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Abstract: We propose the use of computer vision for adaptive semi-autonomous control of an upper
limb exoskeleton for assisting users with severe tetraplegia to increase independence and quality
of life. A tongue-based interface was used together with the semi-autonomous control such that
individuals with complete tetraplegia were able to use it despite being paralyzed from the neck
down. The semi-autonomous control uses computer vision to detect nearby objects and estimate how
to grasp them to assist the user in controlling the exoskeleton. Three control schemes were tested:
non-autonomous (i.e., manual control using the tongue) control, semi-autonomous control with a
fixed level of autonomy, and a semi-autonomous control with a confidence-based adaptive level of
autonomy. Studies on experimental participants with and without tetraplegia were carried out. The
control schemes were evaluated both in terms of their performance, such as the time and number of
commands needed to complete a given task, as well as ratings from the users. The studies showed a
clear and significant improvement in both performance and user ratings when using either of the
semi-autonomous control schemes. The adaptive semi-autonomous control outperformed the fixed
version in some scenarios, namely, in the more complex tasks and with users with more training in
using the system.

Keywords: semi-autonomous control; shared control; assistive robotics; computer vision; intent
prediction; tetraplegia; spinal cord injury; upper limb exoskeleton

1. Introduction

The use of robotics for aiding people in everyday life is becoming increasingly more
common and assistive robotics is a promising aspect for individuals who would otherwise
be dependent on a caregiver for daily activities [1,2]. This potential for assistive robots is
especially high for individuals who are exceedingly dependent on caregivers in everyday
life such as individuals with tetraplegia, i.e., partial or complete loss of control in both arms
and legs. A typical cause of tetraplegia is SCI (spinal cord injury), and it is estimated that
250,000 to 500,000 people suffer from SCI every year [3], with roughly one-third of these
cases resulting in tetraplegia [4].

The mean age of individuals with tetraplegia was reported to be 33 years old when sus-
taining the injury [4], but especially males aged 20–29 years and females aged 15–19 years
have seen spikes in the incident rate of traumatic spinal cord injuries [3]. The motivation
for focusing on tetraplegia is further supported by a high life expectancy after the injury,
especially for young individuals [3]. An individual with tetraplegia caused by SCI at the
age of 25 years can often expect to live for another 40 years. One of the most important
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tools for individuals with tetraplegia is often a powered wheelchair, offering both mobility
and independence [3]. However, tasks requiring interaction with an object, such as drink-
ing and eating, still require assistance from a caregiver. The frustration of not being able
to perform these things independently becomes even greater for prolonged sessions, for
instance, during recreational activities, such as watching a movie while enjoying a beverage
or snacking [5].

To mitigate the challenges above and increase the independence of individuals with
tetraplegia, we propose the novel combination of using a tongue-based interface combined
with computer vision in a semi-autonomous control scheme to enable individuals with
tetraplegia to effectively control an upper limb exoskeleton, as shown in Figure 1.

Computer Vision

Tongue-based
Interface

Upper Limb
Exoskeleton

Semi-Autonomous
Control Scheme

Figure 1. Overview of the proposed system. A semi-autonomous control scheme combines input
from a tongue-based interface and a computer vision module to assist a user in controlling an upper
limb exoskeleton.

An upper limb exoskeleton is used, as several studies have successfully demonstrated
how it can help restore some of the lost functionality for individuals with movement
impairments in the arms [6,7]. Furthermore, the tongue-based interface has previously
been shown to be an efficient and suitable interface for individuals with tetraplegia to
control an exoskeleton [8,9]. Finally, a semi-autonomous control scheme assists the user in
controlling the exoskeleton based on input from a computer vision module, which detects
and analyzes nearby objects. This is performed as several studies suggest that such an
approach can be beneficial for controlling assistive robotic manipulators [10].

Hence, the main contributions of the paper are the following:

• We design and implement an adaptive semi-autonomous control scheme based on
computer vision and evaluate it in the context of controlling an upper limb exoskeleton
through a tongue-based interface.

• We evaluate the effectiveness and intuitiveness of various control schemes for perform-
ing semi-autonomous tongue-control of an upper limb exoskeleton, through studies
including both participants with and without tetraplegia.

2. Related Work

The proposed system consists of an upper limb exoskeleton as it would enable individ-
uals with tetraplegia to regain some of the lost functionality in their arms. The idea of upper
limb exoskeletons for users with movement impairments have, in several previous studies,
been shown to be useful for both assistive purposes [6,11] and for rehabilitation [7,12,13].

However, a challenging aspect of using an exoskeleton for people with tetraplegia is
how to interface with it. A common approach for controlling upper limb exoskeletons is
with EMG (electromyography) [7,14] to detect muscle activity, which is not feasible in case
of severe tetraplegia. Other approaches require the user to control the exoskeleton using
a joystick, operated by a single finger [6], which is not possible for complete functional
tetraplegia either. Others have explored the idea of using eye movements [13] or voice
commands [6] to allow individuals with movement impairments to interface with an upper
limb exoskeleton. Eye movements or voice commands are plausible options but can be
very tedious to use in the long run and are easily susceptible to noise such as accidental eye
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movements or nearby sounds. In one study, the majority of the participants preferred other
options over the voice-based control [6]. Another possibility is BCI-based control (brain–
computer interface), where signals are measured from the brain of the user controlling the
upper limb exoskeleton [12]. However, weak points of a BCI-based interface is the low
signal-to-noise ratio, the need for substantial calibration, and the low throughput, both in
terms of the number of different commands and also how fast one can issue them. This
often restricts the use of BCI-based interfaces to rely on predefined movements which are
completely automated [15], forcing the user to relinquish control completely for periods
of time.

A tongue-based interface does not suffer from many of the issues highlighted above.
It offers high throughput, both in terms of the number of possible commands and also in
terms of how fast they can be issued [16]. Furthermore, several studies have demonstrated
that a tongue-based interface can be used by individuals with tetraplegia to control various
assistive devices, such as an upper limb exoskeleton [8] or a robotic arm [17]. These
considerations have led to the choice of a tongue-based interface.

A semi-autonomous control scheme, where parts of the control are automated using
computer vision, is included in the system to further enhance the tongue-based control
of the exoskeleton. Several studies have reported increased performance when employ-
ing computer vision for semi-autonomous control of assistive robotic manipulators [10],
such as completing tasks faster [18,19] or being more precise in the movement of the
manipulator [20,21]. Furthermore, there are several examples of computer vision either
improving the fine control of an upper limb exoskeleton [13,21] or automating entire parts
of a task [11,22,23] for users with paralysis.

Many of the approaches relying on computer vision employ a clear-cut strategy for
arbitrating control between the user and the system, where certain parts of the process
are completely automated [10]. For example, reaching for and grasping an object once
the user triggers this predefined task, either from a tongue-based interface [20], through
voice commands [18], or through eye movements [11,22]. The user would, in these cases,
relinquish complete control until the task is completed, i.e., the object is reached and
grasped. This fixed level of autonomy, where the automated process is clearly defined,
is likely common because it is easy to implement, easy to understand for the user, and
it improves performance in many cases. Sometimes it is also the only option due to the
limitations of the interface used for the control [11,22].

However, using a fixed level of autonomy introduces the problem of finding an
optimal balance in the arbitrating control between the user and the system [10]. If the
user is primarily in control at all times, without any automating, it defeats the purpose
of having semi-autonomous control in the first place. On the other hand, a high level of
autonomy where nearly everything is automated may not be a satisfying experience for
the user either [24]. Automating may even counteract what the user is trying to achieve in
cases where the automating performs the wrong action, e.g., reaching for the wrong object,
and it may impose a safety risk. Even cases where the automating acts as intended may
result in lower satisfaction for the user as they may no longer feel in control, especially for
individuals with movement impairments [19].

One way to avoid or minimize many of these issues is to rely on an adaptive level of
autonomy instead of a fixed one. Several studies on teleportation of robots have successfully
demonstrated semi-autonomous control with an adaptive level of autonomy based on a
confidence-measure [25,26]. This confidence-measure is an expression of how certain the
system is in its own prediction of the intent of the user, such as interacting with a certain
object. The system will hence offer a lot of assistance in scenarios where it has a high
confidence of being able to correctly assist the user. The opposite is also true; the system
will offer no or little assistance in cases of low confidence where it is unclear what the user
is trying to accomplish. A benefit is hence that it can adapt its level of autonomy to fit
different scenarios.
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Hence, in the current study, three different control schemes were implemented: a
non-autonomous (i.e., manual) control, a semi-autonomous control with a fixed level of
autonomy, and a semi-autonomous control using a confidence-based adaptive level of
autonomy. The implementation of each is described in further detail in Section 3.4. These
three different control schemes are evaluated and compared against each other, as described
in Section 4. The purpose is to determine whether using computer vision for tongue-based
control of an upper limb exoskeleton is beneficial or not and whether semi-autonomous
control with a fixed or adaptive level of autonomy is preferable in this context.

3. Method

The following describes the different main components of the proposed system, as
also shown in Figure 1. The upper limb exoskeleton is controlled by mixing input from the
user and from the computer vision module. The user provides input to the system through
a tongue-based interface as the exoskeleton is designed for individuals with tetraplegia.
The computer vision module is designed to detect objects in front of the user and infer how
to grasp them. The computer vision module is also designed to predict the intention of the
user, i.e., what object to grasp, to assist the user in controlling the exoskeleton. Finally, the
control scheme module combines input from the user and the computer vision module to
actuate the exoskeleton.

3.1. Upper Limb Exoskeleton

The exoskeleton used in this study is the EXOTIC upper limb exoskeleton, as shown
in Figure 2a. It has four degrees of freedom (DoFs): two in the shoulder, one in the elbow,
and one in the wrist. The number of DoFs is kept at a minimum to reduce the bulkiness of
the exoskeleton. The DoFs included have been carefully selected to support tasks such as
picking up objects from a table and bringing them to the mouth of the user. The number
of DoFs in the exoskeleton also means that it must use three of its four DoFs to reach an
arbitrary position, leaving only rotation around the wrist as the free DoF for altering the
orientation of the end effector, i.e., the hand. A more thorough description of the upper
limb exoskeleton and its capabilities can be found in [27,28].

(a) The EXOTIC upper limb exoskeleton
with a camera at the shoulder joint.

(b) The inductive tongue
interface (ITCI).

(c) The control layout for
the ITCI.

Figure 2. An overview of the hardware used in the proposed system. (a) The EXOTIC upper limb
exoskeleton along with the Carbonhand for the end effector. An RGB-D camera is mounted at the
shoulder joint. (b) The part of the inductive tongue interface (ITCI) placed in the roof of the user’s
mouth. (c) The layout of the ITCI used to control the exoskeleton.

For the end effector, a Carbonhand from Bioservo Technologies AB is used and pro-
vides active actuation when closing the hand of the user. Only the thumb, middle finger,



Appl. Sci. 2022, 12, 4374 5 of 24

and ring finger are actuated in the Carbonhand. Opening of the hand is passive and is
performed using an elastic fabric on the back of the hand.

3.2. Tongue-Based Interface

The proposed system makes use of an inductive intra-oral tongue interface (ITCI) [9,29],
as shown in Figure 2b. The ITCI sits in the roof of the user’s mouth and is held in place
similar to a dental brace. The unit contains a small battery and can hence operate wirelessly
while sitting in the mouth of the user. The entire area of the ITCI is covered by 18 small
inductive sensors which can be activated using a tongue piercing made of metal. The
tongue piercing and dental braces are for long-term usage and not for temporary usage.
In the studies, surgical glue was used to attach a small piercing-like metal cylinder on the
tongue of the participants instead. The ITCI was held in place in the roof of the participant’s
mouth using dental putty instead of a custom dental brace.

The inductive sensors of the ITCI were mapped to the layout shown in Figure 2c to
control the upper limb exoskeleton [28]. The upper part of the ITCI functions as a joystick
where the user can control the forward (F), backward (B), left (L), and right (R) motion
of the exoskeleton. A slider is used to control the exoskeleton either down or up and is
placed right below the joystick-like control. All these movements happen in relation to
the current position of the end-effector, i.e., the hand of the user. The lower part of the
ITCI contains controls for opening and closing the Carbonhand along with a slider for
controlling the wrist rotation of the exoskeleton. Finally, an “auto grasp” button is located
slightly below the middle of the ITCI layout. When pressed, the button will activate the
fixed semi-autonomous control of the exoskeleton which is described in more detail later in
Section 3.4. The exact same layout is used for both the manual control and the adaptive
semi-autonomous control. The only exception is that the auto grasp button does nothing
while using these two control schemes.

The layout of the ITCI, along with the current location of the tongue piercing in the
mouth, is shown to the user only when training to use the tongue interface. All the results
presented later are hence gathered without any visual feedback from the tongue interface.
This is performed as the main idea of the system is to be able to use it without any visual
feedback besides the actual movement of the exoskeleton.

3.3. Computer Vision Module

The computer vision part of the system is mainly responsible for performing object
detection, intent prediction, and grasp detection, as outlined in Figure 3. The input for
the computer vision module is a small RGB-D camera (Intel RealSense D415), providing
both color and depth information, mounted at the shoulder joint of the exoskeleton (see
Figure 2a) and pointing towards the area in front of the user. This specific camera was
chosen for its small baseline, i.e., the distance between the two sensors used for depth
measurements, making it suitable for capturing depth data at close range (minimum
operating range ≈30 cm). The small baseline also results in a small camera footprint,
making it easier to mount on the exoskeleton discreetly and without the camera getting in
the way. The depth information from the camera is not used during object detection but it
is used for both the intent prediction and grasp detection, as described later.
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Figure 3. Overview of the pipeline for the computer vision module. An RGB-D camera (Intel
RealSense D415) is mounted at the shoulder joint of the exoskeleton and captures both RGB and
depth information from the area in front of the user. The object detection relies on the RGB data
where objects are detected using color thresholding. The depth information is masked based on the
detected objects and then converted to a point cloud. Cylinder-like shapes are then detected in the
resulting masked point cloud using an RANSAC-based algorithm. Finally, the detected cylinders are
converted to grasp poses for the exoskeleton using a rule-based approach.

3.3.1. Object Detection

An important part of the computer vision module is to be able to detect any objects
of interest in front of the user that the exoskeleton might be able to reach. The current
state-of-the-art approaches for object detection are often based on deep learning [30,31],
where neural networks are trained on huge amounts of labeled data [32]. These huge
amounts of training data are required for the deep learning-based object detectors to learn a
wide range of different objects and to generalize well to different environments. However,
performing object detection in this way adds another layer of complexity, and thereby
uncertainty, on top of an already complex system.

Instead, a classic approach of relying on color for segmentation of the objects is used,
where thresholding is applied to the HSV (hue, saturation, value) color space, such that
all bright red objects in the RGB image from the camera are detected. This approach is
characterized by producing stable object detections in a controlled environment for a few
objects, which is what is needed for the experiment. The decision to use this classic approach
based on colors for object detection is hence an attempt at minimizing any uncertainty
during the experiment related to object detection. This decision was deemed acceptable as
the focus is not the computer vision part but rather on testing the different control schemes.

3.3.2. Intent Prediction

Once any objects are detected, the system must predict the intent of the user. The
intent prediction is based on the direction of the user’s palm, the intuition being that
people generally have their palm pointed towards an object when grasping it. Using this
assumption also had the benefit of making it easy to explain how the system works to the
users of the exoskeleton.

The intent prediction works by projecting a ray from the palm of the user, as depicted
in Figure 4. The orthogonal Euclidean distance between this ray ~R and any object in the
scene is then calculated and the object resulting in the shortest distance is then considered
the predicted intention of the user, i.e., object A. Additionally, only objects facing the palm
of the user’s hand are considered during the intent prediction and any objects facing the
back of the hand are ignored, such as object C.
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Figure 4. Example of the intent prediction using the Euclidean distance from the detected objects
(A, B, C) to a ray ~R projected from the palm of the user’s hand in the exoskeleton. The example is
shown in a plane (2D) for simplification.

An alternative to this ray-based method could have been an approach based purely on
distance [26], i.e., finding the nearest object. The obvious drawback of such an approach is
that it would only consider the nearest object, i.e., B, and disregard all other objects in the
scene. Furthermore, using solely the shortest distance may also cause the intent prediction
to gravitate towards the nearest object to the point where it might become difficult for
the user to break away from that object. This effect is less pronounced with the ray-based
method as only slight adjustments of the exoskeleton are required to point it towards the
intended target. Finally, the ray-based approach for intent prediction was found to be
quite stable when moving towards an object. This behavior avoids problematic scenarios
where the system might suddenly change the predicted intention while moving towards
an object; something that could easily occur if using a nearest object approach for the
intention prediction.

3.3.3. Grasp Detection

The last part of the computer vision pipeline detects how to grasp the target object, i.e.,
the object that the user is interested in interacting with. The experimental setup included
two objects for the user to interact with: a strawberry and a bottle. A simple rule-based
strategy relying on fitting cylinders [23] was hence used for the grasp detection. First, the
detection from earlier (Section 3.3.1) was used to mask the depth information from the
RGB-D camera such that the result was a point cloud of the target object, as shown in
Figure 3. An RANSAC-based algorithm [33] was then used to fit a cylinder to the masked
point cloud [34], resulting in both the position and orientation of the object (the central axis
of the cylinder) along with its approximate size (the cylinder diameter and height).

The fitted cylinders were then converted into a grasp pose for the exoskeleton, as
illustrated in Figure 5, which depicts how the coordinate frame of end-effector, i.e., the
Carbonhand, should be positioned and oriented in order to grasp the two objects on the
table. The frame of the end-effector is placed in the palm of the Carbonhand and oriented
such that the z-axis is pointing out from the palm, the y-axis points upwards, and the x-axis
points towards the thumb of the Carbonhand.

A rule-based approach is used for grasping the objects such that:

• Position—The coordinate frame of the end-effector should be positioned halfway
along the height of the cylinder, such that the object is grasped in the middle for
stability. Furthermore, the position for grasping the object should be on the outer
perimeter of the cylinder to avoid pushing the object away. An offset, equal to the
radius of the detected cylinder, is applied in the direction towards the end-effector to
avoid this.

• Orientation—The coordinate frame of the end-effector should be oriented such that
the y-axis is parallel with the axis of the cylinder, while also pointing upwards to avoid
infeasible grasping orientations (such as trying to grasp the object with the palm of the
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hand facing away from the person in the exoskeleton). Furthermore, the z-axis should
be orthogonal to the axis of the cylinder to avoid grasping the object at a skewed angle.

Furthermore, smaller objects (height less than ≈3 cm) are difficult to grasp using an
upright orientation (such as the orientation of the Carbonhand depicted in Figure 5). This is
partly due to the design of the Carbonhand, where only the thumb, middle finger, and ring
finger are actuated. An additional check is therefore implemented in the grasp detection,
such that all objects fewer than 3 cm in height will be approached as a cylinder laying flat
on the table, as also illustrated for the small strawberry in Figure 5. Finally, it should be
noted that a cylinder is a poor fit for a strawberry. Nevertheless, the above approach was
found to produce an acceptable grasp for both the bottle and the strawberry.

Figure 5. The grasp detection identifies how the coordinate frame of the Carbonhand (i.e., the
end-effector) should be positioned and oriented in order to grasp the two objects on the table.

3.4. Control Schemes

The purpose of the control schemes is to arbitrate input from the user, received through
the ITCI, with the information from the computer vision module, i.e., what object to grasp
and how to grasp it, in order to actuate the upper limb exoskeleton. Parts of the control of
the exoskeleton will hence be automated, which is why some of the control schemes are
referred to as semi-autonomous control.

Three different control schemes are implemented and tested against each other:

• Non-Autonomous Control —The system offers no assistance at any point and the
input from the computer vision module is ignored. The exoskeleton is manually
controlled by the user at all times.

• Fixed Semi-Autonomous Control—A fixed level of autonomy is used where the
system will take over control of the exoskeleton when the user presses and holds the
“auto grasp” button in the ITCI layout (Figure 2c). While doing so, input from the
computer vision module guides the hand of the exoskeleton towards the most likely
object to grasp.

• Adaptive Semi-Autonomous Control—The system will at all times assist the user in
controlling the exoskeleton. The level of autonomy is adapted based on a confidence
measure related to the certainty of the intent prediction from the computer vision
module. A high certainty of the predicted intention being correct will result in a high
confidence and the system will provide more assistance. In low-confidence scenarios,
the opposite is true, and the system will provide little to no assistance. If the user does
not activate the tongue interface the system does not move. The “auto grasp” button
does nothing in this control scheme.

3.4.1. Fixed Semi-Autonomous Control

The fixed scheme for the semi-autonomous control switches from manual to automatic
control as long as the user presses and holds the “auto grasp” button on the ITCI layout, as
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shown earlier in Figure 2c. Having to press and hold the button instead of only pressing
the button once is a safety measure as it provides an intuitive and easy way to stop the
automatic control of the exoskeleton by simply letting go of that button. It also reduces
the impact of random noise activating the “auto grasp” button or the user activating it by
mistake. Both scenarios can easily occur, especially when learning to use the ITCI.

Once the automatic control is activated, the exoskeleton will move towards the target
object as detected by the computer vision module. The exoskeleton will move the hand
towards the detected grasp pose linearly while controlling both the position and orientation.
While using the automatic control, the exoskeleton will avoid collisions with the table as an
added safety measure. The actuation of the hand open/close of the Carbonhand is not part
of the automatic control and will have to be activated manually by the user.

3.4.2. Adaptive Semi-Autonomous Control

The adaptive scheme for the semi-autonomous control relies on continuously blending
input from the user and input from the computer vision module based on a confidence
measure. This confidence measure is based on calculating the similarity of the command
received from the user with the intention predicted by the computer vision module.

All commands from the user for manually moving the exoskeleton (up, right, forward,
and so on) can be described in 3D using the vector ~Ux,y,z. As only the direction of the user
input is considered for calculating the confidence, the normalized vector, Û, is used. A
similar vector can be formulated for the computer vision module, ~Cx,y,z, which describes
how the position of the exoskeleton’s end-effector should change in order to reach the grasp
pose for the predicted target. The direction of this vector from the computer vision module
is expressed as the normalized vector, Ĉ. The confidence is then measured using the scalar
product between these two normalized direction vectors:

ρ(Û, Ĉ) =
(
Ĉ · Û

)
+ 1

2
. (1)

The addition and division of the scalar product between the two direction vectors
serves to normalize the resulting scalar to a value between 0 and 1. A high confidence
indicates that the user and the computer vision want to move in the same direction and
vice versa. A confidence measure of 0.5 or below corresponds to an angle of 90◦ or more
between the direction from the user input, Û, and the direction from the computer vision
module, Ĉ.

The adaptive semi-autonomous control relies on the above confidence measure to
arbitrate the control of the exoskeleton between the user and the computer vision module.
This arbitration is performed using a linear blending [26] between the input from the user
and the input from the computer vision module:

~Ex,y,z,θ = (1 − α)~Ux,y,z,θ + α~Cx,y,z,θ (2)

where α is the arbitration factor controlling the blending, such that the user is completely in
control of the exoskeleton when α = 0, and vice versa. ~Ex,y,z,θ is the output used to actuate
the exoskeleton in terms of a linear velocity x, y, z and an angular velocity θ for the wrist
rotation. Only the angular movement around the wrist is considered in the above blending
because the user is limited to wrist rotation only, as explained earlier in Section 3.1. Lastly,
~E, ~U, and ~C are velocity vectors and hence not normalized.

Finally, the arbitration factor α for the adaptive semi-autonomous control is dependent
on the confidence measure ρ, as shown in Figure 6. The main property of the selected
arbitration curve was to ensure that the confidence reached an acceptable level before
providing any assistance. No assistance is provided at all until the confidence measure
ρ > 0.5, which corresponds to an angular difference of less than 90◦ between the direction
vectors from the user and the computer vision module.
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The selected arbitration curve is inspired by another study [26] that tested a very ag-
gressive arbitration curve with a sudden jump in the arbitration factor against a more timid
one with a gradual change. Their results indicated that the aggressive one worked well in
scenarios where the task was difficult and the intent prediction was correct. However, for all
other scenarios the timid arbitration curve was to be preferred in terms of task completion
time and user preference. The arbitration curve for the adaptive semi-autonomous control
was hence designed to be more timid with a gradual change in the arbitration factor.

0.0 0.2 0.4 0.6 0.8 1.0
confidence
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ar

bi
tra

tio
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System
 in control

Human
 in control

Figure 6. The behavior of the different control schemes is illustrated using an arbitration curve. The
non-autonomous control (non) is fixed at α = 0 as the human is always in control. The curve for
the adaptive semi-autonomous control (adp) is given by the function α = max(0, 2ρ − 1). The fixed
semi-autonomous control (fix) is characterized by a sudden jump from the human being in control to
the system being in control, which is triggered when the user presses the “auto grasp” button.

The behavior of the two other control schemes can also be illustrated using an arbitra-
tion curve, as also shown in Figure 6. For the non-autonomous control, the user is always in
full control and the computer vision provides no assistance. The arbitration factor is hence
fixed at α = 0, i.e., the human is in control, no matter what the confidence of the system
is for this control scheme. The arbitration curve for the fixed semi-autonomous control is
also fixed at α = 0 with the exception of a sudden jump to α = 1. This jump illustrates
the behavior of the fixed semi-autonomous control which takes complete control of the
exoskeleton while the user presses and holds the “auto grasp” button. The confidence
measure for the fixed semi-autonomous control can hence also be viewed as a step function,
where ρ = 1 when the user is pressing and holding the “auto grasp” button, and ρ = 0
otherwise.

4. Evaluations

To test the developed system, two studies were conducted; study A included 10
participants without tetraplegia and study B included 7 participants with tetraplegia. The
overall structure of both studies is described in this section and the points where the two
studies differ are described in more detail later.

The purpose of the study is to test the following hypotheses:

• H1: “The adaptive semi-autonomous control is better than the non-autonomous control”.
• H2: “The fixed semi-autonomous control is better than the non-autonomous control”.
• H3: “The adaptive semi-autonomous control is better than the fixed semi-autonomous control”.

Whether a respective control scheme can be considered better than the others is as-
sessed using different performance metrics and questionnaires, described later in
Sections 4.2 and 4.3.
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4.1. Setup

An example of the setup using during both studies can be seen in Figure 7a, where
the participant is placed in a wheelchair while the exoskeleton is attached to their right
arm. The length of each link in the exoskeleton was adjusted to fit the participant and the
kinematic model of the exoskeleton was updated accordingly. Once the exoskeleton was
attached, the participant was asked to complete a small calibration procedure to find the
center point of their hand. This was necessary as the soft nature of the Carbonhand meant
that the participant’s hand did not always end up in the same location. The calibration
procedure consisted of grasping a bottle with a known position and orientation and was
repeated each time the participant wore the exoskeleton.

(a) The test setup. (b) The objects for grasping.

Figure 7. An overview of the test setup. (a) The participant is placed in a wheelchair with the
exoskeleton attached to the right arm in the starting position. In front of the participant is a table with
different objects to grasp. (b) The two objects used in the studies for the task of grasping: a plastic
strawberry and a plastic bottle. The objects can be placed on the two predefined positions marked on
the table below the objects.

The participant was seated at a table with a computer screen, the wireless receiver
for the tongue-based interface, several ArUco markers, and the objects to interact with.
The computer screen is used to provide visual feedback to the user during the experiment.
The screen displayed visual feedback for the tongue-based interface while the user learned
to control it during the first days of the study. When testing the control schemes, the
screen is only used to display the current control scheme to the participant. The ArUco
markers were added to make it possible to cross-reference recorded images and videos
from multiple sources.

Finally, the objects on the table included either a plastic bottle or a plastic strawberry,
as shown in Figure 7b. Both objects are bright red to make detection easier. These two
objects could be placed in two predefined positions, as illustrated by the markers under
each object. The choice of using a strawberry and a bottle was to have a larger object which
was easy to grasp and to have a smaller object which would be more difficult to grasp.
Grasping the strawberry would, in most cases, require the participant to rotate the wrist of
the exoskeleton. This was not necessary in the case of the bottle.

Four possible test scenarios were constructed from these two objects:

• Bottle—Single: Only the bottle is present in one of the two predefined positions. The
user must grasp and lift the bottle.

• Strawberry—Single: Only the strawberry is present in one of the two predefined
positions. The user must grasp and lift the strawberry.

• Bottle—Multi: Both the bottle and the strawberry are present and placed in the two
predefined positions. The user must grasp and lift the bottle.

• Strawberry—Multi: Both the bottle and the strawberry are present and placed in the
two predefined positions. The user must grasp and lift the strawberry.
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The test scenarios were constructed to create both easy and difficult situations. In easy
scenarios, with only a single object, the intention prediction would always be correct. In
the more challenging scenarios, with two objects, the intent prediction could possibly be
wrong, and the participant would also have to avoid collision with the object not to grasp.
Furthermore, the test scenarios involving the strawberry are anticipated to be more difficult
due to its smaller size and as it requires using the wrist rotation of the exoskeleton in order
to grasp it. A video of a few trials from study A can be found in Supplementary Materials.

Each trial started with the exoskeleton being in a predefined home position, as shown
in Figure 7a. The participant was then told what control scheme was active, and what
object to grasp and lift; afterwards, they could start moving the exoskeleton. The start of
each trial is marked by the participant starting to move the exoskeleton, and the trial ends
once the participant has grasped and lifted the object from the table for a few seconds. The
trial is restarted if it is deemed impossible to finish the trial successfully. The most common
occurrence was situations where an object was accidentally pushed outside the reach of the
exoskeleton by the participant.

4.2. Performance Metrics

During each trial, the following metrics were measured to assess the performance of
participants in controlling the exoskeleton:

• Time—How long it takes the participant to finish the task, measured from when the
exoskeleton is first actuated until the participant has grasped and lifted the target
object.

• Commands—The number of changes in issued commands during the different tasks.
Repeatedly pressing the same button on the tongue-controlled interface would hence
not count towards this number. Only commands different from the previous command
are counted.

• Cartesian Travel—The length of the path traveled by the end-effector, i.e., the Car-
bonhand, during the tasks as measured in Cartesian space. The Cartesian position
of the end-effector at each time instant is found using the forward kinematics of the
exoskeleton.

4.3. Questionnaires

Two questionnaires were used to assess the intuitiveness and performance of the three
tested control schemes. The first questionnaire is the INTUI [35] questionnaire to assess the
intuitiveness of completing the tasks when using the different control schemes. It consists
of 16 questions where the participant is asked to rate opposite statements on a 7-point scale.
The second questionnaire is the raw NASA-TLX (NASA Task Load Index) [36] to assess
the workload as perceived by the participant when controlling the exoskeleton using the
different control schemes. In the questionnaire, the participant is asked to rate workload
based on five factors: mental demand, physical demand, temporal demand, performance,
effort, and frustration. Each of these factors is graded on a 21-point scale between two
opposite statements, e.g., “Very High” and “Very Low”.

Both questionnaires were provided after conducting the last experiment on the last day.
The participant was asked to score the different control schemes simultaneously on the same
question in the questionnaires, as opposed to separate and successive questionnaires for
each control scheme. This was a deliberate choice as separate and successive questionnaires
could make it hard for the participant to keep track of previous scoring and the main
purpose was to find the difference between the control schemes.

4.4. Statistics

The following describes the post-processing of the metrics and, namely, the statistical
analysis of the collected data. The performance metrics measured during the trials, i.e.,
time, commands, and Cartesian travel, were first grouped based on participant ID, what
object to grasp (strawberry or bottle), and whether there was a single object or multiple
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objects in the scene. This resulted in four groups for each participant, with six samples for
each of the three control schemes. Many repetitions per group were performed to avoid
problems with outliers. To also avoid problems with pseudo replication, i.e., artificially
inflating the number of samples and hence the power in the statistical analysis, only the
mean of these samples is used for each group in the following statistical analysis.

All the measured performance metrics were found to be positively skewed and hence
log transformed. Afterwards, the normality of the transformed data was then confirmed
using Shapiro–Wilk’s test. A one-way repeated measures ANOVA with the three control
schemes were factors used to test for significance. Mauchly’s test was used to test for
sphericity and in the case where sphericity was violated, the Greenhouse–Geisser correc-
tion was used. Post hoc analysis was conducted for each of the metrics which showed
significance in the repeated measures ANOVA test. These post hoc tests consisted of pair-
wise comparisons among the different conditions, i.e., the three control schemes, using
Bonferroni correction.

The data from the TLX and INTUI questionnaires were tested for significance using the
nonparametric Friedman test. This was followed by a post hoc analysis using the Wilcoxon
signed rank tests between each unique pairing of the three control schemes. Bonferroni
correction was applied in this post hoc analysis as well. Nonparametric tests were used, as
both questionnaires rely on an ordinal scale. It should be noted that a significance level of
p = 0.05 is used throughout the discussion of the results in regard to whether a result was
statistically significant or not.

5. Study A—Without Tetraplegia

A total of 10 participants without tetraplegia were recruited for study A. The recruited
participants consisted of 1 female and 9 males within the age range of 19–34, with the
average age being 25 years. None of them had any connections to the departments of the
respective authors.

The participants in study A did not have tetraplegia and were therefore asked to relax
both their hand and arm entirely when using the system. This was performed to replicate
the intended use case of the system, where an individual with tetraplegia would control
the exoskeleton. Furthermore, electromyography (EMG) was recorded at all times during
the study to ensure that the participant did not move their hand or arm independently of
the exoskeleton by accident. The EMG was recorded using a Myo armband [37] placed on
the right upper arm of the participant. After mounting the Myo armband, the participants
were asked to repeatedly flex their biceps. These measurements served as a reference for
the maximum muscle activation that the participant was capable of. Anytime the measured
EMG of a participant would exceed just 20% of the measured maximum muscle activation,
the participant would be instructed to relax and possibly repeat any ongoing task.

All participants had received three days of training in using the ITCI for controlling
the exoskeleton 4–5 weeks prior to the study, as previous studies on the ITCI have shown
that long resting periods are beneficial when learning to use the tongue-based interface [38].
Besides the prior training in using the ITCI, study A consisted of two consecutive days
where the first day was used to train using the three different control schemes and refresh
how the tongue-based interface worked. In the last day, the participants used the three
different control schemes to complete the four test scenarios described earlier, where they
had to grasp and lift either a bottle or a strawberry. This was repeated six times to counteract
outliers, as also described earlier in Section 4.4.

The ordering of the test scenarios was completely randomized, and the used control
scheme was randomized such that the same control scheme could not appear more than
twice in a row before using another control scheme. This was performed to avoid having
large concentrations of a specific control scheme at the start or end of the study which could
skew the data.
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5.1. Study A—Performance Results

The results of using the one-way ANOVA test with repeated measures on the perfor-
mance metrics collected during study A can be seen in Table 1. The results show that the
used control scheme has a statistically significant effect. This is true for all of the four tested
scenarios and for all of the three measured performance metrics.

Table 1. Study A—Result of running a one-way ANOVA test with repeated measures for each of the
four different scenarios and the three different performance metrics.

Time (Seconds) Commands (Integer) Cartesian (Meters)

Bottle Single F(2,18) = 14.35, p < 0.001 F(2,18) = 17.06, p < 0.001 F(2,18) = 28.1, p < 0.001

Strawberry Single F(2,18) = 65.49, p < 0.001 F(2,18) = 35.45, p < 0.001 F(2,18) = 16.11, p < 0.001

Bottle Multi F(2,18) = 5.67, p = 0.012 F(2,18) = 9.09, p = 0.002 F(2,18) = 7.0, p = 0.006

Strawberry Multi F(2,18) = 30.16, p < 0.001 F(2,18) = 17.26, p < 0.001 F(2,18) = 5.72, p = 0.012

The ANOVA test was hence followed up by a pairwise comparison between the three
different control schemes as the selection of control schemes was found to have a statistically
significant effect. The results of the pairwise comparison are shown in Table 2, where the
mean percentage-wise performance increase is reported for each pair being compared, for
each metric and for each of the four scenarios used in the study.

For the comparison between the non-autonomous and the adaptive semi-automatic
control, in Table 2a, it can be seen that adaptive semi-automatic control results in an
improved performance across all 12 cases, with 9 of these being significant and another
being close to the threshold of p < 0.05. It would hence suggest that the hypothesis,
Hypothesis 1(H1): The adaptive semi-autonomous control is better than the non-autonomous
control, is true with only a few exceptions in terms of the performance metrics.

Looking at non-autonomous, i.e., manual, control versus fixed semi-autonomous
control, in Table 2b the fixed semi-autonomous control results in the best performance in 10
out of 12 cases, with 7 of these being significant. The hypothesis, Hypothesis 1(H2): The
fixed semi-autonomous control is better than the non-autonomous control, is hence not entirely
implausible but it cannot be confirmed either. The cases where the fixed semi-autonomic
control is significantly better than non-autonomous control are primarily the scenarios
involving the strawberry. This scenario is also difficult as the wrist of the exoskeleton needs
to be rotated to grasp the strawberry. It could hence indicate that the fixed semi-autonomous
control is beneficial once the task reaches a certain level of difficulty.

For the comparison between the adaptive and the fixed semi-autonomous control,
shown in Table 2c, the adaptive scheme results in the best performance in 10 out of 12 cases,
with five out of these cases being significant and another being close to p < 0.05 significance
threshold. It is hence not possible to decisively confirm or deny the hypothesis, Hypothesis
1(H3): The adaptive semi-autonomous control is better than the fixed semi-autonomous control.
However, it can be argued that this hypothesis is true for some scenarios, such as the one
with a single strawberry which resulted in a significant improvement across all metrics.



Appl. Sci. 2022, 12, 4374 15 of 24

Table 2. Study A—Pairwise comparison between the three tested control schemes. The mean
percentage-wise increase in performance for each comparison is reported, where positive numbers
denote an improvement (i.e., reduction) in favor of the hypothesis. The Bonferroni-corrected p-value
and the 95% confidence interval are reported as well. Bold font indicates statistical significance
for the p-values and an improvement in favor of the hypothesis. Significant results supporting the
hypothesis are marked with green while results supporting the hypothesis but lacking significance
are marked with yellow. Results marked with red do not support the hypothesis.

(a) Hypothesis H1, adaptive semi-autonomous control (adp) is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single 37% [6.0, 10], p = 0.001 37% [1.2, 2.3], p = 0.007 33% [0.14, 0.2], p < 0.001

Strawberry Single 58% [19, 31], p < 0.001 60% [3.9, 8.5], p < 0.001 38% [0.18, 0.3], p = 0.001

Bottle Multi 31% [4.9, 10], p = 0.051 17% [0.52, 1.0], p = 0.43 30% [0.12, 0.22], p = 0.026

Strawberry Multi 43% [14, 22], p < 0.001 44% [2.7, 5.6], p = 0.003 16% [0.08, 0.12], p = 0.073

(b) Hypothesis H2, fixed semi-autonomous control (fix) is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single 18% [3.1, 4.7], p = 0.046 −4.1% [−0.27,−0.14], p = 1.0 23% [0.1, 0.13], p = 0.001

Strawberry Single 46% [14, 25], p < 0.001 37% [2.6, 5.1], p = 0.009 25% [0.11, 0.22], p = 0.074

Bottle Multi 14% [2.2, 4.5], p = 0.77 −26% [−3.8,−0.56], p = 0.11 19% [0.07, 0.14], p = 0.28

Strawberry Multi 49% [15, 26], p < 0.001 35% [2.4, 4.0], p = 0.002 28% [0.13, 0.23], p = 0.034

(c) Hypothesis H3, adaptive semi-autonomous control (adp) is better than fixed semi-autonomous control (fix).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single 23% [3.0, 5.4], p = 0.09 40% [1.4, 2.4], p = 0.001 13% [0.04, 0.06], p = 0.092

Strawberry Single 22% [4.2, 5.5], p = 0.001 36% [1.8, 2.7], p < 0.001 17% [0.07, 0.09], p = 0.022

Bottle Multi 20% [3.1, 4.9], p = 0.054 39% [1.6, 3.0], p = 0.003 13% [0.05, 0.07], p = 0.1

Strawberry Multi −10% [−3.9,−1.4], p = 0.96 13% [0.6, 1.0], p = 0.46 −15% [−0.14,−0.04], p = 0.64

Finally, the measured performance metrics from the last day of study A are shown as
box plots in Figure 8. Each plot is split based on the four different scenarios used during
the study. Any pairwise significance between the three control schemes is indicated with
asterisks in the plots.
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Figure 8. Study A—Box plots for the performance metrics; (a) completion time, (b) number of
commands used, and (c) Cartesian travel. Lower is better for all three metrics. Any significance
between the different control schemes is indicated using asterisks (* = p < 0.05, ** = p < 0.01, and
*** = p < 0.001).
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5.2. Study A—Questionnaire Results

At the end of study A, each participant had to answer the INTUI and the NASA-TLX
questionnaires. These questionnaires serve to evaluate the intuitiveness of the control
schemes and how demanding it was to complete the tasks when using the different control
schemes. Applying the Friedman test showed a statistically significant difference in the scores
depending on the used control scheme, for both the INTUI (X2(2) = 14.824, p < 0.001) and
NASA-TLX (X2(2) = 15.846, p < 0.001).

A post hoc analysis of the results was performed using Wilcoxon, with Bonferroni
correction for multiple comparisons, to identify statistical significance between the three
control schemes. The results for the INTUI questionnaire show a statistically significant
difference when comparing the non-autonomous control with either the adaptive semi-
autonomous control (Z = −2.67, p = 0.024) or fixed semi-autonomous control (Z = −2.67,
p = 0.024). This statistical significance is also indicated in the box plot of the scores
shown in Figure 9a. From the box plot it is also clear that the significant difference is
an improvement, i.e., an increase in the score, in favor of both the adaptive and fixed
semi-autonomous control. However, there is little to no difference when comparing the
adaptive and the fixed semi-autonomous control, and no statistical significance was found
(Z = −0.341, p = 1.0).

1 2 3 4 5 6 7
INTUI score (higher is better)

*
*

(a) INTUI.

0 5 10 15 20
NASA-TLX score (lower is better)

*
*

non
adp
fix

(b) NASA-TLX.

Figure 9. Study A—Box plots of the scores for the different control schemes from the two question-
naires; (a) INTUI measuring intuitiveness (higher is better) and (b) NASA-TLX measuring the task
load (lower is better). Any significance between the different control schemes is indicated using
asterisks (* = p < 0.05).

A similar trend is seen for the results of the NASA-TLX questionnaire in Figure 9b.
There is a clear and significant improvement, i.e., decrease, in the task load when using
either the adaptive semi-autonomous control (Z = −2.807, p = 0.015) or the fixed semi-
autonomous control (Z = −2.805, p = 0.015) in comparison to the non-autonomous control.
The results of the comparison between the adaptive and fixed semi-autonomous control
are similar to what was observed for the INTUI questionnaire as there is no significant
difference (Z = −1.423, p = 0.465).

The results for the two questionnaires would have suggested that both hypotheses,
H1: The adaptive semi-autonomous control is better than the non-autonomous control, and H2:
The fixed semi-autonomous control is better than the non-autonomous control, are true. The last
hypothesis, H3: The adaptive semi-autonomous control is better than the fixed semi-autonomous
control, cannot be confirmed based on the results from the questionnaires.

6. Study B—With Tetraplegia

Study B included 10 individuals with varying degrees of tetraplegia, but all of them
had to fullfill the following criteria:

• Reduced or no function in their upper body, especially their right arm and hand,
where the exoskeleton had to be mounted.

• Tongue must be functional such that the tongue-based interface can be used.
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• While seated and without assistance they must not be able to grasp and lift a bottle of
water placed on a table.

However, 3 of the 10 participants had to be omitted from further data analysis due to
incomplete data. The cause of the incomplete data was due to fatigue by the participants, at
which point it was deemed best to cut the current session shorter. Study B was subsequently
reduced to only include two out of the four scenarios previously used in study A to avoid
situations such as this. The more difficult scenarios with two objects present were skipped
and only the scenarios with either a single bottle or a single strawberry were tested. The
data analysis of study B is hence based on the seven participants with complete data, after
reducing the number of tested scenarios. These participants had a mean age of 55 years,
ranging from 23 to 69, with one female.

The structure of study B consisted of three consecutive days: in the first day, the
participants trained to use the ITCI on a simulation of the exoskeleton and in the second
day they continued their training on the real exoskeleton. The third and final day was used
to train using the different control schemes and conduct the final test of the system.

Study B was hence two days shorter than study A and with one of the days training
on a simulation of the exoskeleton. Furthermore, all days were right after each other, unlike
study A, which included an intermediate period of rest for several weeks. The setup for
study B was not ideal and did omit many of the considerations from study A, but it was a
matter of making it feasible for individuals with tetraplegia to participate. The structure of
study B was hence condensed to minimize the amount of time that the participants would
have to travel and/or stay in a hotel.

6.1. Study B—Performance Results

The result of applying one-way ANOVA with repeated measures on the performance
metrics collected for study B is shown in Table 3. Statistical significance was found for both
the tested scenarios and for all the three collected performance metrics.

Table 3. Study B—Result of the one-way ANOVA test with repeated measures for each of the four
different scenarios and the three different performance metrics.

Time (Seconds) Commands (Integer) Cartesian (Meters)

Bottle Single F(2,12) = 15.58, p < 0.001 F(2,12) = 5.54, p = 0.02 F(2,12) = 6.77, p = 0.011

Strawberry Single F(2,12) = 11.28, p = 0.002 F(2,12) = 8.32, p = 0.005 F(2,12) = 6.42, p = 0.013

A pairwise comparison between the three control schemes was carried out to identify
any statistical significance between the control schemes. The results of this comparison
are shown in Table 4, reporting the mean percentage-wise increase in performance, the
associated p-values, and confidence intervals with Bonferroni correction. The same color
scheme is used as previously described for the results in study A.

For the comparison between the non-autonomous control and the adaptive semi-
autonomous control, the adaptive semi-autonomous improves performance across all six
of the tested cases. Statistical significance is found in three out of six of these cases. The
results are somewhat similar for the comparison between the non-autonomous control and
the fixed semi-autonomous control, where the latter improves performance across all six of
the tested cases as well. Furthermore, four out of these six cases are statistically significant.
The performance metrics from study B do hence indicate the plausibility of hypothesis H1:
The adaptive semi-autonomous control is better than the non-autonomous control, and especially
hypothesis H2: The fixed semi-autonomous control is better than the non-autonomous control,
without ultimately being able to outright confirm them. Finally, for the comparison between
the adaptive and the fixed semi-autonomous control, there is an equal split between which
of the two control schemes performed the best. However, none of these cases were found
to have any statistical significance. It is hence not possible to support hypothesis H3: The
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adaptive semi-autonomous control is better than the fixed semi-autonomous control based on the
results from study B.

Table 4. Study B—Pairwise comparison between the three tested control schemes. The mean
percentage-wise increase in performance for each comparison is reported, along with the associated
p-value and 95% confidence interval (both Bonferroni-corrected). Statistically significant p-values are
marked with bold. Significant results supporting the hypothesis are marked with green while results
supporting the hypothesis but lacking significance are marked with yellow. Results marked with red
do not support the hypothesis.

(a) Hypothesis H1, adaptive semi-autonomous control (adp) is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single 41% [12, 27], p = 0.02 43% [2.4, 8.3], p = 0.072 41% [8.9, 35], p = 0.22

Strawberry Single 54% [23, 57], p = 0.004 56% [4.7, 16], p = 0.014 33% [0.17, 0.45], p = 0.099

(b) Hypothesis H2, fixed semi-autonomous control (fix) is better than non-autonomous control (non).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single 53% [14, 39], p = 0.009 42% [2.3, 8.7], p = 0.1 53% [12, 45], p = 0.02

Strawberry Single 54% [17, 78], p = 0.048 50% [3.5, 17], p = 0.089 31% [0.18, 0.38], p = 0.048

(c) Hypothesis H3, adaptive semi-autonomous control (adp) is better than fixed semi-autonomous control (fix).

time (seconds) commands (integer) Cartesian (meters)

Bottle Single −21% [−13,−2.2], p = 0.35 0.37% [0.01, 0.04], p = 1.0 −21% [−12,−2.4], p = 0.8

Strawberry Single −0.29% [−0.17,−0.05], p = 1.0 12% [0.47, 2.0], p = 1.0 2.6% [0.01, 0.02], p = 1.0

The measured performance metrics from the last day of study B are shown in Figure 10,
along with the results from the last day of study A for comparison. Only the two scenarios
with a single bottle and a single strawberry are shown, as the scenarios with multiple
objects were skipped for study B. Pairwise significance between the three control schemes
are indicated with asterisks in the box plots, as previously. Looking at the performance
metrics for study B, the difference between the three control schemes appears similar to the
pattern observed for study A. Using either of the two semi-autonomous control schemes
improves all the performance metrics in comparison with the non-autonomous control.
However, most of the metrics from study B also appear to be higher than for study A,
suggesting a worse performance in general for participants in study B.
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Figure 10. Box plots for the performance metrics for both study A and B in the scenarios with
only single objects; (a) completion time, (b) number of commands used, and (c) Cartesian travel.
Lower is better. Any significance between the different control schemes is indicated using asterisks
(* = p < 0.05, ** = p < 0.01 and *** = p < 0.001).
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6.2. Study B—Questionnaire Results

The results of applying a Friedman test to the scores from the NASA-TLX and INTUI
questionnaires from study B indicated statistical significance between the control schemes
for both INTUI (X2(2) = 8.222, p = 0.016) and NASA-TLX (X2(2) = 10.333, p < 0.006).
However, post hoc analysis using Wilcoxon signed rank tests showed no statistical signifi-
cance between any of the control schemes once adjusting for multiple comparisons using
Bonferroni correction. Despite the lack of significance, the scores do differ for the three con-
trol schemes, as shown in Figure 11. For both INTUI and NASA-TLX, the non-autonomous
control scheme appears to perform the worst while the fixed semi-autonomous control
performs the best across both questionnaires.

1 2 3 4 5 6 7
INTUI score (higher is better)

(a) INTUI.

0 5 10 15 20
NASA-TLX score (lower is better)

non
adp
fix

(b) NASA-TLX.

Figure 11. Study B—Box plots of the scores for the different control schemes for the two question-
naires; (a) INTUI measuring intuitiveness (higher is better) and (b) NASA-TLX measuring the task
load (lower is better).

7. Discussion

Looking at the pairwise comparison for the performance metrics from study A
(Table 2), there appears to be a trend of the scenarios with multiple objects lacking signifi-
cance and vice versa. For the multi-object scenarios, there is a lack of statistical significance
in 11 out of 18 cases, whereas it is 4 out of 18 cases for the single object scenarios. Another
interesting observation in relation to this is how the different control schemes behave when
moving from a scenario with only a single object to one with multiple objects. In the case of
the non-autonomous control scheme, the introduction of multiple objects does not seem
to alter any of the measured performance metrics much. The opposite is true for both the
adaptive and fixed semi-autonomous control, as most of their metrics in Figure 8 appear to
increase when introducing multiple objects. This is expected, as having multiple objects in
the scene requires the system to predict the intention of the user. However, these results
indicate that improving the current approach for intention prediction could be beneficial.

The current method for intention prediction can be considered amnesic as it relies
solely on the current state, i.e., where the object is in relation to the hand right now. It could
be beneficial to use prior information in a memory-based approach for the intent prediction,
such as considering the entire trajectory traveled by the hand so far [25,26].

The idea of having two different objects in the two studies was to provide varying
levels of difficulty. Looking at the results from both studies A and B, in Figure 10, it appears
that this choice was successful as some scenarios are clearly more difficult than others
when using the manual control scheme. For example, the strawberry generally takes a
longer time and requires more commands to pick up as compared to the bottle. This is not
surprising as the small size of the strawberry often requires a pincer grasp where the wrist
of the exoskeleton needs to be rotated. The bottle can instead be grasped using a palm
grasp where there is no need to rotate the wrist of the exoskeleton. In further studies, it
may hence be beneficial to include even more of these difficult tasks as the benefits of using
semi-autonomous control are more pronounced in these cases. This is also clear when
looking at the pairwise comparisons for both study A (Table 2) and study B (Table 4), where
the scenarios involving a strawberry account for the majority of the statistically significant
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results. This observation of semi-autonomous control being more beneficial for difficult
tasks has been made in several other studies as well [18,20].

However, this difference in performance between grasping the strawberry and the
bottle is less apparent for the adaptive and fixed semi-autonomous controls. A possible
explanation is the fact that both these two control schemes can simultaneously adjust both
the position and orientation of the exoskeleton. Performing simultaneous control of both
the position and orientation is not possible for the non-autonomous control as it would
require issuing two commands at once, which is not possible due to the nature of the
tongue-based interface. The simultaneous adjustment of both position and orientation is
hence a clear benefit of using either the adaptive or fixed semi-autonomous control instead
of the non-autonomous, i.e., manual, control.

In the results for the performance metrics from study B, there is no significant differ-
ence between the adaptive semi-autonomous control and the fixed version. This differs
from the results found in study A, where the adaptive semi-autonomous control resulted
in a significant reduction in at least a few cases, especially when considering the number
of commands used. Another major difference between the results of study A and B is a
consistent decrease in performance for all the different control schemes. In general, the
participants in study B use longer time, more commands, and the hand of the exoskeleton
travels further in comparison to the participants from study A. This is despite the task
being identical and using the exact same system in terms of both hardware and software.
The results from study B also appear to carry less statistical power than the results found
from study A; this is likely due to the smaller sample size, i.e., number of participants, but
also partly due to a higher amount of noise in the collected measurements for study B. The
presence of more noise is clear when looking at the distribution of measurements in study
A and B in Figure 10.

A likely explanation for the difference in the results could be the different structure
used in the two studies. In study B, the participants had less time for training to use the
system, both in terms of using the ITCI, learning how the exoskeleton moves, and how the
different control schemes behave. This could have impacted the performance of the partici-
pants in study B as the ITCI may have a relatively long learning curve [38], even though
most learning takes place within the first 3 days. Another possible factor contributing to
the different performance between studies A and B could the age difference. The mean age
of the participants in study B is over twice the age of the participants in study A (25 versus
55 years). Similar observations were made in a study on controlling a computer using neck
movements, where performance decreased as the age of the participants increased [39].
This could indicate that age is indeed a factor when using the proposed system.

Looking at the NASA-TLX and INTUI questionnaires, they confirm many of the same
observations made from the performance metrics for both studies. For study A, both the
adaptive and fixed semi-autonomous control are significantly better than non-autonomous
control in terms of both the INTUI and NASA-TLX questionnaires. However, there is
no significant difference between the adaptive and fixed semi-autonomous control in
the questionnaires in study A. This is despite the performance metrics indicating some
significance in at least certain scenarios.

It is possible that making the questionnaires more fine-grained, e.g., one for each
of the scenarios, would have yielded a significant difference between the adaptive and
fixed semi-autonomous control in some cases, similarly to what was observed for the
performance metrics. However, such an approach was deemed infeasible as it would
require the participants to answer four times as many questionnaires.

The INTUI and NASA-TLX results from study B show a more pronounced difference
between the adaptive and fixed semi-autonomous control for both questionnaires in com-
parison to study A. This may be altered slightly if the learning of using the ITCI had been
completed as further learning takes place after the currently used 3–5 days. This difference
lacks statistical significance, but it could indicate that users without much training, i.e.,
study B, prefer the fixed semi-autonomous control, whereas there is no clear preference
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between the adaptive and fixed semi-autonomous control for users with more training, i.e.,
study A. The difference between study A and B in terms of the questionnaires could once
again be related to a combination of less training for participants in study B and the age
difference between the two groups of participants. This could indicate that it would have
been beneficial to run study B using the same structure as study A and preferably with
a younger age group. However, at the time when study B was conducted, this was not
possible, but it is something to keep in mind for future studies.

Finally, the current system relies on classic image processing techniques when perform-
ing object detection for the sake of producing reliable results in a controlled environment.
This approach will hence not work well in an unconstrained environment with unknown
objects, such as the home of an individual with tetraplegia. This shortcoming may be
remedied by using deep learning approaches [30,31] trained on vast datasets [32] or ap-
plying methods for object-agnostic grasp detection, which should work for any arbitrary
object [40,41].

8. Conclusions

Three control schemes with varying degrees of autonomy were implemented and
used in the context of performing tongue-based control of an upper limb exoskeleton
for individuals with tetraplegia. Computer vision was used to detect nearby objects to
infer the intention of the user. The confidence of this prediction was used by an adaptive
semi-autonomous control to continually adjust the amount of assistance provided when
controlling the exoskeleton. The adaptive semi-autonomous control was tested against
non-autonomous (i.e., manual) control and fixed semi-autonomous control, where the level
of assistance was always the same.

The three control schemes were tested across two studies: 10 participants without
tetraplegia and 7 participants with tetraplegia. Both studies showed a clear improve-
ment when using either the adaptive or fixed semi-autonomous control instead of the
non-autonomous control. The participants without tetraplegia also showed a significant
improvement for several of the tested tasks when using the adaptive semi-autonomous
control instead of its fixed counterpart. However, the participants with tetraplegia per-
formed better with the fixed semi-autonomous control instead of the adaptive one in many
cases. These different results and preferences across the two studies could be attributed to
a much higher average age for the participants with tetraplegia along with less training in
using the tongue-based control as well.

The benefits of using an adaptive versus a fixed level of autonomy for the semi-
autonomous control appear to depend on the user and their amount of experience in
using the system. Nevertheless, the results clearly show that both the semi-autonomous
control schemes are to be preferred over manual control. Furthermore, using the adaptive
semi-autonomous control instead of the manual non-autonomous control did not appear
to have any drawbacks during the two studies as it was found to improve performance
in all the tested cases. The fixed semi-autonomous control did, on the other hand, reduce
performance in a few cases when compared to the non-autonomous control.
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