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A B S T R A C T

Nowadays, numerous companies and industries introduce recycling processes in their production, aiming to
increase the sustainable use of the planet’s natural resources. Nevertheless, these processes remain inefficient
due to the high degree of complexity and variation in the products. In order to remedy this, industry
stakeholders adopt the circular economy business model and introduce take-back programmes and reman-
ufacturing processes for their End of Life products in their own supply chains. Take-back programmes enable
the re-sourcing of sub-assemblies and components of previously manufactured products while remanufacturing
processes encourage non-destructive disassembly. Due to the uncertain conditions of the re-sourced products,
fully automated cells cannot cope with the demanding disassembly processes. Therefore, there is a need to
establish hybrid disassembly robot cells where humans and robots work closely together in a process known
as human–robot collaborative disassembly (HRCD). This paper examines the landscape of HRCD and reviews
the progress in the field during the period 2009–2020. The analysis investigates principles and elements of
human–robot collaboration in industrial environments such as safety standards and collaborative operation
modes, HRI communication interfaces, and the design characteristics of a disassembly process. Additionally,
the various technical challenges of HRCD are explored, and a review of existing systems supporting HRCD is
presented. This review aims to support the robotics community in the future development of HRCD systems,
discuss identified literature gaps, and suggest future research directions in this area.

1. Introduction

The rapid progression in technology over the last decades has
changed the world’s consumptive behaviour significantly. However,
with the current business model, this trend is not environmentally and
economically sustainable [1]. A significant number of manufacturers
have initiated a paradigm shift by applying various recycling processes
in the production lines. For example, they attempt to reduce the num-
ber of raw materials that have to be extracted from Earth, by sending
the excess amount directly back to their vendors; an action that has
already shown environmental and economical benefits [2].

However, this remains insufficient; therefore, policy providers have
discussed and promoted the so-called circular economy business models
(CEBMs) in UN- and EU-summits [1,3,4] and significant industrial
stakeholders, such as Bosch [5], Grundfos [6] and Apple Inc. [7] have
already started to adopt this model. Fig. 1 illustrates the central concept
behind circular economy, which is to reuse/remanufacture parts and
components of products, that have reached their End-Of-Life (EOL)
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stage and as a result extend the life of sub-assemblies and single
components.

Fig. 1 illustrates the central concept behind circular economy, where
the aim is to extend the life of sub-assemblies and single components of
products, by reuse-/remanufacturing parts and components of products,
which have reached their End-Of-Life (EOL) stage.

Traditional manufacturing practices that require, e.g. shredding and
reproduction of raw materials, can be less environmentally friendly
compared to the remanufacturing/requalification reproduction process
for the following reasons: (i) contains non-environmentally friendly
chemicals, (ii) is energy consuming, (iii) the new component still has
to be produced, (iv) the requalification of used parts is economically
more viable than their recycling [8]. In addition, a report from Ellen
MacArthur Foundation [9] outlines the fact that the CEBM brings the
following benefits for manufacturing companies:

(i) Substantial net material savings
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Fig. 1. Abstract visualization of the resource life cycle according to the circular economy business model. 01: New raw materials enter the production; 02: Design & manufacturing
of sub-components; 03: Production of final product; 04: Distribution of the product to customers; 05: Consumption of the product; 06: Take back of the EOL product (EOLP); 07:
Disassembly of the EOLP; 08: Extraction of raw materials; 09: Remanufacturing and requalification of extracted sub-components; 10: Recycling of raw materials; 11: Discarding
non-recyclable raw materials.

(ii) Reduced exposure to price volatility
(iii) Increased economic development
(iv) Increased innovation and job creation potential
(v) Increased resilience in living systems and the economy

These findings are further backed by Li et al. [10], where in a case
study for the analysis of a disassembly process where robots are used for
the recovery of strategically important materials from electric vehicles,
concluded that an average 95% of the materials and their associated
recovery values could be extracted. It also states that it is crucial to
take the design for disassembly (DfD) of products into account as a pre-
treatment process for future EOL vehicles as it has a direct and positive
influence on the efficiency of disassembly processes. Consequently, this
leads to a reduction in material lost during the recycling process. Ac-
cording to Graedel et al. [11], this can be traced back to the increased
complexity of multi-material products. Therefore, companies that adopt
this business model still face major challenges in the following three
fields:

Logistics/ Take-back programme: Take-back programmes serve the
purpose of souring EOL products from customers and end-
consumers to extract reusable sub-assemblies and components.
Establishing and maintaining a take-back programme profitable
remains a major challenge for most companies.
Disassembly Process: The disassembly process itself focuses on the
extraction of sub-assemblies and individual components of EOLPs
in such a way that they can be re-used/-manufactured. Non-
destructive disassembly of final products remains a process highly
dependable on the original design and assembly of the product.
Requalification Process: The requalification process is another es-
sential area for the realization of the circular economy. Here, the
disassembled sub-assembly or components are tested to evaluate
if they are suited to be introduced back into the manufacturing
process and integrated into a new product. The design of such
evaluation process to identify all potential defects and predict the

Table 1
Technological challenges for de-/remanufacturing system. [12].

Challenges

∙ High variability in the conditions of post-use parts
∙ Poor information about return products
∙ Increasing product complexity
∙ Short life-cycle of products and high product variety
∙ Increasing quality requirements on recovered materials and component
∙ Pressure on costs and efficiency

future life span of said sub-assembly/component remains a major
challenge.

The main challenges between these three areas lay in the technological
challenges, as stated in [12]: ‘‘The role of advanced de- and remanufac-
turing technologies and systems is fundamental to achieve the required
quality and efficiency of the regeneration process’’. Additionally, some
major challenges that were pointed out are presented in Table 1. As
recently pointed out in [13], the economic viability of the take-back
programme is affected by its high proportion of manual labour. There
was concluded that the cycle time for the disassembly of a product
takes three minutes, compared to a cycle time of 20 s for a conventional
recycling setup (i.e., shredding).

In order to make CEBM viable for any manufacturer, it is necessary
to automate the disassembly process. One of the main technologi-
cal enablers that facilitate the automation of the vast majority of
manufacturing processes and consequently disassembly is industrial
manipulators [14].

However, as stated previously and also concluded in an analy-
sis of the structural design of LCD TVs for automatic disassembly
by Elo et al. [15], the major challenge for a disassembly system is
the variability and uncertainties concerning the state of the product,
e.g., in-homogeneous materials, the mixture of materials, component
location and the variation of the structural rigidity of the components.
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This variability and uncertainty can make it impossible for a fully
automated system to complete the process in an economically viable
time or even complete it at all.

Therefore, it is necessary to keep the human-in-the-loop and create
a hybrid automated disassembly cell in which humans and robots
support each other to complete a given disassembly task. Such im-
plementation introduces a new set of challenges to the disassembly
process with regards to the collaboration between humans and robots,
i.e., task sharing/allocation/programming and safety in human–robot
interaction/collaboration.

This paper aims to clarify these challenges and provide the reader
with an overview of the progress during the past decade in the field of
human–robot collaborative disassembly (HRCD). The contributions of
the paper are:

(i) An analysis of the way that human–robot collaboration (HRC)
is currently interpreted and implemented within the field of
robotic disassembly in industrial settings.

(ii) An insight on the main components of a robotic disassembly
process.

(iii) A framework for identification and classification of research pa-
pers focused on human–robot collaborative disassembly systems

The paper continues with a description of the methodology to identify
and select relevant papers in Section 2. In Sections 3 and 4, the neces-
sary background knowledge for the analysis of the current state of the
art in the field of HRCD is provided. Section 3 presents the definition of
HRC, an overview of standards and methods ensuring robot safety, and
a summary of communication methods that enable HRC in industrial
settings. Section 4 explores the various areas composing disassembly
processes i.e., Task Definition, Task Planning and Task Implementation.
Section 5, highlights the literature which explicitly covers the topic of
HRCD. Lastly, Sections 6 and 7, evaluate the most relevant papers and
conclude with a summary of the gained knowledge, several discussion
and reflection points and a list of identified research gaps in the
research area.

2. Search methodology

In order to solve the challenges associated with the disassembly
of EOLPs (see Table 1), multiple robotic technologies and concepts
have been developed since the 1990s. Although numerous surveys and
reviews on HRC in industrial settings have been proposed, to the best of
the authors’ knowledge, only one extensive literature review exists on
the topic of robotic solutions for disassembly tasks and was conducted
by Poschmann et al. [16].

That particular work highlights that the current research trend
within this field moves towards completely autonomous robotic dis-
assembly cells and the improvement of HRC process implementations.
The importance of HRC in disassembly is also solidified by acknowl-
edging its investment value for companies in terms of complexity and
adaptability compared to fully automated solutions. However, [16]
mainly focuses on robotic disassembly in a contextual sense. It does not
provide an analysis of the research outside of the field of disassembly
that might be beneficial for this field.

On the contrary, the objective of this review is to provide an
overview and an analysis of autonomous robotic disassembly systems
as well as robotic solutions used for industrial disassembly tasks while
incorporating various forms of HRC. For this aim, a broad literature
survey was executed, and the contents of more than 400 papers in
related areas were researched and reviewed. A summary of the chosen
search criteria can be found in Table 2. Furthermore, a visualization
of the selection process of related literature is illustrated in Fig. 2.
Initially, an extensive search on web-based databases (i.e., Google
Scholar, Scopus, WebofScience) for the related works in the area of HRC
within disassembly for the period from 2009 to 2020 was conducted.
Several search terms related to the application context were used, such

as: ‘‘Human-Robot Collaboration’’ AND ‘‘Disassembly’’, ‘‘robot assisted
disassembly’’, and ‘‘Human-Robot Collaborative Disassembly’’. The se-
lection of these terms was based on the argumentation that they must
include a relation to the process (i.e. disassembly), a robotic mechanism
as well as indicate a supportive/role by either one or multiple of the
autonomous quantities (i.e. human operators and robots) involved in
the process.

At the same time, search terms relevant to the general area of
industrial disassembly but were not suitable for the scope of this review
had to be excluded. For example, since HRC encapsulates any form
of HRI in industrial processes, the authors decided to exclude HRI
as a search term in this review. Moreover, papers with a contextual
background of economic evaluation/feasibility studies of a disassem-
bly line and profitability scores are excluded. Most companies focus
on the economic feasibility and profitability of the disassembly line
itself rather than the choice of a robot or a specific enabler of the
technology. Therefore, most of these studies focused on cycle time
and regained/preserved value of the components rather than on the
technology enabling the disassembly of a product.

Besides, literature discussing the process optimization of disassem-
bly line designs is excluded from the paper selection. The authors
believe that such studies do not add significant value to analysing how
and what technology/approach is currently used to realize a human–
robot collaborative disassembly system. Lastly, literature presenting the
design of tools is excluded because the general practice of designing
a tool that can be safety-certified for an HRC application is identical
regardless of the task.

The period for this search was selected to cover from January 2009
until September 2020. The beginning of this period was chosen because
the first collaborative enabled industrial manipulator was made avail-
able for purchase in 2008 [17]. Furthermore, new standards were put
in place in 2009, allowing the incorporation to of HRC on shop-floors.

Taking all these parameters into consideration, the initial search re-
sulted in 425 possible relevant publications, while after eliminating the
duplicates, they resulted in 383 publications. A later screening of the
papers based on title and abstract information and the search/review
criteria of Table 2, resulted in 9 publications that are relevant in the
field of human–robot collaboration in disassembly.

3. Principles of Human–Robot Collaboration

The topic of HRC has been discussed before the first collaborative
enabled industrial manipulator (i.e., KUKA LWR 4) was made available
in 2008 [17]. However, there is an ongoing debate about the definition
and interpretation of the non-normative terms HRC and human–robot
interaction within academia and industry. This debate was summarized
by Vicentini, where an overview was presented over the different
interpretations across the community and also highlighted the risks and
consequences of enforcing the labels in the real-world by using the term
‘‘collaboration’’ for branding purposes [18].

Some of the different viewpoints in this debate were explored
in [19,20], where definitions and various levels/subcategories of HRI
and HRC were presented. According to Hentout et al. [19], HRI can be
categorized into the following categories: (i) human–robot coexistence,
(ii) human–robot cooperation, (iii) human–robot collaboration, where
human–robot collaboration can be split into physical collaborations and
contact-less collaborations.

At the same time, other viewpoints regarding which category em-
bodies the most immersive/direct interaction between humans and
robots exist within the research community. On the one hand, Had-
dadin et al. [21] supported the categorization based on physical prox-
imity between a human and a robot. This interpretation classifies
cooperative robot interactions as being in closer proximity than col-
laborative robot interactions. As a result, human–robot cooperation
(HRCoop) occurs when a robot and a human are at the closest possible
distance and human–robot coexistence (HRCox) when they are farthest
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Table 2
Overview of the various review criteria applied during the search process for relevant literature.
Search Criteria Description

Search terms ‘‘Human-Robot Collaboration’’ AND ‘‘Disassembly’’, ‘‘robot assisted disassembly’’, ‘‘Human-Robot Collaborative Disassembly’’
Time period January 2009–September 2020
Publication type peer-reviewed academic conference paper, journal articles and books

Exclusion criteria Description

Language non-English
Contextual economical evaluation/feasibility studies, profitability scores, process optimization disassembly line design, tool design

Fig. 2. Visualization of the literature selection process for identified literature related
to human–robot collaborative disassembly.

apart. On the other hand, Kolbeinsson et al. [22] mentioned that HRC
is based on how humans and robots share their workspace and tasks.
Therefore, they interpret HRC as more immersive as human–robot
cooperation (see Fig. 3).

In the meantime, most industry stakeholders have a different inter-
pretation of HRC where they assume that any robot that can operate
without a fence is collaborative. Different elements of HRC in indus-
trial environments are examined by Villani et al. [23] who have re-
viewed the topic and identified the main challenges as: (i) safety issues,
(ii) HRI communication interfaces, (iii) HRI process design methods.

In our paper we tackle the element of safety by covering the safety
standards and collaborative operation modes; the HRI communication
interfaces by covering programming approaches, input modes, and reality
enhancement, and lastly we cover the design characteristics of a disas-
sembly process by discussing task definition, task sequence planning and
automated disassembly applications.

3.1. Robot Safety

The current trends in the industry according to [24] go towards
robotic setups, which are fenceless and intrinsically safe by considering
the static force and speed of the robot as well as the human’s reflex
actions. An extensive survey that summarizes the field of HRC and HRI
was conducted by Vicentini in [25]. The research found that physical
interactions between robots and humans can, in general, be categorized
into desired and undesired contacts. In this context, undesired contact is
being classified as collisions. Haddadin et al. have made an extensive
investigation into the different forms/kinds of collisions and their
corresponding critical contact force values in [26,27]. There Haddadin
et al. differentiated between the following forms of impacts: (i) uncon-
strained impacts, (ii) clamping in the robot structure, (iii) constrained
impacts (iii) partially constrained impacts, (iv) resulting in secondary
impacts. This investigation was expanded in [28] to cover different
severity levels for various types of injuries depending on the collision
types. Based on these investigations, Haddadin et al. progressed with
analysing extensively model-based algorithms designed for real-time
collision detection, isolation, and identification of pHRIs [29] and Golz
et al. classified contact types to intended and unintended ones to
highlight the importance of detecting and interpreting contacts for safe
pHRI [30].

3.1.1. ISO standards
In an attempt to classify HRC in a general and robot safety context,

several ISO standards were put in place and are regularly updated.
The introduction of these standards aims to categorize the different
forms of collaboration and interaction based on their kind (e.g. verbal,
non-verbal), severity, and control modes.

ISO 8373
The ISO 8373 standard [31] specifies the vocabulary used within the

area of HRC, in the context of robots, the interaction between humans
and robot (HRI), and other relevant terms related to robots and control
system/strategies.
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Fig. 3. A visualization of the various levels of interaction, according to Kolbeinsson et al. [22]. The outer left of the graph represents the absence of interaction between human
and robot. The most right part of the graph represents a level of interaction between human and robot which classifies as collaborative.

ISO 10218
The ISO 10218-1/2 standard, in general, describes the concepts of

collaborative enabled robots, workspaces and operations. ISO 10218
is comprised the following two parts: (i) ISO 10218-1 [32] concerns
the specification of the requirement and limitations of the robot’s be-
haviour when interacting with an operator in collaborative operation.
(ii) ISO 10218-2 [33] defines the requirements for the robot systems
concerning the safety when applied in an HRC setting.

ISO 15066
ISO 15066 [34] attempts to further specify HRC by supplement-

ing the requirements and guidelines established in ISO 10218. More
precisely, this standard defines the appropriate procedure for the lim-
itation of speed values, which keeps force and pressure values within
the defined pain sensitivity threshold for humans in collision scenarios
with robots. It defines twelve specific areas for testing on the human
body as well as the maximum permissible pressure and force values,
specific formulas to obtain the maximal permissible energy transfer for
each body of the defined areas on the human body, and lastly the speed
limit values for transient contact between a human body and a part of a
robot system. Derived from these specifications, the following four-level
(see Fig. 4) of control modes are defined:

Safety-rated Monitored Speed (SMS) enables humans and manip-
ulators to have a shared workspace, but they cannot work in
this workspace at the same time. As soon as the human operator
enters the shared workspace, the robot stops immediately until
the operator leaves the shard workspace again.
Hand-Guidance (HG), methods are designed for the manual guid-
ance of robot systems. Control methods falling into this category
have no defined upper limit in terms of speed with regards to the
robot or forces acting on the human body but the generation of
the motion input. It requires but not limited to that the risks of: (i)
unintentional commands given by the human and (ii) mismatched
commanded and executed motion
Speed and Separation Monitoring (SSM) control schemes enable
human operators to share the same workspace with the manip-
ulator while being in motion. However, the robot motion is like
SMS proximate on the distance between the operator and the
robot. The difference is that the SSM can adapt the velocity of
the manipulator based on the proximity-based zones between
human and manipulator. This ensures that the protective distance
at which the robot has to stop can be made smaller compared to
SMS.

Fig. 4. Visualization of the four different control levels. [23].

Power and force limitation (PFL) reduces the effects of unintended
contact between human and robot. This can be achieved by
implementing control schemes which control the motion of the
robot in such a way that the forces and momentum upon impact
with the operator are within the set limits to avoid injury.

3.2. Enablers of Human–Robot Collaboration

Previously in this work, the debate regarding the definition of the
HRC was discussed, followed by an overview of the various safety stan-
dards related to robots. However, regardless of the chosen definition
of HRC and which of the safety standards must be followed to enable
a safe implementation, they all require the same thing; the so-called
Enablers, which are control strategies and human–robot communication
techniques equally necessary so the human worker can interact safely
as well as intuitively with the robot.

3.2.1. Control
One of the main concerns in the implementation of industrial HRC is

the classification of physical contact, an area in which De Santis et al.
examined thoroughly and analysed the different aspects and require-
ments for safe pHRI [35]. One conclusion of that work is that control
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methods cannot compensate for a poor mechanical design on their own;
however, they remain an essential aspect when it comes to perfor-
mance, reduction of the sensitivity to uncertainties, and improvement
of reliability.

Control schemes, in general, can be divided into the following two
types:

(i) Pre-collision
(ii) Post-collision

3.2.2. Pre-collision strategies
Pre-collision control strategies focus on preventing harmful con-

tact between the robot and its environment with so-called collision
avoidance. These strategies use sensory input (e.g., camera, laser sen-
sors) to adjust the velocity or the motion of the manipulator based
on the distance to autonomous quantities and their behaviour in the
manipulator’s work environment.

Along with these ideas, Safeea et al. used various sensors (i.e., cam-
eras, lasers, IMUs) to capture the human operator’s position and motion
to adapt the manipulator’s pre-defined/planned path based on a frame-
work incorporating artificial potential fields [36]. In parallel, Chen
et al. explored a collision-free motion path planner for a 6-DoF serial
manipulator [37]. The presented method tracks dynamic obstacles
in the manipulator’s workspace by utilizing depth images captured
by multiple KinectV2 cameras. Based on the estimated position and
velocity of the obstacle, an artificial potential field is adapted, such that
the manipulator’s nullspace can avoid the obstacle while preserving the
original end-effector’s trajectory.

For the generation of a collision-free path in an HRC setting, Landi
et al. proposed an optimization-based method that utilizes safety bar-
riers positioned around the robot links [38]. It also minimizes the
differential between the nominal input and commanded acceleration
such that the manipulator can adapt its motion accordingly to obstacles
detected by depth visual sensors. Another method for addressing the
challenge of avoiding joint limits and Cartesian obstacles was presented
by Scheurer et al. in [39]. This approach used a closed-loop-inverse-
kinematic control approach on velocity level and was evaluated on a
12-DoF mobile manipulator.

Liu et al. presented a dynamic modified SSM method to enable
HRC while maintaining a certain productivity level [40]. The setup
consists of a vision-based detection system based on which the risk
assessment and response strategy for industrial HRC can be dynamically
adapted. Another effective online collision avoidance was proposed
by Mohammad et al. where they utilize an augmented environment
containing a three-dimensional virtual model of the manipulator and
real images of human operators captured by depth cameras [41].
The manipulator adapts its behaviour based on four strategies, either
alerting the operator, halting the manipulator in its motion, moving it
into a safe position, or modifying its trajectory.

Even though the examples for pre-collision control schemes men-
tioned above enable the robot to avoid collisions, they cannot guarantee
that it will not come to harmful contact between human and robot.
As pointed out by Haddadin et al. this happened because the relative
motions between robot and human can be hard to predict as the
use of exteroceptive sensors monitoring the workspace and adapting
the robot’s movement may not be sufficient for the prevention of
collisions [42]. This observation is also highlighted by De Santis et al.
who mention that to ensure a safe robot motion, pure motion control
is inadequate, as it might generate undesirable contact forces in case
of collisions [35]. Thus, it is necessary to implement a post-collision
control strategy capable of limiting the contact forces between humans
and robots to a desirable level.

3.2.3. Post-collision strategies
Contrary to pre-collision control strategies, post-collision control

strategies do not prevent possible contact between humans and robots
but instead limit the contact force and the energy exchange between the
two entities to a safe limited [43]. Such post-collision control strategies
are also known as ‘‘interaction control strategies’’, where the two most
prominent sub-categories are direct and indirect control strategies. The
former includes so-called hybrid control strategies, whereas the latter
includes Admittance and Impedance control schemes.

Direct-force control approaches control the manipulator’s force
along the constrain as well as the motion along with the directions
of the unconstrained path by measuring the force.[44]. As aforemen-
tioned, a prominent subcategory of Direct-force control approaches is
the so-called hybrid force/motion control.

Yip and Camarillo [45] propose a hybrid position/force control
approach capable of manipulating the manipulator’s end-effector po-
sition and force in the presence of unknown body constraints. This
method enables manipulators with complex joint mechanics to navigate
when subject to unknown environmental constraint. Leite et al. [46]
presents a hybrid control scheme that combines adaptive visual servo-
ing and direct force control enabling non-redundant robotic manipu-
lators to perform interaction tasks on smooth surfaces. The presented
method enables the manipulator to exert a predefined contact force
with its end-effector with a smooth surface for visually tracking the
desired path. Another adaptive position and force control approach
for a robotic manipulator in interaction with a flexible environment
is presented by Gierlak and Szuster in [47]. It utilizes a manipulator–
environment system model that takes various parameters such as mo-
tion resistance and environment elasticity into account, intending to
define the position and force control task.

Compared to direct-force control, indirect force control schemes
achieve force control via motion control, instead of closing the force
feedback loop resulting in nonlinear and coupled impedance or admit-
tance [44].

Admittance control schemes manipulate the virtual model dynamics
of a system by creating an adequate response to the measured forces
caused by interactions with a human operator. Keemink et al. provided
a comprehensive overview and analysis of admittance control applied
in pHRIs in terms of framework, the influence of feed-forward con-
trol, force signal filtering, post-sensor inertia compensation, internal
robot flexibility, the effect of virtual damping on the systems stability,
passivity and other performance-critical criteria [48].

An approach for this kind of control strategy was put forward by
Dimeas et al. where a variable admittance control approach for human–
robot cooperation tasks is presented [49]. It combines a Fuzzy Inference
System designed to adjust the damping of the manipulator’s admittance
based on force introduced by the human operator and its measured
velocity. A Fuzzy Model Reference Learning Controller adjusted the
Fuzzy Inference Systems response based on the minimum jerk trajectory
model.

Additionally, Ranatunga et al. proposed an adaptive admittance
controller capable of adapting to human intent and variations of the
manipulator’s dynamics [50]. The control strategies consist of an outer
and inner control loop with the outer-loop using an adaptive inverse
control technique and the inner-loop linearizing the robot dynamics via
a neuro-adaptive controller. This control strategy enables an efficient
online adaptation of the manipulator’s admittance model for different
operators and a smooth human–robot interaction due to the reduction
of jerks.

For improving the performance of HRC tasks, Bea et al. com-
bined a variable admittance control strategy with virtual stiffness guid-
ance [51]. The approach prevents unnecessary adjustments of the
damping parameters based on the classification of the operator’s inten-
tions and additionally aiding the operator via virtual spring supporting
the task, which the operator can adjust.
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Impedance Control schemes measure the displacement/motion
caused by the interaction and create a reactive force to compensate
for this displacement. In an experimental study on human–robot co-
manipulation for kinematically redundant manipulators conducted by
Ficuciello et al. it was investigated that the manipulator’s perfor-
mance during pHRIs, can be enhanced by the combination of Cartesian
impedance modulation and redundancy resolution [52]. A Cartesian
impedance control strategy enables the manipulator to handle the
forces introduced by the human–robot operator due to its compliant
nature. The study established that variable impedance strategies with
a suitable modulation strategy outperform non-variable impedance
control strategies when it comes to the perceived comfort by human
operators during manual interaction like guidance.

Additionally, Ficuciello et al. presented another Impedance control
paradigm, focused on the control of redundant robot manipulators
in the task space [53]. Its null-space impedance control approach
allows for the safe reaction of the manipulator during intentional
and unintentional/accidental physical interaction with its environment.
Laffrance et al. proposed an energy-based control strategy for enabling
manipulators to work closely with humans by bounding their behaviour
in the first instance of an impact between the two entities [54]. This is
achieved by limiting the energy stored into the system to a set maxi-
mum value of the position-based controller, which adapts the position
trajectory reference in correlation with the set maximum energy value.
Raiola et al. investigated the impedance control scheme, which enables
safe human–robot interaction through energy and power limitation.
In addition to the limited energy and power of the manipulator, the
system’s passivity is also ensured due to the implemented energy
tanks [55]. Vanderborght et al. provided an extensive insight on the
topic of Variable Impedance Actuators (VIA) by giving a structured
overview [56]. This work classifies the VIA based on how the variable
stiffness and damping were implemented. Ott et al. presented a hybrid
reactive control strategy capable of continuously switching and inter-
polating between Impedance and Admittance Control [57]. Thereby
merging robustness properties of Impedance Control and the accuracy
in free motion associated with Admittance Control.

Regardless if a control strategy is designed to avoid collisions or
minimize contact forces, they both face the challenge of possible restric-
tions in their workspace due to the location/placement of the manip-
ulator in an environment with limited space (e.g., existing production
lines and residential houses). However, manipulators controlled by an
interaction control strategy are more exposed to this problem. This
is due to the compliance introduced to the system by the control
scheme; thereby, enabling the robotics system to adapt to unplanned
interactions with its environment by deviating from its original planned
trajectory.

3.2.4. Workspace restrictions
Therefore, workspace restrictions are necessary when implementing

such control strategies, and to enforce these restrictions/constraints,
various methods have been developed to restrict the manipulator’s
workspaces. To begin with, Kimmel et al. presented a method that
enforces Cartesian constraint with an invariance control scheme ap-
proach in combination with a discrete-time Euler solver to reduce os-
cillations when encountering the constraints [58]. Similarly, Rauscher
et al. imposed Cartesian workspace-restrictions for a redundant robot
successfully by combining an impedance control strategy with control-
barrier-functions and quadratic programming [59].

The work conducted by Dimeas et al. presented a method hinder-
ing the operator from forcing the manipulator into a configuration,
which reduces its performance capabilities [60]. The methods consist
of virtual constraints and a Cartesian admittance control scheme, which
adapts based on the kinematic manipulability index.

Han et al. focused on an operational-space-control (OSC) framework
capable of handling the encounter of joint limits and singularities [61].
The energy-aware control scheme from Raiola et al. [55], previously

Fig. 5. Visualization of the enforcement of virtual workspace constraints while the
manipulator is in a compliant state [62].

discussed in this work, was extended by Hjorth et al. [62] by im-
plementing the concept of artificial potential fields, first introduced
in [63], for the enforcement of workspace restriction for collaborative
enabled robots while being in a compliant state (see Fig. 5).

A method proposed by Flacco et al. saturates the manipulator’s
Nullspace by combining the Stack-of-Tasks approach with quadratic
programming [64]. This approach can be adapted to restrict the manip-
ulator’s workspace as it is designed to keep the manipulator within a set
of hard constraints for its positions, velocities and accelerations within
its configuration space. Muñoz Osorio et al. extended this method
and transformed the algorithm to a torque-based approach [65],by
combining the Operation Space Control formulation with the stack-of-
task technique. The creation of high priority tasks in the task stack
enables the restriction of the manipulator’s motion within the Cartesian
and configuration space, respectively.

3.2.5. Human–Robot Communication
There are several ways for an operator to interact with a robot on

the production floor. As mentioned before, sharing the same workspace
is a fundamental element in HRC. Humans tend to communicate their
intentions during the collaboration over a shared task via a variety
of verbal and non–verbal cues either in real or virtual work environ-
ments [66].

In this work, these ways of communication are grouped in two
broad categories, i.e., verbal where voice control and speech recognition
are the key elements and non–verbal where methods including gesture
recognition, human pose and skeleton tracking, gaze detection, and
intention recognition are considered. A short overview of how these
enablers of human–robot communication in industrial HRC are applied
in augmented, virtual and mixed realities is also presented. The main
focus remains within industrial applications; however, approaches used
in social robotics and present great potential to be introduced in
manufacturing are also briefly discussed.

Verbal communication. Voice control and speech recognition are pri-
marily used in manufacturing applications as interfaces for robot con-
trol [67]. Maksymova et al. presented a wide range of different models
for the voice control of an industrial robot such as logical, semantic
networks, frame model and Petri Nets in the context of an assembly
task [68]. Bingol and Aydogmus investigated the performance of a
natural speech recognition system based on deep neural networks for
the classification of different commands during the interactive control
of a KUKA KR Agilus robot arm in multiple industrial tasks [69].
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Fig. 6. Example of a pointing gesture identification validation setup from [75].

González-Docasal et al. progressed a step further to integrate a semantic
interpreter who, with the support of a knowledge manager, extracted
semantic information from transcribed spoken content and enabled an
industrial robot to understand the intention of the operator and execute
a collaborative task accordingly [70].

However, most of the applications solely based on speech recogni-
tion may face performance issues due to background noise that usually
exists in industrial environments [71]. Thus, speech recognition is
often combined with other modalities such as gesture recognition [72],
eye gaze detection [73] and haptic control [74] to enhance HRC and
improve the accuracy of human action recognition. More specifically,
Maurtua et al. examined a semantic approach for multimodal inter-
action between human workers and industrial robots to enhance the
dependability and naturalness of the collaboration between them in
real industrial settings [75]. The approach is based on the recognition
of verbal commands and gestures which communicate requests for
processing and execution of a disassembly task (involving screwing and
unscrewing operations) and deburring of wax pieces (see Fig. 6).

Additionally, Markis et al. presented a multimodal framework for in-
teraction with dual-arm robots. It is based on a hierarchical model that
handles various inputs from gestures, voice commands, and intuitive
graphical user interfaces to decompose the working tasks into different
abstraction levels [76]. Neto et al. incorporated wearable sensors and
inertial measurement units (IMUs) to capture the human upper body
gestures, which afterwards act as inputs to an artificial neural network
(ANN) for gesture classification. This multimodal approach in combi-
nation with a parameterized task manager based on speech and visual
feedback enables the human operator to complete collaborative robot
tasks such as handover and delivery of parts [77].

Hongyi et al. introduced a deep learning framework for multi-
modal control of an industrial robot where voice, hand motion and
body posture recognition are combined based on Convolutional Neural
Networks (CNNs) and a multilayer perceptron model (MLP) to dynam-
ically affect the programming of the robot [78,79]. Gustavsson et al.
presented a pilot study where speech recognition and haptic control
are combined to control a UR3 robot. Naturally, inexperienced users
discovered the challenges of operating a voice-controlled interface in
a noisy environment. However, the robot’s haptic control altered the
overall impression of the participants who evaluated the concept as
intuitive to use [80]. Mohammed and Wang explored the behaviour
of the human brain using electroencephalography (EEG) to develop
a brainwave-driven robotic application to assist the HRC during the
assembly of a car engine manifold [81]. The major advantages of such
a framework are its easy integration with voice, gestures and haptic
commands and the ability to free up the mental and physical capacity
of the operators to allow them to control the robot while performing a
shared task.

Non-verbal communication. Human–robot interaction systems based on
visual cues can often compliment the ones based on verbal commu-
nication and even replace them in cases where the communication
is unreliable [82,83]. Visual systems based on recognizing gestures
have been a cornerstone of a repertoire of HRI techniques used in
many manufacturing scenarios. Berman and Stern explored the wide
range of the sensors used in gesture recognition systems. They divided
their taxonomy into three significant components, i.e., sensor stimuli,

Fig. 7. Two of the manipulation gestures used in [101].

the context of use, and sensor platform [84]. There are a plethora of
methods in the literature that use a mixture of these components for
gesture-based control of robots in HRC scenarios.

To begin with, a crucial point in the vast majority of gesture
recognition methods is the detection of the pose or skeleton outline of
the operator [72]. There are numerous sensors used to produce robust
detection and tracking of the pose of the operator mostly based on RGB-
D cameras such as the Kinect v2 [85,86] and Intel Realsense [87,88]
while other sensors such as Leap motion can be used for specialized
tracking of the hand and fingers for robot control [89,90]. Similarly,
accurate pose detections can be achieved by using IMU sensors [91],
thermal cameras [92] and various wearable sensors [93], however,
their restrictive mobility, low resolution and time-consuming setup
render them less popular.

During the past decade, machine learning methods have been
widely used in recognizing human actions and classifying them to re-
spective commands for robot control in industrial HRC. Traditional ma-
chine learning methods such as Gaussian Mixture Models (GMM) [94],
Hidden Markov Models (HMM) [95] and Support Vector Machines
(SVM) [96] have been used for the detection of humans with high
accuracy ranging from 80 to 90%. To achieve more accurate results,
researchers have used Deep Learning techniques where 3D-CNNs per-
form close to 96% accuracy [97–99] and a combination of a novel 3D
descriptor for detection of joints and MLP for classification can achieve
close to 98% accuracy [100].

In parallel, there is intriguing research that examines the effect
of gesture-based communication when the robots themselves produce
the gestures. Sheikholeslami et al. explored the efficiency of gestures
performed by various robot hand configurations in cooperative indus-
trial tasks [101]. They concluded that the robot could communicate its
intentions robustly and led to a higher acceptance rate from the oper-
ators. Gleeson et al. produced a lexicon of communicative terms and
robot gestures to characterize the steps of commonly used industrial
tasks such as part acquisition and fastening of screws [102]. The lexicon
used in a representative HRC industrial task, i.e. vehicle door assembly,
where it proved adequate for an intuitive and efficient human–robot
communication (see Fig. 7).

Other than gesture and pose recognition methods, several meth-
ods have also been proposed in the literature to track the gaze and
attention of the operators to improve the communication with robots
in industrial HRC. Eye gaze tracking has been studied extensively as
a human–computer interaction interface where multiple intrusive and
non-intrusive techniques have been identified [103]. Palinko et al. used
gaze tracking as means of human–robot communication and proved
that eye tracking is superior to head tracking techniques in HRC with
an iCub robot as the robot was able to exploit richer information from
tracking the eye gaze of the operators than tracking the position of
their head [104]. Similarly, in industrial settings, eye gaze tracking
techniques have been used to improve robustness during robot manip-
ulation tasks [105], to assess the comfort levels of the operators during
an HRC task [106], and as an aspect of a shared attention interaction
model that affected the timing of human–robot handover tasks [107]
positively.



Robotics and Computer-Integrated Manufacturing 73 (2022) 102208

9

S. Hjorth and D. Chrysostomou

In addition to gaze tracking, researchers have used tactile and
haptic feedback to ensure robust communication with industrial robots.
Casalino et al. introduced tactile feedback directly at the fingers of
the operators to track their operational awareness. A Bayesian recur-
sive classifier was utilized to estimate the human intention, while a
wearable vibrotactile ring provided feedback about the different stages
of HRC [108]. Salvietti et al. explored a bilateral haptic interface
where a soft gripper was used in combination with a wearable, remote
ring interface to improve the effectiveness of the collaboration [109].
Bergner et al. used an innovative interface based on distributed cells
acting as a large scale skin around robot manipulators which computes
the joint torque in the contact points to enable more intuitive human–
robot communication based solely on touch [110]. Similarly, Tang et al.
developed a novel signalling system based on robot light skin that
improved the reaction time of the users significantly and reduced the
mental workload of the operators resulting in fewer errors during the
execution of simple industrial tasks [111].

Human–Robot Communication in virtual, augmented and mixed realities.
Furthermore, due to the technological advancements in computer-
generated simulations and the increase of available computational
power, human–robot communication in virtual, augmented, and mixed
reality workspaces has become more feasible. The main differences in
this virtuality continuum originate from the level of immersion into the
virtual environment the methods support. In virtual reality, there is a
total immersion in a virtual environment. In contrast, in augmented
reality applications, the real world is enhanced with some virtual
details, and in a mixed reality environment, the real and virtual world
intertwines, enabling manipulation with physical and virtual objects.

In general, Augmented and Virtual reality (AR/VR) techniques have
been used extensively in manufacturing settings [112,113] for worker
training [114] and support [115], digital twin implementations [116],
and optimization of industrial processes such as polishing [117], as-
sembly [118–120], laser welding [121,122] and prefabrication of raw
materials [123].

More specifically, AR techniques have been utilized in connection
with HRC to understand robot intentions in shared workspaces, where
Andersen et al. projected related task information on physical objects,
e.g., car doors, inside the collaborative environment, to assist human
co-workers [124]. Similarly, Liu and Lihui developed an AR-based
instruction system that empowers the human worker to access assembly
instructions of industrial components from the AR device [125] while
Papanastasiou et al. used AR glasses in combination with feedback from
smart watches to monitor industrial assembly processes and ensure a
seamless human–robot collaboration [126].

Koppenborg et al. recreated robot’s motions in VR to study the
impact of the robot’s speed and predictability of its trajectory in HRC
cases. As expected, as the robot moved faster, it was more challenging
to predict its desired position, resulting in feelings of uncertainty,
more mental workload from the operators and a decreased sense of
safety [127]. Moving a step further, Matsas et al. implemented proac-
tive and adaptive techniques in highly interactive and immersive VR
environments based on multiple cognitive aids to enhance the feeling
of safety from the operators [128].

In cases where manipulating real objects in restricted environments
is required, mixed reality (MR) interfaces offer sufficient solutions.
Chen et al. developed an MR interface based on a stereo vision in
combination with virtual fixtures to create a novel stereo vision-guided
teleoperation control method for manipulating mobile manipulators
and teaching them new tasks [129] (see Fig. 8). At the same time, MR
interfaces offer flexible solutions for programming robot manipulators.
Ostanin et al. showcased that programming of a UR10e and a KUKA
iiwa for geometrical path planning and trajectory generation is possible
with an interface based on Hololens glasses [130]. Munoz et al. used
MR methods in the area of quality control to automatically detect
defects on a car body with a high success rate [131].

Fig. 8. Visualization of the conceptual representation of the work presented in [129].

4. Characteristics of a disassembly process

The disassembly process of an industrial component is not as trivial
as just its reversed assembly process. This is partly due to the fact that
the links joining sub-components of a product together are designed
to make the assembly process more straightforward (e.g. Snap fittings,
glueing, riveting). However, connecting sub-components in this way
makes it hard and, most times impossible, to disassemble a product in
a non-destructive way.

As mentioned earlier, de/remanufacturing systems face several tech-
nological challenges (see Table 1), most of which are related to the
states of a product, as they can differ significantly between the ob-
served, the actual and the original state. The added uncertainty makes
the disassembly process a non-trivial operation, especially when consid-
ering that components or sub-assemblies are not allowed to be damaged
to qualify for requalification. This section will cover the following three
subtopics of a (disassembly) process: Task Definition, Task Planning,
Automated Disassembly applications. As aforementioned, the focus of
this paper is on the topic of disassembly; however, some parts of
the process is either directly or closely related to assembly operation.
Therefore, some of the presented publications in this section have their
origin within assembly applications.

4.1. Task Definition

In general, a task is comprised of a set of skills as stated by [137].
For example, a typical pick and place operation consists of multiple
sub-tasks such as a pick, move and place task, which all have different
characteristics and parameters. The human analogy of these three
elementary tasks is so-called skills. In other words, skills are a way
of defining/quantifying various low-level operation/tasks to enable the
operator to formulate tasks based on human terms. However, this
definition is quite broad, as skills can be related to several areas,
such as Socio-Cognitive Skills [138], Communication Skills [139] and
more task-specific skills. The latter will be the focus in the remainder
of this work, more specifically on the various frameworks for the
definition of executable robotic skills such as screwing and pick and
place operations.

CoSTAR [140,141] is a cross-platform architecture for describing
industrial robot task plans. As most skill-based programming
approaches for industrial manipulators, it provides the capabil-
ity of performing various tasks and enables non-expert users to
programme the manipulators. Rather than relying on an extensive
task library, CoSTAR relies on the end-user to specify a task based
on a limited set of geometric states (i.e. InFrontOf, LeftOf). In ad-
dition to a Behaviour Tree-based graphical user interface, the user
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Fig. 9. Various Little helper setup utilizing SBS in the projects like TAPAS [132], CARLOS [133],ACAT [134], CARMEN [135], and [136].

can programme the robot through kinaesthetic teaching methods
and predefined analogies to achieve high-level task specifications.
Skill-Based-System (SBS) is a framework, which was first presented
by Schou et al. [142] in 2013. It provides a human–robot interface
for the utilization of skills in industrial settings. The central point
of SBS is the user interface designed accordingly to facilitate the
intuitive configuration of complex tasks from non-expert users.
SBS contains an extended library of skills and execution engines
for managing the execution of parameterized skills and ensuring
the sequential description of a task for proper execution. Since
its development it has been used in multiple national and in-
ternational research projects such as TAPAS [132], ACAT [134],
CARMEN [135], CARLOS [133] (see Fig. 9) as well as in use-cases
in advanced production lines [143] and shipyards [144].
Motion Primitives is a task definition which was utilized by Sten-
mark et al. in [145] as a user interface that assists the kinaes-
thetic teaching mode of a collaborative enabled industrial robot.
This allows the capturing of semantic information while working
with the robot. The programming can be done via the following
two modalities: graphical point-and-click and natural language.
Another utilization of motion primitives is presented by Canal
et al. [146], which combined a high-level task-planner and the
low-level motion primitives for enabling an adaptive HRI. The
low-level actions are taught to the system beforehand via demon-
stration and can be adapted to variations in the current situation
by tracking relevant entities.
Additional Skill-based methods are presented by:

(i) Saukkoriipi et al. [147] presented a tool for programming
robot skills offline. The utilized skills are conceptually
similar to SBS, specified by configuration parameters, and
offer integrated tool support. The Skills are executable
sequences specified as UML action diagrams enabling them
to be executed as robot programmes on various robotic
platforms and PLC platforms. However, compared to SBS,
the specification of the parameters is done offline, and it
heavily relies on the use of CAD models in a simulation
environment to define a task successfully.

(ii) Wallhoff et al. [137] introduced a system that combines
high-level skills to reach a predefined goal in a hybrid
assembly station. This system consists of a human opera-
tor, industrial manipulator, and a multi-sensory perception
system overseeing the shared workspace between humans
and robots. The skills in this work consist of various basic
blocks with actions, e.g., opening/closing the gripper, mov-
ing to position, and picking up operation. The controller
then breaks these skills down into ‘‘atomic operations’’
such that the manipulator is capable of executing the
associated motions.

(iii) Huckaby et al. [148] proposed a method utilizing model-
based system engineering in combination with Systems
Modelling Language (SysML), which is a modelling lan-
guage for the creation of simplified and reusable soft-
ware modules for the programming of the robotic system.

Fig. 10. A representation of the skill model including both operation and manual
parameterization [149].

The skill primitives utilized in this work are basic atomic
action/operations each robot can be associated with a
specific motion.

Skill acquisition methods focus on the specification of the above-
mentioned skill definition. Most of these methods rely on Graph-
ical User Interfaces (GUI) or a simple programming interface for
this step, requiring a certain level of expert knowledge. Therefore,
different methods have been proposed to acquire and teach these
skills in a more intuitive way.

(i) Schou et al. extended the SBS to incorporate Programming
by demonstration (PbD) in [149]. This extension enables
novice operators to use a more hands-on and practical way
of programming industrial tasks on the fly. A visualization
of the adaption to the original skill Framework can be seen
in Fig. 10.

(ii) The work of Vongbunyong et al. in [150] presented a plat-
form for capturing disassembly skills/operations done by a
skilled operator such that an intelligent agent can acquire
these skills. The system utilizes an RGB-D camera as a
capturing device and marker equipped tools. The markers
on the tool serve the purpose of identifying and tracking
the tool’s position, orientation, and operation sequence of
the disassembly process.

(iii) Another method for teaching skills was proposed by Abu-
Dakka et al. in [151]. There a framework was developed to
enable the teaching of variable impedance skills, such that
the manipulator is capable of performing force-based tasks
by adapting its variable stiffness. The framework computes
the stiffness estimate based on human demonstrations and
a probabilistic model of the skill enabling the manipulator
to execute force-based tasks.
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4.2. Task sequence planning

Task sequence planning is used to identify a sequence of sub-tasks
to successfully solve an overall task (i.e., assembly, disassembly). In
the case of assembly, the objective is to have a complete product
constructed of multiple sub-assemblies/components. In order to get to
that stage, the final product has to be assembled in a specific order.
This is where the planning of the sequence of different steps come into
place, which in most cases can be straight forward as products are
designed for assembly. For the disassembly of products, this process
is not as straight forward since most products are not designed for
disassembly. Additionally, the state of the used products can vary based
on, e.g., their work environment, workload and maintenance cycle. The
planning of task sequences can, in general, can be divided into the
following two steps:

(i) Disassembly/assembly task modelling (Sequence generation)
(ii) Task Sequence Optimization

During the disassembly/assembly task modelling phase, a sequence is
generated based on the product’s layout and state. This sequence can
then be optimized based on various criteria and constraints, e.g., time,
number tool-changes, and cost. The review by Zhou et al. [152] anal-
ysed the different characteristics of the main disassembly sequence
planning methods in disassembly mode, disassembly modelling and
planning process and highlights future trends and current gaps in the
existing research.

It proposes that the generation of models for planning of disassem-
bly sequences, is based on Petri net-based, Model type-based, Graph-based
and Matrix-based methods with the last two being the most prominent
ones in literature. Examples of research works using Graph-based and
Matrix-based methods for disassembly sequence planning are listed in
Table 3. The general conclusion drawn in this survey was that most of
the research has focused on: (i) complete and sequential disassembly
planning, (ii) offline planning approaches, and (iii) purely economic
factors rather than investigating environmental factors. Additionally,
they suggest that future research should focus on dynamic systems
capable of handling uncertainties, exploring the dynamic economic and
environmental factors affecting the disassembly of EOL products as
well as the possibility of combining Disassembly Sequence Planning with
integrated obstacle avoidance and path planning for robots.

This observation also aligns with a recent publication by Xu et al.
which proposed a Disassembly sequence planner for human–robot col-
laboration based on a discrete Bees algorithm [159]. The approach
firstly generates a feasible disassembly sequence based on a disassembly
model. Secondly, the resulting disassembly tasks are classified based
on their difficulty, followed by developing a disassembly sequence for
HRC. Lastly, the generated sequence is evaluated and optimized to
minimize the disassembly time, cost and difficulty.

A similar approach Liu et al. investigated using a so-called en-
hanced discrete bee algorithm algorithm to minimize the disassembly
time in order to minimize the disassembly time [160]. However, the
authors have found that the calculation of specific parameters can
be time-consuming, especially for products with a high number of
components.

In addition to finding the most time-efficient disassembly sequence
on purely the order operation, Li et al. proposed a method that takes the
strain during the human workforce associated with continuous manual
labour. This method aims is to minimize the total disassembly time for
HRCD [161].

Besides the planning algorithms for disassembly tasks, there have
been various approaches within assembly planning, which show
promising results and possible application within disassembly. One of
these applications is a two-armed robotic autonomous assembly system
for aluminium profiles designed by Rodriguez et al. [162], which
could apply to disassembly as well. The system based on deducting
semantic assembly constraints before matching critical features on the

Fig. 11. An abstract representation of the robotic cell utilized by Vongbunyong
et al. [167].

semantic level with the help of graph matching. Later, it is followed by
applying pattern recognition and classification based on transferring
the knowledge of constraints for the different sub-assemblies into
the overall assembly of the part through the utilization of machine
learning.

Moreover, Rodriguez et al. presented a method to iteratively refine
feasibility checks for sequence planning in robotic assembly, which was
experimentally validated for the assembly of aluminium profiles and
could be further investigated for its use in disassembly [163].

4.3. Existing automated disassembly cells

During the last decade, numerous (semi-) automated robotic dis-
assembly systems have been presented in the research community.
Vongbunyong et al. investigated extensively the utilization of a cog-
nitive robotics-based system for the (semi-)destructive disassembly,
which is capable of reasoning, execution monitoring, learning and
revision. It was also shown that the vision-based disassembly system
(see Fig. 11) was capable of adjusting to any product model without
prior information [155,164–167].

A system for the disassembly process of electric motors where they
utilize an image processing algorithm for the autonomous detection
and classification of screws was investigated by Bdiwi et al. [168].
The applied algorithm detects the screws based on their characteristics
concerning their greyscale, depth and Hue, Saturation and Value (HSV)
colour space values and does not need a database of templates for
matching.

Schneider et al. explored using an algorithm to compute complex
nonlinear disassembly paths for two objects that collide in their initial
state and the disassembly path. This is done by incorporating the infor-
mation about the flexible and rigid parts together with connected com-
ponents of intersection volumes to a motion planner [169]. Whereas,
Chen et al. [170] proposed an ontology and case-based reasoning (CBR)
method which enables the computer to understand complex structures
of various mechanical products and fully automates the disassembly
decision-making process of products.

An extensive study on robotic disassembly for the recycling and
reuse of cellphones was conducted by Figueiredo in [171]. The study
shows an in-depth analysis of the different components within three
phones from other manufacturers and what forces and tools are needed
to extract the various parts. The developed system consists of a robotic
manipulator, vision system, decision-making system and focuses on
the prying operation. The developed decision-making system utilizes
captured images of the vision system to detect the current state of the
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Table 3
Examples for Graph and Matrix-based Disassembly sequence planning methods based on [152].
Authors Summary

Graph-based

Behdad et al. [153] Presented an Immersive Computing Technology method to optimize disassembly sequences of a product by considering
the cost involved in the process and estimation of possible damage during the process in a virtual disassembly
simulation with Dynamic programming.

Alshibli et al. [154] Presented a Tabu search algorithm for Disassembly Sequencing to minimize the travelled distance by the industrial
manipulator, a number of disassembly method changes and eliminating unnecessary operations.

Vongbunyong et al. [155] Proposed a cognitive robotic agent capable of learning by reasoning throughout the disassembly process.

Matrix-based

Jin et al. [156] Developed an approach for generating a disassembly solution space for LCD televisions. This approach generates an
interference matrices based on a CAD model, which is used to represent the spatial relationship between components
in a Cartesian workspace.

Wang et al. [157] Designed a method to break apart assemblies containing interlocking components into sub-assemblies. This was
achieved by generating feasible disassembly sequences by definitions and derivations of a contact and relation matrix.

Xia et al. [158] Presented a simplified teaching-learning-based optimization algorithm for the planning of disassembly sequences of
Waste Electrical and Electronic Equipment (WEEE).

cellphone and thereby enables the system to handle multiple types of
uncertainties associated with the cellphone’s state.

The challenges associated with the autonomous generation and exe-
cution of disassembly actions is tackled by Chen et al. [172], where the
robotic system used in this work is equipped with three different tools
(i.e., screwdriver, hole-saw and angle-grinder) and utilizes a method
based on a geometrical estimation to asses and selects a corresponding
disassembly action. The proposed method is tested and validated on
various models of LCDs.

The extraction of cylindrical components from their fixtures can
often result in the jamming or wedging of the component; thereby,
applying unnecessary forces and strain on the extracted component,
which can reduce the chance of passing the re-qualification process.
In order to minimize and mitigate the occurrence of such scenarios,
Zang et al. [173] used a theoretical derived method utilizing active
compliance and key parameters such as the location of the compliance
centre, initial compliance, degree of compliance. Also, Zang et al.
concluded on the effect of the presented method based on experimental
validation. Another proof-of-concept presented by Bulh et al. [136]
integrated two UR5 robotic manipulators in a dual-arm disassembly cell
to showcase the potential of disassembly of mockup mobile phones in
a smart production facility.

Liu et al. investigated a framework for the use of a service plat-
form for robotic disassembly planning in remanufacturing [174]. This
investigation aimed to find the optimal solutions for both robotic
disassembly sequence and line configuration. Finally, they verified their
analysis of the service platform with a case study on an idler shaft.

5. HRC in the field of disassembly

HRC in Disassembly (HRCD) is a timely topic that has become
the focus of industry stakeholders and researchers during the last
decade. Due to its complexity, it requires several advancements both
in HRC technologies and standardization policies in terms of take-
back requirements, product interfaces and possible serviceability to
become profitable and environmentally viable. As mentioned earlier,
the collaboration between humans and robots for the disassembly of
EOLPs has many advantages compared to fully automatic systems.
In this section, the results of the literature survey on human–robot
collaborative solutions for disassembly are presented.

Liu et al. introduced a systematic development framework towards
human–robot collaborative disassembly based on perception, cognition,
decision, execution and evolution [175]. The implementation for en-
abling HRCD is presented, where technologies such as cyber–physical
production systems (CPPS) and artificial intelligence (AI) are combined.
The framework’s feasibility regarding perception, decision making, and

control was explored and verified with a case study. The case study
consists of a non-collaborative ABB manipulator while a discrete bees
algorithm was used to optimize disassembly sequence planner by as-
sessing the condition of various objects with quality indicators based on
the stage of the disassembly process. Finally, a motion-driven control
method utilized in combination with a safety assurance strategy.

The same research team worked on a deep learning system enabling
a fluent and natural interaction between a human operator and an
industrial manipulator for an industrial human–robot cooperative dis-
assembly scenario [176]. The system utilized a CNN–LSTM network
to predict the motion of the human operator purely on the inputs
of a vision system without the need for wearable devices or tags.
The approach was validated in a case study for the disassembly of
personal computers, which tested the system capable of identifying and
predicting the motions of the human operators based on the tools, parts
or scenarios.

Huang et al. investigated the integration of HRC in disassembly
processes for a case study of press-fitted components [177]. In the
study, the press-fitted component originates from an automotive water
pump. The setup consists of a manual operated press and three jigs
for the fixation and handling of the components during the disassem-
bly process and KUKA LBR iiwa 14 R800 equipped with a Robotiq
2-FINGER 140 gripper.

The separate steps of the disassembly process are as follows: Firstly,
the operator actuates the press to separate the first sub-assembly of the
pump, with the robot waiting with its gripper underneath the press to
support the extraction process. In the other process, the robot places
the extracted sub-assembly in the press and waits again underneath
the press for the sub-components to be pressed out by the manual
operated press (Fig. 12). The overall process time of this procedure is
approximately five minutes and can be adapted to pumps that require
the same basic operations for their disassembly.

The majority of industrial products contain a large number of
screws that hold them together. Therefore, an essential aspect of a
disassembly system is its ability to unscrew. In that context, Chen
et al. proposed a hybrid disassembly station equipped with a compliant
robot with a bit-changing mechanism for unscrewing battery screws
from electric vehicles [178]. The control strategy uses a skill-based
formulation based on a finite state machine approach meaning that
the different states of the manipulator are described by a sequence
of primitive motions, which a human operator can teach. This state
machine allows the authors to programme the engagement and re-
moval of a threaded fastener and an autonomous bit exchange. The
authors also highlight that implementing an Impedance control scheme
enables the manipulator to handle direct physical interaction between
a robot and human, thereby allowing seamless integration of such a
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Fig. 12. The setup of the robotic cell for the extraction of press fit components used
in [177].

robotic assistant for disassembly tasks, which would lead to an increase
in the through-put in labour-intensive tasks. In order to address the
challenge of unfastening hexagonal headed screws, Li et al. introduced
an automated method [179]. It was accomplished by implementing an
electric nutrunner spindle equipped with a geared offset adapter at the
TCP of a collaborative enabled robot. The tool and location strategy
of the screws were demonstrated in a disassembly case study of a
turbocharger. The location strategy is implemented in the form of a
novel spiral search technique based on force/torque feedback, which
can detect if the tool is engaged with the screw.

The research works of Jungbluth et al. [180,181] aim to add the
concept of HRC to a cognitive robotics based framework for the disas-
sembly of EOLP as proposed in [165]. Initially, Jungbluth et al. aimed
to enable a robotic system to act autonomously to execute disassembly
task and improve the ergonomics of disassembly workstations with
the utilization of knowledge and skills [180]. This was achieved by
providing information on the product model to an intelligent agent
to generate the disassembly sequence. This sequence is then utilized
to create a series of disassembly actions for the robot assistant. At a
later stage, this research focused on implementing a multi-agent control
architecture [181]. This control architecture is based on product and
process-based knowledge models and enables the workers to choose
labour division between themselves and the robot for each disassembly
task. According to the authors, this approach allows the system to assist
the human co-worker in complex disassembly processes.

Axenopulos et al. described a framework for a hybrid human–
robotic recycling plant for electrical and electronic equipment [182].
This framework aims to optimize the process of extracting valuable
resource and reducing the risks involved for humans in this process
by introducing HRC to this process. The authors of this work mention
that a key aim of the framework is to enhance the disassembly process
by introducing HRC cells comprising a single human operator that col-
laborates with several robots. In pursuance of achieving this goal, the
proposed framework foundation consists out of the following pillars:
(i) Factory-level modelling and orchestration (ii) Cell-level perception
methods (iii) Robotic actions planning and control (iv) Principles of
moral actions and ethics engine (v) HRC schemes.

Lastly, Ding et al. investigated the possibility of transferring the
valuable knowledge of disassembling EOLPs from the human operators
to an HRCD system [183]. This investigation utilized the combination
of a video capturing system, a Natural Language Processing (NLP)
algorithm and a graph-based knowledge representation. The collected
knowledge was then used to improve the robot’s capability to support
the human during the HRCD task.

In order to summarize the key elements of the aforementioned
works in HRCD, we present an overview in Table 4 while we discuss
the important findings in Section 6.

6. Discussion

The article reviewed the literature and state-of-the-art methods
in HRCD for the period 2009–2020 based on current technological
advancements in relevant areas. Firstly, it was identified that the
currently applied research related to industrial fully automated dis-
assembly systems is focused on consumer electronics (i.e., TVs and
smartphones). A potential explanation for this trend could be derived
from the fact that the amount of WEEE produced every year is pro-
portionally disadvantageous with the current available capacity for
recycling and remanufacturing of such waste. Additionally, many of
these systems tend to utilize destructive operations in their attempts
to extract sub-assemblies and components for remanufacturing uses,
resulting in inefficient processes.

Moreover, it can be derived that due to the increase in the complex-
ity and variability of mechatronic and mechanical EOLPs, the existing
automated disassembly systems cannot cope with the complexity of
the disassembly task. Therefore, more solutions incorporating human
workers in the process showed up during the past decade. As a result,
ensuring safety remains one of the most challenging concepts of HRC in
industrial environments, and specifically in disassembly tasks. Multiple
methods incorporating safety have been identified and analysed. How-
ever, it is evident that regardless of the vast amount of standards and
communication methods applied in HRC, the amount of task-sharing
between a robot and a human defines the final implementation. Sim-
ilarly to Vicentini’s conclusions in [18], only a few research works of
the identified literature promote physical interaction and focus mostly
on cooperative and coexistent tasks rather than collaborative.

Regarding the current implementations of HRCD systems, there is
a lack of post-collision control schemes in the context of pHRI. The
absence of such post-collision control schemes concerns as, during
HRC tasks in the disassembly domain, a human worker may interfere
physically with the manipulator and engage in a collaboration phase
accidentally. In order to keep the interaction safe, the manipulator
must be able to adapt its behaviour safely based on the exchange of
contact forces. Taking this into account, it is also essential to highlight
that an HRCD system, like any other HRC system, enables symbiotic
collaboration with humans only when an appropriate tool is used for
the task at hand. Regardless of the robot and its task, the tool remains
a potential risk of severe hazards. These safety aspects can be improved
by introducing energy-aware control schemes and using tools with
human-aware design.

In an ideal scenario, human–robot collaboration should feel the
same as a human–human collaboration; however, there are several
areas where the current state-of-the-art in the field can be improved.
Human workers still surpass their robotic partners with their cognitive,
adaptation and problem-solving abilities. When it comes to the field of
disassembly, the main oversight of the explored HRC systems is the
absence of skill acquisition interfaces (see Table 4). Such interfaces
would enable a more intuitive definition and teaching of tasks to the
robots and allow humans to transfer their domain knowledge and
cognitive abilities to them.

At the same time, researchers have presented complete frameworks
that can support HRCD without practical implementations at this cur-
rent stage [182]. It will be interesting to witness the evaluation of
the integration of a complete cell where a robot and a human worker
would collaborate in a disassembly task based on that framework.
Additionally, available research has been presented showcasing the
application of robotic task-oriented knowledge graph in HRCD [183].
However, the lack of presentation of the key implementation details of
the robot cell makes it difficult to conclude on the type of collaboration
and related aspects explored in Table 4.

In addition, various kinds of HRI that are usually used in other
domains, e.g., social and service robotics, are rarely implemented in
HRCD systems. A potential explanation for this gap could be that
several audiovisual and learning techniques can still face demanding
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Table 4
Overview over the utilization/form of implementation of the different key-elements for (future) human–robot collaborative disassembly applications. SMS: Safety-rated Monitored
Speed, HG: Hand-Guidance, SSM: Speed and Separation Monitoring, PFL: Power and force limitation. ✓, — indicate if the listed attributes are included in the work and ? indicates
the absence of information from which a conclusion can be draw from.

Publications Liu et al.
[175]

Liu et al.
[176]

Huang
et al.
[177]

Chen
et al.
[178]

Li et
al.[179]

Jungbluth
et al.
[180]

Jungbluth
et al.
[181]

Axenopu-
los et al.
[182]

Ding
et al.
[183]

Task — Computer extraction
of press
fit compo-
nents

unscrew-
ing

unscrew-
ing

Disassem-
bly of
mecha-
tronic
drive

Disassem-
bly of
mecha-
tronic
drive

Disassem-
bly of
WEEE

Disassem-
bly of
Roller
chain

Robot ABB
IRB1200

ABB
IRB1200

KUKA
LBR iiwa
14 R820

KUKA
LWR IV

KUKA
LBR iiwa
14 R820

KUKA
LBR iiwa
14 R820

KUKA
LBR iiwa
14 R820

— KUKA
LBR iiwa
14 R820

Human–robot coexistence — — — — — — — — ?

Human–robot cooperation — ✓ ✓ — — ✓ ✓ — ?

Human–robot collaboration ✓ — — ✓ — — — ✓ —

ISO 15066 SSM SSM SSM — — — HG HG, SSM,
PFL

?

pre-collision control scheme ✓ ✓ ✓ — — — — ✓ —

post-collision control scheme — — ✓ ✓ ✓ — — ✓ —

verbal HRI ✓ — — — — — ✓ ✓ ✓

visual HRI ✓ ✓ — — — — in
progress

✓ —

physical HRI — — — — — — — ✓ —

Task Definition Skills — — — ✓ — ✓ ✓ — —

Skill ac-
quisition

— — — — — — — — —

Task sequence planning ✓ — — — — ✓ ✓ ✓ ?

challenges with the environmental conditions in industrial environ-
ments. The addressing of these challenges would result in a more
efficient and safe work environment and enable people who are limited
in their physical and mental capabilities to be included in HRCD
systems.

7. Concluding remarks

Given the importance of production’s environmental and economic
sustainability, the CEBM has started to be adopted across various
companies and industries. This adoption poses a number of chal-
lenges regarding the resourcing, the disassembly, and the remanufac-
turing/qualification of ELOPs. This paper started by investigating the
principles of human–robot collaboration in industrial environments
and the characteristics of a disassembly process. Later, it presents an
investigation into the existing literature on HRCD covering hybrid
disassembly robot cells to disassemble EOLPs.

In the last part of this survey paper, the gaps in the existing
literature on HRCD systems are discussed, based on which it was
suggested that future research could move towards the investigation
and implementation of (i) Control strategies which not just focus on
the avoidance of contact between the manipulator and the worker
but enables safe pHRI (ii) Skill teaching approaches which intuitively
enable workers to expand the skill set of the robotic system (iii) Inter-
action through a combination of verbal and non-verbal communication
methods enables a more immersive interaction between robots and
humans.
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