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Abstract This paper presents a simple code written

in MATLAB for simulating and optimizing the drap-

ing of a composite material fabric onto a mold. Being

simple and kinematically based, the algorithm can be

used to predict the final fiber orientations after a fab-

ric has adapted to a double-curved mold surface. These

fiber orientations will in turn govern the mechanical

properties of the composite part and a draping anal-

ysis is thus advantageous in connection with a struc-

tural analysis as well as manufacturing. The code is

intended for educational purposes and can be found in

the appendix of the paper and on the repository at

doi.org/10.5281/zenodo.4316860 along with a Python

implementation. After a description of the code, vari-

ous extensions are introduced, including a framework

for optimization of the draping parameters.

Keywords Composites · Draping · Kinematic

analysis · Manufacturing optimization

1 Introduction

This paper is intended for engineering education, specif-

ically in courses covering analysis, optimization and

manufacturing of laminated composite structures. The

main focus is on draping, and students and newcomers

to the field can get acquainted through the MATLAB

code described in the paper.

Laminated composites offer excellent mechanical

properties through tailoring of the layup. Structural de-

signers specify the fiber orientations and ply stacking
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Fig. 1 Manual draping (hand layup) of carbon fiber weave
onto double curved mold.

sequences, i.e. the instructions for manufacturing of the

composite part. In the manufacturing step, the plies -

essentially pieces of fabric - are draped on the mold sur-

face either by hand (Fig. 1) or by means of some semi-

or fully automatic process. For complex parts, the for-

mer is still widely used in the composite industry.

If the composite part possesses double curvature,

an initially flat ply must deform in-plane in order to

conform to such a double-curved surface. This is a fun-

damental theorem in differential geometry - consider

also map projections from the spherical Earth to a

flat paper, which can not be achieved without distor-

tions (Callens and Zadpoor, 2018). The preferred way

of in-plane deformation is generally that of the low-

est resistance. For bi-axial fabrics the lowest resistance

is mainly associated with shearing (Cao et al., 2008).

Shearing entails that the tows of the fabric rotate but

remain more or less undeformed. The concept of fab-

ric shearing is illustrated in Fig. 2 for a woven fabric

which is also primarily considered in this paper (In sec-

tion 4.4, the applicability to non-crimp fabrics (NCF)

is discussed). It should be noted that there exist a limit
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Fig. 2 Shearing of woven fabric: the tows rotate at their
cross-over points in the weave. The shear angle is denoted γ.

on the amount of shear that can be achieved with a

fabric, which is denoted the locking angle. Shearing be-

yond this angle is likely to result in wrinkling of the

fabric, which will introduce defects in the final compos-

ite component. Other deformations than shearing also

occur during draping and in general, the behavior of

fabrics is very complex.

The rotation of the fiber tows makes it beneficial

that the draping process is taken into account in the

design phase of the composite part. That is, the spec-

ification of fiber orientations does not come with com-

plete freedom, but is linked to the fabric architecture

and mold curvature. At worst, a specified composite de-

sign might not even be manufacturable due to excessive

shear. The accuracy of the structural analysis can hence

be increased by modeling the actual fiber orientations

compared to e.g. projected or idealized fiber orienta-

tions, which is used in many cases. The deviation from

idealized fiber orientations will be exemplified in the

result section of the paper.

To predict the final fiber orientations on the mold

surface and thereby in the composite part, various drap-

ing models have been developed. Typically, a distinc-

tion is made between mechanical models and kine-

matic models. Mechanical models are commonly ac-

complished using dynamic nonlinear finite element

analysis (FEA). Experimental data can feed into ad-

vanced material models and thereby a particular drap-

ing process can be simulated (Boisse et al., 2010; Dan-

gora et al., 2015; Harrison, 2016; Krogh et al., 2019).

The list of physical phenomena that can be accounted

for with such models is long and so are the required

CPU times.

Kinematic models, on the other hand, approximate

the behavior of fabrics with basis in the high mod-

ulus of structural fibers and a fabric’s limited resis-

tance to shearing. Thus, it is assumed that the fabric

shear stiffness is zero while the fiber extensional stiff-

ness is infinite. These assumptions enable the model-

ing of the fabric as a grid of hinged or pin-jointed cells

on the mold surface as proposed by Mack and Tay-

lor (1956). They considered simple analytical surfaces,

but the method has subsequently been developed nu-

merically for arbitrary surfaces (Van West et al., 1990;

Long, 1994). Other researchers have benchmarked the

kinematic model predictions against experimental data

(Laroche and Vu-Khanh, 1994; Wang et al., 1999).

Commercial implementations are also available, e.g.

FiberSim (Siemens Industry Software Inc, 2020), Com-

posites Modeler for Abaqus/CAE (Dassault Systèmes,

2020) or Ansys ACP (Ansys Inc., 2020). Kinematic

models will predict the draping pattern on the mold

under simplified conditions but can not take the actual

draping process into account. The advantage of kine-

matic models is their low CPU times, which greatly

facilitate the use of optimization techniques.

In several works, a kinematic draping algorithm has

been combined with optimization. Skordos et al. (2006)

applied a commercial kinematic draping algorithm cou-

pled with a genetic algorithm (GA) to simplify the man-

ufacturing of a composite pilot helmet. The objective

was to minimize the shear angles of the fabric on the

mold by altering the initial conditions of the draping.

Kaufmann et al. (2010) considered cost/weight opti-

mization of a composite part and included a kinematic

draping algorithm in their framework. The objectives

considered were fiber angle deviation (difference be-

tween actual and nominal fiber orientation of a ply),

the magnitude of the computed shear angles, and ma-

terial waste. Kussmaul et al. (2019) studied optimiza-

tion of patched laminates and incorporated a kinematic

draping algorithm for predicting the draped pattern of

the patches. A dedicated mechanical model enabled the

incorporation of stiffness and strength criteria.

This paper describes a simple kinematic draping al-

gorithm implemented in MATLAB, which is readily ex-

tended for optimization. The rest of the paper is or-

ganized as follows: Section 2 elaborates the algorithm

behind kinematic draping. Section 3 describes the im-

plementation in MATLAB and Section 4 presents var-

ious extensions, including optimization. Lastly, the pa-

per concludes with a summary in Section 5. The code

implementation is provided in Appendices A and B.

2 The kinematic draping algorithm

The starting point of the algorithm is the definition of

the grid of cells, which represents the fabric as sketched

in Fig. 3. Here, the cell edges represent fiber tows and

the cell vertices, i.e. grid nodes, represent their cross-

over points. The cell edge lengths, i.e. distance between

nodes, is the discretization, d. Notice, though, that d

does not have to be equal to the tow spacing. As pre-

viously mentioned, the fiber tows are assumed to be

inextensible and the fabric shear stiffness is assumed

to be zero. In addition, the tow bending stiffness is as-

sumed to be zero and also tow slipping is neglected.
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d

Warp generator

Weft generator

Origin node

Fig. 3 The fabric modeled as a grid of pin-jointed cells. The
red node is the chosen origin node through which the blue
dashed generators pass.

These assumptions entail that the discretization dis-

tance must always be obeyed while the rotation at the

nodes is free. Such a grid of pin-jointed cells work like

an unconstrained mechanism. Forcing the nodes of the

grid to be on the mold surface introduces some con-

straints, but to produce a unique solution, some initial

conditions of the draping are required.

The first constraint is that an origin point on the

mold surface and a corresponding origin node from the

grid are coincident. The physical meaning of the origin

point on the mold is the fabric’s first contact point dur-

ing draping. Next, the specification of an initial drap-

ing direction at the origin will serve to orient the fabric

on the mold. To specify the remaining constraints, the

traditional approach is to compute initial paths of the

two fiber directions (warp and weft) - so-called genera-

tors which form a cross (Fig. 3). The generators must

intersect at the origin point and follow the initial drap-

ing direction. By using the discretization d, the created

generators can be populated with nodes on the mold.

These nodes, representing the two initial fiber paths,

will constrain the remaining draping pattern and thus

produce a unique solution.

A simple approach to the creation of the generators

is to use curves that arise from intersecting the mold

surface with selected planes passing through the origin

point. This approach is known as the planar method

and is sketched in Fig. 4. The planar method has been

proven to work well for rotationally symmetric shapes

such as a hemisphere, but it fails to give realistic predic-

tions for arbitrary mold shapes (Wang et al., 1999). In

this case, better predictions are obtained by specifying

the generators as geodesic lines.

2.1 Geodesic lines

A geodesic line can be considered as a generalization of

a straight line on a curved surface. Mathematically, it is

a curve whose component of curvature tangential to the

surface (geodesic curvature) is zero. For a unit-speed

curve, this is equivalent to the component of tangential

acceleration being equal to zero (Pressley, 2010). Given

Generator from 
planar method

Generator from 
geodesic method

Intersection plane

Mold 
surface

Origin point 
and initial 
draping 
direction

Fig. 4 Creation of generators as constraints for the kine-
matic draping algorithm.

ap

ap, ap,n

ap,n

ap,t

Fig. 5 Different circular curves on a sphere. The lower, red
curve, i.e. equator, is a geodesic while the upper blue is not
because the component of acceleration tangential to the sur-
face, ap,t is nonzero.

any two points on a double curved surface, the shortest

surface conformant path between them is a geodesic

line. For these reasons, geodesics are also considered as

a more natural course of a fiber tow on a double-curved

mold surface, see Fig. 4.

Consider for instance the surface of a sphere as

sketched in Fig. 5. Circular curves on the surface can

be produced by intersecting the sphere with a horizon-

tal plane. From the study of particles undergoing uni-

form circular motion, it is known that the acceleration

of the particle, ap, points to the center of the circle.

Now, in order for the acceleration to only have a com-

ponent normal to the sphere (ap,n), the acceleration

vector must also point to the center of the sphere. This

condition can be achieved by letting the intersecting

plane pass through the center of the sphere (lower, red

curve in Fig. 5). Such a circle on the sphere is called

a great circle, which is thus a geodesic. The previous

discussion also explains the initial success of the planar

method on rotationally symmetric surfaces. Nonethe-

less, a geodesic line will in general produce a more re-

alistic course for a generator.
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2.2 Details of the presented algorithm

For the algorithm presented in this paper, a simplifi-

cation is made with regard to the surface representa-

tion. The mold is modeled as a surface on the form

z = F (x, y), i.e. with a unique z coordinate for each

x and y coordinate. In this way, molds with vertical

sections can not be treated, but the chosen surface rep-

resentation greatly simplifies the modeling.

The presented algorithm is also restricted to rect-

angular plies, such that the generators completely span

the ply. This may be modified using parts of the pre-

sented theory but at the expense of a more complicated

implementation.

Geodesic lines on arbitrary mold surfaces can be

quite complex and are typically obtained by integra-

tion of a differential equation (Ramgulam and Potluri,

2007). In this paper, the generators are created in a

more simple and intuitive manner. Instead of lines, cells

are placed to span the ply. Emanating from the origin

point, the cells are created - one by one - by minimizing

the sum of shear angles in each cell. The cells will lie

in a plane tangential to the surface. Minimizing the cell

shear is equivalent to minimizing the distortion from

right angles in the tangential plane. In this way, the

generator cells will form a straight path tangential to

the surface, and thereby minimize the tangential cur-

vature, thus meeting the conditions of a geodesic. A

validation of the method is presented in Section 4.

The draping algorithm follows the general descrip-

tion in the beginning of the section and can be divided

into three steps which are also sketched in Fig. 6:

1. Placing the first pair of nodes based on the origin

point and the initial draping direction.

2. Creating the generator cells, i.e. initial fiber paths.

3. Placing the remaining cells constrained by the gen-

erator cells.

To ensure that the nodes are always on the mold sur-

face, only the x and y coordinates are specified such

that the mold z coordinate is queried from F directly.

In Step 1, the origin node is placed on the origin

point on the mold. Next, a second node is placed along

the initial draping direction a distance d apart from

the origin (Fig. 6 a)). This placement is achieved by

solution of an equation in one variable using numerical

optimization techniques.

In Step 2, the generator cells are created one by one.

For each generator cell, two vertices are known while

the remaining two vertices are unknown. This situation

is sketched in Fig. 6 b) with the cell with three dashed

edges: Vertices V1 and V2 are known from the previous

cell and vertices V3 and V4 must be placed such that

the sum of shear angles in the cell is minimized while

Origin point and 
initial draping direction

Origin node

Second node

φ1 φ2
φ3

φ4

V1
V2

V3

V4

V1

V2

V3

V4

a) 

b)

c)

Fig. 6 The three steps in the draping algorithm: a) Step 1,
red nodes, b) Step 2, blue nodes, and c) Step 3, black nodes.

the dashed cell edges have lengths d. The locations of

the unknown vertices are defined relative to the known

vertices (using only x and y coordinates):

V3 = V2 + {x1, y1, F (x1, y1)} (1)

V4 = V1 + {x2, y2, F (x2, y2)} (2)

The angles at the vertices, ϕi can be calculated as the

angle between the vectors formed by the adjacent cell

edges, e.g. ϕ4 = 6 V1V4V3.

The four relative coordinates are assembled in the

vector of design variables, a = {x1, y1, x2, y2}. The op-

timization problem is formulated as follows:

minimize
a

4∑
i=1

|ϕi − 90◦|

s.t. ||V3 −V2|| − d = 0 (3)

||V4 −V3|| − d = 0

||V1 −V4|| − d = 0
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In Step 3, the remaining cells, which are kinemat-

ically constrained by the generator cells, are placed.

Consider the situation in Fig. 6 c) and the cell with

two dashed edges. In the cell, three vertices are known

(V1, V2 and V4) while the last vertex (V3) is un-

known. Again, using relative coordinates for V3 as in

Eq. (1), the problem has two unknowns (x1 and y1) and

the following two equations:

||V3 −V2|| − d = 0 (4)

||V4 −V3|| − d = 0 (5)

These are identical to the first and second constraint

in the optimization problem in Step 2, i.e. Eq. (3). The

system of equations for each cell can be solved numer-

ically using optimization techniques. A suitable initial

guess is chosen as the opposite cell edge, i.e. V4-V1.

3 MATLAB implementation

The MATLAB program is named KinDrape and can

predict the draped pattern on a hemisphere. The code

is found in Appendix A of the paper and relies on built-

in functions and functionalities. These include the use

of:

– The Optimization Toolbox (The MathWorks Inc.,

2020) for nonlinear equation solving (Step 1 and

3) and optimization problems (Step 2). The former

is achieved with the fsolve function using the de-

fault Trust-Region-Dogleg algorithm and the latter

with the fmincon function using the Active Set al-

gorithm. Both rely on finite-difference gradients.

– An interpolation object based on a point cloud (e.g.

from a CAD file) or an anonymous function to rep-

resent the mold surface as a function z = F (x, y).

This representation enables easy querying of the z

coordinate.

– Linear indexing, i.e. the use of a single index in a

multi-dimensional array, for compact notation.

– Plotting of the mold surface using the surf function

and plotting of the draped cells with shear angle

color contours using the patch function.

KinDrape is called as a function as follows:

KinDrape(d,Grid,Org,Ang,OrgNode)

The input arguments are defined as:

– d: The grid discretization distance (see Fig. 3).

– Grid: Two-component vector with number of rows

and columns in the grid (see Fig. 3).

– Org: Two-component vector with the origin point

on the mold in x, y-coordinates (see Fig. 6 a)).

Fig. 7 Draping onto a hemisphere with the center cell lo-
cated at the north pole. The zoom-in in the black dashed
square shows the origin offset.

– Ang: Initial draping direction in degrees relative to

the y-axis (see Fig. 6 a)).

– OrgNode: Two-component vector with row,col-index

of the origin node on the ply (see Fig. 3).

The result in Fig. 7 is obtained by executing KinDrape

as follows:

KinDrape(0.08,[24 24],-[0.04 0.04],0,[12 12]);

Notice that the origin is offset by half a discretiza-

tion such that the center cell is centered in (0,0). This

will produce a double-symmetric solution on the hemi-

sphere.

The grid nodes on the mold are stored in a 3D array,

Node (size: number of row nodes × number of column

nodes × 3). The first two dimensions are the row,col-

location in the grid and the pages/slices along the third

dimension contain the x, y, z-coordinates. Data for plot-

ting the colored cells is stored in the array P (size: num-

ber of cells × 4 × 4). The 1st dimension is the cell

number (column-major order in the grid), the 2nd di-

mension is the vertex numbers 1-4 in that particular

cell and the 3rd dimension has three coordinates and a

shear angle for a particular vertex.

The main bookkeeping concept of the program is

illustrated in Fig. 8. Here, the cross formed by the gen-

erators has been split up in four arms that span four

quadrants. The idea is to define two propagation direc-

tions, Dir1 and Dir2, that control the location in Node

as well as the orientation of the cells. The directions

rotate with the arm/quadrant number. In this way, in

Step 2 (arms) vertex 1 and 2 are always known, while in

Step 3 (quadrants), vertex 1, 2 and 4 are always known.

Notice that Dir2 is simply Dir1 rotated 90 degrees.

The program KinDrape is structured as a main pro-

gram (Appendix A, ll. 1-57) and four auxiliary func-
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Fig. 8 Bookkeeping of cells in arms and quadrants in Kin-
Drape.

tions (Appendix A, ll. 58-99). The auxiliary functions

are:

– CellIdx: Given the vertex 1 row,col-index in Node

of a cell, the function returns a 4 × 3 array of the

linear indices of the vertices in which the rows corre-

spond to the vertex number and the columns corre-

spond to the coordinate number. The second output

is the cell number used for storing data in the P ar-

ray.

– CellVertCoor: For a cell, the function returns an

array of all vertex coordinates (number of vertices

× 3) based on the known vertices and the design

variables in the equation solving/optimization.

– DistFun: returns the Euclidean distances between

cell vertices depending on the step. This function

is the equation function in Step 1 and 3 and the

constraint function in Step 2 (NB: with fmincon the

equality constraint must be the second output from

the constraint function).

– ShearFun: Calculates the shear angles in a cell.

First, four vector pairs u and v are computed such

that they lie along the cell edges. Next, the angles

between cell edges defined by vectors u, v are calcu-

lated using the expression ϕ = arctan(||u×v||/u•v).

It is implemented in vectorized form using the 2-

argument arctan function. The shear angle is ob-

tained by subtraction of 90◦ and calculation of the

absolute value, as in Eq. (3). The function can re-

turn the sum of shear angles (objective in Step 2),

the vertex coordinates of a cell and the four shear

angles of a cell.

The main program in Appendix A is elaborated in the

following sections. It is recommended to execute the

program in debug mode while going through the de-

scriptions.

3.1 Mold Definition (App. A, ll. 2-5)

The hemisphere mold is defined through a meshgrid of

spherical coordinates which is transformed to Cartesian

coordinates using sph2cart. The values of Theta and

Phi are chosen to avoid duplicate points and to avoid a

vertical surface at the equator. Lastly, the interpolation

object, F, is created.

3.2 Aux. variables and initialization (App. A, ll. 6-11)

The propagation directions of the cells are de-

fined through the arrays Dir1 and Dir2 in row,col-

coordinates. The arrays contain, respectively, the di-

rections of the vertex 2-3 cell edge and the vertex 1-2

cell edge. Each row in the arrays correspond to an arm/

quadrant. Further, options for fsolve and fmincon are

defined and the arrays Node and P are initialized as

NaN.

3.3 Step 1 (App. A, ll. 12-17)

In this step the origin node and a node defined by the

initial draping direction are placed. First, linear indices

for the vertices are retrieved using the CellIdx func-

tion. The origin node can readily be placed, while the

2nd node is found by solution of one equation in one

variable contained in DistFun. The solution is achieved

using fsolve.

3.4 Step 2 (App. A, ll. 18-34)

In this step, the generator cells are created. GenStart

contains the starting row,col-index in Node for each arm

and nGenCell contains the number of generator cells to

create in each arm. A double loop iterates though each

arm (i) and each cell (j ). In this setup the iterator

j is in fact a two-component vector with the row,col-

index of vertex 1. For each cell, the linear cell indices

are retrieved and bounds (Bnd) on the design space are

defined as a box centered in the initial guess with a side

length equal to the length of the initial guess. fmincon
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is called and the new nodes and shear angles are stored

in Node and P. Lastly the initial guess is updated as the

previous solution.

3.5 Step 3 (App. A, ll. 35-50)

In this step the remaining constrained cells are placed.

Similar to the previous step, the starting row,col-index

for each quadrant is stored in ConStart and the num-

ber of cells to create (along rows and columns) in each

quadrant is stored in nConnCell. An outer loop iterates

through each quadrant (i) and a double loop in rows

and columns iterates through each cell (j,k). For each

cell, the linear cell indices are retrieved, the initial guess

is computed based on the x, y-coordinates of vertex 4

and vertex 1, and lastly fsolve is called. Shear angles

for the cell are calculated and the shear angles and new

nodes are stored in Node and P.

3.6 Plotting (App. A, ll. 51-56)

In this section the following is plotted: the origin point,

the mold surface in a gray-blue semi-transparent color,

the draped cells colored by their shear angles and lastly

a colorbar.

4 Extensions of the code

The presented code can be executed as is, and by ma-

nipulating the input parameters, much insight into the

draping behavior of fabrics can be gained. Try for in-

stance to move the origin away from the north pole, e.g.

with:

KinDrape(0.08,[24 24],[0.0 -0.9],60,[3 3]);

This modification would in practice correspond to mov-

ing the fabric’s first contact point when draping. The re-

sulting draped pattern is shown in Fig. 9. Two great cir-

cles passing through the origin point have been drawn.

Recall, that a great circle is a geodesic line on a sphere.

As it can be seen, the generator cells follow the great cir-

cles, thus verifying the program. Consider also Fig. 10,

in which the Abaqus’ Composites Modeler solution to

the same draping problem is shown. A high degree of

similarity is observed.

Other extensions that can be readily implemented

to enhance the functionality of the code are discussed

in this section. These include new mold surfaces, the

use of the code in an optimization framework, and in-

troduction of pre-shear.

Fig. 9 Draping onto hemisphere (top view) with origin point
moved away from the north pole. The red dashed lines are
great circles, i.e. geodesics, intersecting at the origin point.

Fig. 10 Abaqus Composites Modeler solution to the draping
problem in Fig. 9.

4.1 Mold definitions

Implementing another mold surface in the code can be

achieved by modifying ll. 2-5 in Appendix A. If the mold

surface has an analytical equation, it can be written as

an anonymous function instead of an interpolation ob-

ject as used previously with the hemisphere. Consider

for instance the case of a single-curved parabolic cylin-

der. This example can demonstrate that no shearing

occurs when draping onto single-curved surfaces:

[X,Y] = meshgrid(0:0.01:0.5);

F =@(x,y) 3*(x-0.25).^2; Z = F(X,Y);

After modifying the lines, the program can be called as

follows, producing the result in Fig. 11:

KinDrape(0.022,[21 21],[0.25,0.25],5,[11 11]);

Also, consider the mold shown in Fig. 1, which

was designed to generically represent typical double-

curvatures in aerospace composite components (Krogh

et al., 2019). This mold can be implemented as follows:
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Fig. 11 Draping onto single-curved parabolic cylinder does
not produce shear (notice the very low values of shear angles).

[X,Y] = meshgrid(0:0.01:0.5);

F =@(x,y) 1.004*x + 1.089*y - 3.667*x.^2 ...

-4.4*x.*y - 3.75*y.^2 + 3.086*x.^3 + ...

8.889*x.^2.*y + 4.321*y.^3; Z = F(X,Y);

The code can be called with the same input as with the

single-curved parabolic cylinder example.

4.2 Optimization of draping parameters

As previously stated, the low computational expense of

the kinematic draping algorithm favors its use in op-

timization studies on draping parameters, which is the

topic of this section. The mold considered is the double-

curved mold defined in Section 4.1 (Fig. 1) draped with
a ply grid of Grid = [21 21] and a discretization of d

= 0.022, i.e 440 mm x 440 mm.

Three design variables are used: The first design

variable is the initial draping direction (Ang) and is

bounded between [-10◦; 10◦]. The second and third

design variables are the origin node row and column

(OrgNode), defined relative to the center node of the

ply (11, 11). They must be integers and are bounded

between [-10; 9], i.e. covering the entire grid. The origin

point on the mold is moved accordingly such that the

ply remains inside the mold perimeter.

The objective concerns minimization of the shear

angles, γ, and the angle deviations from 0◦ (y axis) of

the warp fiber tows, ψ. The meaning of the latter is

to have the warp fibers (cell edges along arm #2/ arm

#4 direction) oriented as close as possible to a nominal

fiber angle of 0◦. The two field quantities are aggregated

using a p-norm function, that gives high influence to

the largest values. The two p-norms are then added

with equal weighting because the two quantities have

the same unit and the same order of magnitude:

minimize
Ang,OrgNode

Nγ∑
i=1

|γi|p
1/p

+

Nψ∑
i=1

|ψi|p
1/p

(6)

Here Nγ and Nψ are the number of components to

aggregate for γ and ψ, respectively. The value of p is

chosen to 12. The objective function is minimized tak-

ing the bounds on the design variables into account. A

MATLAB script of 26 lines, which uses the KinDrape

function can be found in Appendix B.

Two small modifications of KinDrape are necessary

for its use in the minimization in Eq. (6). First, the

double-curved mold defined in Section 4.1 must be im-

plemented. Second, to avoid plotting in the numerous

calls during the optimization, an extra input argument

Plt can be added to the function: KinDrape( ,Plt).

The variable is logical (true / false) and by enclos-

ing the plotting section of KinDrape (App. A, ll. 51-56)

in an if statement, plotting can be conveniently sup-

pressed:

if Plt

figure; scatter3(Org(1),Org(2),...

...

cb = colorbar; cb.Label.String = ...

end

The design space of the optimization problem in-

cludes several local minima and for this reason it was

chosen to employ a zero-order optimization method,

namely MATLAB’s Genetic Algorithm, ga. This algo-

rithm also handles integer design variables conveniently.

The standard settings were used but they can easily be

altered.

The optimization script is organized as the main

program (App. B, ll. 1-10) and a function, ObjFun,

returning, among others, the objective function for

the optimizer. In the main program, MATLAB’s ran-

dom number generator is first reset to make the re-

sults reproducible (rng(’default’)). Next, input vari-

ables and optimization settings are defined. Using the

’MaxGenerations’ setting for ga, the duration of the

optimization can be controlled. Finally, in the main pro-

gram, the optimizer is called and afterwards the solu-

tion is plotted and maximum shear angles and warp

fiber angle deviations are displayed.

In the objective function, ObjFun, the design vari-

ables are translated into input to KinDrape and the

function is called. Shear angles are calculated based on

the P array. The warp fiber angle deviations are pro-

jected to the xy-plane, i.e. with the z coordinate equal

to zero. The warp fiber tows are represented by vectors

constructed using the columns in the Node array. The
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Fig. 12 Optimized draped pattern on double-curved mold
with 4 generations. The initial draping direction is 1.0◦ and
the starting node is (17, 6). The maximum shear angle is 9.7◦

and the maximum warp fiber angle deviation is 10.3◦.

fiber angle deviations are calculated as the angles be-

tween the warp fiber tow vectors and unit vectors stored

in the NomVec array on the form [0, 1, 0] (along the third

array dimension). Finally, the objective is calculated as

the sum of the two p-norms.

Running the optimization with 4 generations pro-

duces the result in Fig. 12. As a reference, consider the

worst case draped pattern. This pattern can be found

by maximizing the shear angles, i.e. by placing a minus

sign in front of sum(abs(Shear).^p)^(1/p) in l. 25,

Appendix B. Running this optimization problem with

4 generations produces the result in Fig. 13. Thus, even

for this simple mold, choosing different initial condi-

tions for the draping can result in maximum shear an-

gles between 9.7◦ and 24.6◦. Reducing the shear will

make the manufacturing step easier, but as previously

stated, it can in some cases determine whether a com-

posite layup is manufacturable or not. Regardless of

the shear angles, the maximum warp fiber angle devia-

tions from 0◦ for the two examples are around 10◦, thus

highlighting the importance of taking the actual fiber

orientations into account in a structural analysis.

This simple example illustrates the principle behind

a draping pattern optimization but the setup can easily

be altered. The weighting between the shear angles and

fiber angle deviations in the objective function, Eq. (6),

could be changed. In such a setup, it could also be rele-

vant to include a shear limit of the fabric as a constraint.

4.3 Introduction of pre-shear in the draping analysis

Pre-shear refers to the process of shearing the fabric

before the draping is initiated. Thereby the initial angle

between warp and weft tows will be different from 90◦.

Fig. 13 Maximum shear angle draped pattern on double-
curved mold with 4 generations. The initial draping direction
is 5.1◦ and the starting node is (11, 13). The maximum shear
angle is 24.6◦ and the maximum warp fiber angle deviation
is 9.8◦.

Pre-shear can be executed in a number of ways, but

in this context it is defined as a global quantity, i.e. as

a pre-shear angle, γpre, between the generators at the

origin of draping. In order to implement pre-shear in the

draping analysis (code in Appendix A), it is necessary

to work with signed shear angles in the calculations

(shear can be either positive or negative depending on

the direction the fiber tows rotate). The pre-shear is

determined by the generators and when creating the

generator cells, the objective is now to obtain shear

angles in the cells, which are equivalent to the pre-shear

angle, γpre. Thus, the objective function from Eq. (3)

used for generator cell creation is modified to:

minimize
a

4∑
i=1

|γi − γpre| (7)

Here, γi are the signed shear angles which are intro-

duced in the following. To modify the code (note that

line numbers refer to the original code in Appendix A),

1. Add an extra input argument to the KinDrape

function, PreShear (pre-shear angle in degrees):

KinDrape( ,PreShear).

2. Add two extra input arguments to the ShearFun

function (in the function definition and at the three

function calls): PreShear and i (loop iterator):

ShearFun( ,PreShear,i). The latter is necessary

to correctly compute the signed shear angles de-

pending on the arm/quadrant number.

3. Remove the abs function from l. 97 and

instead, post multiply the parenthesis by

.*[1 -1 1 -1]*(-1)^i. The factor (-1)^i

will change the sign depending on the arm /

quadrant number and [1 -1 1 -1] contains the

bookkeeping for angle signs within a cell.
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Fig. 14 Top view of hemisphere drape with a pre-shear of
15◦. Notice that the shear angles are signed.

4. To change the objective function, replace l. 98 with

Obj = sum(abs(Shear - PreShear));.

Executing the hemisphere-example from Fig. 7 with a

pre-shear angle of 15◦, produces the result in Fig. 14.

The previous modifications will also make the plot-

ted shear angles become signed. If the absolute values

are preferred, add the following line to the end of the

ShearFun function: Shear = abs(Shear);.

Pre-shear can be relevant if e.g. a certain mold ge-

ometry results in more positive than negative shear. In

this case, the fabric can be pre-sheared in a negative di-

rection, thus creating a larger reserve of absolute shear

angles. Pre-shear can also be an aid to obtain some

specified fiber orientations in certain locations on the

mold. For these reasons, it could also be relevant to in-

clude the pre-shear as a design variable in the optimiza-

tion of draping parameters presented in Section 4.2. A

final point to note about the pre-shear is, that for added

robustness, the pre-shear angle could be reflected in the

initial guess, a_0, used for the creation of the first gen-

erator cells in l. 22 in Appendix A.

4.4 Further extensions

This section discusses some additional, advanced exten-

sions and modifications. The presented implementation

considers draping of rectangular plies. For some appli-

cations it is beneficial to simply fill the entire mold with

fabric and afterwards export the flat pattern, i.e. the

2D contour used for cutting the non-draped ply. The

extension can be made to the code, but the possibil-

ity of the generators not spanning the entire ply must

be considered, i.e. with some concave boundaries. Here,

an energy measure can be considered to complete the

draping (Wang et al., 1999).

The algorithm was developed for woven fabrics, but

can be applied to non-crimp fabrics (NCF). For unidi-

rectional (UD) materials the fabric cells can be mod-

eled as undergoing simple shear (Lim and Ramakrishna,

2002; Fengler et al., 2018).

For biaxial NCF, the applicability depends on the

stitching pattern. Certain stitching patterns will in fact

make the NCF behavior match that of a woven fabric.

This entails that the tows exhibit minimal slip relative

to each other and that the shear characteristic is not af-

fected considerably (Boisse et al., 2017). In these cases

the presented algorithm can be applied. Some stitch-

ing patterns will result in the fabric having a different

characteristic in positive and negative shear. Because

the generators completely define the draping pattern,

a solution with geodesics might not be the minimum

energy configuration. The remedy proposed in the lit-

erature is to approach the second and third step in an

iterative manner by employing the fabric shear energy,

see e.g. Bergsma (1995) and Long et al. (2000).

The efficiency of the code was not a target during

the development but rather the simplicity and readabil-

ity. To this end, some performance improvements can

be pointed out. Consider for instance Step 3 in which

two equations in two unknowns are solved for each cell.

Another approach is to set up two spheres with cen-

ters located in vertex 2 and 4, respectively and with

radii equal to the discretization. The two spheres will

intersect in a circle and the problem of locating ver-

tex 3 thus reduces to finding the intersection between

the intersection circle and the mold (Robertson et al.,

1981; Van West et al., 1990). A version of the code

with this modification is available on the repository at

doi.org/10.5281/zenodo.4316860.

The use of built-in MATLAB functions greatly sim-

plifies the code although some are known to involve con-

siderable overhead. Another relevant built-in feature, is

the possibility of parallelization of the draping code.

Because the four generator arms and quadrants can be

computed independently of each other, the computa-

tions could be divided between four MATLAB Work-

ers. Likewise, the genetic algorithm optimizer can also

make use of parallelization, i.e. by invoking the option

’UseParallel’,true.

5 Summary

This paper has presented a simple implementation of

a kinematic draping algorithm in MATLAB. The sim-

plicity of the code is believed to facilitate its use in en-

gineering education, bringing the concept of composite

draping and its modeling into a more tangible context.

Draping effects such as changed fiber orientations and
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shear can be modeled and, as demonstrated, easily be

subjected to optimization in regard to manufacturing

process parameters. The use of the draping model in a

structural stress analysis is now straightforward which

will enhance the fidelity of the composite design phase.
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A KinDrape code

1 function [Node ,P] = KinDrape(d,Grid ,Org ,Ang ,OrgNode)

2 %% Mold definition: Hemisphere

3 [Theta ,Phi] = meshgrid(linspace (0,2*pi ,100) ,linspace(pi/20,pi/2-1e-10 ,50));

4 [X,Y,Z] = sph2cart(Theta ,Phi ,1);

5 F = scatteredInterpolant(X(:),Y(:),Z(:),'linear ','linear ');
6 %% Auxiliary variables , solver settings and initialization of Node and P

7 Dir1 = [1 0 ; 0 1 ; -1 0 ; 0 -1]; Dir2 = [-Dir1 (:,2) Dir1 (:,1)];

8 Opt1 = optimoptions (@fsolve ,'Display ','off');
9 Opt2 = optimoptions (@fmincon ,'Algorithm ','active -set','Display ','notify '...
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10 ,'MaxFunctionEvaluations ',5e3);
11 Node = NaN([Grid 3]); P = NaN(prod(Grid -1) ,4,4);

12 %% Step 1: Place org. node (1) and node (2) defined by ini. drape angle

13 % Define linear indices for cell , place 1st node and solve for 2nd node

14 Idx = CellIdx(Grid ,OrgNode (1),OrgNode (2),Dir1 ,Dir2 ,1);

15 Node(Idx(1,:)) = [Org (1), Org (2), F(Org (1), Org (2))];

16 a_sol = fsolve (@(a)DistFun(a,Node(Idx(1,:)),F,d,Ang) ,3/4*d,Opt1);

17 Node(Idx (1:2 ,:)) = CellVertCoor(a_sol ,Node(Idx(1,:)),F,Ang);

18 %% Step 2: Place generator cells (initial cells) while minimizing shear

19 GenStart = OrgNode + [0 0 ; 1 1 ; 0 1 ; 0 0];

20 nGenCell = [Grid -OrgNode -[0 1] OrgNode -1];

21 for i = 1:4

22 a_0 = repmat (3/4*d*[cosd(Ang+(i-1) *90) sind(Ang+(i-1) *90)],1,2);

23 for j = GenStart(i,:)' + (0: nGenCell(i) -1).*Dir1(i,:)'
24 % Get cell idx and def. solver input. Call fmincon , assign solution

25 [Idx , CellNo] = CellIdx(Grid ,j(1),j(2),Dir1 ,Dir2 ,i);

26 Bnd = a_0 + 1/2* norm(a_0 (1:2))*[-1 -1 -1 -1; 1 1 1 1];

27 a_sol = fmincon (@(a)ShearFun(a,Node(Idx),F),a_0 ,[],[],[],[],...

28 Bnd(1,:),Bnd(2,:) ,@(a)DistFun(a,Node(Idx),F,d,[]),Opt2);

29 [~,Node(Idx),Shear] = ShearFun(a_sol ,Node(Idx),F);

30 % Put current cell coord. and shear in P array and update a_0

31 P(CellNo ,1:4 ,1:4) = [Node(Idx) Shear '];
32 a_0 = a_sol;

33 end

34 end

35 %% Step 3: Place remaining , constrained cells

36 ConStart = OrgNode + [1 1 ; 0 1 ; 0 0 ; 1 0];

37 nConCell = nGenCell ([1 2 ; 3 2 ; 3 4 ; 1 4]) - [1 0 ; 0 0 ; 0 0 ; 1 0];

38 for i = 1:4

39 for j = ConStart(i,1) + (0: nConCell(i,1) -1)*(Dir1(i,1)+Dir2(i,1))

40 for k = ConStart(i,2) + (0: nConCell(i,2) -1)*(Dir1(i,2)+Dir2(i,2))

41 % Get cell idx and def. solver input. Call fsolve , assign sol.

42 [Idx , CellNo] = CellIdx(Grid ,j,k,Dir1 ,Dir2 ,i);

43 a_0 = Node(Idx (4 ,1:2)) - Node(Idx (1 ,1:2));

44 a_sol = fsolve (@(a)DistFun(a,Node(Idx),F,d,[]),a_0 ,Opt1);

45 [~,Node(Idx),Shear] = ShearFun(a_sol ,Node(Idx),F);

46 % Put current cell coord. and shear in P array

47 P(CellNo ,1:4 ,1:4) = [Node(Idx) Shear '];
48 end

49 end

50 end

51 %% Plot

52 figure; scatter3(Org (1),Org (2),F(Org (1),Org (2)),'kx','LineWidth ' ,5);
53 hold on; axis('equal ','tight '); xlabel('x'); ylabel('y'); zlabel('z');
54 surf(X,Y,Z,0,'EdgeColor ','none','FaceColor ' ,[0.6,0.7,0.8] ,'FaceAlpha ' ,0.5);
55 patch(P(:,:,1) ',P(:,:,2)',P(:,:,3) ',P(:,:,4) ');
56 cb = colorbar; cb.Label.String = 'Shear Angle [deg]'; colormap('jet');
57 end

58 %% Aux. functions

59 function [Idx , CellNo] = CellIdx(Grid ,Row ,Col ,Dir1 ,Dir2 ,No)

60 % For a cell , return linear ind. of vert. in Node (Idx) and # in P (CellNo)

61 Rows = Row + [0 Dir2(No ,1) Dir1(No ,1)+Dir2(No ,1) Dir1(No ,1)]';
62 Cols = Col + [0 Dir2(No ,2) Dir1(No ,2)+Dir2(No ,2) Dir1(No ,2)]';
63 Idx = Rows + (Cols -1)*Grid (1) + ((1:3) -1)*Grid (1)*Grid (2);

64 CellNo = Rows(No) + (Cols(No) -1)*(Grid (1) -1);

65 end

66 function Vert = CellVertCoor(a,Vert ,F,Ang)

67 % Calculte unknown vertices in cell depending on length of design var. a
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68 if length(a) == 1 % Step 1 (second node rel. to origin node)

69 Vert (2 ,1:2) = Vert (1 ,1:2) + a*[cosd(Ang +90) sind(Ang +90)];

70 Vert (2,3) = F(Vert (2,1),Vert (2,2));

71 elseif length(a) == 4 % Step 2 (Vert 3 rel. to 2 and Vert 4 rel. to 1)

72 Vert (3,:) = [Vert (2 ,1:2)+a(1:2) F(Vert (2,1)+a(1),Vert (2,2)+a(2))];

73 Vert (4,:) = [Vert (1 ,1:2)+a(3:4) F(Vert (1,1)+a(3),Vert (1,2)+a(4))];

74 elseif length(a) == 2 % Step 3 (Vert 3 rel. to 2)

75 Vert (3,:) = [Vert (2 ,1:2)+a(1:2) F(Vert (2,1)+a(1),Vert (2,2)+a(2))];

76 end

77 end

78 function [Out1 , Out2] = DistFun(a,Vert ,F,d,Ang)

79 % Get cell vertices and return distance between vertices depending on step

80 Vert = CellVertCoor(a,Vert ,F,Ang);

81 if length(a) == 1 % Step 1 (1 x dist)

82 Out1 = norm(Vert (2,:)-Vert (1,:)) - d;

83 elseif length(a) == 4 % Step 2 ([] (inequality constr .) and 3 x dist)

84 Out1 = [];

85 Out2 = vecnorm(Vert ([3,4,1],:)-Vert ([2,3,4],:) ,2,2)' - d;

86 elseif length(a) == 2 % Step 3 (2 x dist.)

87 Out1 = vecnorm(Vert ([3 ,4] ,:)-Vert ([2 ,3] ,:) ,2,2)' - d;

88 end

89 end

90 function [Obj , Vert , Shear] = ShearFun(a,Vert ,F)

91 % Get cell vertices and calc. shear angles. Return shear ang. sum (obj. in

92 % step 2), vertex coordinates and vector of shear angles (for P array)

93 Vert = CellVertCoor(a,Vert ,F);

94 % Calculate shear angles using cell edge vectors u and v

95 u = Vert ([2 3 4 1],:)' - Vert ';
96 v = Vert ([4 1 2 3],:)' - Vert ';
97 Shear = abs(atan2d(vecnorm(cross(u,v) ,2,1),dot(u,v)) -90);

98 Obj = sum(Shear);

99 end

B Optimization script code

1 clc; clear; close all; rng('default ');
2 % Define variables , options and call ga function

3 d = 0.022; Grid = [21 21]; Org0 = [0.25 0.25]; OrgNode0 = [11 11]; p = 12;

4 Opt3 = optimoptions (@ga ,'Display ','iter','MaxGenerations ' ,4);
5 nDesVar = 3; lb = [-10 -10 -10]; ub = [10 9 9]; IntegerCon = [2 3];

6 x_opt = ga(@(x)ObjFun(x,d,Grid ,Org0 ,OrgNode0 ,p,false),...

7 nDesVar ,[],[],[],[],lb ,ub ,[], IntegerCon ,Opt3);

8 % Evaluate function with x_opt. Plot and display result

9 [~,Node ,Shear ,AngDev] = ObjFun(x_opt ,d,Grid ,Org0 ,OrgNode0 ,p,true);

10 fprintf('\nMax shear: %g, Max angle dev.: %g \n',max(Shear),max(AngDev (:)))
11 function [Obj ,Node ,Shear ,AngDev] = ObjFun(x,d,Grid ,Org0 ,OrgNode0 ,p,Plt)

12 % Obj. fun. that evaluates KinDrape and calculates shear and angle dev.

13 % Create input variables to KinDrape based on design variables

14 Ang = x(1);

15 OrgNode = OrgNode0 + [x(2) x(3)];

16 Org = Org0 + d*[x(2) x(3)];

17 [Node ,P] = KinDrape(d,Grid ,Org ,Ang ,OrgNode ,Plt);

18 % Calculate shear angles (gamma) as mean of each cell

19 Shear = mean(P(:,:,4) ,2);

20 % Calculate the warp fiber angle deviations (psi)

21 WarpVec = diff(Node (:,:,1:2) ,1,2); WarpVec (:,:,3) = 0.0;
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22 NomVec = reshape ([0 1 0],1,1,3) .* ones(size(WarpVec));

23 AngDev = atan2d(vecnorm(cross(WarpVec ,NomVec) ,2,3),dot(WarpVec ,NomVec ,3));

24 % Calculate objective as sum of p-norms

25 Obj = sum(abs(Shear).^p)^(1/p) + sum(abs(AngDev (:)).^p)^(1/p);

26 end


