IMU data and battery status at 125 Hz to a
predefined remote UDP port. The software periodically checks
for new OSC messages received at each UDP port, thereby
inferring whether the respective sensor is online. The sensor
interface in the software allows assignment of the sensors to
body parts (trunk or either leg), as well as a bias calibration
option, where static offsets of the accelerometer and gyroscope
axes are computed and compensated for postcalibration.

2) Software Application Topology: The software can be seen
as a multi-instrument music synthesizer (FAUST DSP object)
that generates performances from loaded MIDI data in real
time (sequenced music). MBF is generated by manipulating
the sequenced music using the movement data. The FAUST
object has synthesizer controls related to instrument triggering,
music mixing processors, and MBF strategies. This is handled by
callback functions, as shown in Fig. 2. A single high-resolution
timer orchestrates the music sequencing callback (at 1 kHz) and
the MBF callback (at 100 Hz). The sensor transmission rate
(125 Hz) exceeds the MBF callback frequency to compensate
for UDP packet drops. UI updates (e.g., data visualization)
occur independently at 30 Hz, and the real-time audio callback
itself is handled by the FAUST object at a sampling rate of
48 kHz with a software buffer of 480 samples (adding 10 ms
of software latency). The fact that the audio buffer duration and
MBF callback interval are equal means that the effects of timing
jitter are minimized.

B. Music Generation

The system generates an eight-track stereo instrumental en-
semble containing melodic and percussive elements in a 4/4 time
signature. These elements fulfill musical roles corresponding
to percussion, melody, and harmony in a simplified pop music
style, while allowing for real-time customization. Specifically,

2JUCE Framework—[Online]. Available: https://juce.com/
3FAUST Programming Language—[Online]. Available: https://faust.grame.

fr/

Fig. 2. High-level software schematic showing how the different functions (UI
update, music sequencing, biofeedback computation, and music generation) are
organized to run in timed callbacks at different frequencies.

the overall rhythmic groove and the instrument choices for each
musical role/track can be individually modified. Other aspects of
the music can also be varied on the fly, such as tempo, number of
instruments, track balance, and mix processing parameters. The
MIDI files used with the software are encoded in a custom Type-
1 schema for efficiency. The sequencing system described next
was developed entirely using JUCE functionality, whereas the
synthesis combines FAUST DSP with preloaded drum samples.

1) Sequencing: MIDI messages for all tracks are decoded
into pitch and velocity information to map to the appropriate
FAUST synthesizer controls. For maximum flexibility, song
information and rhythm/style information are stored in sepa-
rate files. Song information related to melody, bass, and chord
progressions is stored in MIDI song files that are loaded by
the software user. Instrument choices, rhythmic information,
and articulation for all tracks are encoded in style files that are
dynamically prepopulated at software startup, facilitating the
addition of new rhythms and styles to the software. At present,
there are three styles: “Dance,” “Reggaeton,” and “Slow Rock.”

All MIDI information is stored as note matrices in program
memory. During playback, the sequencing callback at 1 kHz (see
middle branch of Fig. 2) increments the sequencer’s elapsed
MIDI ticks as per the configured tempo, checks MIDI times-
tamps in the note matrices for new events to be handled, and
counts them. The event types are identified (note ON/OFF), and
the event details (pitch/velocity) are preprocessed and mapped
to the respective FAUST controls. The tempo slider controls
playback rate by changing the tick increment per callback in-
terval. Polyphonic tracks may have up to four voices (chords),
and note frequencies are constrained to specific registers for
pitched tracks to reduce sonic disparities among songs in differ-
ent musical keys (refer to Section CS-A of the supplementary
material (SM), which will be referred to hereafter as SM-CS-A).
Playback proceeds and the rhythmic pattern loops until the song
file is complete.

https://juce.com/
https://faust.grame.fr/
https://faust.grame.fr/
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2) Synthesis: Percussive instruments use prerendered sam-
ples, while melody instruments are synthesized using FAUST
DSP. Each role can be reproduced in up to three distinct in-
strument textures, and combinations of these textures constitute
a musical style preset. For example, the same percussive role
can be played using a regular hi-hat, ride cymbal, or marimba
sample. Synthesis is especially designed frequency modulation
(FM) or subtractive synthesis, with basic physical models such
as Karplus–Strong and formant-filtered vocal simulations (refer
to SM-CS-B). Pitch parameters influence note frequencies of
pitched tracks, while MIDI velocity influences volume and
note articulation properties. Instruments have their own channel
compressors and four-band fully parametric equalizers with
predefined but modifiable settings. Envelope time constants, re-
verberation, and echo time automatically adapt to the configured
tempo. The tracks are summed and mastered using an equalizer
and limiter, as in standard mixing workflows.

C. Movement Parameter Computation

The IMU signals received over UDP are read into buffers for
further processing. They first undergo signal conditioning [60]—
median filtering and smoothing using a sixth-order Butter-
worth low-pass filter. The system provides a list of computable
movement parameters to choose for providing biofeedback on
(e.g., orientation angles, jerk, etc.). As they are computed in a
branching structure, it is straightforward to modularly add new
parameters along with their metadata to the program structure.
At present, the system computes the following parameters.

1) Trunk Inclination Angles: Angular displacement from the
vertical in the [mediolateral (ML) and anteroposterior (AP)]
directions is calculated from accelerometer and gyroscope read-
ings using a complementary filter (algorithm described in [63]).
A combined parameter is also provided, which converts these
individual angles into a discrete 2-D representation, as done
in [8].

2) Mean-Squared Jerk: As reviewed in [64], movements
occurring in a continual fashion free of interruptions char-
acterize most well-trained and healthy motor behavior and
serve as a marker of poststroke motor recovery. We found
that mean-squared jerk captures instantaneous intermittencies
with sufficient speed and sensitivity for concurrent feedback on
smoothness, as no segmentation or windowing is required. Ac-
celerometer readings are first high-pass filtered to minimize the
influence of the gravitational component, followed by first-order
differentiation and squared norm calculation. Further filtering
was not found to be necessary.

3) Foot-Strike Detection: This requires sensors attached to
both ankles. Accelerometer signals receive high-pass filtering to
filter followed by acceleration norm calculation. When the norm
for a sensor exceeds a configurable threshold, it is registered
as a step detection for the corresponding foot. To reduce false
detections, a short dead zone period after each detection is
assumed, during which threshold crossings are ignored. This
dead zone is 80% of the beat interval of the music, so its
absolute duration changes with tempo. We found this percentage
to work best in our initial tests, although it may need to be

Fig. 3. Upper panel represents the real-time software visualization of the
movement parameter relative to the configured target range. The lower graph
shows how the FV value rises outside the target range for different gamma
function orders.

made configurable in future versions. Moreover, once a step by
one foot is detected, all threshold crossings on the same side
are ignored until a threshold crossing (also known as step) by
the opposite foot is detected. This detection forms the basis
of 1) a gait-music periodicity compliance measure and 2) a
step-synchronized impulsive trigger parameter for biofeedback.

D. Feedback Mapping Module

The chosen movement parameter is transformed to an inter-
mediary feedback variable (FV) value that is finally mapped to
a chosen MBF strategy control. Our framework allows any 1-D
mapping combination between the movement parameters and
the available MBF strategies (next subsection). In addition, it
also allows a 2-D mapping of trunk ML and AP orientation to
a pair of MBF strategies. Converting the movement parameter
to the FV involves comparing its instantaneous value to a con-
figurable target range and normalizing the error between 0 and
1 [28]. This is followed by a gamma scaling factor representing
the mapping function shape [37] (see Fig. 3). Using a slider, this
factor can be configured to scale linearly, logarithmically, or
exponentially with the compliance error. This flexibility makes
it possible to obtain an appropriate perceptual scaling of the MBF
strategy in the context of a given training setting. A limitation is
that certain function shapes are not achievable in this way (e.g.,
sigmoid or logit functions).

As shown, an FV value of 1 indicates maximum MBF inten-
sity and vice versa. It is mapped to the chosen MBF strategy
control of the FAUST object, which accordingly manipulates
the music generation process. The software provides real-time
1-D and 2-D visualizations of movement parameter values,
mainly to assist the therapist in tailoring the system behavior
to individual patients. These are represented in Fig. 3 (upper
portion) and Fig. 4. Note that these visualizations are not meant
to be presented to the patients (except during dynamic balance
training) and are only meant to help the therapist monitor patient
performance.
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Fig. 4. 2-D plane visualization used during balance training, providing real-
time information on the progress of the target trajectory as well as the 2-D
inclination angles of the patient.

E. Musical Sonification Strategies

The FV manipulates FAUST DSP controls corresponding to
the selected MBF strategy, which may be continuous or discrete,
provide positive or negative reinforcement, and be controlled by
any movement parameter. While this appears to be a simple
one-to-one mapping to a single auditory dimension, most of our
MBFs internally contain one-to-many mappings (i.e., multiple
audio signal parameters affected simultaneously by the FV) so as
create a unified effect that is understood as a single conceptual
Gestalt [65]. We here give an overview of the strategies im-
plemented, as well as links to A/V demos. SM-V1 demonstrates
some strategies operating in the 1-D framework without context,
whereas SM-V2-(A-D) show them in the context of training use
cases (further elaborated in the next section). Code snippets are
in SM-CS-C.

a) Continuous Strategies:
1) Sound degradation: Principally, these strategies bring

about a continuously scaled degradation of the music
quality.

1) Ring modulation: This simultaneously maps the FV to the
modulation depth and bandwidth of a ring modulator ap-
plied to the melody and harmony instruments of the music,
creating sidebands manifesting as salient dissonance and
distortion (refer to SM-V2-A-c).

2) Dissonance: This i) offsets chord note fundamental fre-
quencies to dissonant intervals and ii) applies tempo-
dependent FM to the melody, creating a pitch-wobbling
effect that renders it unrecognizable as the modulation
depth increases (refer to SM-V1 and SM-V2-A-b).

3) Melody pitch: This operates bidirectionally and is an
exception to our previously established unipolar 0–1 FV
convention. Here, the nominal value is 0.5, while 0 and 1
represent the directional extremes. A multiplicative factor
is applied to the fundamental frequency of the melody,

equaling 1 when the FV value is 0.5, 10 when the FV is 1,
and 0.1 when it is 0. This leads to very pronounced pitch
excursions when the FV increases or decreases from 0.5
(refer to SM-V2-B).

4) Wah–wah: This uses the FV value to modulate the depth
of a wah–wah effect, which is not strictly a sound degra-
dation, but potentially annoying with prolonged listening
(refer to SM-V1).

b) Interruption: These strategies mute the melody/harmony
instruments, replacing them with unpleasant waveforms like
sawtooth waves or filtered noise. Simultaneously, percussion
timing is distorted using modulated delays (refer to SM-V1 and
SM-V2-C-a).

2) Discrete Strategies:
1) Cartoon strategy: This feedback strategy replaces a) the

drums with simple bandpass filtered percussive sounds
and b) the melody instruments with detuned sawtooth
wave versions of themselves as the FV crosses a thresh-
old. Hence, compliance is rewarded with an in-tune and
normal-sounding music ensemble (refer to SM-V2-A-d).

2) Ambulance strategy: This is an interruption strategy; an
ambulance siren is simulated using a frequency-modulated
triangle wave, and feedback intensity is increased by in-
creasing the modulation frequency in discrete steps, with
the goal of making the effect more intense as the FV
increases (refer to SM-V1 and SM-V2-A-a). The siren is,
thus, not “musical” by itself, but its absence (also known as
uninterrupted music) indicates compliance with the target
range.

3) Instrumentation strategy: Instruments from the ensemble
are muted one by one as the FV increases. The patient
receives a full multitrack ensemble when the FV (also
known as compliance error) is zero (refer to SM-V1).

4) Triggered impulsive entities: These strategies trigger tran-
sient sounds at specific FV values.

i) Bell: This strategy triggers the physical model of a church
bell (refer to SM-V1 and SM-V2-C-b).

ii) Bass and snare drum triggering: This mutes the bass drum
and snare drum from the sequenced music and allows
them to be manually triggered by the patient (e.g., during
walking) (refer to SM-V2-D-b).

F. Movement–Music Interactions

1) Static Balance: The principle is to reward the mainte-
nance of a static target trunk orientation (upright or inclined,
sitting or standing) with pleasant music and provide negative
MBF proportional to deviations from this target. The ML and
AP angles can be sonified in a 2-D discrete combination, where
angular trunk tilt from the vertical is projected onto the hori-
zontal plane formed by the ML and AP axes and allocated to
one of six discrete feedback zones. These zones are concentric
circular or elliptical ring shapes centered around a pair of target
2-D orientation coordinates [8]. There are two rectangular zones
to the extreme left and right, where directional feedback in the
form of panning/spatialization can be provided. The target can be
offset to a nonupright position, and its zone size can be changed
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to accommodate differently able patients. Continuous sound
degradation or discrete warning strategies may be used here,
and the number of distinct-sounding feedback levels depends
on strategy and mapping function choice (refer to SM-V2-A-
a,b,c,d).

2) Dynamic Balance: Trunk training typically involves core
stability exercises based on trunk flexion, extension, weight
shift, and reaching movements [66] and has more recently been
augmented by visual posturography-based paradigms such as the
Balance Master,4 which provides visual feedback. This DMI is
a musical augmentation of this paradigm. Here, the 2-D target
moves in a horizontal plane trajectory that the patient must
match, in a configurable linear, diagonal, circular, square, or
rhombic shape. The patient is informed about the moving target
through the real-time visual interface, as shown in Fig. 4, and
attempt to match it.

In addition to the visual cues, the frequency and phase of
the trajectory progress are music-synced so that rhythmic cues
thereof can assist movement planning, and the trajectory fre-
quency can be adjusted to a submultiple of the music tempo
to suit the patient’s speed. 2-D anticipated distance error (as
in [16]) is fed back through an MBF strategy combination such
as left–right spatialization for ML and melody pitch for AP
feedback (refer to SM-V2-B-a). A sum of sigmoid functions
is used to map directional feedback for maximum perceptual
salience.

3) Sit-to-Stand:
1) Jerk-based: This DMI rewards smooth sit-to-stand tran-

sitions with pleasant music, providing negative MBF to
detected movement intermittencies by introducing salient
disturbances in the music based on the mean-squared jerk.
An example use case is that of sitting down on a chair,
where many stroke patients tend to drop down onto the
chair rather than smoothly lowering their bodies. Provid-
ing jerk-based MBF here can help focus their attention on
this phase of the movement and encourage them to avoid
such sitting motions. On doing so, they receive positive
reinforcement in the form of normal music. We found that
the continuous interruption strategies are most suitable
here due to their perceptual salience (refer to SM-V2-C-a).

2) Trunk flexion-based cues: A sit/stand action cue is pro-
vided based on trunk flexion angle. We augmented the
principle musically here by using the bell or wah–wah
MBF strategy to provide sit/stand action cues when for-
ward leaning angle thresholds are exceeded (refer to SM-
V2-C-b).

4) Gait: The purpose of these DMIs is to augment rhythmic
auditory stimulation training [40], [41] by providing immediate
feedback on motor synchronization with the music. The two
DMIs focus on step duration and phase, respectively.

a) Period matching: The system keeps track of time elapsed
since the last detected step and behaves as follows for
subsequent steps.

4[Online]. Available: https://www.cephalon.eu/products/balance/balance-
master/

1) If no new step is registered by the time it should have ar-
rived (as per the musical beat interval), negative feedback
is provided until the new step is detected, and the time
counter is reset.

2) If the new step arrives too early compared to the beat
interval, the time counter is reset, and negative feedback
plays for a duration equaling the step-duration/beat-period
mismatch.

A timing tolerance as a percentage of the beat interval is
configurable in the interface, and no negative feedback is applied
to step durations falling within this tolerance. We found inter-
ruption strategies to be most perceptually salient for this DMI,
wherein good period matching is rewarded with uninterrupted
music and vice versa (refer to SM-V2-D-a).

b) Phase matching: This is inspired by [55] and [56]. Here,
percussive musical events are triggered by footfalls (drum
trigger strategy), and the training goal is to synchronize
these events with the remaining instruments. Here, the bass
drum and snare drum triggering strategy is controlled by
the detected foot strikes. By walking in time, the patient is,
thus, rewarded with a well-synchronized ensemble (refer
to SM-V2-D-b).

III. EVALUATION

We performed formative and summative evaluations: Follow-
ing our second development cycle, we conducted a preliminary
usability study with stroke patients to test the DMIs in a clin-
ical setting, albeit without a rigid protocol (see Section III-A).
After the final development stage, we carried out a focus group
interviews with experts to assess the clinical potential of the
DMIs (see Section III-B) and system benchmarking to test
important technical performance parameters of the framework
(see Section III-C).

A. DMI Testing With Subacute Stroke Patients

Six subacute stroke patients (four men and two women) with
predominantly one-sided weakness admitted at Neuroenhed
Nord, Frederikshavn, Denmark, volunteered to participate in this
DMI usability test. Our inclusion criteria for each DMI were
that the patients were hemiparetic and in the subacute phase,
and undergoing routine physical therapy to train the function
corresponding to that DMI (i.e., balance, sit-to-stand, or gait). As
per the North Denmark Region Committee on Health Research
Ethics, the study did not require an approval from the research
ethics system; cf. the Danish Act on Research Ethics Review of
Health Research Projects (inquiry date August 8, 2019).

Only the static balance, jerk-based sit-to-stand, and gait
DMIs had been developed at that point. A subset of the DMIs
was allocated to each patient based on their therapy needs,
and we adjusted the mapping parameters to match the patients’
individual physical abilities. We equipped the patients with the
sensing hardware, and a physiotherapist conducted some routine
training exercises with MBF playing through a monophonic
loudspeaker placed in the room. We found that the movement
measurement mechanisms largely worked as intended, and the
main findings are summarized as follows.

https://www.cephalon.eu/products/balance/balance-master/
https://www.cephalon.eu/products/balance/balance-master/
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1) Static balance (one patient): The patient was able to
perceive and understand the timbre degradation MBF
strategies and appeared to exhibit greater levels of arousal
due to the music. However, the physiotherapist estimated
that the MBF needed to be more perceptually salient to
accommodate patients with more severe cognitive impair-
ments.

2) Sit-to-stand (four patients): Overall, patients were able to
clearly hear and understand the MBF and reported that
they enjoyed the activity as well as the way in which
they could hear their movements. On a few occasions,
the jerk MBF was triggered even when patients felt their
movements were smooth, which puzzled them.

3) Gait (four patients): All patients were able to follow and
match the musical rhythm, except one who initially had
difficulties hearing the beat. This required the percussion
instruments to be amplified in the music mix. All patients
were able to understand both DMIs and clearly hear the
feedback, although they reportedly enjoyed the phase-
matching DMI more, due to the direct musical agency and
control it gave them. Most patients had periods of good
and poor synchronization depending on concentration and
distance from the loudspeaker and sometimes needed to
be verbally cued back into rhythm. Two patients increased
their gait cadence significantly as the training progressed,
which required the music tempo to be manually adjusted
to match them. One patient had noticeable step time asym-
metry, which made period matching difficult.

B. Focus Group Interviews—Experts

To assess the clinical potential of the DMIs, we evaluated
them via structured interviews with a focus group consisting of
five physiotherapists and two music therapists. The interviews
were conducted online after our third development cycle. Video
demos of the DMIs were presented of the first author interacting
with the system (refer to SM-FG1), followed by a fixed set of
questions exploring both the clinician’s and indirectly the pa-
tient’s perspective.5 The interviews were transcribed and coded
by an inductive approach into a hierarchical coding scheme
(refer to SM-FG2). A short summary of key takeaways is given
here, and the full data summary is given in SM-FG3.

1) Clinical Utility: The experts were able to provide insight
on stroke patient subgroups that can potentially benefit from
each of the DMIs. Three expressed that the static balance DMI
could be used across acute/moderate patient groups, while the
dynamic balance, sit-to-stand, and gait DMIs would need to
target progressively less severe patients (refer to SM-FG3). Two
stated that for the gait DMIs, patient inclusion would depend
not only on impairment severity, but also on the location of the
infarction/bleed (e.g., cerebellar or lower brainstem strokes are
better candidates). Certain exclusion criteria were also outlined;
four experts felt that patients with severe auditory perceptual
difficulties and cognitive impairments would not be able to use
the feedback, and one added that suboptimal spatial abilities

5See expert interview info sheet: [Online]. Available: https://docs.google.
com/document/d/1d6xWIIaIwsD-lf-NhUBszqJzxnvC9M_ywlfrMFPY4m0/
edit?usp=sharing

would preclude the use of the dynamic balance DMI. Two felt
that patients lacking rhythm-finding abilities would be unable to
benefit from the gait DMIs.

The interviews also probed whether the sensors and chosen
movement parameters could capture the movement information
of clinical interest during rehabilitation. For all five DMIs, at
least two experts explicitly stated that this was so (refer to
SM-FG3) on the basis of the demo videos. One did state that
the system did not seem to distinguish between jerky movements
and merely rapid movements. However, two experts said that the
jerk and gait DMIs provided therapists with additional valuable
information not available visually (e.g., movement intermitten-
cies, step rhythmicity) (refer to SM-FG3). They did not feel that
this was so for the static and dynamic balance DMIs, although
one did state that the spatial information provided by the MBF
was potentially more “exact” due to the precision of the sensor
compared to the human eye.

2) Clinical Usability: Three experts explicitly stated that the
five individual DMIs were compatible with and could easily
be integrated into the respective physiotherapy protocols, par-
ticularly goal-oriented training (refer to SM-FG3). Moreover,
two also said that they could aid patient autonomy outside the
hospital setting. For instance, the static balance DMI could be
used at home (e.g., while watching TV or sitting on a chair) and
could, according to one expert, be advantageous over existing
visual biofeedback systems in terms of cost and portability. Two
experts also said that the dynamic balance DMI could be used to
create “fun training” scenarios. On the other hand, two experts
were skeptical about the idea of directly converting jerk infor-
mation into feedback, especially in the case of patients whose
muscle weakness makes jerky movements unavoidable. Finally,
some adaptations of the DMIs were suggested for other types
of training (refer to SM-FG3), such as using jerk feedback to
treat writing tremors (two experts) and the gait (phase matching)
DMI for pregait training (one expert).

Two experts highlighted practical considerations, most impor-
tantly the matter of patient safety in DMIs involving full-body
movement (sit-to-stand, gait) and stressed that it was important
for therapists to be able to use the system in a hands-free manner.
For the gait DMIs, one expert suggested that it may make sense
to use bodyweight-supported systems along with treadmills, but
another mentioned practical problems with treadmill training
due to the complexity of setting treadmill speeds for different
patient types. There were no concerns raised regarding the
sensing hardware, but one expert did mention that using velcro
straps could damage clothing and should be replaced by elastic
straps, and that hygiene measures needed to be taken if the same
hardware was to be shared by multiple patients. For the dynamic
balance DMI, there was no consensus on the necessity of the
visual feedback, with experts divided in terms of how important
it was to the task. One expert brought up the issue of setup time,
saying it would help if the system configuration were possible on
a mobile device, and if patient-specific settings could be saved
for future recall.

3) Patient Usability: The experts also assessed the synthe-
sized music and DMI-specific MBF strategies from the per-
spective of a stroke patient, based on their experience. Related

https://docs.google.com/document/d/1d6xWIIaIwsD-lf-NhUBszqJzxnvC9M_ywlfrMFPY4m0/edit{?}usp=sharing
https://docs.google.com/document/d/1d6xWIIaIwsD-lf-NhUBszqJzxnvC9M_ywlfrMFPY4m0/edit{?}usp=sharing
https://docs.google.com/document/d/1d6xWIIaIwsD-lf-NhUBszqJzxnvC9M_ywlfrMFPY4m0/edit{?}usp=sharing
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to the music, two experts acknowledged that there was a high
degree of subjectivity based on patient preferences and past
music consumption (refer to SM-FG3), but that they appreciated
the stylistic variety provided by the system. One stated that
down-tempo music might be suited to the static balance DMI
(to avoid inducing movement) and gait DMIs for slow-walking
patients.

Concerning the MBF itself, there was good agreement that it
was provided in a timely manner, and that the patient-specific
adjustments were sufficiently flexible (two to three experts stated
this explicitly per DMI). Experts also commented on the nature
of individual MBF strategies in the context of each DMI. For
static balance, three experts favored the ambulance strategy,
saying it was easily perceptible without being overly annoying.
The dissonance and ring modulation strategies were described
as clear but very annoying by one expert, while the cartoon
strategy was found less annoying but perceptually blurry. In
the dynamic balance DMI context, three experts felt that the
optimal MBF strategy would depend on the patient’s perceptual
abilities, and hence, the ability to choose was important. Two
experts stated that the instrumentation strategy was not per-
ceptually salient. However, for the jerk feedback, three experts
found the interruption strategies easy to perceive and intuitive
(refer to SM-FG3). In the sit-to-stand (trunk flexion-based cues)
DMI, two participants found the bell strategy to be too soft
and suggested that the volume of the bell be made adjustable.
Experts were also divided on the use of the wah–wah effect
as a movement cue. As for gait, three experts preferred the
phase matching DMI as they felt it provided direct positive
reinforcement as compared to the period matching DMI, which
two experts found excessively annoying. One expert did express
that the difference between the left and right foot drum sounds
in the phase matching DMI could be more pronounced.

C. System Benchmarking

System benchmarking was carried out on a Dell Inspiron 15
7000 Windows laptop with a 1.8-GHz i7 processor and 16-GB
RAM. A USB-connected Focusrite 18i8 audio interface was
used for audio output, which was auditioned through a pair of
Beyerdynamic DT-880 Pro headphones.

1) Biofeedback Loop Delay: This was measured by compar-
ing onset timestamps between system input and output (sound)
during the gait (phase matching) DMI, as the impulsive nature
of foot strikes made it a suitable candidate for temporal measure-
ment. We calculated loop delay by comparing simultaneously
recorded audio files corresponding to system input (footstep
sounds recorded using a mobile phone recorder) and system
output sound (triggered bass drum and snare drum captured
by WASAPI Windows audio driver). A sine burst was first
recorded by both as a temporal alignment reference, and 19
steps were then taken in a quiet room. The two audio recordings
were captured, and event timestamps were extracted using the
transient detection functionality in REAPER, which detects
physical onsets in audio with high temporal accuracy (under
1 ms for impulsive sounds). Corresponding foot strike and drum

Fig. 5. % processor time plotted against time (second) during the final test.
The horizontal line denotes the mean % processor time.

TABLE I
COMPUTATIONAL PERFORMANCE

transient timestamps were subtracted and aggregated to yield
the mean (STD) loop delay value of 93 (48) ms.

2) Computational Performance: We measured this in the
form of % processor time, i.e., as the percentage of total time
that is spent by the CPU on executing the software application
code. This time is expressed relative to the total available pro-
cessing capability, i.e., each core operating at 100% capacity ×
number of cores (4 on test machine), in other words a theoretical
maximum capacity of 400%. In practice, the available processor
headroom is lower as JUCE by default does not multithread
audio processing tasks, meaning that the application practically
uses two cores at the maximum for audio, GUI, and other
internal tasks. Hence, a peak processor time value less than
100% guarantees that there are no bottlenecks at any one core at
any time. We used the Windows Performance Monitor to record
logs of processor time at a resolution of 1 s, which we then
analyzed in MATLAB. The CPU usage % of the software in the
Windows Task Manager was also monitored.

We compared the different music styles at the tempo extremes
to find the most demanding scenario, which turned out to be
the “Slow Rock” style at 60 beats/min. This style was used in
the final CPU stress test, where music playback was combined
with the most complex DMI (dynamic balance training with 2-D
feedback) with logging and visualization enabled. % processor
time was logged and is shown in Fig. 5, along with the results
in Table I.

3) Sensor Range: We assessed the indoor sensor range in
terms of the percentage of MBF callbacks that detected new
OSC messages in a short time frame under different conditions.
In our experiment, a single-sensor transmitted OSC packets to
the laptop, which was set up in the corner of a large furnished
room. Results are in Table II.

IV. CONCLUSION

In this article, we presented an MBF framework for post-
stroke movement rehabilitation codeveloped with stakeholders
and addressing several shortcomings of existing systems by
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TABLE II
SENSOR RANGE

integrating theories of biofeedback system design [4], auditory
guidance [28], music therapy [41], MBF [35], and interactive
sonification [37], [60]. Our generic mapping module enabled the
creation of multiple DMIs catering to conventional protocols for
balance and gait training within a single real-time architecture.
Here, we discuss the present contribution and our evaluation
outcomes.

The sensing apparatus (M5Stack-Grey) we used for motion
capture is light, portable, inexpensive, and easily available.
Moreover, its wireless functionality is easily replicable using
our code and was shown to have sufficient range for indoor use
during our evaluation. Our interviewees’ positive opinions of its
movement capture capabilities and extra informative potential
point to the robustness of the hardware and movement parameter
computation. However, the inability to disambiguate jerky and
rapid movements must be addressed in future versions. The
mounting apparatus can be modified to use elastic straps instead
of velcro, in addition to ensuring that the material can easily be
sterilized between sessions.

Using free software environments (JUCE and FAUST), we
were able to create a versatile architecture for layered, yet com-
putationally efficient real-time music synthesis. Its flexibility
can help tailor stimuli to patients, both in terms of therapy goals
(e.g., matching music tempo gait cadence, amplifying rhythm,
or melody) and individual taste (through musical style, groove,
and song MIDI). This was done in an effort to address the
aesthetics problem [28], [29] and accommodate user prefer-
ences [57]. However, there is still significant upgrade potential.
From the comments made by the clinicians (primarily not music
experts), the architecture has limitations. This could be because
the synthesis methods are relatively simple, and the sequencing
process is deterministic and predictable with limited temporal
variability. Even taking into account subjectivity in music prefer-
ences, the system generally produces a computerized-sounding
output. In addition, MIDI file encoding is not trivial and requires
musical knowledge as well as technical skills. Future versions
could integrate computational rules [49] for expressive music
performance, as well as a MIDI library of known songs.

Our generic mapping module enables a large number of move-
ment parameters and MBF strategies to be linked to one another
and adjusted in terms of perceptual scaling [60]. The modularity
of its operation allows these parameters and strategies to be com-
bined and customized, allowing rapid testing of a large number
of possible MBF paradigms. We believe that this can facilitate
the addressal of extant MBF design issues in future research,
simply due to the ability to test various MBF configurations.
Although our feedback dimensionality [60] is low (1-D or 2-D),
we argue that it suffices for the target group, a large proportion

of which suffers from cognitive impairments [1]. This is likely
to hinder them in understanding a larger number of concurrent
feedback channels. The generic nature of the mapping module
makes it possible to simply “plug in” new movement param-
eters and MBF strategies and cross-map them in real time for
comparison in a clinical setting. For example, force plates can
be used for balance training within the same OSC transmission
framework, and new DMIs related to poststroke footdrop can be
designed, wherein the IMUs are placed on the foot instead of the
shank. Another possible upgrade is to allow the choice of more
complex mapping function shapes.

As indicated by the focus group interviews, our DMIs have the
potential to be applied to patients at various stages of recovery,
ranging from acute to subacute. During clinical testing, it is
important that DMIs are allocated and configured in tight ac-
cordance with the pathologies and needs of patients, identifying
the presence of exclusion criteria such as perceptual, cognitive,
or rhythm-finding difficulties, as well as a general disinterest in
music and/or technology [43].

It is encouraging that the experts deemed our DMIs compati-
ble with existing rehabilitation protocols, capable of augmenting
them and even adaptable to other training scenarios. However,
we acknowledge that there was a risk of bias in our question
framing and data collection methods. In future studies, we
will place greater focus on posing more neutral-connotation,
open-ended, and scale-based questions in robust blinded setups.
Moreover, the technical framework has not undergone any em-
pirical evaluation in a rehabilitative setting, making it difficult
to gauge the DMIs’ true clinical utility [18], [67]. Therefore, the
interview outcomes pertaining to the DMIs and MBF strategies
must be interpreted with caution. For example, it is unclear
whether patients will be able to translate jerk-based feedback
into a meaningful and sustainable change in biomechanics. This
uncertainty is compounded by the large variability exhibited by
stroke patients, both physical and cognitive. For instance, the
second gait-based DMI converts foot strikes into drum hits and
relies on the ability of the patient to discern beat discrepancies
and correct them—a skill that not all patients will have. Perhaps,
it may be necessary to provide more dynamic information to pa-
tients to help them adjust their steps for more rhythmic gait. For
instance, the timbre of the triggered drums could be manipulated
differently depending on whether the detected step is early, late
or within tolerable limits based on the beat interval.

There appeared to be a connection between the experts’
estimations of perceptual salience and unpleasantness of the
MBF strategies. Specifically, strategies that were very percep-
tually salient also tended to be judged as very unpleasant,
and vice versa. Although the biofeedback relies on a clear
contrast between pleasant and unpleasant musical states [35],
further tests with patients must further investigate this tradeoff
between feedback salience and pleasantness [60] to inform the
MBF design philosophy. As reviewed in [58], positive feedback
may generally be more conducive to long-term motor learning
than negative feedback as it promotes motivation and invokes
dopamine prediction error mechanisms, as opposed to simply
eliciting the attentive processing of movement errors. This can
be part of why multiple experts preferred the phase matching
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gait DMI to the period matching one. Perceived unpleasantness
is also likely to vary among patients [28], but a better under-
standing of this topic is very important in order to leverage the
potential benefits of MBF and avoid auditory fatigue among
patients. Several of our DMIs and MBF strategies primarily
provide error-based negative feedback, which may neither be
ideal for sustained use with the target group nor have significant
benefits over traditional paradigms.

Our preliminary usability study and focus group interviews
yielded some insight related to the DMIs. The tests with patients
showed that several DMIs were understandable and practically
applicable, although the sample was small and comprised sub-
acute patients. It is encouraging that multiple experts deemed
our DMIs to be sufficiently adjustable for individual patient
tailoring, as this is critical to the usability of the framework [43].
The experts’ agreement that the biofeedback was provided in
a timely manner is in line with the measured biofeedback
loop delay, which was less than the human auditory reaction
time [4], [58] and within the limit of perceived simultaneity
[68].

Our future studies will include rigorous usability studies and
clinical trials, where we systematically compare MBF strategies
and assess ratings of enjoyment, arousal, and perceived agency.
We will also focus on adding DMIs and MBF strategies to the
framework, aimed at providing positive feedback that reinforces
task-intrinsic perceptual information critical to motor learning
(e.g., proprioception, and/or using embodied schemata) [34],
[59], [69]. Additionally, we shall focus on DMIs that provide
feedback to enhance compensatory mechanisms and strategies
to overcome loss of motor function, as opposed to only sonifying
deviations from “desirable” performance [67]. Ultimately, it
is the modularity and flexibility of our framework that will
facilitate the addressal of DMI design issues, as well as the
clinical assessment of DMIs and MBF strategies. We believe that
our framework provides a means for the research community to
better understand the potential benefits of using MBF in stroke
rehabilitation.
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