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ABSTRACT Brain-computer interfaces (BCIs) can serve as a means for stroke rehabilitation, but low
BCI performance can decrease agency (users’ perceived control), frustrate users and thereby hamper
rehabilitation. In such rehabilitative tasks BCIs can implement fabricated input (preprogrammed positive
feedback) that improve agency and frustration. Two substudies with healthy subjects and stroke patients
investigated this potential through completion of a game and a simple task with: 1) 16 healthy subjects
using motor imagery-based online BCI and 2) 13 stroke patients using a surrogate BCI system based on eye-
blink detection through an eye-tracker to have a highly reliable input signal. Substudy 1 measured perceived
control and frustration in four conditions: 1) unaltered BCI control, 2) 30% guaranteed positive feedback
from fabricated input 3) 50% guaranteed negative feedback, and 4) 50% guaranteed negative feedback
and 30% guaranteed positive feedback. In substudy 2, stroke patients had 50% control over outcomes and
four conditions added from 0% to 50% positive feedback. In both substudies, positive feedback improved
participants’ perceived control and reduced frustration with increasing improvements when the amount of
positive fabricated input increased. The stroke patients did not react as much to the fabricated input as the
healthy participants. Fabricated input can be concealed in both online and surrogate BCIs which can be used
to improve perceived control and frustration in a game-based interaction and simple task. This suggests
that BCI designers can exercise artistic freedom to create engaging motor imagery-based interactions of
narrative-based games or simpler gamified interactions to facilitate improved training efforts.

INDEX TERMS Brain-computer interface, stroke rehabilitation, motor imagination, agency, frustration,

fabricated input, gamification, motivation, surrogate BCI, research instrument

l. INTRODUCTION

Stroke patients undergo expensive rehabilitation for months
to regain lost motor control with mixed results [1]. There-
fore, different new techniques have been proposed such as
Brain-Computer Interfaces (BCIs) relying on motor imagery
training to restore movement [2]—[5]. The lack of inherent
proprioceptive feedback makes BClIs difficult to operate such
that patients may experience a loss of control of the BCI
during training. The resulting frustration further reduces BCI
performance creating a vicious cycle and reduces motivation
for subsequent training [6]. BCI research has sought to im-
prove performance of BCIs through novel hardware or signal
processing algorithms increasing users’ BCI performance (i.e.
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true positive rate or classification accuracy) [7]. Alternatively,
recent studies reduced frustration by creating an illusions of
control through fabricated input, which consists of injections
of preprogrammed positive feedback, when the BCI does
not recognize valid user input attempts [8], [9]. Most studies
investigated fabricated input by employing surrogate BCI in
which users were led to believe they provided input through
BCI, while their input was captured through a reliable input
device to gain access to the ground truth of input attempts
that are otherwise unavailable in BCI [9], [10]. Hougaard et al.
[8] equipped users with an electroencephalography (EEG)
recording headband and conveyed to the users they were
controlling a BCI with eyeblinks, but simultaneously captured
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the user input through an eye-tracker. So far, fabricated
input has only been studied with surrogate BCIs and it
is unclear how agency and frustration are affected in real
BCI (motor imagery) or when rated by stroke patients. The
paper contributes evidence that positive feedback linearly
moderates people’s frustration and perceived control in both
contexts (BCI, stroke patients), including positive feedback
from fabricated input and is structured as follows.

Section II includes 1) the relevant background on BCI and
its connection with inducing plasticity for stroke rehabilitation,
2) motivates the need for fabricated input to curb frustration,
and 3) synthesizes the extant knowledge of fabricated input
by discussing its design constraints and details the scientific
gap, which the following two substudies address. The methods
and results for substudy 1 (online BCI with healthy subjects)
are presented in Section III and IV and in section V and
VI for substudy 2 (employing a surrogate BCI as a research
instrument with stroke patients). Sections VII and VIII provide
a cross-study discussion and the conclusions, respectively.

Il. BACKGROUND
A BCI system enables users to control external devices and
applications using voluntarily produced brain activity [11].
BClIs often record the electrical activity from the scalp (EEG)
to pick up specific control signals from the brain that can
be evoked either internally such as sensorimotor rhythms
and slow cortical potentials or externally such as P300 or
steady state visually evoked potentials [11]. BCIs pre-process
recorded EEG data to maximize the signal-to-noise ratio
to isolate or maximize the control signal of interest. They
derive specific features that characterize the control signal
to classify them into a number of different classes which
maps to commands in different applications. BCIs have
been used as a means for communication and control for
individuals with severe motor impairments [12], but more
recently for applications such as passive brain monitoring and
game control [13], [14]. Another major application of BCIs
that has evolved over the past 10 years is the induction of
neural plasticity [5] - the presumed underlying factor of motor
learning [15], and motor recovery of stroke patients [16].
BCIs for stroke rehabilitation detect movement-related
cortical activity from the affected brain regions and in
response trigger a movement of the affected limb by using
a rehabilitation robot, exoskeleton, or electrical stimulation
of the muscles. The induced limb movement generates so-
matosensory feedback back to the brain. Feedback returning
with a short temporal delay after the intention to move
(resembling the normal motor control loop) fulfills the require-
ments for inducing Hebbian-associated neural plasticity [5].
The movement-related activity can be evoked through motor
imagination (MI) [17] and detected through sensorimotor
rhythms or movement-related cortical potentials [18], [19].
Several studies have shown that these control signals can
be detected from single-trial EEG in able-bodied and stroke
individuals with input recognition rates roughly around 70-
80%, but with higher input recognition rates for able-bodied
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individuals compared to stroke patients [20], [21]. BCI-
controlled rehabilitation robots and electrical stimulation can
effectively improve motor function in stroke patients [2],
[4], [22], [23]. However, the experiments have often been
performed under controlled conditions with BCI experienced
researchers. Several factors can impede the adoption of this
technology in clinical practice and potentially as a home-based
rehabilitation tool [24]-[26]. These include the mounting
of headsets/caps for recording EEG, lengthy calibrations,
poor usability including variable BCI performance, which
may be low for several users. Up to 10-30% of users have
been labelled BCI illiterate because they could not operate a
BCI with sufficient performance (>70%) [27]. It should be
noted that this accuracy is for communication and control
applications, but not for stroke rehabilitation in which lower
accuracy levels can still induce neural plasticity [28].

Control of MI-based BCI systems have been improved and
made more robust using various signal processing techniques
for improving the signal-to-noise ratio, feature investiga-
tions,feature selection, and machine learning techniques see
e.g. [20], [21], [29]-[37], but the control of an MI-based
BCI could also be improved through proper training protocols
adhering to universal learning principles, instructional design,
and feedback [38], [39]. However, it may take time to learn
to perform MI which may be abstract and new to many
patients. Different psychological factors have been reported
to be associated with BCI performance. Fear of failure for
controlling the BCI has been associated with decreased BCI
performance in healthy individuals as well as in individuals
with stroke or amyotrophic lateral sclerosis [6], [40]-[42].
Incompetence fear is a component of motivation together with
mastery confidence and challenge [43]. Several studies have
reported that motivation and BCI performance are associated,
(e.g. [6], [40], [44]). Furthermore, factors such as concen-
tration, attention, control beliefs, sense of ownership, and
emotions (positive and negative) affect BCI performance [43],
[45]-[47].

Two other major factors that are associated with BCI
performance are frustration and sense of agency. Decreases in
frustration have consistently been associated with higher BCI
performance [8], [10], [44], [47], and higher BCI performance
with increased agency [8], [10], [44], [45], [48]. But in
cases in which people could experience high agency (from
continuous feedback) decoupled from the resulting task
outcomes, frustration was independent from perceived agency
but depended solely on positive task outcomes (negatively
correlated) [48]. These factors are important to consider
when using a BCI-controlled rehabilitation robot for stroke
rehabilitation since they are likely to influence the patients’
attitude towards the technology and commitment to the
rehabilitation training [49], [50]. Thus, the frustration and
sense of agency could affect the amount of time the patient
wants to spend on the training with the device, which will
determine the potential rehabilitative outcome, higher training
intensity should lead to better functional outcomes. Even
given proper hardware and software setups, training protocols
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and environments [51], good BCI performance cannot be
guaranteed. Positively biased feedback improved BCI per-
formance for users with BCI recognition <65% while users
with higher recognition rates saw their performance decline
when exposed to such unwarranted feedback [52]. A study
by Gonzalez et al. confirmed this penalty of unwarranted
positive feedback for high performers [53] leading to weaker
sensorimotor rhythm patterns in subsequent attempts than
appropriate negative feedback and thereby decreasing BCI
performance. A recent study investigating biased feedback for
various personality types found interactions between the bias
(positive and negative) and workload, anxiety, and self-control
that affect BCI performance suggesting that biased feedback
work better/worse for some user types [42]. However, for
stroke rehabilitation good control of the BCI may not be
needed for inducing neural plasticity but rather, to avoid
frustration, a high level of perceived control [5], which is
correlated with the actual level of control [10], [48]. The
notion of perceived control resembles the sense of agency.
Studies have investigated the effect of different levels of
BCI performance on the level of frustration and perceived
control but relied on surrogate BCI input mimicking BCI
performance through keyboard input [9], [10]. This approach
provided access to the ground truth, and success rates could
be accurately controlled. However, no EEG has been recorded,
nor was it conveyed to the participants that they were trying to
control a BCI as this was not the aim of the studies. Another
approach to simulate a BCI has been followed by using steady
state visual evoked potentials where EEG was recorded, but
no actual decoding of the EEG was performed, to control
success rates [44].

A recent study developed a research instrument mimicking
a BCI system, i.e. a surrogate BCI, providing access to the
ground truth and allowing for controlling the success rate of
the system [8]. An EEG recording headset was mounted on
the forehead and conveyed to participants that the system was
recognizing specific eye blink patterns from the brain activity.
However, instead of using the EEG, an eye tracker was used
to recognize the blinks (input) with close to 100% accuracy,
i.e. it served as a surrogate BCI research instrument. While
not BCI input, this allowed for injecting fabricated input in
a BCI-like system to generate different levels of control and
modulate the sense of agency and level of frustration with
higher modulation precision than possible with online BCI.
Special attention must be paid to the design of the fabricated
input. To maximize the sense of agency the fabricated input
and feedback need to abide by three central principles [50],
[54]:

1) temporal congruency - priority principle: minimizing
delay between input attempt and feedback

2) spatial congruency - consistency principle: the mapping
of feedback to the nature of the input attempt, and

3) be concealed - exclusivity principle: the genuine input
attempt seems to be the only plausible cause of the
outcome.
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Temporal congruency and concealment may be difficult to
implement in a true BCI controlled via motor imagery, which
provide no access to the ground truth because BCIs may
produce false positives and false negatives in addition to true
positives from user attempts. The action of a BCI should
follow shortly after the intention since long delays can violate
the third principle of the user being the sole cause of the
effect. The maximum length of permissible delay is unknown
but agency can start decreasing even after short delays in the
order of 50-300 milliseconds when providing proprioceptive
feedback (e.g. from a button press [55]). In a BCI context,
the perceived agency decreased with larger temporal delays
but remained high even with two second delays [56]. Thus,
fabricated input should work best in a synchronous BCI with
pre-defined, binary inputs. Another characteristic of fabricated
input to consider is its temporal placement during the input
time window. In the context of MI-based BCI for stroke
rehabilitation, Hougaard et al. [8] proposed to 1) avoid placing
fabricated input at the beginning of input windows to give
users time to attempt input and 2) not deliver it consistently
at the same time (e.g. the end of the window) but rather place
it randomly (see the original paper on input fabrication [8]
for a more thorough discussion on its characteristics). In
stroke rehabilitation, a synchronous BCI with binary input
(movement intention versus no movement intention) arranged
by input windows, creates a context with high probability
of users attempting to produce a recognizable movement
intention. The input window provides designers a limited time
window to inject the fabricated input where this potentially
allows for fulfilling the first and third principle of agency.
The third principle of agency could be further maximized
through instructing the user to keep trying to activate the BCI
throughout the input window. The second principle of spatial
congruency can be obtained through 1) visual feedback of a
rehabilitation robot, 2) an exoskeleton assisting the movement
or 3) through virtual reality. However, it could also be a
possibility that this principle can be violated so the feedback
is more abstract which opens possibilities for enriching the
rehabilitation scenario with game contexts and experiences to
conceal monotonous repetitive training.

In summary, frustration can reduce patients’ ability to
generate BCI recognizable MI attempts and their desire to
continue BCI training. But previous studies have only used
surrogate BCI methods with healthy subjects as evidence
for the efficacy of fabricated input to increase agency and
reduce frustration in both game and non-game contexts. It
is not clear whether the benefits of fabricated input apply
equally or potentially even more in A) real BCI systems in
which users can be less sure about their attempts of triggering
actions and for B) stroke patients, who due to their conditions
might have lower expectations and different experiences of
reduced agency. Two studies tested these aspects between
game and non-game contexts. The contribution of this paper
is an investigation of agency and frustration with a real online
BCI and with the relevant user group, which is people with a
stroke; this has not been attempted in the literature.
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FIGURE 1: Game Screenshots. In the stress ball condition (left), the player must provide input to make the ball squeeze. In the
kiwi runner (right), the player must provide input while the kiwi crosses the trampoline, to jump over the obstacle.

lll. METHODS: SUBSTUDY 1

The study closely followed the design of previously tested
interactions [8] to allow for within-subject comparison of two
interactions - a simple task (a stress ball, Figure 1, left), and
a game-based task with a narrative (kiwi runner) (Figure 1,
right). Healthy subjects controlled the interactions through
MI-based online BCI. On successful inputs the participants
squeezed the stress ball resulting in a squeeze animation with
positive audio feedback or blinking red with negative audio
feedback on failed attempts (Figure 1, left). In the kiwi runner
interaction, the participants controlled a kiwi jumping over
obstacles to reach a nest to protect its eggs from a bird of
prey (Figure 1, right). Prior to the study, subjects provided
their informed consent prior to the experiment which was
approved by the local ethical committee (N-20130081), and
was in accordance with the Helsinki Declaration.

A. MEASUREMENT OF REAL AND FABRICATED INPUT

The BCI applications utilized an urn model to randomize
trials and achieve the target feedback rates, with three possible
outcomes: 1) activate on user input (acceptance), 2) fabricated
input, or 3) ignore user input (rejection). Activation from user-
or fabricated input closed the input window and delivered
positive feedback, i.e. ball squeezed or the kiwi jumped.
Ignoring user input delivered negative feedback at the end of
the input window, (e.g. the ball blinked red or the kiwi walked
through the obstacle). For fabricated input the system selected
a random point to end the input window between 1.1s and
4.9s, and delivered positive feedback, as if the participants had
activated it. If the participants failed to perform recognizable
MI, the urn would count this as a rejection, to get as close
to the designated activation rate as possible. The output of
the BCI classifier from OpenViBE was sent to Unity for
controlling the two interactions. Two different algorithms
were used for the output of the BCI classifier to identify an
MI event in the two interactions. In the stress ball interaction,
an 8-sample ring buffer was used in which eight consecutive
outputs from the classifier (that provided an output 16 times
per second) had to be above the subject-dependent activation
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threshold, which made it more difficult to activate the BCI.
In the kiwi runner interaction, it was only required that one
sample was above the subject-dependent threshold. Regardless
of the algorithm, both games controlled the amount of positive
and negative feedback users received through the urn model.

We controlled the amount of positive feedback, which ap-
peared temporally congruent with the participants’ input based
on the method used in [8]. In each condition, participants
played 20 trials in four conditions which manipulated negative
and positive feedback as depicted in Figure 3: 0-100%, 30-
100% (30% fabricated input), 0-50% (control limited), and 30-
80% (control limited, 30% fabricated input). The conditions
had a variable continuum of control, as it is not possible to
guarantee an exact level of control of the BCI, for example
in cases where users tried to create MI, but did not succeed.
However, conditions with fabricated input guaranteed at least
30% positive feedback during the trials.

To assist referencing the different conditions between
participants and facilitators we color-coded the stress ball and
kiwi trampolines. The assignment of colors to the conditions
was randomized across participants.

B. EXPERIMENTAL PROCEDURE

The experimental procedure is visualized in Figure 2. Initially,
the participants were informed about the experiment and fa-
miliarized with the experimental setup, tasks/interaction, and
how to perform MI. The participants received approximately
five minutes of MI practice before the experiment started.
Next, an EEG cap was mounted on the participants’ head and
lead through a calibration process of the BCI system by a
BCI researcher with more than ten years of experience. For
calibrating the BCI, the participants performed 30 imaginary
palmar grasps (kinesthetic MI) with their right hand. They
maintained the imaginary movement for four seconds. Also,
30 time periods with idle activity was recorded, which also
lasted four seconds. The participants were visually cued with a
red arrow pointing to the right, indicating a palmar grasp with
the right hand, for four seconds, and with the text "REST"
when the idle activity was recorded. A modified version of
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FIGURE 2: The experimental procedure consisted of 1) mounting the EEG cap, 2) calibration, 3) playing four randomized

conditions in each game followed by 4) a debrief interview.

Condition Structures Explained (RANDOM POSITIONS)
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erere

User Input. Fabricated Input. Control Limiter.
BCI Outcome Positive Outcome Negative Outcome [l

FIGURE 3: In both games (kiwi, ball), each condition had 20
trials (squares) which were preset with specific behaviours and
shuffled. Trials which contained a fabricated input guaranteed
a positive outcome (green square). The control limiter (red
square) guaranteed low input recognition, unless the BCI
already provided low input recognition, in which case control
limiting was removed.

the "Motor Imagery BCI" in OpenViBE (an open source
platform for BCI development) was used where the left hand
MI was replaced with the rest condition [57]. During the
recording of the calibration data and use of the online BCI,
the participants were instructed to sit as still as possible and
avoid both blinking and activating facial muscles. After the
BCI calibration, the participants played the two interactions
in randomized order. There were four runs of each of the
interactions in which different levels of fabricated input were
mixed with the output of the BCI. The order of the runs was
also randomized, but the interactions were not mixed. After
each run the participants filled in a questionnaire. They could
see their ratings from the previous runs as a reference. The
interaction followed a typical synchronous BCI paradigm
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with a cue phase (prepare to perform MI) lasting 2 seconds,
followed by a 5-second input window where the participants
were instructed to perform MI until it was detected, and lastly
a rest period of 5 seconds depending on when the MI event
was detected in the time window or when the fabricated input
was injected (see Figure 1).

After each condition, participants used 7-point Likert
scale items to rate their perceived control ("I felt I was
in control of when the kiwi jumped/ball squeezed." from
strongly disagree (1) to strongly agree (7)) and frustration
("How much frustration did you feel in this condition?"
from strongly absent (1) to strongly pronounced(7)). The
questions were identical to those used in previous studies
of frustration [8], and perceived control [54]. To allow for
numerical comparisons, we maintained the Likert item format
used in [8] for both questions.

C. ONLINE BRAIN-COMPUTER INTERFACE

Continuous EEG data were recorded from F3, F4, C3, Cz,
C4, P3, and P4 according to the International 10-20 System.
The EEG was referenced and grounded to CPz and AFz,
respectively. The EEG was recorded with a cap with sintered
Ag/AgCl electrodes (OpenBCI, USA) and sampled with 250
Hz using a Cyton Biosensing Board (OpenBCI, USA). The
signals were transmitted through Bluetooth to a computer on
which OpenViBE processed the data using the pre-defined
"Motor Imagery BCI" scenario [57]. The continuous EEG was
first filtered between 8-30 Hz with a 5™ order Butterworth
bandpass filter and then with a common spatial pattern filter
to maximize the difference in spectral power between the two
classes (MI and idle activity). The logarithmic band power was
used as input for a linear discriminant analysis classifier [58].
The coefficients of the common spatial pattern filter and the
decision boundary of the classifier were determined based
on the calibration data. The calibration data were divided
into windows with a width of one second which was shifted
1/16 second over the 4-second imaginary movement from the
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calibration data based on the standard settings in the "Motor
Imagery BCI" scenario in OpenViBE. The linear discriminant
analysis classifier was calibrated using 5-fold cross-validation.
The output of the classifier provided an output between 0 and
1. A subject-dependent threshold was set for the output of the
classifier to decide whether it was an MI event or idle activity.
Lastly, a short test of the online BCI was performed with the
subject-dependent threshold set to balance the true positive
rate and number of false positive detections. The starting value
for the threshold was based on the classification accuracies for
the calibration data, and it could be increased or decreased to
allow the balance between the true positive rate and number of
false positive detections. During the interaction, the output of
the classifier was sent to Unity through a transmission control
protocol (TCP) connection for controlling the game. When the
classifier output passed the threshold within an input window,
an MI event it would be counted towards the total MI rate.
If an MI event led to positive feedback, it would be counted
towards the MI conversion rate listed in Table 1.

D. DATA ANALYSIS

The BCI games collected continuous data from the BCI
interactions and event data from the BCI games which were
assembled and post-processed with R Studio. Game events
were compared to condition setups to identify potential
conditions which did not conform to the experimental design.
Afterwards, the quantitative data were analyzed using linear
mixed models from the Ime4 package [59] and multi-model
variance inference from the MuMIn package [60] in terms
of conditional (R?) and marginal R-squared (R2)). We used
linear mixed models to analyze the relationship between the
variables listed in Table 2 and described in the table caption,
following methods described by Winter [61]. Linear mixed
models compare a model of variables, to a null model. In
the null model, we used by-participant intercepts, to predict
ratings of perceived control and frustration. Visual inspection
did not reveal deviations from normality or homoscedasticity.
Likelihood ratio tests were used to obtain p-values, by compar-
ing each effect within a full model to models without the effect
in question. Tests were considered significant when p was less
than 0.05. Qualitative data from post-experiment interviews
were transcribed into quotes for an inductive thematic analysis.
All of the qualitative data were coded into meaningful groups
using open coding analysis [62], where the groups of data
were used to define specific themes.

E. PARTICIPANTS

Sixteen able-bodied participants were recruited for the ex-
periment, nine females and seven males with a mean age of
26 years (range: 23-33 years). The experiment took place
in an ordinary office environment with no shielding of
electromagnetic interference. While some participants have
had EEG recorded before, only two participants were familiar
with performing MI (P8, P10). P6 disconnected during two
conditions in the stress ball (100% +30% and 50%) and
therefore experienced very low feedback and MI activations.
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Due to human error, P11 received six additional fabricated
outcomes for a total of 26 trials in the nominally 0-50%
condition. In addition, P12 tried a condition (50%) twice in
the kiwi runner. The conditions (P11 and P12) were excluded
from the subsequent analyses. The demographics of each
participant and the recorded MI rates are listed in Table 1.

IV. RESULTS: SUBSTUDY 1

A likelihood ratio test of linear mixed models [63] with ran-
dom intercepts for participants showed that positive feedback
rate (from either fabrication or successful inputs) positively
affected perceived control (x?=47.89, p<0.001). Participants’
experienced more control when fabricated input induced
higher positive feedback rates. The relationship of feedback
rate to perceived control and frustration is visualized in Figure
5. The rate of positive feedback explained most variance (55%
R2)) of all significant fixed effects listed in table 2. The MI
rate measured the number of recognized MI attempts (true
positives). MI rate predicted perceived control significantly,
but explained much less of the variance in the data compared
to the rate of positive feedback. People rated perceived control
more according to the feedback they received, than the MI rate
they achieved before applying our feedback manipulations.
Differences between conditions were significant in isolation
but they were not significant when compared in a model
with positive feedback predicting perceived control The
extent which conditions manipulated positive feedback across
participants, is visualized in Figure 4. Gender and interaction
type (kiwi vs. stress ball) did not significantly affect perceived
control. BCI experience was tested as a random effect, but
was not significant.

Frustration ratings were inversely predicted by positive
feedback rate (see table 2). Participants rated frustration
significantly lower for the kiwi than the stress ball, but
participants also experienced higher mean positive feedback
when playing the kiwi game (M=0.674 vs. M=0.560). Dif-
ferences in interaction were significant in isolation, but were
not significant compared to a model with positive feedback
predicting frustration. People had between 11% - 91% control
of the input attempts on average (M = 60%). The stress ball
provided only 5 of 16 participants consistent control (P2, P3,
P10, P12, P13) in all four conditions (less than 25% variance
in recognition rate), while kiwi provided 11 of 16 participants
consistent control.

A. INDIVIDUAL-LEVEL ANALYSIS

Due to the nature of the experiment with online BCI, partic-
ipants’ individual experiences of control are not possible to
capture in group-level analysis. To demonstrate the experience
variation, we performed individual-level analysis to identify
how different participant subgroups’ experience of MI Rate
and feedback variance affected their ratings (see Figure 6).
Participants with less than 40% mean MI rate (Group 1,
Figure 6), had less than 40% mean positive feedback and
high frustration levels as expected (red line, M=0.64). Due to
their low MI rate, the 0-50% condition and 0-100% condition

VOLUME 4, 2016
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Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Gender F F M F F F M F F M F M M M M F
BCI Experience  No Yes Yes Yes Yes Yes Yes  Yes* No Yes*  Yes Yes Yes No No No
Kiwi

Perc. Control 029 075 042 038 054 079 050 071 008 054 050 063 017 046 092 046
Frustration 050 017 054 054 050 012 046 050 050 067 044 025 075 054 033 054
MI Conv. Rate 66% 84% 49% 49% 57% 2% T16% 85% T4% 65% T3% 9% 42% 2% T0% 52%
Pos. Feedback 66% 18% 59% 50% 61% T16% 2% 8% 69% 10% 2% 81% S50% 2% T0% 55%
Stress Ball

Perc. Control 025 083 054 038 067 050 017 067 021 050 046 067 054 012 0.62 0.25
Frustration 075 017 058 075 050 038 083 029 062 062 054 029 062 08 062 0.75
MI Conv. Rate 11% 88% 72% 59% 62% 41% 18% 86%  36% 85% 46% 85% 60% 19% 49% 24%
Pos. Feedback 26% 5% 11% 55% 68% 49% 31% 80% 48% 15% 56% 80% 64% 32% 51% 35%

TABLE 1: Participant demographics (MI Experience denoted with *), mean self-reported measures (perceived control, frustration),
MI conversion rate (% of MI events within input windows which resulted in positive outcomes) and mean positive feedback

(combined % feedback from MI and fabricated input).

Predicted Random intercept  Fixed effect AIC BIC ML X2 R2,  R?
Perceived Control Participant Pos. Feedback -87.77  -76.39 4789 <0.001 055 0.73
Perceived Control Participant MI Rate -2.36 9.01 5.18 <0.001 028 043
Perceived Control Participant Condition 2.68 19.74 4.66 <0.001 0.18 0.51
Perceived Control Participant Fab. Rate 16.87 28.25 -4.44  <0.001 0.10 0.42
Frustration Participant Pos. Feedback -76.87 -6549 4243 <0.001 052 0.67
Frustration Participant MI Rate -2345 -12.07 1572 <0.001 035 047
Frustration Participant Condition 7.71 24.77 2.15 <0.001 0.14 040
Frustration Participant Fab. Rate 21.66 33.04 -6.83 0.006 0.04 029
Frustration Participant Game 21.68 33.05 -6.84 0.006 0.04 0.29

TABLE 2: Significant likelihood ratio test outcomes of predicting perceived control and frustration from 8 variables: MI
rate, fabrication rate, gender, game, condition, BCI experience, condition order and positive feedback rate. The table reports
AIC (Akaike information criterion), BIC (Bayesian information criterion), ML (maximum likelihood), x? (significance), R?,

(marginal variance) and R? (conditional variance).

provided the same experience. The injected 30% fabricated
input (dark grey bars) made up 52% of the positive feedback
this group received on average (light grey bars). The majority
of participants in the high MI performance group (group 2 in
Figure 6) carried out MI without problems and would have
received 75% feedback or higher in all four conditions, if we
had not limited the feedback to 50% in some conditions. The
mean frustration levels (red lines) were much lower (M=0.17)
as expected and the conditions which limited positive feedback
(0-50% and 30-80%) conditions ended up with lowest ratings.
Participants with high feedback variance (group 3, Figure 6)
were exposed to feedback across the full scale. In contrast
to participants with low feedback rates, visual inspection
of participant ratings show a stronger inverse correlation
between Frustration and Perceived Control in this group -
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when perceived control is low, frustration becomes high and
vice versa. The group demonstrates how giving participants
access to a broad range of low to high feedback rates, makes
participants able to reliably discriminate the experiences from
each other.

In the qualitative post-experiment interview, five partici-
pants (P3, P6, P7, P11, and P15) revealed that they tried other
strategies than MI after experiencing successive failures, for
example imagining stretching fingers, swearing at the blue
kiwi bird in their head while clenching their hand, or clenching
the stomach: "I clenched my stomach at two times, where the
yellow ball got squeezed both times, and then I thought 1
should stop doing that [as it felt like cheating]"” (P15). Six
participants (P2, P4, P7, P9, P12, and P16) felt that activation
of the squeeze/jump was random or uncontrollable: "it was a
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Group 1: Participants with Low Ml rates
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FIGURE 6: Individual play-throughs grouped by 1) low MI recognition (mean below 40%), 2) high MI recognition (mean above
75%) and 3) high variance between conditions (more than 50%). Light grey bars indicate the feedback level. Dark grey bars
indicate how much feedback was fabricated input. The red line indicates frustration and the black perceived control ratings. The

x-axis plots MI rates achieved.

bit frustrating. When my strategy worked, I thought I could
use the same strategy again, but then it didn’t work." (P4).
Three participants (P3, P8, and P12) felt that "the stress ball
helped recall contraction, which made it easier to control."
Three participants (P2, P9, and P16) got the feeling of “the
ball sometimes squeezed before I even started thinking” (P2),
which invoked a feeling of “did I even do this?” (P9), whereas
P12 had the same feeling but with a different explanation:
“some algorithms were more sensitive than others, while some
did not even respond.” We discuss the results of this substudy
jointly with those of substudy 2.

V. METHODS: SUBSTUDY 2

Substudy 2 studied fabricated input in a hospital setting with
stroke patients using a similar surrogate BCI hardware setup,
experimental procedure and interaction by Hougaard et al. [8]
to allow for comparison. The study provided patients control
of two games (kiwi, ball) through a surrogate BCI system - a
system, which resembled BCI in appearance and input behav-
ior, but recognized input through blink recognition. The blink
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recognition gave ground truth access to user input attempts and
was practicable for experimental designs in a rehabilitation
setting because of minimal setup time and reduced complexity
(no MI training) to reduce the risk of physical and mental
fatigue of the patients. Similar to substudy 1, this within-
subject study asked patients to rate perceived control and
frustration in four conditions for two interaction types (kiwi
and ball). The participants provided their informed consent
prior to the experiment. The experiment was approved by the
local ethical committee (N-20130081), and was in accordance
with the Helsinki Declaration.

A. EXPERIMENTAL PROCEDURE

The study explored how stroke victims, in a within-subject
experiment design, rated perceived control and frustration
while controlling two surrogate BCI games using blinks
captured by an eye-tracker (Tobii EyeX?). A therapist fetched
each patient from their room, and was not further involved in
the study. The participants were equipped with a MyndPlay
band and were explained that they controlled the game by
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blinking in a specific way, similar to a previous study [8]. The
participants played four conditions in the kiwi runner and the
stress ball games in randomized order.

‘We manipulated user input for the purpose of creating a
controlled experiment. In each game, the participants played
four conditions: 50% real control, 50% real control +15%
fabricated input, 50% real control +30% fabricated input,
and 50% real control +50% fabricated input. Similar to
substudy 1, real control was measured as % of input events
(eye blinks) within an input window which led to positive
feedback. Fabricated input was measured as the % of system-
injected input events, which led to positive feedback. The
conditions were visually distinguished by a random color, to
make it easy for participants to recall and talk about them.

The questionnaire was identical to the questionnaire used
in substudy 1. The facilitator helped reading the questionnaire
to assist the patients and offered to fill in the questionnaire
answers based on patients’ verbal answers.

In each condition, players had 20 trials. The BCI games
were designed to follow an interaction paradigm similar to
substudy 1 (see Figure 1), but used a eye-blinks as the input
modality.

B. SURROGATE BRAIN-COMPUTER INTERFACE

Both BCI games utilized the same urn model to roll between
three possible outcomes. The three possible outcomes were:
1) activate on user input (acceptance), 2) ignore user input
(rejection) or 3) fabricated input. Acceptance outcomes ended
the input window and delivered positive feedback, for example
making the kiwi jump or the ball squeeze. Ignoring the user
input delivered negative feedback at the end of the input
window, for example the kiwi walked through an obstacle
slowing it down, and the ball blinked red. For fabricated input
the system selected a random point to end the input window
and deliver positive feedback, as if the user had activated it. If
the user failed to perform a blink throughout the input window,
the urn counted it as a rejected outcome and saved the drawn
decision.

C. DATA ANALYSIS

The collected data included notes taken during the study,
audiovisual recordings of the participants’ game-screen, their
face when performing the blinks, and answered questions in
the debrief interview. Data from the input device and the BCI
games were logged locally. We followed a similar approach
as in substudy 1 in terms of data processing for quantitative
and qualitative analysis, except that recognized attempts were
now calculated from blink recognition.

D. PARTICIPANTS

Thirteen stroke patients were recruited for a within-subject
experiment of all four conditions, five females and eight
males with a mean age of 65 years (range: 34-87 years). The
participants were recruited from the neurorehabilitation center
(Neuroenhed Nord) in Brgnderslev, Denmark. Three of the
participants had experience with BCI (P1, P4, P12).
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Table 4 lists the demographics and achieved input rates of
all participants. Due to moving out of the eye-tracking range,
three participants (P2-P4) missed inputs within a window and
experienced only 40% control in terms of accepted blinks
(one condition for P2 and P4, two conditions for P3) leading
to lower positive feedback than designed. In addition, P4
remained out of the eye tracking range for a whole condition,
resulting in 0% control in the 50% + 30% fab. input condition.
We checked all analyses without the conditions, but found
no differences in terms of the results, so the conditions were
included in analysis.

VI. RESULTS: SUBSTUDY 2

A likelihood ratio test of linear mixed models with random
intercepts by participant showed that positive feedback sig-
nificantly increased perceived control and reduced frustration
(see Table 3 and 5). Positive feedback and fabrication rates
separately explained equal amounts of R2, and R? variance in
perceived control and frustration (relationship to fabrication
rate visualized in Figure 7). Delays between blinks and
fabricated feedback ranged from O to 4.4 seconds (see Table 4)
but affected neither perceived control. Mean delay affected
frustration significantly, but was not significant, when tested
against a model which included positive feedback. Interaction
type (kiwi vs. stress ball) and play order did not affect self-
reports.

Control Fab. Input  Frust. Perc. Control
Kiwi

50% 0% 0.51 0.54
50% 15% 0.33 0.60
50% 30% 0.29 0.74
50% 50% 0.15 0.87
Stress ball

50% 0% 0.38 0.59
50% 15% 0.41 0.53
50% 30% 0.30 0.63
50% 50% 0.21 0.78

TABLE 3: The experimental conditions with added fabrication
rates to a baseline of 50% successful task outcomes and
the means of the participants’ normalized frustration and
perceived control ratings.

An intra-rater reliability analysis (ICC3, [64]) showed poor
agreement [65] between participant ratings for perceived
control (kappa=0.26, p<0.001) and frustration (kappa=0.24,
p<0.001), which is lower than in a previous study using the
same surrogate BCI [8].

Results from the thematic analysis of the debrief interviews
revealed that all but four participants (P1, P10, P12, and P13)
felt that the game was at fault for most of their experienced
rejections. Two participants (P4 and P11) blamed it on the
game cheating them, showing a lack of trust towards the game.
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Variable 1 2 3 4 5 6 7 8 9 10 11 12 13
Gender F M M M M M F M F F M F M
BCI Experience Yes No No Yes No No No No No No No Yes No
Kiwi

Perc. Control 0.92 0.46 0.67 1.00 0.58 0.88 0.58 0.67 0.46 0.71 0.79 0.62 0.62
Frustration 0.00 0.42 0.42 0.17 0.33 0.42 0.29 0.25 0.46 0.58 0.17 0.42 0.29
Blink Conv. Rate 45% 65% 89% 84%  46% 63% 70% 38% 48% 77% 49% 28% 50%
Blink Recognition 98%  100% 90% 90% 100% 100%  100% 98%  100%  100% 98%  100%  100%
Pos. Feedback 74% 74% 69% 71% 74% 74% 74% 74% 74% 74% 74% 74% 74%
Pos. Feedback Delay (s) 0.3 0.3 0.3 0.4 0.3 0.5 0.4 0.2 0.3 0.3 0.4 0.2 0.3
Stress Ball

Perc. Control 0.87 0.46 0.46 1.00 0.67 0.83 0.46 0.75 0.71 0.67 0.71 0.25 0.38
Frustration 0.00 0.62 0.46 0.17 0.25 0.42 0.25 0.21 0.33 0.46 0.04 0.46 0.54
Blink Conv. Rate 37% 81% 31% 26% 28% 66% 43% 41% 30% 50% 36% 26% 33%
Blink Recognition 100% 92%  100% = 75% 100% 100% 100% 100% 100% 100% 100%  100% 98%
Pos. Feedback 74% 71% 74% 61% 74% 74% 74% 74% 74% 74% 74% 74% 74%
Pos. Feedback Delay (s) 0.3 0.8 0.3 0.2 0.3 0.7 0.3 0.4 0.2 0.4 0.7 0.2 0.4

TABLE 4: Participant demographics and means averaged across the four conditions of frustration (Likert scale), perceived
control (Likert scale), blink conversion rate (% of registered blinks within input windows which resulted in positive outcomes),
blink recognition (% of unaltered trials which had registered blinks) and delay (mean delay between blink and positive feedback

across all trials).

Predicted Random Intercept  Fixed Effect AIC BIC ML X R2, R?
Perceived Control ~ Participant Condition -15.42 0.45 13.71 <0.001 0.17 0.50
Perceived Control ~ Participant Fab. Rate -16.51 -5.93 1225 <0.001 0.15 0.49
Perceived Control  Participant Pos. Feedback -1429 371 11.14 <0.001 0.14 0.49
Perceived Control  Participant Blink Rate -6.89 3.69 7.45 <0.001 0.11 044
Frustration Participant Condition -25.10  -9.23 18.55 <«0.001 0.16 048
Frustration Participant Fab. Rate -29.07 -1849 1853 <0.001 0.16 0.48
Frustration Participant Pos. Feedback -27.32  -16.74 17.66 <0.001 0.15 048
Frustration Participant Blink Rate -16.34  -5.76 12.17 <0.001 0.10 0.46
Frustration Participant Delay -6.14 4.44 7.07 0.046 0.04 0.33

TABLE 5: Significant likelihood ratio test outcomes of predicting perceived control and frustration from 8 variables: blink
rate, fabrication rate, delay, gender, game, condition, condition order and positive feedback rate. The table reports AIC (Akaike
information criterion), BIC (Bayesian information criterion), ML (maximum likelihood), X2 (significance), an (marginal
variance) and RE (conditional variance). Significant variables were modeled with positive feedback as fixed effects, but no

combinations were significant.

One participant blamed the game because of feeling protective
towards their functionality in the brain. As P11 explained “my
nurse told me that my brain functions completely normal even
though I've had a stroke, which convinces me that the game is
cheating me”. Not trusting the game influenced the frustration
of two participants (P7 and P11): “I am not that frustrated,
because I just think to myself that it’s the games’ fault” (P7).
A couple of participants (P4 and P5) had a perceived learning
curve when playing first with +0% fabricated input, and then
with +50% fabricated input after, “I have figured it out! Slow
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blinks work.” (P5). This has a connection to uncertainty of
strategy as well, where several participants (P1, P2, P4, PS5,
and P9) were trying to figure out how to play the game, “Do [
need to press [my eyelids] harder for it [the game] to react?”
(P2) and “Is it true that I need to blink more with my left
eye?” (P5). These comments mostly came after consecutive
rejections, which made participants question their blinking
approach.



IEEE Access

Hougaard et al.: Modulating Perceived Control and Frustration with Fabricated Input in a Brain-Computer Interface

0.84

0.6

0.4

Perceived Control

0.24

T T T

T
+0% +15% +30% +50%
Fabrication Rate (%)

0.8

0.6

Frustration

0.4+

0.2

T T T

T
+0% +15% +30% +50%
Fabrication Rate (%)

FIGURE 7: Perceived Control and Frustration means (substudy 2), jittered for better visibility and their distribution (violin plots)
by fabrication rate (the conditions) added to a 50% of actual control. Error bars denote 95% confidence intervals.

VII. DISCUSSION

Fabricated input increased perceived control and lowered
frustration in an online BCI study with healthy participants
(substudy 1) and in a surrogate BCI study with stroke patients
(substudy 2). Both substudies showed a strong negative
Spearman correlation (r=-0.78 for substudy 1 and r=-0.62
for substudy 2) between perceived control and frustration
(see Figure 8). This provided evidence that system-generated
fabricated input can be useful in 1) surrogate studies with
healthy and stroke participants, 2) surrogate and online BCI
studies with healthy participants, and 3) in interactions both
without (stress ball) and with a larger narrative frame in which
progress to a larger goal was at stake (rescuing the kiwi’s
babies). In both studies, participants perceived their control
based on positive feedback, rather than underlying control
indications (MI rate, blink rate). Positive feedback rates
predicted both perceived control and frustration linearly in line
with previous work using binary, discrete feedback [8] unlike
when feedback gets generated continuously and perceived
control becomes independent from experiencing discrete,
positive feedback events [66].

A. ONLINE VS. SURROGATE BCI

The online BCI study yielded similar ratings for perceived
control and frustration compared to a previous surrogate BCI
study [8] (see the intercepts («) and slopes (3) for both
variables in Table 6). While Hougaard et al’s found that
the variable delay from fabricated input reduced perceived
control over stress ball squeezes in healthy participants [8]
results from neither substudy showed delay-related penalties
in perceived control or frustration. The random placement of
fabricated events during the later parts of the input window
did not significantly affect the experience for stroke patients
and online BCI users. The reduced perceived control in
that study [8] could be due to a violation of temporal
congruency [54]. For the participants to be able to penalize
a potential delay, they need to have access to ground truth
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to register the delay. While online BClIs introduce a constant
delay from the used algorithm, which theoretically might
appear variable, as users do not know whether and when
their MI attempts passes the necessary thresholds, they do
not provide access to the ground truth due to lack of sensory
feedback. The surrogate BCI studies both past and presented
here, concealed the ground truth by asking participants to
blink in a specific way to make it more difficult for them to be
aware if they succeeded.

In future studies, it would be interesting to investigate if
similar ratings of perceived control and frustration can be
obtained when using participants that are skilled in performing
MI and may be more aware if and when they have performed it
correctly. In this study only two participants were familiar with
MI, although everyone performed a short MI familiarization
session prior to the BCI calibration.

B. PERCEIVED CONTROL AND FRUSTRATION IN
STROKE PATIENTS

Stroke patients in substudy 2 reported having more control
over the kiwi and stress balls and were less frustrated than
healthy participants with the same number of successful
outcomes in a study using eye-blink surrogate input [8] (see
Table 6). The differences were mostly due to stroke patients
having higher baselines (intercepts) of perceived control (and
lower frustration) than healthy participants. In return, the
ratings of stroke patients did not change as much as those
of healthy participants [8] when positive feedback increased
(see Table 6).

Stroke patients did not penalize delays between intention
and system output as much as the healthy participants in the
surrogate BCI. Due to their age, the stroke patients may have
lower expectations to the technology due to their presumable
reduced exposure to computer interaction in general compared
to the healthy participants in in Hougaard et al.’s study [8].
However, this is just a speculation that has not been tested.

Moreover, potential cognitive impairments such as spatial
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Games BCIinput Participants  Agency (o) Agency (8)  Frustration (o)  Frustration (8)  ICC Score
Kiwi, stress ball BCI(MI)  Healthy -0.11 0.97 1.06 -0.88 0.25/0.28
Kiwi, stress ball ~ Blinks Stroke 0.31 0.49 0.68 -0.50 0.24/0.26
Kiwi [8] Blinks Healthy -0.03 0.72 0.90 -0.64 0.31/0.36
Stress ball [8] Blinks Healthy -0.07 0.92 1.09 -0.78 0.72/0.78

TABLE 6: Cross-study comparison of normalized results from substudy 1 and 2 predicting agency and frustration with results

from Hougaard et al. [8] .
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FIGURE 8: Perceived Control to Frustration for substudy 1 (left) and substudy 2 (right).

neglect, and deficits in magnitude estimation, self-awareness
or abstraction ability can confound the validity of self-reported
measurements from stroke patients [67]. Stroke patients may
face low self-awareness [68] and therefore may not want to
articulate any frustration that they actually feel in fear of
acknowledging their own deficit. Physiological measures such
as galvanic skin response could potentially complement the
self-reported measures.

In substudy 2, an intra-rater reliability analysis (ICC3, [64])
across kiwi and stress ball showed poor agreement [65] in
ratings for perceived control (kappa=0.26, p<0.001) and
frustration (kappa=0.24, p<0.001) than in a previous study

using the same surrogate BCI approach and interactions [8].

Comments from some of the stroke patients indicated that
special attention to wording and explanation is necessary to
avoid measuring ill-defined constructs.

P11 was not frustrated over a bird not jumping inside a
game, as they mentioned, “It is not frustrating at all. The
bird can decide for itself if it wants to listen or not”. The
number of stroke participants was fairly small for the findings
to be representative for the entire stroke population, which
is very heterogeneous. Future studies should investigate how
fabricated input modulates perceived control and frustration
in patients with varying cognitive impairments.
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C. STUDY LIMITATIONS

Both studies increased the external and ecological validity
over previous work [8] but yielded lower experimental control.
In substudy 1, we used online BCI instead of surrogate BCI in
a study with healthy subjects. This introduced variable input
and blocked analytical access to the ground truth. Although
we could measure MI rate from the participants, it could
have contained false positives and negatives and thereby not
accurately reflecting intentional user input attempts. Hence it
might be reasonable to expect how the MI rate only explain
a low amount of variance (28% R2,) in users’ ratings of
perceived control. From an experimental design point of view,
the benefits of using surrogate BCI includes allowing for
known-groups validation [69] for example by measuring a
well-known construct such as 100% control known before-
hand to be distinct. The participants, many without prior MI
experience, described trying various other approaches when
they realized MI did not work consistently, including focusing
on the fingertips or clenching their stomach; this could reduce
the actual MI recognition rate. The low rater reliability could
potentially be improved by including reference conditions
with 100% or 0% control as anchoring points for the Likert
scale ratings of the perceived control and frustration (e.g. see
Hougaard et al. [8]). In real-life rehabilitation scenarios, high
levels of input fabrication could be counter-productive and
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degrade rehabilitation outcomes if they hindered learning of
MI and produced weaker sensory-motor rthythm patterns [52],
[53]. But motor cortical activity through MI is an integral
part of inducing neural plasticity [3], [28], [70]-[72], and
fabricated input would only serve to improve the patient’s
agency and frustration to maintain sufficient engagement and
motivation in the rehabilitation. Lastly, the use of fabricated
input is likely most relevant for BCI applications within
neurorehabilitation for inducing plasticity or binary input
tasks in synchronous BClIs with pre-defined input windows.
Because it would not be possible to predict what type of
fabricated input would be relevant, and when to inject it, in
BCI applications for communication and control purposes
such as wheelchair control, cursor movement, and speller
devices.

D. IMPLICATIONS

This study showed that fabricated input can be used to improve
perceived control and frustration in online and surrogate
BCI use in healthy participants and stroke patients, and
that it can be concealed without being noticed by the user.
This simplifies the implementation of fabricated input in
systems with time-bounded input windows (five seconds in
our studies) as designers do not need to worry much about
delays between randomly system-injected inputs and the most
recent unrecognized MI attempts. Especially in BCI systems
in which 1) processing and aggregation delays can be quite
high (0.5 seconds in substudy 1), 2) participants are meant
to maintain imaginary movements until recognition, and
3) triggering MI-BCI lacks proprioceptive and somatosensory
feedback.

The fabricated input could be implemented in task realistic
training, for example for grip strength with a stress ball and in
a game context with a narrative. The results from the studies
did not indicate group-level differences in perceived control or
frustration based on the game or simple task, but participants
indicated individual preferences during interviews. This pro-
vides evidence that in these interactions participants evaluated
frustration in relation to their ability to affect change rather
than the bigger goal or that the provided narrative framing
was not strong enough to affect their frustration.

In both surrogate BCI and online BCI, most participants
preferred the kiwi game to the stress ball (8/13), but the
MI contractions felt more natural when squeezing the ball
than making the kiwi jump. Designers can integrate fab-
ricated input in BCI-based training to reduce frustration
and maintaining patients’ engagement for patients with low
BCI performance (<65% recognition rate) as for patients
with higher performance fabricated input might lead to a
reduction in their ability to perform MI [38], [52], [53]. Other
avenues to increase BCI users agency include leveraging
realistic feedback rather than abstract representations [73]
and continuous instead of discrete feedback depending on
the preferences of the learner [48]. These concepts can be
combined with fabricated input to dynamically modulate
perceived agency and to some degree frustration depending on
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the user’s performance. This could for example be different
games and potentially introducing multiplayer experiences
with other patients to motivate them to train more.

VIIl. CONCLUSION

Fabricated input can be implemented in online MI-based
BCls and in surrogate BCI studies to reduce frustration and
increase perceived control of healthy and stroke participants.
Stroke patients reacted not as much to the variations in
fabricated input as healthy participants which could be due
to differences in expectations to the technology/interaction.
For discrete, binary input the rate of positive feedback linearly
moderates both the perceived agency and frustration. From an
experimental point of view, surrogate BCIs are useful since
they provide access to ground truth and reduce the effect of
confounding factors to isolate the factor(s) under investigation.
Lastly, fabricated input work, at least for binary input, both in
game and non-game contexts, allowing developers to promote
patient training by concealing monotonous and repetitive
training regimes through game contexts. Future studies should
investigate the reasons for these differences with larger patient
groups and varying cognitive impairments.
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